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Normalization and dependency theory is used for the logical design of relational 
data bases. Historically this theory has been based on the operations projection 
and natural join. Some work has been reported in the literature for the 
operations union and splitting. This paper extends this theory to the operation 
theta-joino 
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1. INTRODUCTION 

The process of normalization has so far been confined to the operations 
projection and natural join. Very little work has been clone to extend this 
process to other operations. A beginning was made in (~ ~) and (24) where the 
operations union and splitting are considered. This paper extends the 
normal iza t ion  process  to theta-join.  W e  study the opera tor  rnult ivalued 
dependency ( O M V D )  which is based  on theta-join and propose  the modif ied 
theta-join,  project ion normal  form ( M T P / N F ) .  

In sec. 2 we acquaint  the reader  with some background  in this area;  in 
sec. 3 we define O M V D  and show its semant ic  usefulness; in sec. 4 we 
propose  M T P / N F ;  in see. 5 we s tudy inference rules for O M V D ;  in sec. 6 we 
note some l imitat ions of  this work and in sec. 7 we offer some concluding 
remarks.  
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2. B A C K G R O U N D  

The theoretical design of a relational data base must involve a 
consideration of the following three concepts: 

1. Dependencies; 

2. Normalization; 

3. Operations. 

We consider each one of them separately. 
Dependencies are a systematic way of dealing with semantic situations 

that arise in data. For many years, Functional Dependency was the only 
known dependency. However, the need for other dependencies was felt when 
it became apparent that FD is not adequate to model many semantically 
useful situations in data. (See for example Ref. 23). In the last three years, 
several new dependencies have appeared in the literature. The various depen- 
dencies in the literature are: 

1. Functional Dependency (FD), ~5~ 
2. Multivalued Dependency (MVD), (9) 
3. Mutual Dependency (MUD), <18) 
4. Hierarchical Dependency (HD), (8) 
5. Mixed Dependency, t2) 
6. CoDependency (COD), ~2) 
7. Template Dependency, (TD) ~21) 
8. Transitive Dependency, (TrD) t~9) 
9. General Dependency (GD), (14~ 

10. Subset Dependency (SD), t22) 
11. Boolean Dependency (BD), ~l~ 
12. Generalized Mutual Dependency (GMD), ~16~ 
13. Implication Dependency (ID), (12) 
14. Null Multivalued Dependency (NMVD), ~15) 
15. Extended Functional Dependency (EFD), (25) 
16. Algebraic Dependency (AD), ~26~ 
17. Join Dependency (JD). ~2~ 

It should be noted that many of these dependencies have no easy semantic 
interpretation and may be of theoretical interest only. 

Codd, ~5'6) proposed normalization for a relational data base for two 
main reasons: first it allowed the data base to be viewed as a collection of 
tables and second, it permitted the definition of a small class of primitive 
operators that were capable of manipulating relations to obtain all necessary 
logical connections among attributes. Further, normalization eliminated 
some undesirable effects, t5'13) in the relational scheme when operations were 
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carried out on them. These were "Insertion anomaly," "Deletion anomaly," 
and "Consistency on update." Another way to view normalization is as 
follows. We have pointed out earlier that dependencies are a systematic way 
to model knowledge and ensure integrity in a data base. Unless we control 
the pattern of dependencies in the relations of a data base semantically 
undesirable effects (anomalous behavior) occur in the data base. 
Normalization pocess can be thought of as a way of controlling this pattern 
of dependencies. Here we do not distinguish between a relational, network or 
hierarchical data base, although the normal forms presented in the literature 
and in this paper are all concerned with the relational model. Extending the 
normalization process to other models is an open problem. 

Another concept that is implicit in all the normal forms is that of 
operations on the data vase. Historically, only projection and natural join 
entered the normalization process. Hence, most normal forms are based on 
these two operations. However, in the last two years union and splitting 
(defined by Fagin C1~) as the opposite of union) have entered this process 
(PSJU/NF and (3, 3 )NF (See Refs. 11, 24). These are the beginnings of a 
new area in normalization theory. 

