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Normal forms and dependencies are an area of great current interest in the 
design of relational data bases. Only a subclass, namely, root dependencies and 
the normal forms based on them, are of direct interest to the data base designer. 
Dependencies outside this subclass do not have clear cut semantics and may in 
the long run prove to be of theoretical interest only. We have proposed the fifth 
normal form (5NF) to control the pattern of codependancy, the highest known 
root dependency. We have also shown a strong parallel between root depen~ 
dencies and their normal forms and a family of hypergraphs called S-diagrams. 
Graphical normal forms, based on S-diagrams have been proposed and their 
equivalence to conventional normal forms proved. 

KEY WORDS: Relational data bases; semantics of relations; normal forms; 
dependencies; data base design. 

1. INTRODUCTION 

Before the advent of data base management systems, the role of data in a 
computer system was to serve as an input to the various programs. If data 
was to have any structure, it was defined in the program. This meant that 
each program had its own data to work with. However it became 
increasingly clear that several programs used the same data and that data 
played a vital role in the functioning of an enterprise. Efficient handling and 
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storage of data became a desirable goal. This very logically led to data base 
management systems. 

In a data base management system, the data is structured and stored in 
the computer. The programmers do not impose their own structure on the 
data. They are constrained to use the data in the computer. Data is a 
resource of the enterprise which is available to several users and must be 
managed properly. As data became more important, considerable effort was 
devoted to study the properties of data. An important outcome of this study 
is the various dependency structures that may be found in data and may be 
usefully exploited to improve the performance of the data base. These 
structures can be used to model semantic situation that arise in data. Further 
it is necessary to control the pattern of dependencies in data to avoid seman- 
tically undesirable effects when operations are carried out on the data base. 
Normalization is a step by step process designed to achieve this control of 
dependencies. Every step of the normalization process leads to a clear cut 
pattern of dependencies which is called a normal form of the data base. 

So far we have not specified any particular type of data base relational, 
network, hierarchial etc. However all the work in the areas of dependencies 
and normal forms to be found in the literature is devoted to a relational data 
base. Extending this work to the other types of data bases is an open 
problem for research. Also, even though the historical reasons for studying 
dependencies and normal forms were to control the semantic behavior of a 
data base, in recent years (particularly last two years), many researchers 
have studied this area purely from a theoretical stand point. Hence, there are 
several dependencies and normal forms which have no semantic inter- 
pretation, and may prove to be of little interest to a data base designer. 

We have isolated a class of dependencies, namely, root dependencies 
which have very clear semantics associated with them. It is our belief that a 
data base designer need consider only those normal forms which control the 
root dependencies. We have interpreted root dependencies and their normal 
forms in terms of a family of hypergraphs called S-diagrams. This study 
should prove useful in the design process of a data base; in applying graph 
theory to the study of data bases and also in enforcing integrity of a data 
base during operations. The utility of S-diagrams has been presented in detail 
in [ARSM 80b]. 

In Section 2 of this paper, we deal with dependencies in general and 
root dependencies in particular; in section 3 we present the normalization 
process and propose the highest normal form for root dependencies, and in 
section 4 we prove the equivalence of these normal forms to graphical 
normal forms based on S-diagrams. Finally in section 5 we offer some 
concluding remarks. 
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2. DEPENDENCIES 

In this section, we first introduce the reader to dependencies in general 
and root dependencies t2) in particular. In section 2.1, we take an example 
given in t3~) and extend it to show the semantic differences between various 
root dependencies in the literature. We also include formal definitions for 
every root dependency. It is our intention to convince the reader that only 
root dependencies have nice semantic interpretations. In section 2.2, we 
present some definitions and results (without proof) from the theory of well 
connected relations (WCR's).  tS) We also indicate how the formalism of 
WCR's  can be applied to obtain the graphical interpretation of all root 
dependencies, t2) 

2.1. Root Dependencies 

Dependencies are a systematic way of dealing with semantically useful 
situations that arise in data. People think in terms of semantic connections 
among data rather than in terms of relational algebra which is highly 
mathematical. For example, in a company each employee may have a 
distinct employee number. The data base designer is faced with the task of 
modeling this semantic connection between an employee and his employee 
number. He must futher ensure that no two employees ever get the same 
employee number during operations on the data base. For this situation, we 
have the Functional Dependency (FD), see for example. "'8'1~ The data base 
designer uses the FD between employee number and employee in his design 
process and also specifies it as an integrity constraint which must not be 
violated during operations on the data base. 

