
International Journal of Computer and Information Sciences, Vol. 10, No. 4, 1981

An Effective Preprocessor for Structured

FORTRAN' The HENTRAN System

Giovanni Guida 1

Received November 1980; revised September 1981

In the paper the new HENTRAN preprocessor for structured FORTRAN is
illustrated. The motivations and the goals of the project are first outlined. The
extended FORTRAN language implemented through HENTRAN is then
illustrated and its adequacy and flexibility for structured programming are
discussed. The basic architecture of the HENTRAN translator is described and
its main features concerning reliability, portability, and efficiency are discussed
in comparison with other similar systems.

KEY WORDS: Preprocessors; extended FORTRAN; portability; reliability;
programming methodologies.

1. I N T R O D U C T I O N A N D MOTIVE

The topic of extending standard F O R T R A N is not new in the literature
on programming languages. A lot of preprocessors have been proposed
in the past years aiming to improve some features of the F O R T R A N
language along the lines suggested by the studies on programming
methodologies, t5,7,9,12)

This paper is involved with the design and implementation of
H E N T R A N , a F O R T R A N precompiler for structured programming which
has been recently developed at the Milan Polytechnic Artificial Intelligence
Project. ts) The motivation and the interest in such a project mainly lie on the
highlevel specifications of H E N T R A N and on the valid results which have
been obtained. The recent definition of the new standard F O R T R A N 77 t3'4)
has not reduced the need for such a type of precompiler but, on the contrary,
has still stressed the utility for a tool for structured programming. In fact,
F O R T R A N 77 provides several improvements to the language and its

1 Milan Polytechnic Artificial Intelligence Project, Milan, Italy.

283

828/10/4-5 0091 7036/81/0800-0283503.00/0 �9 1981 Plenum Pubiishing Corporation

284 Guida

standard (character data type, arrays, expressions, control statements,
input/output, parameter statement, subprograms, and several other features
that enhance portability) but is very poor with respect to the set of available
control statements (only if-then-else and an improved version of do have
been introduced) and is quite rigid for what concerns coding.

The definition of the requirements for the HENTRAN system has been
based on the critical analysis of the characteristics of several precompilers
described in the literature. ~5'7'9'12)

Two classes of requirements are considered: a first one concerning the
language to be implemented and a second one concerning the technical
characteristics of the translator.

Requirements About the Language:

�9 theoretical completeness in expressing algorithms (11) of the set of
available control structures;

�9 flexibility for structured top-down design and coding of programs; (6'14'16)

�9 facility in documentation and code reading activities.

Requirements About the Translator:

�9 reliability;(! 4)

�9 portability; (15)

�9 efficiency (source code not exceeding 500 statements, translation time
near to that one of a FORTRAN nonoptimizing compiler).

The relevance and novelty of these specifications can be evaluated in
connection with the characteristics of other existing precompilers, which
often provide only general and poorly organized improvements in the
language without considering much the performance of the translator.

The design of the HENTRAN system has been based on the following
general discipline:

�9 to adopt general, theoretically minded methods in designing parsing and
translation algorithms; (~'5)

�9 to follow a sound programming methodology in the system development
activity. (6, ~3,14,16)

The paper is organized in the following way: sec. 2 is devoted to
presenting the HENTRAN language; sec. 3 illustrates the main technical
features of the translator; in sec. 4 the most significant results concerning
software quality and performance are discussed; in sec. 5 some conclusive
remarks are reported.

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 285

2. THE HENTRAN LANGUAGE

H E N T R A N provides an extension of s tandard F O R T R A N IV; (2'3)

F O R T R A N statements are accepted by the H E N T R A N precompiler , which
is fully t ransparent to anything which is not recognized as an H E N T R A N
key word. O) 2

Let us present in detail the new control s tatements avai lable in the
language. Fo r each construct we shall define the H E N T R A N syntax and the
corresponding semantics through an informal f lowchart description.

If-then-else
$IF P

$ T H E N

B1

B2 J

$ E N D I F

P denotes a F O R T R A N condi t ional expression (without the outermost pair
of parentheses) and B1 and B2 are general H E N T R A N blocks. The square
brackets denote that the enclosed form is opt ional . Fig. 1 i l lustrates the
corresponding flow chart .

