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Based on the assumption of a kinetic equation in I '  space, a stochastic dif- 
ferential equation of the one-particle distribution is derived without the 
use of the linear approximation. It is just the Boltzmann equation with a 
Langevin-fluctuating force term. The result is the general form of the 
linearized Boltzmann equation with fluctuations found by Bixon and 
Zwanzig and by Fox and Uhlenbeck. It reduces to the general Landau- 
Lifshitz equations of fluid dynamics in the presence of fluctuations in a 
similar hydrodynamic approximation to that used by Chapman and 
Enskog with respect to the Boltzmann equation. 
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1. I N T R O D U C T I O N  

The  general  theory  o f  f luctuat ions in fluid dynamics  is const ructed  by intro-  
ducing the appropr i a t e  add i t iona l  terms into the general  equat ions  of  fluid 
dynamics .  L a n d a u  and  Lifshitz observed tha t  the stress tensor,  or  the heat  
current ,  conta ins  the spontaneous  local  componen t  tha t  they called the  
r a n d o m  quant i ty  in add i t ion  to  the usual  componen t  tha t  depends  on the 
velocity,  o r  the  tempera ture ,  gradient .  (1~ Proper t ies  o f  the  r a n d o m  quanti t ies  
a re  de te rmined  on  the basis of  the formulas  o f  f luctuat ion theory.  (2'a) 

Since the general  equat ions  o f  fluid dynamics  are der ivable  f rom the 
Bol tzmann  equat ion,  it  is expected tha t  in the presence o f  f luctuat ions the  
la t ter  can be extended to a s tochast ic  form. F r o m  this po in t  o f  view, F o x  
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and Uhlenbeck (4) and Bixon and Zwanzig (5~ presented a theory of the sto- 
chastic Boltzmann equation almost at the same time. With the use of the 
general theory of linear processes due to Onsager and Machlup, (a~ they 
showed that a Langevin-fluctuating force term is to be added to the linear- 
ized Boltzmann equation and that this term yields the random quantities of 
Landau and Lifshitz in the hydrodynamical approximation. 

However, questions (6-8~ remained with regard to their theory: The 
physical origin of the fluctuating force is unclear and the stochastic Boltz- 
mann equation does not give the complete form of the equations of Landau 
and Lifshitz, because of the linear approximation. (4) Attempts have been 
made at improving the theory(8~: Van Kampen applied the method of the 
system-size expansion (1~ to the problem (9~ and Logan and Kac developed 
a theory (m based on a coarse-grained master equation. These theories are 
free from the linear approximation, but are limited to spatially homogeneous 
fluctuations. It is the open problem of nonlinear and local fluctuations that 
this paper aims at clarifying. 

Further, there is another problem in the theory of Landau and Lifshitz 
itself: Is it applicable in the nonlinear region? Since the theory is based on 
the general theory of linear fluctuations, (3~ it is formally restricted to the 
linear region, where the nonlinearity of hydrodynamic equations is negli- 
gible. Some authors ~8'12'1a~ feel that it is not restricted. Hinton (1~ tried to 
show that the theory is correct not only near the absolute equilibrium, but 
also near the local equilibrium. He assumed an equation for the deviation 
of the distribution from the " loca l"  equilibrium that is similar to, but dif- 
ferent from, the linearized Boltzmann equation. There seems to be much 
room for discussion on that equation. 

This paper aims at clarifying the above two problems, i.e., to establish 
the stochastic Boltzmann equation without the use of the linear approxima- 
tion and to show the validity of the theory of Landau and Lifshitz in the 
nonlinear region. 

From the viewpoint of the mathematical theory of stochastic processes, (15~ 
the existing theories on the fluctuations of the Boltzmann equation ~8'1~ 
have a common character: They try to describe the fluctuations in terms of 
Brownian motion, i.e., as a Gaussian Markov process. (x6) First they find 
a Fokker-Planck equation for the fluctuations of the distribution function 
and then translate it into a Langevin equation. 

There may be another approach: first, to find the set of Langevin-type 
equations that describes a fluid, or more precisely, a system of particles with 
short-range interactions, at the "kinetic stage," ~lv) and then to construct the 
Langevin-type equation of the one-particle distribution. 

The fluid at the kinetic stage is well described by the master equation (~8~ 
or by similar kinetic equations. The master equation describes not a Gaus- 
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sian, but a Poisson process, as Bront noted5 ~9"2~ The Langevin-type equation 
(the stochastic differential equation) is popular in the theory of Gaussian 
processes, but it can also be used to describe Poisson processes/15'21~ Accord- 
ingly, it is possible to find a set of Langevin (-type) equations of a system 
when the master equation of the system is given. 

This approach was taken in a previous paper by the author (22) and in a 
recent one by Onuki. (23~ In the former, the Langevin (-type) equation that 
is stochastically equivalent to the master equation was derived from the 
microscopic equations of motion, but a slight incorrectness was inevitable 
in the expressions for correlation functions because of the well-known 
difficulty ~2~) in deriving the master equation from the Liouville equation 
rigorously. In the latter work, (23) the expressions are improved to some 
extent with the aid of simplifications of the dynamics. 

The present paper adopts the master equation as a fundamental assump- 
tion. Thus, it is free from the difficulty of deriving the master equation 
rigorously from the microscopic dynamics. In order to discuss the inhomo- 
geneous fluctuations, another kinetic equation in phase space is assumed as 
a generalization of the master equation. A set of Langevin (-type) equations 
(stochastic differential equations) is so constructed that it produces the same 
expectation value of a physical quantity as the kinetic equation gives. The 
stochastic Boltzmann equation is derived as an equivalent expression to the 
Langevin (-type) equations of one-particle quantities. 