3. OPERATOR MULTIVALUED DEPENDENCY (OMVD) 

In this section we define OMVD and show its semantic usefulness. Two 
definitions for OMVD are given: one based on theta-join and the other based 
on the pattern of tuples in a relation. It should be noted that these two 
methods for defining dependencies have been widely used in the literature. 
(For example see Refs. 9, 21, 26, 20). 

Definition 

In a relation R ]A, B, C, D] if (aib leJdl) (a k b 2 c t d2) are tuples then R 
must have (a ib l c ld2 )  and (a ib2c jd l )  if a i = a  k and/or ( a k b z c j d l )  and 
(a i b~ ej d2) if cj = ez and (a t 0 ej) must be true for all possible a i and cj in R. 
Then R satisfies the OMVD (A 0 C) -,  ~ B i D where 0 may be =, 4=, >, <, 
) ,  ~< or any binary relation L between A and C. Here A, B, C, and D are 
mutually disjoint sets of attributes. 

Definition 

In a relation R [ A , B ,  C,D]  if 

R [A, B, C, D] = R [A, B] [A 0 C] R [C, D](Theta-Join) 
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where 0 may be >, <, =, >~, ~, ~ or an arbitrary binary relation L, between 
A and C, then the Operator Multivalued Dependency (OMVD) A 0 C ) ~  
B ] D holds in R [A, B, C, D]. Here A, B, C, and D are mutually disjoint sets 
of attributes. 

We now give examples of semantic situations which to the best of our 
knowledge can be modeled easily by an OMVD only. 

1. Consider the relation, 

R [CREDIT-LIMIT, AGENT, PRODUCT-PRICE].  

W wish to model the following constraint on R. 
An agent must represent all products with price less than his credit limit. 
In R the following OMVD holds. 

(PRODUCT-PRICE < CREDIT-LIMIT) ~ ~ r i AGENT. 

2. Consider the relation, 

R [COMPANY, PRODUCT, AGENT, SALESMAN[. 

We wish to model the following constraint on R. 
When a company is associated with an agent, then every salesman 
working for this agent must represent every product of that company. 
In R the following OMVD holds. 

(COMPANY L AGENT) --. ~ PRODUCT ] SALESMAN. 

We get one OMVD for each binary relation L. 

3. Consider the relation, 

NETWORK[PATH-FLOW-RATES,  PATH, ITEM-FLOW-RATES, 
ITEM]. 

We wish to model the following constraint. 
If a path flow rate is greater than an item flow rate then the item must 
be channelled through the path. 
In NETWORK the following OMVD holds. 

(PATH-FLOW-RATES > ITEM-FLOW-RATES) -~ -~ PATH [ ITEM. 

4. MODIFIED THETA-JOIN PROJECTION NORMAL FORM (MTP/NF) 

We propose a normal form to control the pattern of OMVDs in a 
relation. But first we show by an example that OMVDs cause anomalous 
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behavior of a relational data base. For the semantic example 2 in sec. 3 we 
have the following instance of R: 

R]COMPANY, PRODUCT, AGENT, SALESMAN] = e 1 Pi al bl 

c~ P2 al b~ 

C2 Pl a2 b3 

C2 /93 a2 b4 

el Pl al b2 

c~ Pz al bl 

cz Pl a2 b4 

C2 P3 a2 b3 

Here, if a user deletes the tuple (c~ P2 a~ bl) , the constraint will be 
violated because company, c~ makes product P2 and is associated with agent 
a~. But the salesman bl does not represent product P2. Again, if a user 
inserts the tuple (c~ P3 a~ b2), the constraint is violated because the salesman 
b I does not represent product P3- Here the operations on the data base affect 
more than the one tuple addressed by the user, causing anomalous behavior. 

These problems would not be there if we decompose R as follows: 

R ]COMPANY, PRODUCT] = 

R ]COMPANY, AGENT] = 

R ]AGENT, SALESMAN 1 = 

cl Pl 

Cl P2 

Cz Pl 

C2 P3 

Ct al 

c2 a2 

al bl 

al b2 

az b3 

a2 64 

We have proposed the Theta-Join Projection Normal 
an earlier paper. (3) 

Form (TP/NF) in 

Definition 

A relation, R[A, B, C, D l, is in Theta-Join, Projection Normal Form 
( TP/NF) if whenever a nontrivial OMVD (A O B ) ~ ~ C ] D holds in R then 
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so does A B - ~ X  for every column name X in R. Here A, B, C, D are 
mutually disjoint sets of attributes. 

