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Millimeter ~r absorption measurements are usually com- 
plicated by scattering from the sample and by standing 
waves resulting from internal reflections. These pro- 
blems can be largely overcome by using an untuned cavi- 
ty resonator. The dielectric properties of the sample 
are determined from a measurement of the change in cavi- 
ty Q produced by introduction of the sample into the ca- 
vity. For lamellar samples, Maxwell's equations can be 
used to find an explicit relationship between the change 
in cavity Q and the samples complex refractive index. 
Several measuring techniques based on the use of lamel- 
lar samples are presented, and their characteristics are 
illustrated both analytically and by laboratory measure- 
ments at 70 GHz on PTFE, polyethylene and plexiglas. 
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I. Introduction 

Untuned cavity resonators have long been used for the 
measurement of microwave absorption spectra of gaseous 
samples(l,2). Their utility as long pathlength, high 
throughput absorption cells for use in far infrared spec- 
troscopy has also been demonstrated(3). Recently it has 
been shown that such cavities can also be employed to 
measure small dielectric losses in solid materials(4,5). 
This technique can be used to circumvent many difficul- 
ties usu~lly associated with surface reflections, stan- 
ding waves, scattering and diffraction when measurements 
are made on such samples in the 30 to i000 GHz region. 

When monochromatic radiation is fed into an appro- 
priately designed, high-Q, untuned cavity a very large 
number of cavity modes is excited and the resulting 
field is highly homogeneous and isotropic. Measurement 
of the decrease in Q resulting from introduction of a 
sample into the cavity is a very sensitive method of de- 
termining the dielectric losses in the sample. Since 
any radiation scattered or reflected by the sample is 
returned to the cavity field the measured loss in enti- 
rely due to absorption. However, deduction of the ab- 
sorption coefficient ~ from such a measurement requires 
an accurate estimate of the effective absorption path 
inside the sample. This obviously depends, in principle, 
both on the sample geometry and on its refractive index 
n. The latter determines both the direction of propaga- 
tion inside the sample and the nature of the reflections 
at its surfaces. 

Llewellyn-Jones et al.(5) have used an untuned cavity 
resonator to measure the absorption coefficient of seve- 
ral low loss polymeric materials at 156 GHz. Their re- 
sults demonstrated that for bulk samples with dimensions 
of the order of ten wavelengths or more the absorption 
coefficients were only weakly dependent on sample geome- 
try. They established an empirical factor which was 
used to correct for the effect of reflection at the sam- 
ple boundaries. The dependence of this correction fac- 
tor on the sample's refractive index was weak enough 
under their experimental conditions so that accurate 
knowledge of n was not required in order to determine 
with acceptable accuracy. To pursue further the inves- 
tigation of the ultimate accuracy and the conditions of 
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applicability of untuned cavity measurements, we have 
studied one particular sa~ple geometry in greater theo- 
reticaland experimental detail. By using parallel-faced 
lamellar samples it is possible to employ an analytic so- 
lution to the boundary value problem at the sample surfa- 
ces to relate the sample's complex refractive index to 
the measured change in cavity Q. The effect of n on the 
accuracy with which a can be determined can then be eva- 
luated in a straightforward way. Assessment of the rela- 
tive importance of other experimental parameters is also 
facilitated. 

This work constitutes part of a detailed analysis of 
the performance of a large untuned cavity resonator which 
has been constructed in our laboratory for use in the 40 
to 170 GHz region. Among the applications planned for 
this cavity is the measurement of biological samples, and 
it has already been used to make preliminary measurements 
of the temperature dependence of the absorption at 53 GHz 

in green algae, yeast and E. CZoli near the freezing point 

of water(61. 

II. Theory 

In this section elements of the basic theory of the 
untuned microwave resonator, which was developed origi- 
nally by Lamb(l), will be reviewed. The scheme for cal- 
culating the sample absorption coefficient from the mea- 
sured change in Q will be described, and refinements of 
the basic procedure based on the use of a calibration 
sample and on the intercomparison of multiple samples 
will be presented. 