It is also shown that the stochastic Boltzmann equation derived in this 
manner reduces to that of Fox and of Bixon ~'~) when it is linearized near 
equilibrium. The analog to the first approximation of the Chapman-Enskog 
expansion ~25,26) in the stochastic generalization of the Boltzmann equation 
is shown to be the fundamental equations of fluid dynamics of Landau and 
Lifshitz. This result implies that their theory is correct in the nonlinear 
region as long as the collision frequency is so large that the hydrodynamical 
description of the system is meaningful. 

2. F U N D A M E N T A L  A S S U M P T I O N S .  KINETIC E Q U A T I O N S  
IN PHASE SPACE 

The homogeneous fluctuations are well described by the master equa- 
tion(IS,19) 

~f(p) = f {w(p, p')f(p') - -  w(p', p)f(p)} dp' (1) 

where p is the master vector 
N 

p = (v l ,  v~ ..... v~), dp = l - I  dvj (2) 
J = l  
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and w(p, p') takes the form 

v ~ W(v~, vj, v,', v/)  I - [  8(v~ - v;)  (3) w(p,r')  = ST 
tc~, j  

when the two-particle collisions are dominant in a system of N particles. 
In Eq. (3), v is a constant. Equation (1) describes a 3N-dimensional Poisson 
Markov process, as Brout ~19) noticed. 

The master equation reduces to the Boltzmann equation (of the homo- 
geneous system) on the assumption of molecular chaos 

f(2~(vl, v~,, t) - f<l)(vl, t)f(l~(v2, t) (4) 

where 

 ,ff f~S)(vl ..... vs, t ) = ( N _ - - s )  ! "" f(vl  .... ,vN, t ) l ~ d v ~  (5) 
/r 

Inhomogeneous fluctuations cannot be described by the master equation. 
The kinetic equation of these fluctuations is expected to have the form 

j =1 vj ~xj f ( p )  

= f {w(p, p')f(p') - w(p', p)f(p)} dp' (6) 

where 

and 

p = (Xx, Vl, X2, V2,.-., XN, VN) 

w(r, t") = ~ W(v,, vj, v/, vs'; x,, xj) *(x, - x / )  8(xj - xs') 

• I - i  ~(x~ - x ; )  ~(v~ - v ; )  (7) 
k#~,j 

There is no factor of 1/N in Eq. (7), in contrast to Eq. (3), because the factor 
comes from the spatial distribution l/V, where V is the volume of the system. 
It is expected that Eq. (6) yields the Boltzmann equation on the assumption 
of molecular chaos. This condition specifies the form of W as 

W(vl, v~, vl', v2'; xl ,  xs  = W~(v~, v~, v / ,  v2') ~(xl - x2) (8) 

where 

WB(v~,v2, v~',v2')=g~r(g,O)8(vl + v 2 - - v ~ ' - - v g ' ) ~ (  -g2-g'2-)~ (9) 

with the use of the collisional cross section ~ and g = vx - vs. 
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There is a conceptual difficulty in the generalization of the master 
equation to Eq. (6): Since the positions and the velocities of all the particles 
are specified byp,  there is no room to interpretf(p) in terms of probability. ~8~ 
In spite of this sophisticated problem, Eq. (6) is known to be a good ap- 
proximation of the Liouville equation, at least for the hard-sphere system. 
Hopfield and Bastin ~2v have intuitively introduced Eq. (6) and Ernst et alJ TM 

have derived it from the Liouville equation. 
They give Eq. (6) with an expression for W different from Eq. (8), 

W(v~, v2, vl', v2'; x l ,  x2) 

= ,r2~ " d *  (v21 ,  o ) { 3 ( x l '  - x2 '  - a )  b (v l  - v l * )  3(v2 - v2*)  
Jv 21.o">0 

- 3(x1' - x2' + o) 3(vl - v~') 3(v2 - v2')} (10) 

where 

v~* = v~' - ( v h . o ) a ,  v2* = v2' + ( v ~ 2 . o ) .  

Equation (10) reduces to Eq. (8) for dilute systems. For systems with different 
types of interactions, Eq. (6) is expected to still be a good approximation of 
the Liouville equation, as long as the collision duration is sufficiently small 
compared to the mean free time. 

Equations (1) and (6) are adopted in this paper as the fundamental 
assumptions for the discussion of homogeneous and inhomogeneous 
fluctuations, respectively. 

3. S T O C H A S T I C  D I F F E R E N T I A L  E Q U A T I O N  A S S O C I A T E D  
W I T H  T H E  M A S T E R  E Q U A T I O N  

Now we construct the set of Langevin (-type) equations that is stochastically 
equivalent to the kinetic equation. Tile stochastic Boltzmann equation is 
derived from these Langevin equations in the following sections. 

The term Langevin equation is often used in a mathematically well 
defined, restrictive sense, but the original equation that Langevin intro- 
duced ~29) is nothing but the Newtonian equation of motion of a particle 
immersed in a fluid. We try to find the equation of motion of each particle 
of a system, given the kinetic equation of the system. 

The master equation is a Poisson process (19) and mathematicians (15'2~'3~ 
have given the stochastic differential equation of the process. But we keep 
to the view that the Langevin or the stochastic differential equation is 
nothing but the equation of motion. 
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If  Eq. (1) is solved, the distribution functionf(p,  t) gives the expectation 
value of the arbitrary quantity F = F(p) as follows: 

(F) t  = f F(p) f (p ,  t) dp (11) 

When the function at a time t is specified as 

f ( p ,  t) = g(p - vt) (12) 

with the aid of a parameter vt, then the expectation value at a later time 
t + ~- after a small interval ~- is given by 

+ r f { F ( p )  - F(vt)}w(p, vt)dp + 0 ( ,  2) (13) (fh+~ F(vO 

For the moment, we restrict ourselves to the case in which p is one-dimen- 
sional: p = p and vt = v~. Equation (13) gives 

(P}t+, = vt + ral(vt) + O(z 2) (14) 

as a special case, where the derivate moments (31~ are defined by 

a•(p) = f (p' - p)'~w(p', p) dp' ; n = 1, 2, 3 .... (15) 

Equation (14) describes the change of velocity in a small interval similarly 
to the Newtonian equation of motion, but it fails to give the expectation 
values of other physical quantities. 