Here a trivial OMVD is one in which 0 is " = "  and one of the attribute 
sets on the right hand side is null. 

This definition of T P / N F  leads to the following problem not envisaged 
earlier. In R [A, B, C, D] let (A 0 B)  -4 ~ C [ D, A B  ~ C and A B  -4 D, then R 
is in TP/NF.  Consider an instance of R; 

R = a 1 b 1 C 1 d 1 

az 52 C 2 d2 

Insert the tuple a 1 b 3 c z d 3 where (al 0 b3) is valid. Now A B  ~ C and 
A B  ---, D but (A OB)  --/, ~ C I D because a I b~ e z d I and a I b 3 c 1 d 3 are not in 
R. Hence even though R is in T P / N F  and the insert operation preserves the 
key, the OMVD is violated. On the other hand, if we preserve to OMVD 
then A B - / ,  C. We define Modified Theta-Join, Projection Normal Form 
(MTP/NF)  to take care of this problem. 

Definition 

A relation R I A ,  B, C ,D]  is in Modified Theta-Join Projection Normal 
Form (MTP/NF)  if whenever a nontrivial OMVD (A 0 B)-~ ~ C [ D holds 
in R then so does A ~ X and B -4 X for every column name X in R. Here A, 
B, C, D are mutually disjoint sets of attributes. 

In the above example the insertion of a~ b 3 e z d 3 would be disallowed 
because A ~ C is violated. 

5. INFERENCE RULES FOR OMVD 

Inference rules for a dependency are necessary to be able to derive all 
possible dependencies implied by a given set of dependencies. Considerable 
research effort has been devoted to discovering inference rules for the other 
dependencies in the literature [see for example Refs. 1, 4, 7, 8]. In this 
section we propose to study 15 inference rules for OMVD. 

We extend the definition of OMVD to the case where the sets of 
attributes are not mutually disjoint. 

Definition 

In a relation, R I X ~ , X 2 ,  A , B  ] where XI,X2A, B are not necessarily 
disjoint, the OMVD. 

(X~ O X 2 ) ~  -~ A IB 
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holds if 

R Ix,, x2, A, B1 = R A 1 ix, ox2] RIx , 8] 

where 0 is any operat ion >, <, >/, ~ ,  =/:, = or any binary relation L between 
the values of  the attribute sets X 1 and X 2. 

We extend the concept of  a loss less decomposi t ion of a relation as 
follows. A relation R IX 1, X2,A, B] is decomposable  in a loss-less way into 
its projections R [X~, A] and R IX z, B] if 

R [Yl, X2, A, B ] = R IX1, A ]IX 1 0 X 2 ] R [Y2, B ] 

i.e. if OMVD,  (X 10X2)~ ~A ]B holds in R. 

Note 
1. In a relation R[X1,X2,A,B ] with nondisjoint attribute sets X~, X2, A, 

and B, we cannot conveniently specify a tuple. For example (xl x2 a b) is 
a " tuple"  in which some attribute values are duplicated merely because 
x~,x2,  a and b are not mutual ly  disjoint. However  if we remove the 
duplicates from (x~ x 2 a b) we do get a unique tuple of  R. We shall refer 
to a tuple with duplicate values as, "tuple".  

2. We can define the following special OMVD's .  

(O0(k)~ ~A [B<:> R[A,B] =R[A]XRIB ]. 

(XO0)--, ~A I B ~  R[X,A,B] =R[X, AIXR[B]. 

where X denotes Cartesian Product. 