In, t31) the authors point out that FD is not adequate to model some 
semantic situations that arise in data. They give the following example. 
Suppose an employee works in several departments, then EMPLOYEE-/ ,  
DEPT (EMPLOYEE does not functionally determine DEPT),  and suppose 
that each department has only one contract type, DEPT ~ CTYPE. Clearly 
there is knowledge about employees and contract types on which they are 
working. But it cannot be expressed as an FD. Since (3" was published, other 
dependencies have been identified in the literature which capture or model 
the knowledge present in the above example. We can look at it in two 
different ways. If we wish to look at each employee and his relation to 
DEPT and CTYPE then it can be expressed by a mutual dependency 
(MUD), ~z3'24) or a contextual dependency (CD), t6) i.e., E M P L O Y E E , ~  
DEPT[  CTYPE. The data base designer can now specify this MUD 
as an integrity constraint. However, if we wish to look at each department 
and its relation to EMPLOYEE and CTYPE then it can be expressed 
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by a multivalued dependency (MVD), (16'34) i.e., DEPT - 
EMPLOYEE]CTYPE.  We extend the example of ~ as follows. Suppose 
each contract type is divided into several portfolios and each employee of the 
department has access to all the portfolios in that department. We can model 
the knowledge about departments, employees, contract types, and portfolios 
by a hierarchical dependency (HD), ~12) i.e. DEPT:EMPLOYEE[ CTYPE[ 

P F O L I O .  Here we are looking at each department and its relation to 
EMPLOYEE, CTYPE, and PFOLIO.  

So far we have seen FD, MVD, MUD, CD, and HD. All of them 
(MUD and CD are equivalent) ~25) are semantically useful in modeling 
situations that arise in data. However there are many other dependencies in 
the literature which do not have a root attribute and for which it is difficult 
to identify scemantic situations in data. We do not deal with them in this 
paper but mention them in passing-Join Dependency (JD), (28~ Algebraic 
Dependency, (33) Transitive Dependency, ~26) Subset Dependency, ~3~ 
Template Dependency, ~29) General Dependency, ~19) Generalized Mutual 
Dependency, t2" Boolean Dependency, tx4) and Implication Dependency/13) 
The dependencies, FD, MVD, MUD, CD, and HD are all special cases of 
JD. In all these, as is demonstrated by the earlier discussion and underlining 
of the word each, we are looking at every value of an attribute or attribute 
set and its relation to values of other attributes. We choose to call the former 
(i.e., left-hand side of these dependencies) the root attribute. Summing up, we 
can easily identify semantic situations in data which can be modeled by a 
dependency with a root attribute. And it is difficult to identify a semantic 
situation i data which could usefully be modeled by a JD without a root 
attribute. Hence it is useful to introduce others dependencies which have a 
root attribute and model semantic situations in data which cannot be 
modeled by the existing dependencies with a root attribute. In ~7) we 
introduce the mixed dependency (MD) and the eodependency (COD) and 
show their usefulness. 

We again extend the example of ~31) as follows. Suppose EMPLOYEE, 
DEPT and CTYPE have the same constraints as before, but in addition, an 
employee works on several projects and each project is assigned to one 
department. Clearly there is knowledge about PROJ, DEPT, CTYPE, and 
EMPLOYEE which cannot be modeled by FD, MVD, MUD or HD. This 
knowledge can be modeled for each employee by a COD, i.e., 
EMPLOYEE _= PROJ ] DEPT ] CTYPE. The MD is a special case of COD. 
If we modify this example and say that an employee can work only on one 
contract type at a time, then we can model this knowledge for each employee 
by an MD, i.e., EMPLOYEE ~-- PROJ ] DEPTfCTYPE.  

It can now be pointed out that an FD is a dependency with two sets of 
attributes (one root attribute set on the left-hand side and another attribute 
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set on the right-hand side which we choose to call a branch attribute set). An 
MVD has three attribute sets: one root and two branch. An HD is a 
extension of MVD to n attribute sets: one root and n - 1 branch. An MUD 
has three attribute sets: one root and two branch. A COD is an extension of 
MUD to n attribute sets: one root and n - 1 branch. An MD is also defined 
on n attribute sets: one root and n -  1 branch, However it exhibits features 
of both MVD and MUD. And FD, MVD, MUD, HD, MD and COD form a 
class of dependencies which we choose to call root dependencies. 

We now give definitions for each root dependency for the sake of 
completeness of this section. From these definitions, it should be noted that: 

1. MVD is based on a linear 2-join. 

2. MUD is based on a cyclic 3-join. 

3. HD is based on a linear n-join. 

4. MD is based on a combination of a linear n-join and p cyclic 3- 
joins where p < n. 

5. COD is based on a combination of a linear n-join and n cyclic 3- 
joins. 

For further information on linear and cyclic joins the reader is referred 
to.(9) 

A functional dependency, X--* Y1, exists in a relation, R[X, I111, if in 
every instance of the relation some function f :  X ~  YI exists. In a 
relation, R[X, Y~, I121, the MVD, X ~  ~ YII Y2 holds if and only if, 
R IX, Y~, Y2 ] is the natural joint of its projections, R IX, Y~ ] and R IX, Y2 l- 
Here X, Y~, and Y2 are disjoint sets of attributes. 

In a relation, R[X, Y1, Y2], the MUD, X.~* Y~ I I12, holds if and only ~f 
R[X, Y1, I12] is the natural join of its three projections: R[X, YII, R[X, Y21, 
and R[Y~, Y2I. In a relation, R[X, I"i, Y21, the contextual dependency, 
X ~-- Y1 ! II2 (X determines Y~ in the context of Y2), holds if and only if when 
(XiYllY21), (xiY12Y22), and (xjylly22) are tuples in R[X, Yl, Y21, then 
(xiy~lY22) is also a tuple and this is true for all x i and all instances of 
R[X, Y~, Y2]. Here, X, Y1, and Y2 are mutually disjoint sets of attributes. 
Both these dependencies are equivalent. 