Intuitively, we assume that the equation of motion is given by 

v~+, = vt + "ra~(vt) + ~(vt, r) (16) 

with a random quantity ~: = ~(vt, r) and ask for the condition by which the 
average of an arbitrary quantity over this random quantity is equal to the 
expectation value of Eq. (13): 

( r} t+ ,  = F(vt+0 (17) 

As a special case, Eq. (17) gives 

~(v,, T) = 0 (18) 

with the use of Eqs. (14) and (16). Without loss of generality, we may assume 
that the function F is analytic and that Eq. (17) is required only for an 
arbitrary monomial. This requirement is satisfied if the following conditions 
hold: 

~(vt ,  r) = 0 if k = 1 
(19) 

= ~'ak(vt) if k =  2,3 .... 
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We may conclude that Eq. (16) together with (19) is stochastically 
equivalent to Eq. (13) in the sense of Eq. (17) on the condition that Eq. (12) 
is satisfied. 

We may continue this method of constructing Eq. (16) for successive 
time steps, since the distribution function at t + r is written as 

f(p, t + ~) = a(p  - v~+0 (20) 

We may construct Eqs. (16) and (19) in which t is replaced by t + z, con- 
sideringf(p, t + z) as a &function, and finally take the average over ~(vt, r). 
It is clear that the random quantities of different time steps are mutually 
independent. 

Now, we may conclude that Eq. (16) is stochastically equivalent to 
Eq. (1) as far as the time discretization approximation ~16~ is concerned. We 
may take the limit r--> 0 naively and from Eq. (16) obtain the stochastic 
differential equation 

d 
d~Vt = ~l(vt) + ( ( v t ,  t)  (21) 

where ~:'(t) = s t) is defined through the relation 

s '+~ #(vs ,  s)  as = ~(v,, , )  (22) 

Since the ~(vt, r) of different time steps are mutually independent, ~:'(t) is a 
8-correlated process, 

# ( t )  = 0 

~'(t)((tl) .-. ( ( t n )  = 8 ( t -  t l ) 8 ( q  - t 2 ) . . .  8 ( t , _ 1  - t,,)%+~(vt) 
(23) 

Equations (21) and (23) are the desired results. 
It is interesting to consider the time development of the "distr ibution" 

defined by 

g(p ,  t)  = 8(p - vt) (24) 

It is related to the "distribution function" through Eq. (20). With the use 
of the time discretization approximation of Eq. (16), we may construct the 
following Langevin-type equation for g(p ,  t): 

a-i g(p'  t) = { . , (p,  ~')g(p' ,  t) - w(t,', p)g(p,  t)} ap + r ~ ,  t) (25) 
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where the new random quantity is characterized by 

r ~ ,  t) = 0 

r(pl, tl)r(p2, t2) = 3(tl - t~) f f dp dr 

x {,:~ [~(pt-p)- ~,-/,')]} 
x w(p,p')g(p', tl) (26) 

r(pl, q)r(p2, t2)r(pa, ta) = 3(q - t2) 3(t2 - t3) f f dp dp' 

• (,:~-~ [~(p,-,)- 8~,,- p')]} 

x w(p,p')g(p', h) 
. . .  

Equations (25) and (26) are derived in Appendix B. 
Equation (25) has an apparent similarity to Eq. (1): The random quan- 

tity r(p, t) is simply added to the right-hand side, which is redundant for 
one-dimensional processes. But it is important for these many-dimensional 
processes in which only a limited number of  variables are of interest. 

It is easy to generalize the above results to many-dimensional processes 
and prove Eq. (25) and (26) for them: 

Equation (16), or Eq. (19), is to be replaced by 

vj,~,+~ = vj,~t + r~li~,(vt) + ~s~,(vt, r) (16') 

where 

o r  

v~ = (vlt,  vz~ ..... vNO, ~,lj.(p) = f (p'j~ - pj .)w(t , ' ,  p )  @ '  

J~ ~:j.~"=0 if ~ n j ~  = 1 

= ~" f ~]-~ (pj~ - vj~O".}w(p, vO dp if ~ nsu > 1  
�9 I k t u  J u  

(19') 

Equations (25) and (26) need no modifications only if the delta functions are 
interpreted as 

3(p - vt) = ~ 3(pju - vs,,t) , etc. (27) 
Ju 
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4. S T O C H A S T I C  B O L T Z M A N N  EQUATION.  H O M O G E N E O U S  
CASE 

The homogeneous fluctuations are described by Eqs. (1)-(3). In the 
preceding section, the Langevin-type equation was derived for the distribu- 
tion. In this section the stochastic Boltzmann equation is derived from that 
equation. 

With the aid of the factorization property of the distribution of Eq. 
(27), Eq. (25) changes to 

~--7 ~ .  . { w ( v , ,  v~, v , , v j  ) 8(v,' - v ,)  ~ ( v /  - vj,) 

- W(p/,  Ps', P,, PJ) 8(.p, - v.) <S(pj - vjt)} d p / d p /  

+ &(p,, t) (28) 

where integrations over N -  1 variables are carried out. The reduced 
random quantity introduced in Eq. (28) is 

r,(p,, t) = f ... f r(p, t) l-~ dpk (29) 

The one-particle distribution may be introduced by 

1 N 
g(p, t) = ~r ,~'=-'1 8(p, - vi~) (30) 

where the factor of I /N  corresponds to the spatial part of the distribution. 
Since W(pl ,  P2, P~', P2') vanishes when f~' = P2', from Eq. (28) we obtain 
the stochastic Boltzmann equation 

where 

ff 8~g(p, t) = (W(p,  p l ,p ' ,p l ' )g(p ' ,  t )g(p( ,  t) 