3. In a relation R [X~, )(2, A, B ], 

U=X1UX2UAUB 

A=U--A  

Similarly in a " tuple" (x~ x 2 a b) of  R, 

u=xl t,_)x2UaUb 

a=u- -a  

4. In a relation _R[X1,X2,A,B], (YlOY2)* is true if every " tuple"  in 
R[X 1,X2] satisfies (XI OX2) and no such new "tuple"  can be added to 
R[X1,Xz] without adding a new element to SR[X ] or SR[Xz]. It is 
trivially true that if (X~ OX2)~ ~ A I B  then (X 103(2)* is true. 

828/10/4-4 
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5. In a relation R [ X 1 , X z , A , B  ] we specify a "tuple" as ( x l x 2 a b )  where 
x~, x z, a, b are values taken by sets of attributes X~, X z, A and B, 
respectively. 

OMVD1 (Reflexivity) 

In a relation R[XI,X2] if A ~ X ~  and B ~ _ X  z and (Xl OX2)* then 
(x l  O Xz) -+ -+ A 18 

proof 
In R[XI ,Xz] ,  

X 1 --+A 

XE--+ B 

R : X l l  x21 a I b I 

Xll x21 a 2 b~ 

X12 X21 a3 bl 

Here (X 1 .L. X2) -~ -~ A ] B is true 
For (X 1 .L. X2) -~ -~ B I A to be true, 

R = Xll X21 

Xll X21 

Xll X21 

X12 X21 

X12 X21 

XI2 X21 

L --  Xll x21 

x12 x21 

a m b~ 

a2 bl 

al bl 

a l  bl 

a2 bl 

a3 bl 

and (X 1 0 X2) * 

. ' .  By FD-OMVD 1 (Proved later) 

(Xa 01(2)+ -+ A 1 8 

OMVD2 (Computation) 

In a relat ion R [X 1 , X 2, A ,  B ], 

(X 1 0X2)--~ ---+A I B if and only if 

(Xl O Xz)-+ -+ B I A 

This rule is not true as is demonstrated by the following example. 
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OMVD3 (Augmentation) 

In a relation R [X~, X2, A, B ] if (X~ 0 X2) ~ --. A [ B, W' c W, W" c_ W 
then (X 1 W 0 X z W) ~ ~ A W' I B W". Here W _ U. 

Proof 

The operation '0' can be =, 4: or L to be meaningful for this inference 
rule. In a tuple of R, if (X~ OXz) holds where 0 is one of the above three, 
then obviously (X 1 V~OX 2 W) also holds. Now, 

Assume, 

R = R[X~,AIIX1 0Yzl R[Yz, B1 

R ~=R[XI, W, AlfX~ m o x z  W1R[Xz, W,B[ =RI  

(1) 

and 

i.e. 

and 

Let (X 1 a~ x 2 b~) be a "tuple" in R and not in R~. It can be rewritten as 
(Xl w al xz w bl) where, 

and 

(x 1 W a~) ~ RIX 1, W,A] 

(x2 w bl) ~ RIX2, w, B1 

In (2) therefore, (x I w a 1 x: w bl) E Rl-contradiction. 
Similarly a "tuple" in R 1 must belong to R, because if, 

(xl w al x2 w bl) E R1 

(xi w a i ) E R [ X l ,  w,A] 

(xz w bl) ~ RIX2, W, BI 

(xl al) E R[X1,A ] 

(xz bl) C R[X:,B] 

(xl al x2 bl) E R 

(2) 
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But 

(xl al x2 b l ) =  (xl w al x2 w b,) 

(x~ w a 1 x z w bl) E R - - a  contradiction. 

Hence the rule is true. 

OMVD4 (Transitivity) 

In a relation R IX1, X2, A, C, D] if, 

Arora and Dumpala 

(X, O Xz)--, --, A I CD, (A' O, A")--,  -~ C t D, 

U =  X 1 U X 2 U A U C U  D = A  U C U D  andA '  U A "  = A  then, 

(Xl O X2) -, - , A C I D  

Proof 

Let (X, O Xz) --* --* A I CD and (A' 01A ") ~ --* C I D but (X 10X2)- /*~ 

(3) 

(4) 

(5) 

A C I D .  
Let 

R = R [Yl, A l lX, 0Y2l R IXz, C, O] 

= R[A', GI[ A' 01A"] NIA", D] 

4: R[X,,A,  C]IX10Xzl R[Xz, D] = R, 

A "tuple" in R always belongs to R 1 because R 1 is the join of projections of 
R. Let 

(Xl al C1 X2 dl) C R 1 

~ R  

But from (3), OMVD5 and (5), 

R [ X 1 , X z , A , D  ] =R[X1 ,A] IXI  OX21RIXz ,DI  = R I [ X , , x z , A , D ]  (6) 

The equation (6) is true because (X 1 0X2)* is true in both R and R 1. 