In relation, R[)~, Y~, Y2,..., Y,}, the HD, X: Y~ I Y~ I "" I Y,,  holds if 
R[X, I71, }72 ..... Y,] =RiX,  I111 * R[X, g2l * "'" * RiX, II,1 where �9 is the 
natural join. Here X, Y~, I12 ..... Y, are mutually desjoint sets of attributes 
and R[X, Yi] are projections of R[X, Y1, II2 ..... Y']. 

The COD 

x=-YIIY:I...iY, 
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holds in a relation R [2, Y1, }:2,..., Y,] 

if R=R[X,Y,],RIX, Y21,...,RIX, Y,I,RIY,,Y=I 

, RIYz, Y3] , ... * R[Y,_I, Y,I. 

Here X, Y~, 1:2 ..... Y, are mutually disjoint sets of attributes and each 
relation on the right-hand side is a projection of R[X, YI, Y2,..., Y,,]. 

The MD 

X ~-- YlyY=I r3fY41 Y, I "'" f i n  

holds in a relation R[X, Y1, Y2,..., Y,] 

if R=R[X,Y , ]*RIX ,  Y2]* . . .*RIX,  Y,I*RIY,,r=] 

�9 R[ r3 ,  r , 1 ,  ... �9 R[Y,_ , ,  r , ]  

Here X, Y1, Y2 ..... Y, are mutually disjoint sets of attributes and each 
relation on the right-hand side is a projection of R[X, Y1, Yz,..., Y,]. 

Finally we mention in passing that FD's, MVD's, and MUD's have 
been defined for the case where the set of attributes are not mutually disjoint. 
Also in, ~2~ MVD's have been defined for relations with null values and in (3) 
they have been defined for joins other than natural, i.e. NMVD's and 
Operator Multivalued Dependencies (OMVD). We do not address these 
cases in this paper. 

2.2. Graphical Interpretation of Root Dependencies 

A theory of well connected relations (WCR's) has been presented in. (5) 
In this section we present a graphical interpretation of all root dependencies 
based on WCR's. ~) For this purpose, it is sufficient for the reader to know 
only a few definitions and results from. ~5) These are presented in this section. 
We state the relevant theorems without proof. Well connected relations are 
essentially a generalization of quotient relations ~17) in the context of 
relational data bases. 

Definition 2.2.1 

A binary relation RIA, B] on the sets A and B are a mapping from set 
"A to set B such that every element of A is mapped to at least one element of 
B. Such a binary relation is total. 

The binary relation is partial if some elements of A are not mapped to 
any element of B. 
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Definition 2.2.2 

A well connected relation (WCR) is a binary relation, W on two sets A 
and B such that 

(ga)(a  E A)(Vb)(b E B)(aWb) 

The sets A and B are called the first and the second constituents of the 
WCR. 

An elementary well connected relation (EWCR) is a WCR in which the 
first constituent has a single element. The second constituent is then called 
the Image Set of the first constituent. 

A trivial well connected relation (TWCR) is a WCR in which both the 
constituents have a single element. 

Note 2.2. 1 

1. In this paper we do not consider partial binary relations. Also the 
mapping from set A to set B is always taken to be an onto 
mapping. 

2. A binary relation is R [A, B] while a WCR is W[A, Bt. We also use 
SR[B ] (or Sg[A]) and SR[AB ] which mean the following, 

SR[AB l = {(a, b) :  (a E A), (b E B), (aRb)} 

sRIBI = {(b): (b E B)and  (3a)(a E A)(aRb)}. 

Definition 2.2.3 

A relation R[A, B] can be expressed as; 

R[A, BI= ~ r Bi l z.., Ri~Ai, 
i = l  

=R,IA,,BllUR2[A2,B21U... WR,IA,,B,1 
= re(R) = Partition of R 

where Ri[Ai, Bi] N Rj[Aj, Bj] = 0 

fori j, 1  i,j<.nandA= A : a n d B  = 
i = 1  i = 1  
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Definition 2.2.4 

A partit ion of  a binary relation R [A, B] is a canonical partition if, 

where, 

1. 

2. 

3. 

R[A, I = 
i =1  

Wi[Ai;Bi] is a W C R  for 1 <~i<~n. 
A i is a set with a single element for 1 ~< i ~< n. 

A i --/: A j for i --/: j and 1 <~ i, j <~ n. 

Definition 2.2.5 

A partition of  a binary relation, R[A, B] is a prime parti t ion if, 

R[A,B]= ~ Wi[Ai'Bi] wheren~> 1 / ,  

i = 1  

=  p(R) 

A= C~ A,, B= C~ B, 
i = 1  i = 1  

and 

for 

AiChAj=O, B i N B j = O  

i-~j, l<~i, j<~n. 