- W(p ' ,p l ' , p ,  pl)g(p, t)g(p~, t)} + r(p, t) (31) 

1 
r~ ,  t) = 7v~, r,(v, t) 

zf I 1 ... 8(p - p,)r(p, t) I--I dp~ 
= N k = l  

(32) 

The random quantity r(p, t) is characterized through Eqs. (26) and (30). 
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By carrying out the integrations, we obtain 

r(p,  t )r(p ' ,  t ' )  

= 8( , -  c ) f f   ta.] Atao] 

t X g(p~', )g(P2, t) dp~ @2 dp~' dp2' (33) 

r(p,  t )r(p ' ,  t ' )r(p",  t") 

= ( 1 / 2 N ) 3 ( t -  t ' ) ~ ( t ' -  t") 

x f f  A[$p] A[3p,] A[3p,,] W(pz ,  P2, Pl', P2')g(Pl', t)g(p2', t) 

x d p l d p 2 d  ' d  ' tpl ~P2 (34) 
where 

A[~.] = ~ ( t ,  - ~ 1 )  + ~ ( ~  - ~ ,2)  - 8 ( ~  - ~ ,1 ' )  - ~ ( j ,  - p 2 ' )  ( 3 5 )  

In the thermodynamic limit N---> 0, the right-hand side of Eq. (34) 
vanishes. The kth-order correlation function (k i> 2) is expected to vanish 
also, since it is believed to have a factor of N 2-z. The random quantity 
r(p,  t) is the Gaussian white noise, which is solely determined by Eq. (33) 
in this limit. 

5. STOCHASTIC  B O L T Z M A N N  EQUATION.  
I N H O M O G E N E O U S  CASE 

The kinetic equation is given by Eq. (6). In the local collision approxima- 
tion of Eq. (8), the position vectors of particles may be considered as param- 
eters of the kinetic equation, at least for a small interval of the order of the 
collision duration. In addition, we may use the results of Eqs. (25) and (26) 
also for the inhomogeneous case. 

In fact, the Langevin (-type) equation of motion of each particle is 
given by 

xj,  t +~ = xj,  t + "cv~,t (36) 
vs~t+~ = vj,t + Talj,(vt, xt) + ~j,(vt, xt, t) 

in place of Eq. (16'). There is no random force term in the first of Eqs. (36). 
A slightly different method of deriving the stochastic Boltzmann equation 
is given in Appendix A for the hard sphere system. 

Applying the result of Eq. (25) to Eqs. (1)-(6), we obtain for the distribu- 
tion in phase space 

N 

g(p,  t) = 1--[ 3(pr - vjO 8(qj - xjt) 
j = l  
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the following stochastic equation: 
N 

J = l  

= f {w(p, p')g(p', t) -- w(p', p)g(p, t)} dp + r(p~ t) (37) 

where p = (Pl,P2 ..... PN, ql, q2 ..... qN). Equation (37) may be reduced to 
an equation of the one-particle quantity. 

The one-particle distribution may be defined by 
N 

g(p, q, t) = ~. 3(p -- %) ~(q - xyt) (38) 
] = 1  

which satisfies the following stochastic Boltzmann equation: 

~tg(p ' 0 q, t) + p ~-qg = J(g) + r(p, q, t) (39) 

where J(g) is the Boltzmann collision operator 

J(g) = �89 f f f {wB(p, pl, p', pl')g(p', q, t)g(p~', q, t) 
- WB(p', p~', p, p~)g(p, q, t)g(p~, q, t)} dp~ dp' dpl' (40) 

Characterizations of the random quantity r(p, q, t) are found from Eq. (26) 
as follows: 

r(p, q, t)r(p', q', t ') 

8(q - q ' ) f  ... f dpl dp2 dpl' dp2' ~(t t') 

• A[~o] A[~,] W~(pl, P2, P~', P2')g(P~', q, t)g(p2', q, t) (41) 

r(p, q, t)r(p', q', t')r(p", q", t") 

= -} ~(t - t') ~(t' - t") ~(q - q') ~(q' - q") f . . .  apl ap2 dpl' ap; 

x A[~p] A[~p,] A[gp,,] WB(p~, P2, P~', P2')g(P~', q, t)g(p2', q, t) (42) 

The higher order correlation functions may be taken as 

~-~ r(p~, t~) = ~']-]'~-~ ~(t~ ~(q~ } 

x f "" f (~=l A[~oB]}W~(pl, Pz, Pl', Pz') 

x g(p~', q, t)g(p2', q, t) dp~ dp2 dp~' dp2' (43) 
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Compared to the case of homogeneous fluctuations, no factor of 1IN 
appears either in the stochastic Boltzmann equation or in the correlation 
functions of the random quantity. This fact means that local fluctuations are 
independent of the size of the whole system and that the random quantity 
r(p, q, t) is not a Gaussian, but a Poissonian-like process. 

6. H Y D R O D Y N A M I C A L  A P P R O X I M A T I O N  

The stochastic Boltzmann equation derived in the preceding section is 
the same as the Boltzmann equation except for the random quantity. Then, 
almost all of the theorems on the Boltzmann equation may be proven also 
for the stochastic analog. 

