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This paper proposes a state space approach for analyzing the finite automata. A 
U-representation transforms a set of words into a formal power series for 
establishing the state equation of a finite automaton. We investigate the 
structure of the automaton via its corresponding state equation. It is shown that 
the solution of the state equation always exists and is unique. Furthermore, we 
prove that the solution field is a separable algebraic extension of the coefficient 
field. Finally, the concept of the substitution property of a partition is shown to 
be equivalent to that of invariant subspaces of the associated state space. 
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1. I N T R O D U C T I O N  

Progress has often been made by transforming one system into another, such 

that the essential attributes of the transformed system are preserved. A 

familiar example is the Laplace or Fourier transform that maps a linear 
system from the time domain into the frequency domain. 

The approach of the present work is based upon the transformation of a 
set of words into a formal power series over the field of integers modulo 2, 
which is called the T-representation of the set of words. Thus a state 

equation in some linear space associated with a given automaton can be 
obtained. A fixed-point theorem of the state equation is then derived. The 
solution field is shown to be a separable algebraic extension of the coefficient 
field. The concept of a parti t ion with the substitution property is proved to 
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be equivalent to that of invariant subspaces and projections of the associated 
state space. 

The formal power series over the Boolean ring {0, 1} has been used 
previously by Schfitzenberger to study automata and formal languages, (5) 
where the variables in the formal power series are noncommutative. As such, 
it fails to describe the state space of the finite automata as a vector space 
over the field, which forms the basic framework of the present approach. 

A finite set of symbols S =  {O'l,O'2,...,an} is called an alphabet. By a 
word we mean any finite string of symbols from S. The set of all  words is 
denoted by 2;*, including the empty word (with no symbols) denoted by A. 
If co, and co2 are words in Z*,  then co,co2 denotes the words obtained by 
concatenating the two strings. Therefore, 2;* together with the binary 
operation of concatenation forms the free semigroup (with unit A) generated 
by L'. ~9) 

A finite automaton is a system defined by the 4-tuple M = (2;, S, 8, Sl), 
where S is a finite nonempty set (the internal states of M); 8: S • 2; ~ S is a 
single-valued function, which maps all pairs of states and symbols into the 
set of states and is called the next-state function; s~ is a distinguished element 
of S (the initial state of M). 

Let M be an automaton; the function 8 can be extended from S • 2; to 
S • S*  in a natural way, as follows: 

8(s ,A)=s ,  for s E S  

8(s, coa) = 818(s, co), a], for s ~ S, co E 22", and a C 22 

Let S = {s 1, $2,... , Sn} be the set of states of an automaton M; the word 
co ~ Z*  is said to be accepted by the state s i C S if and only if 8(sl, co)= s i. 
For an automaton M, an equivalent relation E on the set of words 27* is 
defined as follows(9): 

colEcoz if and only if 6(S1, COl) ---- 8(S1, CO2) 

This implies that the words (J)l and o92 are in the same equivalence class of E 
on 27" if and only if they are accepted by the same state of M. The collection 
of all distinct equivalence classes of E in the set 2;* shall be denoted by 
H = 2;*/E. The quotient set H = {O1, s 2 ..... [2,} is a partition on S*,  where 
12i= {co t 8(s 1, co )=s ; ,  co E 2;*} is the set of words accepted by the state 
s i C S .  

Let 2; be an alphabet. By the Gfdel  numbering of 2;* we simply mean 
any one-to-one function fl from 2;* onto the set N of nonnegative integers.~11) 
To simplify the discussion, we assume that 2; consists of two symbols 0 and 
1 (binary alphabet). Suppose 2; is an arbitrary alphabet; then 2; can be 
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uniformly encoded by binary words. By a change of notation, if necessary, 
the theorems remain valid. 