. '. ( a l d O C R [ A , D ] , ( x i a ~ c l ) ~ R [ X ~ , A ,  C I a n d ( a l ) ~ R [ A ] .  

But from (4) (cl), occurring in a "tuple" of R with (al) C R [A ], also occurs 
with every (dj) which occurs in some "tuple" with (al) in R. 

. ' .  (a 1 c I d,) E R [A, C, D] 
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But A U C U D =  U 

(a~ el d~) = ( x  1 a~ e 1 x 2 d~) E R - - a  contradiction. 

Hence the rule is true. 

OMVD5 (Embedded Operator Multivalued Dependency) 

In a relation R[X1 X2,A,B] if (X 10Xz)-~ -~A [B then (XI OXz)-~ -~ 
A ' [ B '  in the appropriate projection R'  of R and the latter is an Embedded 
OMVD where A' c A  and B' _ B .  

Proof 
Let 

and 

R =R[&,AIIX  OX21R[Xz,B] (7) 

R' ~ R[X1,A'][X 1 ON2] R[XE,B' ] = R  1 (8) 

Any "tuple" in R must have its projection in R~ because R~ is a join of 
projections of R. Let 

( x l , a ' l x2b l '  ~ R  1 

~ R '  

�9 . (x~ a'~)  ~ R [ X ~ , A ' ]  

(x2 b,') Rlx2, 

(3bl")(b , '  ba" C R [B]) A (xzb ,' b~" E R [X2, B]) 

and 

(3a~")(a~' a 1" E R [.4 ])/~ (x 1 a 1 ' a I" C R [Yl, A ]). 

(xl a ' l  al "Xz bl'  bl") E R 

(xl a l '  x2 bl ')  E R ' - - a  contradiction�9 

Hence the rule is true. 

OMVD6 

In a relation R [X~, X 2, A, B] if, 

(X 10XE)~ -~ A I B then (X 10 X2) ~ ~ A ] A 
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Proof 

Let 

R = R [ X I , A I [ X  ~ OX2] RIX2 ,B  l 

~ RIX1,A ][Xa O X2I RIXz,A] = R  1 

(9) 

(10) 

Every " tuple"  in R is also in R 1 because R 1 is the join of  projections of  R. 
Let 

(x I a 1 x 2 61) E R 1 

~ R  

. .  ( x l a l ) E R [ X 1 , A  ] 

Case 1 Assume ~ T _ B .  

�9 . (x 2 b) G R [x 2, B] where b is a projection of 61. 

.'. (x 1 a I x 2 b) = (x 1 a I x z all) E R - - a  contradiction�9 

Case 2 Assume .4 c B. 

Let B = A B '  where B '  ~_ A and B '  ~ / T  = 

F rom (1) and OMVD5,  

R = RIX  I ,AI IX ,  OY21 R [X2, ,~  B '  l 

-- R IX1, A ] [X 1 0 Xz] R [X 2 , ,,T]--a contradiction 

Case3 A s s u m e A ~ B =  

Then A B. i.e., B = A '  ~ A 

. ' .  From(9) ,  

R = R I X 1 , A ] [ X  10X2] R[XE,A'  ] 

and (xl al  x2) = (Xl a l  x2 all) @ R (Because x 2 E R[x2])  

Case 4 
Assume X ~ B = P 4: q~ 

Let B = P B '  where P ~ B '  = r  and B ' _ A  

From (9) on OMVD5,  

R =R[X, ,A][X~ OX~I R I X z , P , B ' ]  

= R[X1,A IIX10 X21 RlXz ,P]  
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Let ~1 = (pb') 

� 9  ( ~  p) c R [x~, PI 
�9 ". (xl al x2 P) = (xl al x2 a2) ~ R - - a  contradiction 

Hence the rule is true. 