The collision operator has five invariants 

~b0 = 1, ~b~= v~ ( i =  1,2,3) ,  ~b 4 = �89 2 

from which we may construct the stochastic analogs of the five conserved 
quantities 

f P~(~ = ~(P)g(P, q, t) dp = ~ ~(vjt) 3(q - xj0 (44) 
J = l  

Their time development is given by 

where 

0 
~t P~(q) + ~qA(q) = R,~(q) = 0 (45) 

J~(q) J p~b~(p)g(p, q, t) dp 

R~(q) = f ~b=(p)r(p, q, t) dp 

Apparently, the random quantity violates the 
(45), but it may be considered identically zero because all of the correlation 
functions of R=(q) vanish due to the identity 

Z[~b~(p)] W~(pl, P2, Pl', P2') = 0 (48) 

We have proven the second identity of  (45). 
When the collision term is dominant, the distribution is a functional of  

the conserved quantities, irrespective of  the initial condition. The zeroth- 
order approximate solution of Eq. (39) is the local equilibrium distribution 

F(q, C, t) = n(t3[2~r) 3/2 exp[-/3(u - P)~] (49) 

(46) 

(47) 

conservation laws in 
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where 

m 3m 
n = po, u , =  p, ( i =  1,2,3),  /3 = 2kT=-~p4' C = p -  u 

The local equilibrium distribution defined by Eq. (49) is formally equivalent 
to the usual one, but there is a slight difference because of the different 
definitions of the conserved quantities. This difference is important when 
the hard-sphere system is considered in Appendix A. 

Following the spirit of the Chapman-Enskog expansion, the first-order 
approximation is given by 

g(p, q, t) = F(q, C, t)[1 + ~(q, C, t)] (50) 

where qb is a "smal l"  deviation. When Eq. (50) is substituted and higher 
order terms in (I) are neglected, Eq. (39) changes to 

where 

~[F]  = --n%C[qb] + r(p, q, t) (51) 

where 

n%C[gg~] = - -~ [F]  (55) 

n2J[qb2] = r~ ,  q, t) (56) 

The stress tensor Puv or the heat current q, is a linear functional of 

p~,v - p3~,~ = ~ C,C~FCb dC (57) 
J 

__0 F (52) ~[F]  = ~ F + p c ~ q  

n2d[~] = - - f  ... f dpl dp' dpl' W(p, pl, p', pl')F(q, C, t)F(q, C ' , t )  

• {~,(c ' )  + ~ ( c 1 ' )  - ~ ( c )  - ~ ( c t ) }  (53) 

Equation (50) is also to be substituted into Eqs. (41)-(43). Since the 
zeroth-order terms survive, higher order terms in �9 may be neglected and 
the following substitution is sufficient for Eqs. (41)-(43): 

g(P~', q, t)g(p2', q, t) --- F(q, C1, t)F(q, Cz, t) (54) 

Since the collision operator d is a linear integral operator, Eq. (51) 
may be solved in the form 

qb = qb 1 + 0I)2 
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o r  

: (m/2~)f  (~C 2 - 5)C~F@ dC q~ (58) 

and accordingly is composed of the two (I) contributions as follows: 

p~  - p3~ = Play + P2~v or q. = ql. + q2~ (59) 

In Eq. (57), the following tensor notation (26) is used 

C.Cv = C.Cv - 1C2 

The first @ component ofp.~ and q. is given by the traditional expressions. 
Following the notations of Waldmann, (26) they are given as follows: 

Play = - ~7 \b-~x~ + Ox----~ - 3 ~ ~-Txa]' ql. = ~ (60) 

where the transport coefficients are given by 

(61) 

with the use of the solutions A = A(C) and B = B(C) of the integral equa- 
tions 

J[ACu] = (F/n)(l~C 2 - s)C~, J[SCuC~] = (2F/n)C.C. (62) 

The second @ component of Puv and q. represents the fluctuations. 
Substituting the formal solution of Eq. (56) into Eq. (59), we obtain the 
following expressions for the fluctuating components in terms of the random 
quantity of the stochastic Boltzmann equation: 

P=uv = m f CuC~(F/n2)J-ltr(p, q, t)] dC 

= (m/Zn)f  J-l[(F/nZ)~Cv]r(p, q, t) dC 

(m/Zn) f B~C~r(p, q, t) de (63) 

q=u = (m/2fi) f (13C = - s)C~(F/nZ)J-~[r(p, q, t)] dC 

(m/2nl3) f ACur(p, q, t) dC (64) 

Equations (63) and (64) represent the relation between the fluctuations 
of the fluid dynamics and those of the Boltzmann equation, just as Eq. (57) 
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represents the relation between the hydrodynamic quantities and the distribu- 
tion function. 

With the aid of Eqs. (41) and (54), Eqs. (63) and (64) yield the following 
relations: 

P2,~(q, t) = 0, q2,(q, t ) =  0 

P2uv(q, t)p2u,~,(q, t') = 2~kT(gu,,3~,, + guv,~,, 

x S(t - t') ~(q - q') (65) 

q2,(q, t)q2,,(q', t') = 2 h k T  2 ~ , , ,  ~(t  - t ' )  ~(q - q') 

q2,(q, t )p2 , , v , (q ' ,  t ' )  = 0 

These relations are exactly the same as those of Landau and Lifshitz. (1~ 
The random quantity r(p, q, t), however, is not a Gaussian, but a 

Poissonian-like process. If  Eq. (63) or Eq. (64) is formally substituted into 
Eq. (43), there arise many complicated expressions of higher order correla- 
tion functions of hydrodynamic quantities. The fundamental point of the 
hydrodynamic approximation lies in the fact that collisions occur so fre- 
quently that the deviation from the local equilibrium is small. Near the 
local equilibrium, all the physical variables of concern are approximately 
functionals of the conserved quantities that satisfy Eq. (48). Accordingly, 
not only is the substitution of Eq. (54) permitted, but in addition the factor 
A[~] in Eq. (43) may be considered a small quantity. The third and higher 
order correlation functions of the pressure tensor and of the heat current 
are to be neglected, and P2,~ and q2, are Gaussian processes. 

The equations of Landau and Lifshitz are derived on a different basis. 
These equations are valid not only near the absolute equilibrium, but also 
near the local equilibrium. 

The above method of deriving the equations of Landau and Lifshitz is 
different from that of Hinton. (1~) Equation (51) may be compared to his 
linearized Boltzmann equation, but the difference between them is clear. 