Here each block of ;,rp(R) is a W C R  and R[A,B] is called a Prime 
Relation. If  n = 1 then R[A, B] is a W C R  and is trivially prime. 

Definition 2.2.6 

A functional relation, R[A, B], is a prime relation in which the pr ime 
partition has only elementary W C R ' s .  In such a case the prime partition is 
called a functional partition. 

Before we can interpret root dependencies graphically, we need a 
graphical representation of a relation. We present a few definitions (2.2.7, 
2.2.8, and 2.2.9) which lead to the S-diagram of an instance of a relation 
(Definition 2.2.10). We identify loops in the S-diagram which in general 
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correspond to the tuples of the particular instance of the relation. We define 
four distinct properties of an S-diagrams, namely, 

1. L-Tcondition 

2. C-condition 

3. Total C-condition 

4. Partial C-condition. 

Since an S-diagram is a graphical representation of an instance of a 
relation, the above four properties are of necessity on the extension of a 
relation. Also properties (2), (3), and (4) above involve the concept of a 
WCR. The various root dependencies can be interpreted in terms of these 
properties of the S-diagram and its loops. 

Definition 2.2.7 

In a relation, R[X, Yi, Y~,..., Yn], we call SR[X ] the root segment and 
SR[Y 11, S~ [ I12 ] .... the branch segments (see Note 3.1 below). Throughout this 
paper, we assume X, 111, Y2 ..... Y, to be mutually disjoint sets of attributes. 

Definition 2.2.8 

Any binary projection of R[X, Y1, II2 ..... Yn] on the root segment and 
one of the branch segments is called a root projection. For example, 
R [X, Y~], R IX, Y21 .... are root projections. 

Definition 2.2.9 

Any binary projection of R[X, Yl, I12, Y3 ..... Y,] on any two adjacent 
branch segments is called a branch projection. For example, R[Y~, Yzl, 
R[Y2, Y3] .... are branch projections (see Note 2.2. t below). 

Definition 2.2, 10 

Any instance of an n-ary relation R[X, Y1, Y2 ..... Y,,1, can be drawn 
graphically as follows; 

1. Take the root projections and the branch projections of the relation. 

2. Represent each projection as a mapping between the corresponding 
segments. 

3. Draw all these mappings together in a single diagram. 
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We call this diagram an S-diagram of  the relation. The order of an S- 
diagram is the number of segments in it. In Fig. 1 we show an S-diagram of  
order 4. 

R~X'YI'Y2'Y3 ] = Xl Yll Y21 Y31 

Xl YI2 Y21 Y32 

Xl YI2 Y21 Y31 

saEx] 

x 1 

SREY1] SREY2] 

Order = 4 

Fig. 1. S-Diagram (order 4). 
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Definition 2,2. 1 1 

A loop is any closed path in an S-diagram of R IX, Yl,  Yz ..... Yn] which 
starts at an element in the root segment and passes once through each of the 
branch segments, in the order specified, and then returns to the same element 
in the root segment. 

For any instance of R[X, Y1, I12 ..... II,], it is trivially true that every 
tuple is a loop in the S-diagram. In S-diagrams of order tess than three the 
converse of this is also true, i.e., every loop is a tuple. However, in S- 
diagrams of order three or more, every loop need not be a tuple. For 
example, in Fig. 1, (x~ YllY21) is a loop but there is no corresponding tuple 
in R [X, YI, Yz]. 

Definition 2,2.12 

The extension of a relation is said to satisfy the Loop-Tuple Condition 
(L-T condition) if every loop in its S-diagrams is also a tuple in the 
corresponding instances. 

We can redraw an S-diagram of a relation as follows; 

1. Draw the canonical partition of each root-projection. Now each 
etement in the root segment will have an image set in each of the 
branch segments. 

2. The image sets, in adjacent branch segments, of a particular 
element in the root segment are themselves connected by a binary 
subrelation called a branch relation. Hence a branch projection is 
made up of a set of branch relations. 

3. An S-diagram for order three is shown in Fig. 2. In general, the 
image sets in a branch segment need not be disjoint. The diagrams 
show them to be disjoint only for the sake of clarity. 

Definition 2.2. t 3  

In the extension of a relation, R[X, Y1, I72, .... Y,,], a branch projection 
satisfied the completeness condition (C-condition) if every branch relation in 
it is always a WCR. 

Definition 2.2.14 

The extension of a relation R[X, Y1, Yz ..... Iv, l, satisfies the total C- 
condition if every branch relation in every branch projection is always a 
WCR. It satisfies the partial C-condition if every branch relation in at least 
one of the branch projections is always a WCR. 
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s_Ex] N 

x 1 

x 2 

Canonical Partition of 

one root-projection 

Image Set 

SRLYI~ B r a n c h -  B r a n c h -  
Projection Relation 

Fig. 2. Components of S-Diagram (Order 3). 

We have so far defined four properties of an S-diagram. In general, the 
S-diagrams of a relation need not satisfy these properties. However, if some 
of the root dependencies hold in the relation then some of these properties 
are always satisfied. Again if some of these properties are always satisfied 
then some of the root dependencies hold in the relation. These facts are 
presented in the following theorem from. (2) 

Theorem 2.2.1 

In  a relation R the following statement are ture. The left-hand side of 
each statement is a dependency in the intension of R while the right-hand 
side is a condition on the extension of R. The number in the middle is the 
order of the S-diagrams under consideration. 