OMVD7 

In a relation R IX 1 , X=, A, C] if, 

(X, O X2) ~ --,A ]A and (X~ O X2) ~ ~ C ] f f then  

1. (x, o x 2 ) - - , - ~ A u C J A w C  
2. (X~OXz)-~ ~ A ~ C ] A ~ C  

Proof 

Let 

where 

R = RIX~,A', Acl[X , OXz] R [Xz, A', Ac] 

= RIX,,Ac,-~e][X~ O X2] RIX2,A' ,A ']  

(11) 

(12) 

A =A'A c, A ---AA c 

C =Ac.#r 

AC3C=A~ 

Znc=L 
Let 

1. R va R[X,,A',Ac,,~c][XI OX=]R[X2,X']=R, 

2. R vs R[X,,Ac]IX , OX2]R]X2,A',.,4',,~] =R,  

A "tuple" in R belongs to all R~ because R 1 are joins of projections of R. To 
prove that a "tuple" in any R1 is also in R 

1. Let (xla'  acYcx2d')@R 1 

.'. (x~a' a~)ERIX, ,A ' ,Ac]  

To prove (x z d'  6c) ~ R IX 2 , A', A~]--then from (11) we have the result. 

But, (x=~ ' )eR[Y~,Z ' l ,  (x ,~c)~R[Xl ,Y~]  

(x, , x~) ~ R IX, , x A  



274 Arora and Dumpala 

From (12) and OMVDS,  

R [XI , .4~ I [XI O Yz  l R [Xz , A ' I = R [X1, Xc, X2, A'  ] = A Projection of 
R 

i.e. Any a '  which occurs with x 2 occurs with all ff~ which occur with 
Xl whenever (Xl 0 xz) is true. 

� 9  (x~ ~' ac) ~ R [x~, ~ i ' , , ~ ]  

Hence R = R 

2. Let (x~a' d~a~x2d ' )~R  1 

.'. ( x z d ' ~ ) ~ R [ X 2 , A ' , A ~ I  

prove, (xla 'ac)  ER[Xl ,A ' ,Ac]- - then  from (11) we have the To 
result. 

But 

(x~ ac) ~ R [X~, A~] 

(X 1 X2) ~ R [XI, X2] 

(x2 a ' )  ~ R [X2, A '] 

F rom (12) and OMVD5,  
R[X1,A~][X10X2] R[Xz,A']  = Appropria te  Projection of R i.e. An a~ 

which occurs with x I also occurs with all a '  which occurs with x 2 in 
projections of  R whenever (x 1 0 x2) is true. 

.'. ( x la '  a~ )CR[X~ ,A ' ,Ac l  

.'. R = R  1 

OMVD8 

In a relation R IX 1 , X 2, A, C l if, 

(X 1 0 X2) ~ -~ -41A and (X 1 0 X2) ~ --, C [ C then 

(Xa 0X2)-* - , A - C I A - C  

Proof 

Let 

R = R [ x l , ~ ' , , T c l l x ,  ox2] RIX2 ,A ' ,  Acl 

= RIX1 ,A: ,~r  Yzl  RIXz,A' ,~T' I  

(13) 

(14) 
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where 

A = A ' A  c A = A ' A  c 

C=A~.~c Ac~C=A~ 
~c~c=~ 

Let, 

R ~ R [ & , A o . 4 ' , , 4 c I I X  , OX21R[X2,A '  ] -=R, 

A "tuple"  in R belongs to R t because R l is join of  projections of  R. To  
prove that a " tuple"  in R 1 also belongs to R 

Let (x 1 a '  a t 5~x 2 6 ' )  E R 1 

. .  (xlac5~)~R[x~, A~,LI 

To prove 

(x~ a' d')  C R [X 2, A ', . 4 ' I - - t h e n  from (14) we have the result. 