A. Lamb's hole method 

It is convenient to associate a quality factor Q with 
each of the principal cavity loss mechanisms. The Q-fac- 
tor is defined generically by the following relationship: 

Q-I = rate of loss of ~hotons f~pm cavity (i) 
. number of photons stored in cavity 

Here ~ is the angular frequency of the radiation in 
the cavity. The Q-factor associated with absorption in 
the ss~ple, which it will be convenient to denote by 
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QS' can be evaluated by comparing the absorption loss to 
the loss of photons through a hole of kno~-m size that can 
be opened in the cavity wall. The Q-factor associated 
with the hole will be denoted by 0 H. It is also useful 
to associate a factor QR with the remaining resonator los- 
ses such as absorption in the walls and losses through th~ 
aperture that is used to feed radiation into the cavity. 

In practice the radiation field inside the cavity is 
sampled by one or more detectors which produce signals 
proportional to the photon density. It is therefore con- 
venient to employ rate equations formulated explicitly in 
terms of the number of photons in the cavity. The latter 
is constructed with dimensions of the order of i00 times 
the wavelengths atwhich measurements are to be made. As 
a consequence the cavity modes are very closely spaced in 
frequency, and when radiation from a narrow-band source 
is fed into the cavity many modes are excited at essenti- 
ally equal rates. In addition, the whole ensemble of ca- 
vity modes can be continuously shifted back and forth in 
space by use of a mechanical mode stirrer whose period is 
small compared to the integration time of the detector 
system. Under these conditions the radiation field is 
highly homogeneous and isotropic throughout the cavity. 
The photon density, averaged over the detector integra- 
tion time and all of the excited modes, therefore has 
the constant value N/9, where N is the total number of 
photons and ~ is the cavity volume. 

If the cavity contains an absorbing sample and the 
calibration hole is open, a source feeding radiation in- 
to the cavity at an average rate M will establish a sta- 
tionary photon population N which satisfies the following 
equation. 

dtd--NN : 0 : M - ~RN - ~H N - ~S N (2) 

Here the loss coefficients ~R, ~H and ~S correspond 
respectively to photon losses inherent in the cavity 
structure, losses through the calibration hole, and ab- 
sorption in the sample. Each of the loss rates, ~R N, 
~H N and ZS N, can also be expressed in the form ZN = ~N/Q. 
The addition of the individual loss rates in eq. 2 to ob- 
tain the total cavity loss rate is then seen to corres- 
pond to addition of the reciprocals of the corresponding 
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Q-factors and produces the reciprocal of the total cavi- 
ty Q. 

In order to determine ZS' measurements corresponding 
to the following set of conditions are made while the 
source power is held constant. 

i) calibration hole closed, no sample 

M : ~R~o (3) 

ii) calibration hole open, no sample 

M : ZRNH + ZHNH (4) 

iii) calibration hole closed, sample in cavity 

M : ~N s + ~SNS (5) 

If the linear range of the detection system is not 
exceeded, the signal measured at each step of the proce- 
dure is proportional to the corresponding value of N. 
The necessity of evaluating the detector responsivity 
can be avoided by employing only ratios of detector si- 
gnals measured under the various cavity conditions. Let 
R H : NH/N 0 and R S : Ns/No.R H and R S are then equaYto the 
ratios of the corresponding detector signals~ and simul- 
taneous solution of eqs. 3-5 yields the following expres- 
sions for ~S and ~R" 

R H I - R S 

~S : R~ ( 1 - R ) ~H" (6) 

R H 
~R ~ ZH : (i - R H) 

(7) 

By considering the cavity radiation field as a pho- 
ton gas and calculating the rate at which photons esca- 
pe through the hole, Lamb (i) derives an expression for 
QH' which is equivalent to 

~H = ~ " (8) 

Here c is the speed of light and A H is the area of 
the calibration hole. Diffraction effects, which are ne- 
glected in Lamb's derivation, may reduce the efflux of 
photons through the hole. The measurements to be pre- 
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sented in Section III indicate that hole edge effects 
can be quite large. 

B. Calc_ulation of Absorption Coefficient 

To calculate the number of photons per second which 
strike the hole Lamb reckons the number of photons ap- 
proaching the hole at a given incidence angle @, and this 
quantity is then integrated over a complete hemisphere. 
To about the same level of approximation, the number of 
photons which strike a thin flat sample at a given inci- 
dence angle can be obtained by simply multiplying Lamb's 
corresponding expression by two; i.e., whereas the hole 
is single sided as seen from the cavity, photons strike 
the sample with equal probability from both sides. When 
diffraction is neglected the transmission of photons 
through the hole displays no angular dependence other 
than that arising from the varying aspect angle it pre- 
sents to photons arriving at various angles. On the 
other hand, even neglecting edge effects, the absorbing 
sample has angle-dependent reflection and transmission 
coefficients. These coefficients are also functions of 
the wavelength ~, the sample thickness d, and the die- 
lectric constants of the sample. 