7. L INEAR A P P R O X I M A T I O N  

The stochastic Boltzmann equation given by Eq. (39) is the nonlinear 
generalization of the Boltzmann-Langevin equation (5~ of Fox and Uhlen- 
beck (4~ and Bixon and Zwanzig. (5~ It reduces to their equation near the 
(absolute) equilibrium, as we now show. 

If  the conserved quantities of Eq. (44) are occasionally independent of 
the space coordinates, the associated currents of Eq. (46) vanish and the 
local equilibrium distribution that is constructed from these conserved 
quantities is just the equilibrium distribution. In this manner, the analog 
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of the Maxwell distribution function may be introduced into the theory of 
the stochastic Boltzmann equation. 

The linear approximation 

g = F0[1 + h] (66) 

where Fo is the Maxwell distribution, may be considered. Equation (39) 
gives 

0 
O h + p h = n21o[h] + ro t ,  q, t) (67) 0-7 

where J0 is the linearized collision operator, the definition of which is given 
by Eq. (53) only if the F(.p, C, t)'s are replaced by Fo's. The correlation 
function of ro t ,  q, t) is given by Eq. (41), where the g~,  q, t)'s are to be 
replaced by F0's. The random quantity ro t ,  q, t) is a Gaussian process by 
the same reasoning as in the preceding section. It is characterized by 

ro(p, q, t )ro(p' ,  q',  t ' )  = �89 3(t  --  t ' )  3(q - q')f...f AtS ,] 
• W~(pl, P2, P~', p2')Fo(P~)Fo(P2) 

x apl ap2 dpl' dp2' 

= 2 - c ) 8 ( q  - 
8(p pl)n2 Io[ 3(p ' Pl)] 

J (68) 

Equations (67) and (68) give the linear approximation. 

8. C O N C L U S I O N  A N D  D ISCUSSION 

On the assumption of the master equation, the stochastic Boltzmann 
equation for homogeneous fluctuations is derived rigorously in Eq. (31), 
the random quantity of which is a Gaussian process in the thermodynamic 
limit. 

The stochastic Boltzmann equation for the general case is derived on 
the assumption of a kinetic equation that is similar to that of Hopfield and 
Bastin. C27) The random quantity is a Poissonian-like process in this case. 

The linear approximation of this equation is just the Boltzmann-Lange- 
vin equation of Bixon and Zwanzig and of Fox and Uhlenbeck. The Langevin 
force is a Gaussian white noise. 

Its approximation near the local equilibrium gives the equations of 
fluid dynamics of Landau and Lifshitz, ~1) the random quantities of which 
are Gaussian processes. 

Onuki arrived at almost the same results as Eqs. (39) and (41). (23) 
Perturbative solutions of Eq. (31) in which the random quantity is physically 
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small are expected to reproduce the results of van Kampen <9) and of Logan 
and Kac. m) 

A generalization of the stochastic Boltzmann equation to the hard- 
sphere system is given in Appendix A. Another generalization to mixed 
gases or to chemically reacting gases is given in a succeeding paper, in which 
hydrodynamic fluctuations in these gases are also discussed. 

A P P E N D I X  A. S T O C H A S T I C  E N S K O G  E Q U A T I O N  

The derivation of the stochastic Boltzmann equation may be performed 
without the use of the local collision approximation. The kinetic equation 
of the hard-sphere system is given by the set of equations (6), (7), and (10). 

In the spirit of the Kramers-Moyal expansion (31> the kinetic equation 
is rewritten as 

~ f  + vj Fx-~xjf 
. /=1 

(i,~ , ~= ,~,~ n~! mnI 8x~ ~ ]  x ~ ( v i ,  vj, xi, x j ) f  (A1) 

where n = (nx, ny, n~), m = (rex, my, m~), and the summations over n and 
m are over integer values of all the components. In Eq. (A1), ~ is the 
derivate moment defined by 

am(v,,vs, x ~ , x j ) = 0  if n = m = 0  

x W(v(, v/, v~, vj, x~, xj) dr( dv/ otherwise 

If  the distribution function at a time t has the special form 

N 

f (x l ,  Vl, x2 ,  v2 ..... xN,  vn) = ~ $(x, - x,t) 8(v, - v,t) (A3) 
1=1  

with parameters x~t and v,t, the expectation value of the quantity P = 
P(x~, v~ ,..., xN, vN) at a slightly later time t + ~- is given by 

'. Ox,t"---~ P~ 

+ -  5 5 x., x,,) 
( id)  n , m  

x ~ m~, ! Ox,3~ a--~) Pt (A4) 
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where 
P, = P(xl, ,  vl~ ..... xN,, vN~) 

As special cases of Eq. (A4), this gives 

<x,>t+, = x~t + ~v~t (A5) 

(v,>t+~ = v~t + ~-F~t (A6) 
where 

N 

Fit~ = ~ %~o(V~t, vj~, x~t, xct) (A7) 
j = 1  

with the use of unit vectors e~. 
The Langevin-type equations of motion are given by 

xit+~ = x~ + ~'v~t (A8) 

v~t+~ = v~t + ~'F~t + ~t (A9) 

the random quantities ~,t of  which are characterized by the equivalence 
relation 

P,+~ = <P>t+~ (AlO) 

for arbitrary variable P. 
I f P  = v~, Eq. (AlO) gives 

Tit = 0 (A11) 

and if P = ]-[~ v~ ~ or P = ~-~a v~Av~" (i # j), it gives 

N 

~:~ = ~" ~ amo(Vu, v~t, x,t, xjt) if ~ rna >, 1 (ALE) 
h J = l  A 

A 

if i # j ,  ~ m a  /> 1, ~ m a '  >/ 1 (A13) 
A A 

respectively. Successively, it also gives 

1-I se~se~'se~" "'" = 0 if i # j # k # i (A14) 
h 

The simple result of Eq. (A14) reflects the fact that only the two-particle 
collisions are taken into account in the original kinetic equation. Even if a 
complicated expression containing spatial coordinates is chosen for P in 
Eq. (A10), it yields no other relations than Eqs. (All)-(A14),  because the 
additional ~- dependence of Pt+~ due to that of the space coordinates is can- 
celled by the contribution of the drift term of Eq. (A4) to <P>t+~. The condi- 
tion of Eq. (A10) is now realized by the assumptions of Eqs. (All)-(A14).  
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It may be concluded that the set of Langevin-type equations [Eqs. (A8) 
and (A9)] is stochastically equivalent to Eq. (A1) if Eqs. (A11)-(A14) are 
assumed. We mean by the term "stochastically equivalent" that the equiva- 
lence relation of Eq. (AI0) holds. 