F --I

Fig. I. If-then-else.

2 We have chosen as a design criterion to allow in HENTRAN all standard FORTRAN
statements (including GO TO, arithmetic and logical IF, EQUIVALENCE, and
COMMON) for three reasons: first, it is not wise to discard available resources which may
be useful in some particular cases, also within a structured programming environment;
second, dealing in HENTRAN with FORTRAN programs (or program parts) developed
prior to the adoption of HENTRAN must not require a full revision of the already available
code; third, we do not believe it appropriate to impose structured programming through a
restriction on the set of available control mechanisms.

286 Guida

Select

t FIRST
$SELECT I ALL l

$CASE P1

B1

$CASE PN

BN

]
$ENDSELECT

P1 PN denote conditional expressions and B, B1 BN HENTRAN
blocks. The curly brackets denote that one of the enclosed forms may be
used in the statement and that each form defines a different family of control
structures (as default, FIRST is assumed). Figs. 2 and 3 show the flow
charts corresponding to this family of structures in the case of the FIRST
and ALL forms, respectively.

This structure reflects quite closely, in the FIRST form, the TEST
construct proposed by Meissner ~lz) and, in the ALL form, it can be viewed
as a generalization of the SELECT instruction which is available in the
BLISS language. "7)

Perform

$PERFORM ID

$PROC ID

B

$ENDPROC

ID denotes an identifier and B an HENTRAN block. Fig. 4 shows the flow
chart representation of this control structure.

This construct is intended to facilitate the top-down construction of
programs by stepwise refinement, t1~ The statement $PERFORM allows
to denote in a synthetic way, with a formal name, a whole block B, which

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 2 8 7

Fig, 2. Select-first, Fig. 3. Select-all,

will be expanded afterwards in the program by means of a $PROC structure.
The parameters and the variables which appear in the block B are global to
the whole program. This structure, which share some feature of the
PERFORM statement available in COBOL, is therefore quite different from
the FUNCTION and SUBROUTINE statements available in FORTRAN,
and it is provided with the only aim of encouraging top-down coding.

While

=•[SPROC ID

SENDPROC

$WHILE P

$DO

B

SENDWHILE

I
, SPERFORM ID

Fig. 4. Perform,

288 Guida

T

Fig. 5. While-do.

1

P denotes a conditional expression and B an H E N T R A N block. The flow
chart of this structure, which is very familiar in all ALGOL-like languages,
is shown in Fig. 5.

A little modification of this structure allows to obtain the following
repeat-until construct, which doesn't increase the theoretical power of the set
of the available control structures, ~ but which is often useful in
programming.

Repeat-until

$REPEAT

B

$UNTIL P

$ENDREPEAT

Fig. 6 shows the corresponding flow chart.

Cycle

$CYCLE ID, U = N1, N2, N3

B

$ENDCYCLE ID

ID is an identifier, I an integer variable, N1, N2, N3 are integers (with
N3 4: 0), and B is an H E N T R A N block. B may contain any number of
occurrences of the statement $BREAK ID; when a $BREAK ID is
executed, it results in an exit from the cycle (i.e., an unconditioned jump to
the first statement following $ENDCYCLE ID). Fig. 7 illustrates the
semantics of this structure.

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 289

Fig. 6. Repeat-until.

Cycles can obviously be nested, thus supplying an high-level construct,
original with HENTRAN, which proved very useful and flexible in the
programming practice.

Loop

SLOOP ID

B

$ENDLOOP ID

1D is an identifier and B a general HENTRAN block. B may contain any
number of occurrences of the statement SEXIT 1D; when a statement
SEXIT ID is executed, it causes an unconditioned jump to the first
statement following $ENDLOOP 1D. Fig. 8 shows the meaning of this
construct.

"1 ID

B

[*BREAK]

F ~ ~
~ (N2 - I)* N3 < 0 >

Fig. 7. Cycle.

290 Guida

.l ID
B

SEXIT ID

l

Fig. 8. Loop.