FD 2 (L-T condition) 

MVD ~ (L-Tcondition) and (C-condition) 

MUD ~a (L-Tcondition) 
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HD r (L-T condition) and (Total C-condition) 

MD ~n (L-T condition) and (Partial C-condition) 

COD ~n  (L-T condition). 

In this theorem the implication statements for FD, HD, MD, and COD 
are unidirectional while for MVD and MUD they are bidirectional. Stronger, 
bidirectional implication statements can be proved in the case of HD, MD, 
and COD if we consider a subset of all the loops in the S-diagrams of a 
relation. We call this subset of loops, modified loops. 

Definition 2.2.15 

In relation, R [X, YI, Yz ..... Y,], we define a modified loop as any path 
in an S-diagram which starts from an element x i in the root segment, passes 
in the order specified through those elements in the branch segments which 
are in the image sets of x i and then returns t xi. 

Definition 2.2. 16 

The extension of a relation, R[X, YI, Yz,..., Yn], satisfies the modified 
loop-tuple condition (ML-T condition) if every modified loop in its S- 
diagrams is also a tuple in the corresponding instances. 

Theorem 2.2,2 

In a relation R the following statements are true. The left-hand side of 
each statement is a dependency in the intension of R while the right-hand 
side is a condition on the extension of R. The number in the middle is the 
order of the S-diagrams under consideration. 

2 

FD ~ (ML-T condition) 

MVD ~ (ML-T condition) 

MUD 3 (ML-T condition) 

n 

HD r162 (ML- T condition) 

n 

MD .~ (ML-T condition) 

n 

COD r (ML-T condition) 

and (C-condition) 

and (Total C-condition) 

and (Partial C-condition) 
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3. N O R M A L I Z A T I O N  

Codd 10'11) proposed normalization for a relational data base for two 
main reasons: first it allowed the data base to be viewed as a collection of 
tables and second, it permitted the definition of a small class of primitive 
operators that were capable of manipulating relations to obtain all necessary 
logical connections among attributes. Further, normalization eliminated 
some undersirable effects, (1~ in the relational schema when operations 
were carried out on them. These were insertion anomaly, deletion anomaly, 
and consistency on update. Another way to view normalization is as follows. 
We have pointed out in section 2 of this paper that dependencies are a 
systematic way to model knowledge and ensure integrity in a data base. 
Unless we control the pattern of dependencies in the relations of a data base 
semantically undersirable effects, anomalous behaviour, occur in the data 
base. Normalization process can be thought of as a way of controlling this 
pattern of dependencies. Here we do not distinguish between a relational, 
network or hierarchical data base, although the normal forms presented in 
the literature and in this paper are all concerned with the relational model. 
Extending the normalization process to other models is an open problem. 

Another concept that is implicit in all the normal forms (so far there are 
l0 of them in the literature) is that of operations on the data base. Most 
normal forms (6 of them) are based on the operations, projection and natural 
join. One normal form is based on projection, natural join, and union; 
another is based on projection, natural join, union, and splitting; and a third 
is based on projection and theta-join. The 10 normal forms in the literature 
are, 1NF, 2NF, 2NF, BCNF, 4NF, PJ/NF, (3, 3)NF, PSJU/NF, DK/NF,  
and TP/BF. (9'10'11'16'14'32'15'3) Of these, INF controls only the format of the 
relations; 2NF, 3NF, and BCNF are based on FD and the operations 
projection, and natural join; 4NF is based on MVD and the operations 
projection, and natural join; PJ /NF is based on JD and the operations 
projection, and natural join; (3, 3)NF is based on FD and the operations 
projection, natural join and union; PSJU/NF is based on JD and the 
operations projection, splitting, natural join, and union; TP /NF is based on 
OMVD and the operations projection, and theta-join. PSJU/NF does not yet 
have a final definition. The author (14) has proposed a tentative definition and 
pointed out some problems with it. Finally D K / N F  is the most general 
statement of a normal form. 

3. A Normal Form Based on Codependency 

It is interesting to study the various normal forms from a theoretical 
point of view. However in practice, a data base designer is faced with the 
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task of madeling semantic situations and avoiding semantically undersirable 
side effects of operations. As we have pointed out in section 2 of this paper, 
the only dependencies worth considering from a semantic view point are the 
root dependencies. Hence it is our belief that the data base designer will be 
interested in only those normal forms that are based on root dependencies, 
namely, 1NF, 1NF, 3NF, BCNF, 4NF, (3, 3)NF, and TP/NF.  In this paper 
we consider a subset of these normal forms, namely, those based on root 
dependencies and the operations projections and natural join. The normal 
forms in this category are 1NF, 2NF, 3NF, BCNF, and 4NF. The 
definitions of these normal forms are given below. 

1. First Normal Form (1 NF): 
A relation is in 1 NF if every attribute in the relation is based 

on simple domains. 