Since each particle moves according to Eqs. (AS) and (A9), a one- 
particle quantity 

N 

Q = E E Q(n, m) ] - I  x,a "~v,a '~ (a15) 
, = 1  m A 

develops in time following the relation 

N 

Qe = E E Q(n, m)1-7[ x,~v,~, (A16) 
'=i mn h 

Its change in a short interval r is given by 

Q~+, - Qt = rUQt + rVot + WQt + O(r 2) (A17) 
where 

•@. I-~I "~ m~ (AI8) Ue, = ~ E Q(n, m) E vu,, x,,~,v,,a 
n m  /L 

Vet = ~ E Q(n, m) F~, ~ x,~,v,"l~, 
i a m  

+ ~'[U" \ma']{rna'~"""r~'-m~']~ '~''~ J v#, x,,, xj,)~t, (A19) 

WQ, = E E Q(n, m ) { X -  X) 
i n m  

X = I - I  x~ta(vua'~' + f, tz)m~, (A20) 
A 

In Eq. (A19), the primed sum means summation with the condition 
Z m , ' >  1. 

With the aid of Eqs. (A2) and (A7), Vet is calculated as 

v~ = ~' Q(n'm) f "" f { ~  r - 
x W(p', p,', p, p,, q, q,)g(p, q, t)g(p,, q,, t) 

where 

x @ @, dp' @,' dq dq, 

N 

g ~ ,  q, t) = ~ a(q - x,,) a t  - v.) 
, = 1  

is the one-particle distribution. 

(A19') 

(A21) 



2 0  Hiroshi Ueyama 

By the use of the formal identities 

Qt = ~ Q(n, m ) f f  (1-I q~ap'~a)g(p, q, t )dp  dq 

Wo, -= ~ Q(n,m) f f (I-~ q~,~p~)R(p,q, t)dpdq (A22) 

where 

N 

R(p, q, t) = ,--~1 3(q - xu)(3(p - v,t - g,t) - 3(p - v,t - gu)) 

We can transform Eq. (A17) to the following: 

g(p, q, t + ~') = g(p, q, t) -- ~- a~pa ~-~qa g(p, q, t) 

+-~ffff{wfp, p~,p',p;,q, qa)g(p',q,t)g~;,q~,t, 
- W(p', p~', p, px, q, q~)g(p, q, t)g(p~, q!, t)} 

x dp~ dp' dp~' dql + R(p, q, t) (A23) 

In the limit of  ~- -~ 0, Eq. (A23) becomes 

a a 
~t g + p -Uq g = J~(g) + r(p, q, t) (A24) 

where 

JH(g) = f f f f { W ( p ,  Pl,Pt, PJ.t.q, ql)g(Pt, q:.t)g(Plt, ql~ ,t ) 

- w~, ' ,  p ; ,  p, p~, q, q0g(p, q, t ) g ~ ,  q~, t)} 

• dPx alp' dpl' dql 

and r(p, q, t) is defined as the limiting form of R(p, q, t). 

(A25) 

The correlation functions of r(p, q, t) are calculated from Eqs. (AI1)- 
(A14) as follows: First, we obtain 

WQtWo,, = ~ Q(n, m)Q'(n', m') ~ xtj + O(r 2) 
m ,  ltl, l t l ' ,  m "  t J  

xnxxjta(vtta + ~tta)"A(vjta + ~jta) ma" (A26) x , ,  = 1--[ "~ "~" 
A 
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In Eq. (A26), terms X~ and X~ i (i # j )  are to be calculated separately with 
the use of Eqs. (A12) and (A13) and are to be summed. We have 

~ j  = ~" x.~ p ~  - I - I  x .~ v ~  
iJ �9 h 

x W@, p~, v . ,  v#, x~t, xj3 dp dp~ 

+ 7" xitaXytap~ "Pla 

~IA f~A" mA ftlh'~ -- U x~taxitavitavla ~ W(p, Pl, vit, vyt, x~t, xjt) 
H 

x W(.p, p~, p', p~', q, q~)g(p', q, t)g(p~', q~, t) 

x dX dX' dP dP' dp dp~ dp' dp~' dq dq~ (A27) 

where 

A[3xe ] = 3(X - q) 3(P - p) + 8(X - ql) 3(P - pl) 

- 3(X - el)3(P - p') - 3(X - ql)3(P - p~') (A28) 

The result of Eqs. (A26) and (A27) is reduced in the limit ~---> 0 to the 
expression 

r(p, q, t)r(p', q', t') 

�89 - t ' )f  ..-f a[a~] a[a~,,p,] 
x W(p, p~, p', Pl', q, ql)g(P', q, t)g(pl', ql, t) 

x dp dp~ dp' dpl' dq dq~ (A29) 

Similarly, we obtain 

r(p, q, t)r(p', q', t')r(p", q", t") 

= �89 - c )  - t " ) f . . . f  A[8~ 

• W(p, pl, p', p,', q, q~)g(p', q, t)g(.p~', q~, t) 

x dp dpl dp' dpl' dq dql (A30) 

Equation (A29) [Eq. (A30)] reduces to Eq. (41) [Eq. (42)] in the limit of 
vanishing molecular radius. 
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Equation (A24) is the generalization of the stochastic Boltzmann equa- 
tion in the hard-sphere system. The generalization of the (usual) Boltzmann 
equation in that system is known as the Enskog equation 

0 O 
~ f  + P - ~ f  = JE(T) 

jE(f)  = f dp2 o2 f d ~ A 

1 ^ {x(~]n(ql + ~a))F(pl ,  ql)F(p2, ql + ~ )  

- x(~ln(q~ - �89 q~)F(p2, q~ - crY)} (A31) 

where X is the equilibrium pair distribution function. (32> It is interesting 
that the deterministic part of Eq. (A24) differs from the Enskog equation 
by the X factor. 