1
Loops can be nested (each loop must, of course, be denoted by a

reserved identifier), thus allowing to implement both the classes of the RE, ,

and .O, structures. (~) Several constructs have been proposed in the past for
these families; we recall DO-FOREVER in XPL, LEAVE in the BLISS
language, and the LOOP-UNTIL structure proposed by Zahn. ~7) Our loop
structure is, in our mind, more simple and flexible in practical programming,
still ensuring the theoretical features of the R E n class.

Before concluding this section, let us recall that the HENTRAN
language provides, moreover, some aesthetic improvements (free form input,
comment space, etc.) and some options available at precompile time through
the special command $HEN (selective translation, tracing, page heading,
etc.).

3. THE TRANSLATOR

The HENTRAN preprocessor has been designed as a modular one-pass
translator. Fig. 9 shows the general organization and the software
architecture of the system. It is written in a portable subset of FORTRAN
IV (2'15) and is organized as a hierarchical set of modules (coded as
independent subroutines) each one devoted to a particular function. The
decomposition of the system into modules has been performed following both
the top-down refinement technique (16) and the methodology of modular
programming.(X3'14)

Fig. 10 illustrates the main steps of the translation activity. This has
been designed as a one-pass no-backtrack translation.

The lexical analysis is performed by a finite state recognizer and the
syntactic analysis by a deterministic bottom-up perser. (1) Translation and

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 291

i I
f I

I J

1 . i
t__ i

Fig. 9. Software architecture.

code generation are based on a syntax-directed translation schema: the
appropriate semantic routines for code generation are activated whenever the
productions to which they are bound are involved in a syntactic reduction.

Let us illustrate now in some detail the single steps of parsing and tran-
slation processes. We refer to Figs. 9 and 10. HEN is the main program and
is devoted to create the appropriate environment for the translation activity.
It provides for the type and dimension declarations, and for the initial
assignement of the global variables; moreover, it receives from the user the
information needed for starting a correct run: input unit, source file, object
file, options. After these preliminary operations, HEN calls the subroutine
SCANN which manages the whole parsing and translating activity. Its main
task is to recognize the HENTRAN key words in the source block supplied
by the routine GETCH. This scanning activity is based on the classical
model of finite state recognizers, m which appears as the most efficient
method for lexical analysis. (5) Whenever a key word is recognized, the
scanner activates first the subroutine STACK for updating the central stack
and the auxiliary stack which are devoted, respectively, to the check of the
appropriate nesting of the constructs and of the correct sequencing of the key
words. Afterwards, it calls the appropriate routine proper of the construct
which has been recognized. The subroutines PROC, IF, WHILE, REPEAT,
LOOP, CYCLE, SELECT, OPT are each one devoted to a particular
syntactic construct and call, for the different activities required, other
specific routines of lower level.

TABEL is devoted to the management of the symbol tables containing

292 Guida

<

INPUT BLOCK I
(GETCH)

" \ ~ES] ~ NO E~ROR~
END-OF-FILE ~ ~ CALL FORTRAN

�9 I COMPILER

1
~ - ~ . . . SCANNING (SCANN) I El STOP ..~

OUTPUT BLOCK / KEY-WO B\Nokl I
RECOGNIZED . (PUTCH)

HANDLING ~ '
(ERRLIS) I SYNTACTIC ANALYSIS

I (IF, PROC OPT)

CONDITIONAL EXPRESSIONS AND I

I I

L ~ CODE GENERATION
(LABEL , CODE)

Fig. 10. Translation process.

the $PROC and SLOOP identifiers, and utilizes a linear access method,
which is very efficient for tables with a small number of elements. ~> COND
controls the correctness of the conditional expressions. LABEL generates the
new labels required by the code generator. The subroutine CODE consitutes
the kernel of code generation. Its activity is based on the technique of the
semantic routines, which is a very suitable one for the development of a one-
pass translator. The subroutines GETCH and PUTCH are devoted to read
the source code from ttie input file, and to write the object code on the
output files (code and listings). The subroutine ERRLIS is called by all the
routines involved in the translation process whenever an error occurs, and
provides for the appropriate error handling.