DEFINITION 1. Let X = {0, 1 }. A lexicographical G6del numbering of 22 
is a bijective mapping it: 2;* -~ N, defined recursivety by 

u(A)=0 (1) 

If / /(o~)=n, then / / ( 0 9 0 ) = 2 n + 1 ,  and / 1 ( ( o l ) = 2 n + 2  

Let F be the field of integers modulo  2. We employ the following 
notations. (6) 

1. Let F[x] denote the set of all polynomials in the indeterminate x of 
the form 

f(x) = f ak xk, Yak C F 
k = 0  

It may be verified that F[x] is a ring, which is called the ring of polynomials 
in the indeterminate x over F. 

2. Let F(x) denote the set of all rational functions of the form 

h , ,  f(x) ix) = ~-~ ,  f(x), g(x) ~ Fix], g(x) 4= 0 

F(x) is a field, which is called the field of quotients of Fix]. 

3. Let F[[x]]  be the set of all expressions of the form 

f (x )= ~,  ak xk, ga k ~ f 
k = 0  

F[[x]]  is a ring, which is called the ring of the formal power series in the 
indeterminate x over F. 

4. Let F(x} be the set of all expressions of the form 

f(x)= ~ akXk, Va k ~ F  
k : n  

with the understanding that, at most,  a finite number of the coefficients ak 
with k a negative integer are nonzero. F(x} is a field, which is called the field 
of extended formal power series over F. The ring F[[x]]  is contained in F(x} 
as a subring. (6) 



320 Lee 

For any set A, let 2 A denote the collection of all subsets of A, which is 
called the power set of A. The set of words can be expressed by formal 
power series via the ~U-representation defined as follows. 

DEFINITION 2. Let 22 = {0, 1 }. A mapping 7*: 2 ~* ~ F(x)  defined by 

~ ( ~ ) =  ~ x "(~~ for ~ E 2  z* (2) 
oJEf2 

is called the kU-representation of X2. 
It is known that the range of p is the set of all nonnegative integers N. 

The range of 7 j is the ring F[[x]].  The mapping ~ possesses the following 
properties: 

I. 71(0)=0. 

2. For A, B _c 22* a n d A ~ B = O ,  then 7- ' (AUB)=gJ(A)+7"(B) .  

3. For f ,  g E F(x) ,  let f = Y' akx ~ and g = ~ bkx k. The Hadamard 
product o f f  and g is f @  g = Y ' a k b ~ x  k. It is easy to verify that 
7'(A ~ B ) =  kU(A) @ 7*(B), for A , B  c_S*. 

4. Le t / 7  = {~1, I22 ..... ~ ,  } be a partition on 22". Then, 

~(01)  + ~ ( a ~ ) +  ... + ~ ( ~ , , ) =  ~(O,  U~e2 U ... U .e,,) 

= ~(z*) 

~_1 +X+X2-[ - . . .  

= 1/(1 -- X) 

These properties can be verified directly from the definition of 7 j. The 
convergence-of the infinite series will be discussed in the next section. 

A mapping D that maps F(x)  into itself, defined by D z = z  z for 
z E F(x),  is an automorphism of F(x).  Let L = F ( x )  and let L"  denote the 
corresponding set of n-tuple vectors. The mapping D can be extended to Ln 
in a natural way, as follows: 

D Z =  [Dzl,Dz2, . . . ,Dz,] ' ,  for Z E L "  

where prime indicates transposition. Let A = (au) be a linear transformation 
of the vector space L n over L;  then DA = (Dau) for a u C L. 

LEMMA 1. For ~2 E 2 ~*, ~ = {co( [ co C X2 } is the set of all words 0 
concatenated with ~. Then 

7t(X?O) = xDz 
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and 

Proof 

~ ( ~ 1 )  =x2Dz  

Y'(n0)= Z x x 
o ~ 0  w e d  

= ~ X2"(~ Z N( X/z(a'))2 
w~f~ w6.Q 

= xD 7*(f2) = xDz 

Similarly, 7~(f21)=xZDz.  In general, we have 

7~(f2~)=x"(PDl(Pz, for ~ S *  

(3) 

where I(r is the length of r and (4) may  be verified by mathematical  
induction on l(~). II 