The normal solutions of Eq. (A24), following the arguments of the 
hydrodynamic approximation of the stochastic Boltzmann equation, have 
the form of 

g(p, q, t) = n(q)h(p, q, t) (A32) 

where n(q) is the microscopic density 

N 

n(q) = ~ 3(q - x~,) (A33) 
i = l  

instead of the usual one. Because of the hard-sphere repulsion, this density 
shows the strong correlation 

n(q)n(q') = 0 if [q - q ' I  < a (A34) 

which the usual density does not. The one-particle description of the hard- 
sphere system seems possible only when this correlation is taken into ac- 
count in some approximate way. When we imagine a system of particles 
with vanishing molecular radius and consider that this system xepresents 
approximately the system of hard spheres, we may suppose that the micro- 
scopic densities of the two systems are related by 

n(q) ~ no(q) (A35) 

when n(q) appears alone, but by 

(I-7) q + q  
n(q)n(q') ~ X no no(q)n0(q ) (A36) 

when it appears pairwise. In Eq. (A35), no(q) is the microscopic density of 
the reference system. 
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With the approximation of Eqs. (A35) and (A36), Eq. (A24) becomes 
the stochastic Enskog equation 

a ~  a ~ 
~/g  + P 7q g = J~(g) + F(p, q, t) (A37) 

where ~ is the effective one-particle distribution 

g = no(q)h(p, q, t) (A38) 

The random quantity f(p, q, t) is characterized by Eqs. (A29) and (A30) 
only if the following substitution is made: 

g(p', q, t)g(pl', ql, t) ~ X no ~(p', q, t)~(pl', ql, t) (A39) 

It is easy to see that Eq. (A37) reproduces the kinetic equation of the 
correlation function of Konijnendijk and van Leeuwen <83) in the linear 
approximation. I shall present a detailed analysis of Eq. (A37) in the near 
future. 

APPENDIX B. DERIVATION OF EOS. (25) AND (26) 

A definition of the g-function is given by the identity 

f F(p)  8(p - vt) dp = F(v~) (B1) 

for an arbitrary function F(.) ,  which we assume to be analytic. Equation 
(16), when raised to the nth power, gives 

if terms of order O(~ -2) are neglected. The right-hand side of Eq. (B2) is 
rewritten with the use of Eq. (19) as 

vt ~ + "r ( (p'~ -- vt'~)w(p, vt) dp + W,~(vt, "r) (B3) 
d 

where 

= v~ {r ( v , ,  ~ )  - r ,)} 
h : = l  

(B4) 
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Using Eq. (19) repeatedly, we have the following relations: 

w . ( v t ,  ~) = o ( B S )  

W,(vt, r)Wm(vt, v ) = r  ~ ~ ( ~  [m'~"+m-e-l~ t.., O(r2)(B6) 

Wn(i) t ,  "r) Wm(l) t ,  7) Wj ( l l t ,  7") 

= ~_, V'~+m+J-k-1-'~k+t+i(Vt) + O(~ z) (S7) 
/c=1 I = 1  i=1 

When Eq. (15) is substituted into the right-hand side of Eq. (B6) or Eq. (B7), 
it becomes 

k=l I=1 

f f } = ~- ... dxl dx2 @1 @2 xl" x~ m [8 (x ,  - t ,1)  - ~ (x ,  - p ~ ) ]  
k t = l  

x w(pl,p2) 3(p2 - vt) (B6') 

o r  

"r f f dx~ dx2 dxa dp~ dp2 x '~ x " �9 " 1 2 X3 t 

respectively. 

(B7') 

Equations (B6') and (B7') show that there exists another random quan- 
tity R(p) = R(p, vt, ~), which satisfies 

W,(vt, ~') = f p"n(p) dp (B8) 

Characterizations of R(p) are given from Eqs. (B6') and (B7') as 

R(p~)R(p2) = -r dp dp' [3(p~ - p) - 3(p, - p')] 

x w(p,p') 3(p' - vt) (B9) 

and 

R(p~)R(p2)R(ps)= ~-ffdpdp'(,=I-~ [3(p,-p)- 8(p,- p')]) 
• w ~ , p ' )  8(p' - v,) (B10) 
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The general term may be guessed as 

R(p~) = z f f  dp d f  f ,=~  z [ ~ ( p , -  p ) -  8 ( p , -  p ' ) ]}  

• wfr ,  f )  8 ( f  - v,) 

Now, Eq. (B3) may be rewritten with the aid of  the definition of the 
8-function as 

= 8(e - v,) + ~ f { w ( r , f ) 8 ( r '  - v,) 8(1) vt + ~) 

- w ( r ' , r ) ~ ( r -  v , ) ) @ ' +  R(e) ( t o o  

In the limit of  ~----> 0, Eq. (B11) [Eq. (B9)] reduces to Eq. (25) [Eq. (26)]. 
The random quantity r(p, t) is the limiting form of  R(p); 

~ ' +~ r ( r ,  s) = R( r )  (B12) ds 
t 

The above proof  is also valid for many-dimensional processes if  the 
following replacements are made 

n = {n,.}, k = {k,.} 

v ju  , \ k ,  j u /  
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