The H E N T R A N precompiler provides 23 diagnostic messages
(warnings and fatal errors). The lexical errors are generally recoverable by

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 293

the system and do not affect a correct code generation; on the other hand,
syntactic errors denoting an incorrect use on the constructs may cause code
generation to be suspended. In such a case, if any stack underflow or
overflow takes place, the stack is restored and the analysis of the source
program goes further correctly, without being affected by the errors
previously occurred, m

The object code generated by the precompiler is standard FORTRAN
IV ANSI (2'6~ and is quite easy to read and understand.

4. QUALITY AND PERFORMANCE EVALUATION

Fig. 11 illustrates the main steps of the development methodology
which has been followed in designing and implementing the HENTRAN
precompiter (note that the whole project has required an effort equivalent to

15%

~FT~
L

20%

,,', ,,

[..

REQUIREMENTS i DEFINITION

[, !

]

�9 % I
SYSTEM I

RELEASE] - ~ USER] DOCUMENTATION
Development methodology.

CRITIQUE " " J ~
~..

I~SPECTIONS

Fig. 1 I.

294 Guida

one person • 4 months). The present version of the system is the result of a
deep optimization activity (about 35% of the whole development cycle)
centered on the three parameters of memory occupation, translation time,
and portability.

The precompiler consists of a main program and of 17 subroutines of
340 FORTRAN lines in all, without comments and program documentation
(about 450 lines). Thanks to its very small dimension, the translator may run
on several minicomputers without the need of applying segmentation and
overlay techniques.

The static profile of the program: ~1~

24 % CALL
20 % assignement statements
16 % logical IF
10% GO TO
7 % RETURN
4,5 % DO, COMMON, END, SUBROUTINE, INTEGER
3 % FORMAT, arithmetic IF, WRITE, DATA, LOGICAL
1,5 % CONTINUE
0,5 % READ

shows the highly modular structure of the system and the well balanced use
of FORTRAN. 3

The translation efficiency of the precompiler has been evaluated by
comparing the average HENTRAN translation time with the average
FORTRAN compilation time with different compilers, on different computer
systems, and with sets of programs of different size. The experimental results
obtained are reported in Fig. 12.

The run time profile of the precompiler t9'1~ shows that 80% of the
translation time is spent in input/output operations and is due to less than
10% of the source code (GETCH and PUTCH routines). This feature
suggests that by substituting (part of) the standard input-output routines with
dedicated assembler programs would greatly increase efficiency, deeply
damaging, however, the portability of the system. The experimental work
done has shown that by utilizing macroassembler routines on a DEC PDP-
11/34 the total translation time may be reduced up to 60%.

The portability of the system is ensured both by the use of a restricted
portable subset of FORTRAN IV ANSI. (z'5'15) in the coding activity, and
by the particular technic adopted for encapsulating the nonportable segments
of the program (four segments, less than 10% of the source code). The

3 Please note that the sum of the percentages is 116, 5 > 100, since the logical IF statement
can embed other statements.

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 295

average number of
source program FOR F4P FTN4 HEN
l ines

I00 8s 20s los 5s

600 35s 85s 37s 22s

I000 48s 125s 65s 32s

FOR - FORTRAN compi ler on DEC PDP-l l /34

F4P - extended FORTRAN compi ler on DEC PDP-I I /34

FTN4 - FORTRAN COMPILER on HP !000

HEN - HENTRAN precompi ler on DEC PDP-I I /34 or HP lO00

Fig. 12. Translation efficiency.

portability experience done (on DEC PDP-11/34, HP2100, HP 1000,
UNIVAC 1100) has shown that a programmer with a good knowledge of the
host system can generate the precompiler in only a few hours work.

Let us conclude this section by outlining that the reliability of the
HENTRAN system, which proved very high, is primarily due to the sound
development methodology followed in design and implementation (see
Fig. 12). (13) The following error profile (errors detected and corrected in
each phase of the development)

10% design: basic conceptual errors concerning algorithms
and program structure

40% code inspections : trivial coding errors

47% module testing : undesired side effects

3 % system testing : subroutine link

1 error field testing and experimental use (six months):
uncorrect management of a particular type of stack
overflow

ensures, moreover, a good degree of confidence in the system correctness
(the total number of errors to which the above profile is referred is 31).