Example. For .(2 ~ 2 ~*, { = 010 and z -= W(O). Then 

gt(X2010) = xD 7J(X'201) = xD (x 2D 7*(.O0)) = x 5D2 T(O0)  

= xSDZ(xD~(.c2)) = x 9 D 3  }F(aQ) = xgDXz 

where ~(010) = 9 and I(010) = 3. 
Let M = (S, S, c~, sl) be an automaton,  where S = {s l, s2 ..... s,} is the 

set of  states. Then the following identities hold: 

~"~1 = U ['~j(lk ~ {A } 
3(sj,crk)=sl 

and 

f2i = U o jc  rk, for i =  2, 3 ..... n (5) 
6(sj, crk) =si 

It is known that  the D; 's  are mutual ly disjoint. By property (2) of the g-'- 
representation, we have 

Z1 = 2 X tt(ak) Dzj + 1 
6(sj,c,k) =sl 

(4) 
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and 
z i = ~ x u(~k) D z j ,  for i = 2, 3,..., n (6) 

8($j,ak)=$i 

where z i =  ~u= (/2/). We shall call Eq. (6) the state equation of the 
automaton M, which can be written in matrix form, Z = A D Z  + b, such that 
Z = [z I ..... zn] ' ,  b = [1, 0 ..... 0] ' .  The matrix A is called the transition matrix. 

E x a m p l e .  Let M1 = (27, S, 6, sl), where S = { s 1 ,  $2, $3' $4}" The state 
table of  M1 is given in Table I. 

Le t /2 i  be the set of  words accepted by the state s/, as shown in Eq. (5). 
We have 

It follows that 

where z i = 7J(/2i). 
We can write the above 

Zll Z2 ~ X2 

Z 3 

Z 4 

/22 = /211  k..J/231 

/24= /221  LA/241 

z l  = x D z l  + x D z  3 -t- 1 

7. 2 = xZDz]  q- x2Dz3 

z 3 = x D z  2 + x D z  4 

z 4 = x2Dz2 + x2Dz4 

equations in the matrix form: 

o x Dz2l 
X 0 D z 3 [  + 

X 2 0 X 2 Dz4A 0 

Table I. State Table of 
Automaton M 1 

0 1 

SI S1 $2 

S 2 S 3 S 4 

$3 S1 $2 

S 4 S 3 S 4 
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It is easy to verify that 

z 1 = 1 q--xq-x3/(1 -x4),  

z 3 = xS/(1 - - X 4 ) ,  

is the solution of the state equation. 
This example illustrates the procedures for obtaining the state equation 

by U-representation. It will be shown in the next section that the solution of 
the state equation always exists and is unique. 

Z 2 = X 2 -[- X 4 / ( ]  - -  X 4) 

Z 4 = X 6 / ( 1  - -  X 4)  

2. SOLUTION OF THE STATE EQUATION 

The existence and uniqueness of the solution of the state equation are 
proved in this section. We begin by introducing the concept of valuation and 
then by means of conventional methods of functional analysis derive a fixed- 
point theorem, which establishes the proof and also provides the formula for 
the solution. 

A valuation (absolute value) on a field K is a real-valued function 
a--, l a[ defined on K that satisfies the following conditions: 

1. l a[~>0 for a l l a C K a n d  [ a l = 0 i f a n d o n l y i f a = 0 .  

2. [ a b l = l a l l b [  for a l la ,  b ~ K .  

3. ] a + b l ~ ] a [ + l b i f o r a l l a ,  b C K .  