B ut, 

(x~ x~) c Rtx~,&l 

(x 2 a')  ~ R[X2 ,A  ' t 

(x~ 59 ~ R[&, ~r'l 

From (13) and OMVD5,  

R [X~, ,4 ']  [X~ 0 X 2 ] R IX 2 , A '  ] = Appropr ia te  Projection of  R 

i.e. An 5 '  which occurs with x~ also occurs with all a '  which occur with x 2 
in projections of  R whenever (x~ Ox2) is true. 

. .  ( x z a ' d ' ) C R [ X z , A ' , , 4 '  ] 

.'. R = R  t 

OMVD9 

In a relation R[XI ,  X2, A, B] if 

(X~ O X2) ~ -* A [ B then 

(X 10X2)-'.+ ---).ANt ] B X "  where X '  X~ X 2 

and X"  c_ X 1 U X z 
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Proof 

Let 
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R = R [ X , , A I I X ~  OXz] R[Xz ,B]  

--/= R I X , , A , X ' I I X ~  O X21 R I X 2 , B , X " I  = Rx 

Every "tuple" in R also belongs to R~ because R~ is a join of projections of 
R ~  

Let 

�9 o 

and 

But 

(x I a 1 x '  x 2 b I x ' )  ~ R 1 

q~R 

(xl a~) E R [XI, A ] 

(x2 b,) R [&, B1 

(x I a I x 2 bl) E R 

(X 1 a 1 X 2 b) = ( x  1 a 1 x '  x 2 b I x " ) - - a  contradiction 

Hence the rule is true. 

OMVDIO 

In a relation R [ X  1 X 2 , A , B  ] if 

(X 1 0 X z ) ~  ~ A  1B then (X 1 0 X 2 ) ~  -+AB Ilk 

This rule is not true because of the following example: 

R = x l a l b l X  3 R [ X 1 , X 2 ] = x I x 3  = L  

X 1 a~ b 2 X 3 Xl X2 

= R [ X I , A  I[X, O Xzl R l X z , O l  

r RIX~, A, B l IX10X21 R [X2] 
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O M V D I 1  

In a relation R [X~, X2, A, B] if, 

( X  l O X2) ~ -~ A [B then 

(X~ O X 2 ) ~  -~ A U P ]  ((B - P)  = B ' )  where 

P c _ A  C~B 

Proof 

Let 

R = R IX 1 ,A ]IX 10Y2l R[X2, B] 
R [X,, A, P] [X, OX21 R IX2, B'] = R 1 

(15) 

If a "tuple" belongs to R, it definitely belongs to R I because R1 is the join of 
projections of R. 

Let (x I a p  x 2 b ')  C R 1 

~ R  

. . (x  I a)  C R IX1, A]  

and (x2 b') C R [ & , B ' ]  
But from (15) and OMVD5, 

R =R[XI,A][X10X2] R[Xz,B'] 
because U = x ~ U A  U x  2LAB' 

�9 �9 (x,  a x z b') = (x I a p  x 2 b ' )  E R - - a  contradiction. 

Hence the rule is true. 

F D - O M V D 1  

In a relation R [ X I , X 2 , A  , B], 

ifX~--*A and X 2 - - , B  and (X 1 0X2)* then 

(& ox2)-~ - ,A IB 

Proof 

Let X, ~ A ,  X2 - ,B,  (X, 0X2)* 

Assume (X  10 X2) ~ ~ A lB.  

i.e. R =/= R [ X I , A  ][X 10X2] R[X2,  B] = R l 
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Any "tuple" in R belongs to R~ because R 1 is a join of  projections of R 

Let a "tuple", 

(xl x2 a b) ~ R 1 

~ R  

. .  (xla) ER[X1,A] , (Xzb)ER[X1,B ] 

Also (X 10Xz)* is true in R 

. .  ( x l x 2 ) ~ R [ X ~ , X z ]  

But in R, X~ -* A and X 2 -~ B 

Hence Xl always occurs in a "tuple" with a and x2 always occurs in a 
"tuple" with b 

�9 ". (Xl x2 a b) E R- -con t rad ic t ion  

Hence the rule is true. 