2. Second Normal Form (2 NF): 
A relation is in 2NF,  if it is in 1 NF and each nonprime 

attribute is fully dependent upon every key. 

3. Third Normal Form (3 NF): 
A relation is in 3 NF if it is in 2 NF and nononprime attribute 

is transitively dependent on any key. 

4. Boyce-Codd Normal Form (BCNF): 
A relation is in BCNF if it is in 1 NF and, for every set of 

attributes C, if any attribute, not in C, is functionally dependent on 
C then each and every attribute is functionally dependent on C. 

5. Fourth Normal Form (4 NF): 
A relation is in 4 N F  if, whenever a nontrivial MVD, 

X ~  ~ Y, holds then so does the FD, X~A,  for every attribute A. 

The highest normal form, based on a root dependency and the 
operations projection and natural join, is the 4NF. It is based on MVD. The 
question that arises is, How do we control the pattern of other root depen- 
dencies, namely, MUD, HD, MD and COD? The dependencies, MUD, HD, 
MD, and COD could each have a distinct normal form associated with it. 
In (23'6) it has been pointed out that a new 5NF can be proposed for MUD or 
CD. The operations here would be projection and natural join. In this section 
we propose such a normal form: 5NF, which is based on COD. Since MUD, 
HD, and MD are special cases of COD, this normal form covers them as 
well. It should be pointed out that 5NF bridges the large gap between 4NF 
and PJ/NF. It is useful because it is the highest normal form for the root 
dependencies which are all semantically useful. 
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Definition 3. 1.1 

A relation, R [ Y 1 ,  I12 ..... Yn], is in 5NF when every nontrivial COD,  i.e., 
a C O D  with at least two branch segments, in R contains a key of  R in its 
root segment. 

Theorem 3. 1.1 

In a relation, R [ Y , ,  }12 ..... Y.] 

5NF ~ 4 N F  and 4 N F  ~ 5NF. 

Proof 

This follows easily when we consider that an MVD is a special case of 
a COD.  

If  4NF  ~ 5NF, then the instances of  a relation in 4NF must all be in 
5NF also. 

We give an example o a relation in 4NF  for which there exists an 
instance which is not in 5NF. 

R [ Y I ,  Y2, Y 3 Y 4 ] = a l  b 1 c 1 d 1 

a 2 b~ c I d 2 

a2 b2 e2 d2 

Here Y1 Y2 is a key. The MVD, I11 Y2 -* -* II3 [ Y4 holds because Y1 Y2 is a 
key and R is in 4NF.  But the COD,  I11 = Y2[ I131 I14 also holds and Y1 is 
not a key. So R is not in 5NF. 

4. G R A P H I C A L  N O R M A L  F O R M S  

So far all the normal forms we have considered have been defined on 
the intension of a relational data base. However in the theoretical study of  
data bases there is a trend to consider the extension of a relational data 
base. (22'27) The data base is thought of as a collection of  all possible 
instances of its relations. The set of possible instances of a relation is a 
subset of  the cartesian product of  the domains of its attributes. The 
constraints on a relation (dependencies) reduce the membership of  instances 
of a relation in the set of  valid instances. Normalizat ion is an important part 
of the theory of data bases. In this section we have taken normal forms, 
based on root dependencies and operations projection, and natural join, to 
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the extension of a data base. We have proposed 2GNF (Second Graphical 
Normal Form), 3GNF, GBCNF, 4GNF, and 5GNF on the sets of instances 
of a relation. We have also proved the equivalence of these normal forms on 
the extension to the conventional normal forms on the intension of a 
relational data base. We use the word graphical to emphasize the fact that 
these normal forms are based on the S-diagrams of a relation. This effort 
should prove useful in furthering the theoretical study of data bases. 

Consider a relation, R[Y~, I12 ..... Y,] and the set U of all possible 
instances of this relation. If there were no constraints, (for example, FD's, 
MVD's, and so on) then this set U would be all subsets of the cartesian 
product of the domains of values associated with the attributes, 
Y~, Y2 ..... Y~. However, in general we have some constraints and the set of 
valid instances of R [ Y~, I12 ..... Y, 1, we can derive instances of any projection 
of R[YI ,  I12,..., Y,]. Keeping this in mind, we can state the following 
definitions. These definitions are used for proving subsequent theorems. They 
are not necessary to the understanding of the statements of the theorems. 

Definition 4. I 

We define a set, S*, as the set of all possible S-diagrams of valid 
instances of a relation, R[Y1,  I12 ..... Yn], and its projections. 

We define a set, s*, as the set of all possible S-diagrams of valid 
instances of a relation, R [ Y  1 , I12,..., Y ,  ]. 

Definition 4.2 

We define a set, S*, of all possible S-diagrams of order i of valid 
instances of a relation, R [ Y  1, I12,..., Yn], and its projections. S* includes the 
following: 

1. S-diagrams obtained by taking all possible i mutually disjoint 
attribute sets from the attributes of R and its projections. 