A valuation ][ on K is called non-Archimedean if 

[a + bl ~ max(lal, lbl) 

Otherwise it is call Archimedean. (1'8) 
nonzero element of F(x) ,  we can write 

for all a , b ~ K  

If  a = f ( x ) / g ( x )  is an arbitrary 

a = f ( x )  = xn u(x )  
g(x) ~(x) 

where u(x) and v(x)  are relatively prime elements o fF[x] ,  neither of which is 
divisible by x. If we set 

f ( x )  ]ar~= g ~  =e n, r01~=0 (7) 

where e is a fixed real number and 0 < e < 1, it is easy to show that I Ix is a 
non-Archimedean valuation on F(x).  (8) The valuation I Ix can be extended to 
any a C F(x ) .  Suppose a = ~ n  ak xk, an ~ O. The extended valuation is 
defined as la]x = eL A field K is said to be complete with respect to the 
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valuation I if every Cauchy sequence converges to a limit in K. It can be 
shown that F(x)  is the completion (unique up to an isomorphism) of F(x) 
with respect to the valuation I Ix. ~8) 

Let R = {X, d} be an arbitrary metric space. A mapping H of the space 
R into itself is said to be a contraction if there exists a positive real number 
p <  1 such that d(Ha, Hb)~pd(a ,b )  for any points a, b E X .  Every 
contraction mapping is continuous. It is known that every contraction 
mapping defined in a complete metric space R has one and only one fixed 
point, i.e., the equation Hy = y has only one solution. (2) 

Let L = F ( x )  with the valuation t lx and X = L "  be a linear space over 
L. The mapping IF II: X - , R  defined by I l Z [ l = m a x ~ l z e l x  is a norm of the 
linear space X. Since L is complete with respect to l Ix, and X = L  ~ is a 
finite-dimensional linear space over L with the norm [I II, then X is also 
complete, i.e., X is a Banach space. (z'l~ For Z1, Z 2 ~ X, define 

d(Zl,  Z2) = II Z,  - Z211 

Clearly, R = {X, d} is a complete metrix space. 
A closed sphere S[Z0, r] in the metric space R is the set of all points 

Z E R such that d(Z, Zo) ~ r. Let U = {al l a Ix ~ 1, a E L }. Then for any 
Z C U ~ we have d(Z, 0 ) =  IlZll = maxi Izil~ ~ 1. Thus, U" c X  is closed 
sphere S[0, 1] in R. It follows that the closed subspace (U",d)  is also 
complete, t 10) 

Let A: X ~ X  be a linear transformation. A norm II II of A is defined by 
IIAll=max~,sl%lx. It is known that for any Z ~ X ,  IlhZll<.llAHIIZll. 
Suppose z = A D Z  + b is the state equation of an automaton M and A = (a~j) 
is the transition matrix; from the previous section we know that a;j are 
elements of the maximal ideal of F[x] generated by x. 

Therefore 

IIA tl = m a x  l % l x  <~ lxlx = e < 1 
t~J 

Theorem 1. Let H be a mapping from U n into itself defined by 
H Z - - A D Z  + b. Then H is a contraction mapping. The unique solution of 
H Z = A D Z + b = Z  is given by Z =  [ Y ~ 0  (AD)i] b. 

Proof. For a n y Z ,  W E U  n , w e h a v e  

d(nZ,  /4W3 = [I n z  -- HWII --- IIADZ -- AD Wll 

~< [IA II f l O g  - D W t l  <. e max [z~ -- w~l x 

= e max, I z i -  w, lx Izi + wi[x <~ e max I z ; -  wil x 

= ed(Z ,  w )  
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Therefore H is a contraction mapping and there is one and only one fixed 
point in the complete subspace (U ' ,  d). 

Let Z 0 = O. Then 

Z 1 = H Z  o = b 

Z 2 = H Z  1 = A D b  + b = (I + A D ) b  

and 

Z n = H Z ~ _ I = ( I + A D + ( A D ) Z + . . . + ( A D ) " - ' ) b ,  for n / > l  

Hence, 

Z =  lim Z n =  ( A D )  i b 
tt ---~ oo 

is the unique fixed point, where ( A D ) ~  and ( A D ) " = A D ( A D )  n-1 for 
n ~ l .  I 

Example. Consider the automaton M2 with the state table given in 
Table II. The state equation of M2 is lZl] lixO0 ]rZll [i] z~ ~o  ~ /~z~/ 