FD-OMVD2 

In a relation R[X1, Xz, A, B] if, 

(XlOX2)+-+AIB,  Y-+A', Y ~ A = ~  

and A '  _ A then X 1 X 2 + A '  

Proof 
Let 

R =R[X,, AI[X~ OYz] RIXz,BI (16) 

and Y ~ A ' ,  Y ~ A  = r and A '  _ A  

and let 

X I X  2 +A '  LetA = A ' A "  

i.e. (X 1 X 2 a 1' a 1 " bl )  and (x I x 2 a 2' a2" b2) are both in R 

i.e. (X 1 al I al" ) and (Xl a2' a2") ~R[XI,A]  

(x z ha) and (x z bE) E R [X 2, B] 

Hence f r o m  (16), 

(x a x 2 a 1' a l "  b2) and (x I x2 a2' a2" bl) @ R 
But Y + A '  and attributes of Y must be from iT, i.e. in the above tuples Y- 
values must be from (X 1 X 2 bi) where i = 1, 2. It is obvious that whatever may 
be Y from ,4, Y + A '  is violated, for example Y=X~B.  

(X 1 b 1 a l '  ) and (x~ b 1 a2')  in the projections of R will violate Y ~ A ' .  
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Only if YVqA va ~ can the FD Y-~A' be sometimes preserved. For example 
Y = A" B and A" B -4 A'  is not violated in this case. 
Hence our assumption leads to a contradiction. 
Hence the rule is true. 

FD-OMVD3 
In a relation R[X~,X~,A,B] if, 

(X~ 0 X~) -~ ~ A I B then 

(xl x~) -~A ,~B. 

Proof 
Let 

and 

R =R[XI,A][X 10X2] R[X~, B] 

xlx2-~ A (~B 

i.e. There are two tunes  in R 

(xl x2 x,  Xb) and (xl x2 x', X'b) 
where x a ~ x b 4= x '  a ~ x '  b 

~ . By (17) we must have tunes  

(xl x2 xa x 'b) and (x~ x2 x 'a  xb) in R. 

These tuples cannot exist because 

(x~xb) 4= x '~x'~ 

So (17) cannot be t rue - - a  contradiction 

�9 �9 (X1 X : )  --, A n B .  

MVD-OMVD1 
In a relation R 

X ~  ~ A  if and only if 

(x= x)-~ -~ArX 
Proof If 

Let X ~  -~A 

Le. R R[A, AI IX=XIR[X, (U--X_A)  ! 
i.e. R =R[X, AI[X=X l R[A,A]( ' . "  X U A = X L )  ( U - X - A ) )  
i.e. ( x=x) -~  -~A lY 
Only if follows similarly. 

(17) 
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5. SOME LIMITATIONS 

1. Semantics of OMVD may sometimes be impossible to preserve under 
update operations. We take an earlier example where in R [ A , B ,  C ,D] ,  

(A O B) -o ~ C [ D, A -o X and B -o X for every column name X in R and 
A, B, C, D are mutually disjoint. Consider the instance; 

R = a l  bl Cl dl 

a2 b2 c2 d2 

Insert the tuple a 3 b 3cad3. Now if 0 is " = "  or "L",  M T P / N F  is 
preserved along with the OMVD, ( , 4 0 B )  ~ ~ C ID. For any other 0 
(Say " > " )  the OMVD may be violated because ( A O B ) *  is not 
preserved. 

2. A set of complete inference rules for OMVD's  may not be possible. We 
state this conjecture because complementation, which is a very 
important rule for MVD's  (~7) [MENDELZON 79b]. 

6. CONCLUDING REMARKS 

In this paper the normalization of a relational data base has been 
extended to the operation theta-join. A new normal form MTP/NF  has been 
proposed. Relevant examples show the semantic usefulness of M T P / N F  and 
its underlying dependency OMVD. Fifteen inference rules involving OMVD, 
MVD, and FD have been studied. There appears to be no complete set of 
inference rules for OMVD. This conjecture is based on the fact that 
complementation rule is not true for OMVD, while it appears in every 
complete set of rules for MVD. It should be noted that other dependencies 
based on theta-join can now be defined and studied. We leave that as a 
problem for future research. 
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