2. S-diagrams obtained by taking all permutations of the i mutually 
disjoint attribute sets. 

Definition 4.3 

We define a set, s*, of all possible S-diagrams of order i of valid 
instances of relation, R[Y~, I12 ..... Yn]. The set, s*, includes the following: 

1. S-diagrams obtained by taking all possible i mutually disjoint 
attribute sets from the attributes of R. 

828/~o/4-3 
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2. S-diagrams obtained by taking all permutations of the i mutually 
disjoint attribute sets. 

From the above definitions, the following are obvious: 

1. S* = {,,)n= 1 S* for a relation, R [ Y  l, II2 ..... ii,]. 

2. s* = {,-)7=1 s* for relation, R[YI, Y2 ..... Y,]. 

Definition 4.4 

We define a set, S*[P, N], for a relation, R[Y1, Y2 ..... I1,] as a subset of 
S*, which has only those S-diagrams of order two in which the root segment 
has only prime attributes and the branch segment has only nonprime 
attributes of R. Similarly, S*[N,P]  and S*[N,N]  have the obvious 
meanings. 

Definition 4.5 

We define a set K =  {K1,K 2 ..... Kt} over a relation R[Y1,  Y2, ]13 ..... Y,] 
as the set of all keys. 

Definition 4.6 

A relation, R[Y 1 , }72, I13 ..... I1,] is in 2GNF (Second Graphical Normal 
Form) if it is in 1NF and an element of S*[P ,N]  without a functional 
partition exists if and only if the root segment does not contain a key of R. 

Definition 4.7 

A relation, R[YI ,  Y2,..., I1,1, is in 3GNF if it is in 2GNF and elements 
of S*[N, N] without a functional partition always exist for every possible 
root segment, branch segment permutation. 

Definition 4.8 

A relation, R [ Y  1, I12,..., Y,], is in GBCNF if it is in 1NF and an 
element of S* without a functional partition exists if and only if the root 
segment does not contain a key of R. 

Definition 4.9 

A relation, R[Y1, Y2,'", Ynl, is in 4GNF when an element of s*, not 
satisfying the L-T  condition and C-condition, exists if and only if the root 
segment does not contain a key of R. 
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Definition 4.10 

A relation, R[Y~, Y2 ..... Y,], is in 5GNF when an element of s*, 
3 ~< p ~< n, not satisfying the ML-T condition exists if and only if the root 
segment does not contain a key of R. 

We now propose to prove the equivalence of graphical normal forms on 
the extension of a relation to the conventional normal forms on the intension 
of a relation. 

Theorem 4. 1 

In a relation, R[Y l, Y2 ..... Y,] 

2GNF ~=~ 2NF 

Proof 

Let, R IY , ,  II2 ..... I1.1 be in 2GNF. 

Assume it is not in 2NF. 

i.e., there is a nonprime attribute of R which is partially dependent on some 
key. 

Let this attribute be, Y~. and let the particular key be, k t. 

�9 "" kt ~ Yt for k I c K t 

and k l is not a key. 
Now consider the projection, R[k~, Yi]. All S-diagrams of its instances 

belong to S* [P, N]  and have functional partitions because of Theorem 2.2.3. 
Here the root segment is k l which is not a key. Hence R[Y1, Y2 ..... II,] is not 
in 2GNF. This is a contradiction. 

4 =  

Let, R[Y1, Y2 ..... I1,] be in 2NF. 

Assume it is not in 2GNF. 

i.e., there is a projection, R[A,B] whose instances have S-diagrams with 
functional partitions while the root segment, A contains only prime attributes 
but not a key. 

Hence the FD, 

A -~ B holds in R [A, B ]. 
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i.e., B is partially dependent on some key which contains A. Hence, 
R[Y1, Y2 ..... Yn] is not in 2NF. This is a contradiction. 

Theorem 4.2 

In a relation, R[Y1, Y2,'", Yn], 
/ 

3GNF <~ 3NF. 

Proof 

Let R[Y, ,  Y2,..., Ynl be in 3GNF. 

Assume it is not in 3NF. 

i.e., there is a nonprime attribute, Yi, of R which is transitively dependent on 
some key, K~ through another attribute, Yj. 

K t ~  Yi' Y~-~ Yi, Kt-* Yi, Y j ~  Kt, Yi /*Kt  �9 

Now, Yj is not a key ('." Yj-~ Kt). 

Consider the projection R [Yj, Yi]. All S-diagrams of its instances have 
functional partitions ('." Yj, ~Yi). Now, Yj cannot be prime because then 
R[Y1, Y2 ..... Y,] is not in 2NF. ('." Yi would be partially dependent on a 
key). Hence, the S-diagrams of R[Yj, Yi] belong to S*[N,N].  Hence, 
R[Y1, Y2 ..... T,] is not in 3GNF. This is a contradiction. 

< : =  

Let R[Y 1, Y2,..., IT,] be in 3NF. 

Assume it is not in 3GNF. 

i.e., there is a projection, R[A,B] whose instances have S-diagrams with 
functional partitions and A and B are nonprime. Hence, A -* B. Now, B is 
not a key because A is not a key and A-*B.  Let, Kt be a key of R. So in 
nlr,, I12,..., r,}.  