__ ~ / ~ ,  / 
z 4 0 x 2 0 

z 5 Ix2 0 0 x [ D % . J  

Table II. State Table of 
Automaton M2 

0 1 

SI S 2 S 5 

$2 S l $2 

$3 S 3 $4 

S 4 S~ S 2 

$5 S 4 $4 
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Then, 

Z o = ( 0 , 0  ..... 0 ) '  

z ,  = (1, 0 ..... 0 ) '  

Z 2 

Z 3 = 

Z 4 

(1, x, 0, 0, x2) ' 

(1 -~- X 3 ,X ' j -  X 4 ,X  6 , x  5 , x 2 )  ; 

(1 + x  3 + x 9 ,  x + x  4 + x  7 + x  v + x  1~ ~-X 12, 

X 6 -~-X13 X5 ~-X14 X2 ~ -X 8 ~ - x l l )  t 

A field L is said to be an extension of  field K if L contains K. We may  view 
L as a vector space over K, and say that  L is a finite of infinite extension of 
K accordingly  as the dimension of  this vector space is finite or infinite. An 
element ~ of  L is said to be algebraic over K if there exists a p o l y n o m i a l f ( x )  
over K such that  f ( r  = 0. 

Let L be an extension field of  K. I f  ~ E L is algebraic over K, a n d f ( z )  
is the irreducible po lynomia l  of  ~ such that  f (~ )  = 0 G K [ z ] ,  then ~ is called 
inseparable  over K i f f ' ( ~ )  = 0; otherwise, ~ is called separable  over K. An  
algebraic extension field L of  K is called separate if every ~ ~ L is separable  
over K;  otherwise, L is an inseparable  extension of. ~6) 

It is know that  L = K(~ I ..... ~,) is a separable algebraic extension of the 
field K if and only if there exist n p o l y n o m i a l s f l ( z  1 .... , z~) ..... f , ( z l , . . . ,  z , )  in 
K [ z  1 .... , z . ]  such tha t f / (~  1,..., ~n) = 0 for i = 1 ..... n, and the Jacobian  ~6'12) 

det [ \c3zj/~k=~,J 4 : 0  

Let 

Ii 1] /all lnJ li1 Z2 ~ a2,1 "'" ~/2,n z2 2 _~ 

" ' '  i 

n I-an,1 "'" Cln,n I-Z2n -1 

(8) 

be the state equation of  an arbi t rary  n-state au tomaton M and let K = F(x) ;  
it follows that  Eq. (8) is a set of  n polynomialsf , . (z i  ..... zn) in K [ z  1 ..... zn]. It 
is shown that  there is a unique solution z I = ~ ..... zn = ~n in some extension 
field of  K such that  f i(~l ..... ~n) = 0 and the Jacobian  
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Collecting the above results, we have the following theorem. 

Theorem 2. Let K = F ( x ) ,  and let Z =  (~  ..... ~n)' be the unique 
solution of  the state equation Z = A D Z + b  of an arbitrary n-state 
automaton M. Then the field K(~ 1,..., ~,) is a separable algebraic extension of  
K. 

3. PROPERTIES OF THE STATE SPACE 

In this section we establish the connection between the invariant 
subspaces of  the state space and the substitution property of  the partition on 
the set of  states. 

A subspace W of a vector space V is invariant under a transformation 
T if T takes each vector of  W into a vector of  W; that is, W T c  W. If  V is 
the direct sum of W and Y, so that every z in V may be written uniquely in 
the form z = w + y, with w in W and y in Y, then the projection on W along 
Y is the transformation E defined by z E  = w: A linear transformation E is a 
projection on some subspace if and only if it is idempotent, i.e., E 2 =  E. (3) If  
a subspace W is invariant under the linear transformation T, then E T E  = E T  

for every projection E on W. Conversely, if E T E  = E T  for some projection 
E on W, then W is invariant under T. ~3) 