The HENTRAN system has been tested first (module testing) through
an appropriate set of test data which have been prepared by hand directly by
the author, and afterwards (system testing) through a sample of application
programs mainly concerning sorting and searching problems (about 20
programs of 50-350 FORTRAN lines each). Field testing and experimental

296 Guida

use have been performed by several classes of users in different fields, such
as scientific applications, nonnumerical programming (specialized text
editors, user interfaces, utilities, etc.), high school teaching on programming.

5. CONCLUSION

In the paper the HENTRAN system has been presented; a particular
attention has been devoted to the methodological aspects concerning the
design and the implementation and to the evaluation of the results obtained.

A short comparison with other FORTRAN precompilers mentioned in
the literature shows the good performance which has been obtained with the
HENTRAN system. If we consider, for example, the data reported in ~5) for
RATFOR, ~l) optimized RATFOR, and MOUSE4, ~5) and we compute the
ratio precompile t ime/FORTRAN compile time we get the following results
(for programs of about 600 lines):

RATFOR: 9.47

optimized RATFOR: 5.54

MOUSE4: 1.40

HENTRAN: 0.25 + 0.62 (depending on the type of FORTRAN
compiler used),

which are a valid index of the programming efficiency. This is primarily due
to the appropriate use of general, theoretically minded methods for compiler
construction, and to the constant application of a sound programming
methodology.

ACKNOWLEDGMENTS

I am indebted to F. Spada and E. Vigan6 for their basic contribution in
system design and implementation. Moreover, I am grateful to the students
and colleagues which have kindly accepted to work with HENTRAN during
the advanced stages of the system testing, and which have supplied several
comments and suggestion.

REFERENCES

1. A. V. Aho and J. D. Ullman, Principles of Compiler Design (Addison-Wesley, Reading,
Mass., 1977).

2. American National Standard Programming Language Fortran (Am. Nat. Standard
Institute, New York, 1966).

3. American National Standard Programming Language Fortran (Am. Nat. Standard
Institute, New York, 1978).

An Effective Preprocessor for Structured FORTRAN: The HENTRAN System 297

4. W. Brainerd (Ed.), "Fortran 77," Comm. ACM 21(10):806-820 (1978).
5. D. Comer, "MOUSE4: An Improved Implementation of the RATFOR

PREPROCESSOR," Software-Practice and Experience 8:35-40 (1978).
6. E. W. Dijkstra, A Discipline of Programming (Prentice ttaIt, New York, t976).
7. For-Word, "Fortran Development Newsletter," SIGPLAN Notices 4:i 1 (1976).
8. G. Guida, F. Spada, and E. Vigan6, HENTRAN-Manuale d'Uso (tstitt~to di Elet-

trotecnica ed Elettronica del Potitecnico di Mitano, Milano, Italy, 1979).
9. B. W. Kernighan, "RATFOR--A Preprocessor for Rational Fortran," Software-Practice

and Experience 5:395-406 (1975).
10. D~ E. Knuth, "An Empirical Study of FORTRAN Programs," Software-Practice and

Expo~ence 1:105-133 (197 t).
I 1. H. F. Ledgard and M. Marcotty~ "A Genealogy of Control Structures," Comm. d CM

18:62%639 (I975).
t2. L. P. Meissner, "Proposed Control Structures for Extended FORTRAN," SIGPLAN

Notices, 11:16-21 (1976).
13. G. J. Myers, Software Reliability: Principles and Practice, (John Wiley, New York~

t976).
t4. D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules,"

Comm. ACM. 15(I2):t053-1058 (1972).
15~ M. A. Sabin, "Portability-Some Experiences with FORTRAN," Software-Practice and

Experience 6:393-396 (1976).
16. N, Wirth, "On the Composition of Well-structured Programs," ACM Computing Surveys

6:247-259 (1974).
17. W. A. Wulf, et al., BLISS Reference Manual, (Carnegie-Mellon University, Pittsburgh,

1971).
18. C. T. Zahn, "A Control Statement for Natural Top-down Structured Programming,"

Lecture Notes in Computer Science 19:I70-180 (Springer Verlag, New York, 1974).

Printed in Belgium