Kt -* A , A - , B ,  KI -* B, A -~ K t, B -~ K I. 

Thus B is transitively dependent on K I. Hence, R[Y1, Y2 ..... Y,] is not 
in 3NF. This is a contradiction. 
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Theorem 4.3 

In a relation, R [ Y1, Y2 ..... It,]. 

G B C N F  ~ BCNF.  

Proof 

:=~ 

Let R[Y1, Y2 ..... Y,] be in GBCNF.  

Assume it is not in BCNF.  

i.e., there exists an FD, A --, B in R where A is not a key of  R. Consider the 
projection, R[A,B 1. All S-diagrams of its instances will have functional 
partitions, and will belong to S*. Hence R is not in G B C N F .  This is a con- 
tradiction. 

-<== 

Let R[YI, Y2 ..... I1,] be in BCNF.  

Assume it is not in G B C N F .  

i.e., there is a projection, R[A,B] whose instances have S-diagrams with 
functional partitions and its root segment does not contain a key of R. 
Hence, A -* B and A is not a key. Hence R is not in BCNF.  This is a con- 
tradiction. 

Theorem 4.4 

In a relation, R I Y1, Y2 ..... Yn],  

4 G N F  <=> 4NF.  

Proof 

Let RIY1, Yz ..... Y,] be in 4GNF.  

Assume it is not in 4NF.  

i.e., there exists an MVD, A ~ --, B I C in R such that A does not contain a 
key of  R and both B and C are nonnull (i.e., the MVD is not trivial). 
Consider the S-diagrams of  R [A, B, C]. From Theorem 2.2.1, these satisfy 
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the L-T  condition and the C-condition and, by definition of s*, belong to s*. 
Hence, R is not in 4GNF.  This is a contradiction. 

<;::: 

Let R[Y, ,  Yz ..... I1,1 be in 4NF. 

Assume, it is not in 4GNF. 

i.e., there is a partitioning of attributes of R, R[A,B,  C], whose instances 
have S-diagrams which satisfy the L-T condition and the C-condition, and 
its root segment does not contain a key. Let the root segment be A and the 
branch segments B and C. From Theorem 2.2.1, A ~ - - ,BIC holds in R. 
Hence R is not in 4NF. This is a contradiction. 

Theorem 4.5 

In a relation, R [ Y 1, Y2 ..... I1.1, 

Proof 
=:=> 

5GNF r 5NF. 

Let R[Y~, I"2 ..... I1,1 be in 5GNF. 

Assume it is not in 5NF. 

i.e., a nontrivial COD, A - B~ [B2[ [ np, exists in R and the root segment, A, 
does not contain a key of R. From Theorem 2.2.2, the S-diagrams of 
R [A, B~ ..... B;] satisfy the M L - T  condition and belong to s*. Hence R is not 
in 5GNF. This is a contradiction. 

. r  

Let RIY~, I12 ..... I1,1 be in 5NF. 

Assume it is not in 5GNF. 

i.e., there is a partitioning of attributes of R, R[A, B1,B2,...,Bp], whose 
instances have S-diagrams which satisfy the ML-T  condition and the root 
segment, A, does not contain a key of R. From Theorem 2.2.2, the nontrivial 
COD, A =-- B~ I Bz [ "'" [Bp holds in R. Hence R is not in 5NF. This is a con- 
tradiction. 



Graphical Normal Forms Based on Root Dependencies in Data Base Systems 257 

5. C O N C L U D I N G  R E M A R K S  

Dependencies model semantic situations in data. The various depen- 
dencies in the literature are, Functional Dependency, Multivalued Depen- 
dency, Mutual Dependency, Hierarchical Dependency, Mixed Dependency, 
Codependency, Join Dependency, Algebraic Dependency, Transitive Depen- 
dency, Subset Dependency, Template Dependency, General Dependency, 
Generalized Mutual Dependency Boolean Dependency, and Implication 
Dependency. Of these, the first six form the class of root dependencies. It is 
our belief that a data base designer need consider only the root dependencies 
as they have clean cut semantic interpretations. We have shown that root 
dependencies have a very strong parallel in a family of hypergraphs, called, 
S-diagrams. 

Normal forms are proposed to control the pattern of dependencies 
during operations on a data base. The various normal forms in the literature 
are 1NF, 2NF, 3NF, BCNF, 4NF, (3, 3)NF, TP/NF,  PJ/NF,  PSJU/NF,  
and DK/NF .  Of these only the first seven are based on root dependencies 
and should prove useful to a data base designer. The 1NF controls only the 
format of the relations; the next four normal forms all involve the operations 
projection and natural join, and form a hierarchy. The highest normal form 
in this hierarchy is the 4NF which controls the pattern of multivalued depen- 
dencies. We have defined the 5NF which controls the pattern of codepen- 
dencies, the highest known root dependency. The hierarchy of 2NF, 3NF, 
BCNF, 4NF, and 5NF has been proved to be equivalent to the graphical 
normal forms 2GNF, 3GNF, GBCNF,  4GNF and 5GNF, all based on S- 
diagrams. 
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