A partition zc on the set of  states of  the automaton M =  IS, 22, g, sl} is 
said to have the substitution property (S.P. partition) if and only if s i = sj(~z) 

implies 6(s i, 6)  ==_ O(sj, ~)(Tr) for all ~ C 22.~4) It follows that for each a C 22 
and B C 7~, there exists a unique B '  ~ ~ such that 6(B, 6) _c B ' ,  where ~ is 
extended from S • 22 to 7r • 22 such that 6(B, 6) = U s i ~  3(Si, 6). We can 

Table I|!. State Table of 
Automaton G 

0 1 

1 2 3 
2 1 3 
3 4 5 
4 3 2 

5 1 6 
6 1 5 
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Table IV. State Tables of 
the Image Automaton G~ 

0 1 

ql ql q2 
q2 q3 q4 
q3 q2 ql 
q4 ql q4 

q~ = fl, 2}, q2= t3} 
q3 = {4}, q4= / 5 , 6} 

think of  these blocks as the states of  a new M~ automaton defined by zr and 
M, which is called the zr-image of  M. That  is, M , ~ = { ~ z , X , f , ~ , B ~ }  with 

6 , ~ ( B , o ) = B '  i f ~ ( B , o )  c _ B ' ,  and s 1 E B 1 .  (4) 
Consider  au tomaton G of  Table III. It is easily seen that  the par t i t ion 

zr = {1, 2; 3 ; 4 ;  5, 6} has the substi tut ion proper ty  on G. The corresponding 
automaton G~ is shown in Table IV. 

The transi t ion matr ix  of  au tomaton G is 

A = 

"0 x 0 O x x 

x 0 0 x z 0 0 

x 2 x 2 0 x 0 0 

0 0 x 0 0 0 

0 0 x 2 0 0 x 2 

0 0 0 0 x 2 0 

Let e 1,..., e6 be a coordinate  system of  the vector space V = L 6, where 
L = F ( x ) .  Then A is a linear t ransformat ion on V and we have 

~,IA ~ x• 2 Ar x~, 5 Av x,~ 6 

82A ~ x81 Jr x284 

83A ~ x281 A V x282 ~- x84 

84 A ~ x83 

c5A  ~ x383 A VX266 

~6 A ~ x2~ 5 
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Consider the subspace W generated by /e~ + ez, e3,84, 85 + e6}; it can be 
verified that W is an invariant subspace of V, since 

(81 -}- 82)A = x(81 @ 82) q- xZe4 q- x(85 AI- e6) ~ W 

83A = x2(ex + e2) + xe  4 ~ W 

84A = xe  3 C W 

(85 q- e6)A = x2~:3 -}- x2(85 q- 86) (~ m 

Therefore WA c W, and A restricted on W is given by 

AIW= I 
X O x 2 X ] 
x z 0 x 0 

0 x 0 0 
0 X 2 0 X 2 

This is the transition matrix of  the n-image automaton G~ of G. Later we 
will show that  this relationship between the partition with the substitution 
property and the invariant subspace always exists. 

Let the set of  states S be the set of integers { 1, 2 ..... n } and the set of  all 
partitions of  S be H ( S ) .  The representation of a partition zr = {B~, B 2,..., B m } 

on the set S is an n-tuple integer array ( a l , a 2 , . . . , a , )  such that for i ~ B  k, 

a i = rain Bk, where rain B k is the smallest element in B k. Thus the partition 
zr = { 1, 3, 6; 2, 5; 4, 7 } is represented by (1, 2, 1, 4, 2, 1, 4). We may  consider 
the n-tuple (a 1, a 2 . . . . .  an) as an ordered set of  images of  a mapping f :  S ~  S 
such that ( a l , a z , . . . , a , ) = ( f ( 1 ) , f ( 2 ) , . . . , f ( n ) ) .  It is easy to verify that  a 
mapping f that represents a partition on S should satisfy the following 
criteria: 

I. Contract ion:  f ( i )  <~ i for 1 <~ i ~ n. 

2. Idempoten t : f2 ( i )  = f ( i )  for 1 ~ i ~ n. 

The set of  all mappings from S into itself that  satisfy the criteria 1 and 2 will 
be denoted by R(S) ,  and there is a one-to-one and onto correspondence 
between H ( S )  and R ( S ) .  (7) 

Let V be an arbi trary n-dimensional vector space. We will show that  for 
every partition ~r on the set S of  n elements, there is a projection E on V 
induced by zr. 

Lemma 2. Let 7r be a partition on S = {1, 2,..., n}, and let f be the 
representation function of z~. The n • n matrix E =(e i j ) ,  such that 
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l l, if f ( j )  4= i 
eiJ= O, if f ( j )  4= i 

is a projection on any n-dimensional vector space V. 

Proof. We want  to prove  E 2 = E. Letting E 2 = (mij) = (Y~],= 1 eikekj), 
we have to show that m i j =  Y'~,=I et~ekj = e~j. For  each column of E, there is 
one and only one element equal to 1; all other elements are equal to 0. 
Therefore, if mij = 1, there is some p, 1 ~< p ~< n, such that e~p = epj = 1. Then 
f ( p ) = i  and f ( j ) = p ,  which implies f 2 ( j ) = f ( p ) = i .  By the idempotent 
property of f ,  we have f ( j ) =  i, and eig = 1. Conversely,  if ei j= 1, then 
f ( j )  = i. Hence, f ( i ) = f 2 ( j ) = f ( j ) =  i, and therefore eii = 1. It follows that 
m i g = Y ~ = l e i k e k j = e u e i j = e i j =  1. Therefore E 2 : E .  1 

Theorem 3. Let M = {S, Z, 6, s l} be a given automaton and A be the 
transition matrix of  M. Let ~z be a S.P. partition of M, and E the projection 
induced by ~r. Then EAE = EA. 

Proof. The transition matrix A can be expressed by a matrix 
polynomail  A = x T  o + xZT~, where T o and T~ can be defined as follows: 

t1 if 6(j,  0 ) = i  
T 0 = ( a i J  ) such that aiJ= t0 if 6(j, 0) 4=i 

and 

l l  if c~(j, 1 ) = i  
T1 = (flij) such that fliy = 0 i f  fi(j, 1) 4= i 

In order to show that EAE = E A ,  we must prove that EToE = E T  o and 
E T 1 E T = E T  1. It should be noted that for each column of T o and T 1 only 
one element is equal to 1 and all the other elements are equal to 0. Let 
EToE = (qu) and E T  o 
that 

and 

= (Pig) .  Since qij= Y ~ : I  eik(Y~7=l akle,),  we assume 

f ( j )  = l (10) 

fi(l, 0) = k (11) 

Then 

qu = eik 

where f is the representation of 7r defined as above. 

(12) 
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If we assume 

5(j, O) = m (13) 

then amy = 1 and 

PU = L eikCtkJ = elm (14) 
k = l  

Since Eq. (10) implies t h a t j  = l(~r), it follows that 5(1, 0) = 5(j, 0)(~z). Hence, 
if from Eqs. (11) and (13) we know k = m Q r ) ,  then f ( k ) = f ( m ) ,  and it 
follows that e ik=e im.  From Eqs. (12), (14), and (15), we have q u =  Pu" 

Therefore E T o E  = E T  o. Similarly, we can show that E T I E  = E T  1 . Hence, 
E A E  = EA.  | 

Example. Automaton M3 and its S.P. partition lattice are given in 
Tables V and VI, respectively. 

The transition matrix of automaton M3 is 

A = 

0 x 0 0 0 0 0 

x 0 0 0 0 x 2 0  

x 2 0  0 0 0 0 0 

0 0 0 0 x 2 x 0 

0 0 x 2 x 2 0  0 x 

0 x 2 x x 0 0 x 2 

0 0 0 0 x 0 0 

The representations of the S.P. partitions are 

23456 
1 1 1 1 1 

( 23456 ) 
f 2 =  2 1 1 1 2  

2 3 3 2 2  

(123456 ) 
f 4 =  1 3 3 1 3  

fs= 2 2 2 1 1  f 6 =  2 3 3 1 6  

f T =  ( i  2 3 4 5 6 7 )  
2 3 3 5 6 7  fo 

1 2 3 4 5 6 7 ]  

1 2 3 4 5 6 7 ]  
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Table V, State Table of 
Automaton M3 

0 1 

1 2 3 
2 1 6 
3 6 5 
4 6 5 
5 7 4 
6 4 2 
7 5 6 

Table Vh S.P. Partitions of Automaton M3 and Its Lattice 

1 

rc~ = t]-, 2, 3, 4, 5, 6, 7 } 

~z2 = {1, 3, 4, 5; 2, 6, 7 } 

~z3 = {1, 7 ;2 ,  5 ;3 ,  4, 6 } 

~z4 = {1, 2, 5, 7; 3, 4, 6 } 

~5 = { 1 , 5 , 6 ; 2 , 3 , 3 , 7  t 

7r6= {1, 5 ;2 ,  7 ;3 ,  4 ;6}  

~z7= { 1 ; 2 ; 3 , 4 ; 5 ; 6 ; 7 }  

zoo= { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 }  
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Consider the projection E 6 induced by 

1 0 

0 1 

0 0 

E 6 =  0 0 

0 0 

0 0 

0 0 

7~ 6 

0 0 1 0 0 

0 0 0 0 1 

1 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 0 

It is easy to verify that E~ = E 6 and E6AE 6 = E 6 / I .  Suppose 
{e l ,e2 ,e3 ,e4 ,es ,e6 ,eT} is a basis of  the vector space V = L  7. The set of  
vectors {e 1 + es, e 2 + e7, e 3 + e4, e6} generates the range of  E6, which is a 
subspace of  V, denoted by W. From Theorem 3, we know that W is invariant 
under the transition matrix A of  M, i.e., WA c W, and this is illustrated as 
follows: 

(el ~- ~5) A = x(~2 ~- 67) 31- x2(G3 ~- G4) 

(~2 + es)A = x(el + es) + x2e5 

g6 A = x2(e2 ~- e7) -}- x(e 3 ~- e4) 

The matrix A restricted on W is 

A/V/= 

0 x x 2 0 

x 0 0 x 2 

x 2 0 0 x 

0 x z x 0 

The n6-image automaton M3~6 is shown in Table VII. It is easy to see that 
the transition matrix of  M3~6 is identical to A I W. Therefore, the state space 
of  the n6-image automaton M 3 ~  is an invariant subspace of  the state space 
of  automaton M3 with respect to the transition matrix A of  M3. We have the 
following theorem. 

Theorem 4. Let M be a finite-state automaton, and n a S.P. partition 
on M. The state space W of the n-image automaton M~ is an invariant 
subspace of  the state space V of  M with respect to the transition matrix A of  
M restricted on W, i.e., A~ = A I W. 

828/12/5-2- 
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Table VII. State Table of 
Automaton M3n6 

0 1 

B1 B2 B3 
B2 Bx B4 
B3 B4 B1 
B4 B3 B2 

B,=/l ,5},  B~-- 12,7} 
B3={3,4}, B4={6} 

From the discussion above, we know that for each S.P. partition there is 
a corresponding projection and an invariant subspace of the state space, 
which shows that these concepts are equivalent. 

4. CONCLUSION 

We have investigated the structure o finite automata based on the state 
equation obtained via the ~U-representation. The state space of the automaton 
is a finite-dimensional vector space over the field of extended formal power 
series with coefficients that lie in the {0, 1 } field of integers modulo 2. This is 
different from that the formal power series used by Sch/itzenberger, ~5~ where 
the coefficients lie in the {0, 1} Boolean ring and the variables are noncom- 
mutative. Because the equation is based on a commutative field, we can 
show that the solution is separable algebraic over the coefficient field. We 
have also proved that the concept of substitution property of partition is 
equivalent to an invariant subspace of the associated state space. This 
suggests that it should be possible to study the decomposition of finite 
automata in parallel with the decomposition of vector space and linear 
transformations. 
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