It is convenient to express the dielectric properties 
of the sample in terms of the complex index of refrac- 

N 

tion n = n + ik. The real part n is just the refractive 
index of Shell's law, and the absorption coefficient in 
Lambert's law is related to k by ~ = 2~k/c. The sample 
reflection coefficient, which specifies the fraction of 
the radiation incident at angle @ that is reflected from 
the sample back into the cavity field, will be denoted 
by R = R(@,n,k,d,X). The transmission coefficient, which 
is defined in analogous fashion, will be denoted by 
T = T(@,n,k,d,Xl. These quantities are indicated in 
Figure i. Both coefficients are also polarization depen- 
dent, and polarizations normal and parallel to the plane 
of incidence will be denoted respectively by subscripts 

and ~. The fraction A of the photons striking the 
sample that is absorbed is given in terms of R and T by 
the energy conservation relationship, R + T + A = I. Sin- 
ce the radiation field in the cavity is unpolarized, the 
total absorption coefficient for the lamellar sample is 
obtaJned by averaging over the two perpendicular polari- 
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Fig. i. Sample geometry. 

zation components. Incorporation of these considerations 
into Lamb's derivation yields 

AsCNs J 
~sNs - 

o 

AT(@,n ,k ,d , t  ) sin@cos@d@ (9) 

Here A T = (A a + A )/2, and A S is the area of each side of 
the sample. 

Finally, combination of eqs. 6,8 and 9 yields 

~/2 AH RH (~) 
I(n,~,d,~) = / ~(|174174 : ~ S ~ S  _ 

o 
(io) 

Hadley and Dennison(7) have solved the Maxwell-equa- 
tion boundary-value problem for the case of a parallel- 
sided sheet of absorbing material sandwiched between two 
infinite, lossless dielectrics. For the present case 
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where the space on both sides of the lamella is occupied 
by air, their formulae for R and T can be reduced to the 
following form. 

For radiation polarized normal to the plane of inci- 
dence: 

R : (A coshy - B cosa)/b 

: 8p~ /po2D TO 

A : I-R -T 

D : C coshy + D sinhy + E cos~ + S sins 

y : 4~qsd/l ( l l )  

m : 4wPsd/l 

_!1 {[(n2_k2_sin2@)2 
qs~ : /2 

1 {[(n2_k2_sin%)2 Ps~ : r 

2 2 2 
Psd : qsd + Psd 

z/2 
r 2 ] 

1/2 
+ 4n2k 2 ] 

1/2 
_ (n2_k2_sin2@) } 

l / 2  
+ (n2-k2-sin20)} 

Po : n cos@ 
O 

i [ (  2 2) 2 4 2 2 ] /  4 
: Ps~ + Po - PsdPo Po 

B [(  2 2 2 ~ /po 4 
= Ps~ - Po ) + 4qs~p ] 

C [( 2 2 2 4 2 2,/po4 
= Psd + Po ) + PsdPo J 

( 2 2 
D : 4Pso Pso + Po)/Po 3 

E _E(2 2 2 2 4 
: Oso - Po ) - 4qsoPo ]/Po 

: - 3 
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The reflection and transmission coefficients for pa- 
rallel polarization have the same form as R~ and T~, and 
can be obtained as follows. Leave y and ~ unchanged. In 
the formula for TC and in the formulae for the constants 
A through F: qs~ is replaced by 

qs~ = [qs~(n2-k2)-2Ps~ nk] / (n2+k2)2; Ps~ is replaced by 

2 is repla- Psw = Ps~(n2-k2)+2qs~ nk / (~n2+k2~2; and p s~ 

ced by 

2 
2 2 

Ps~ = qs~ + Psi' 

Some sample curves calculated using these formulae 
are shown in Fig. 2. The integral on the right side of 
eq. 9 has been evaluated numerically for the same values 
on n, k and ~, and is shown as a function of d in 

Fig. 3. In spite of the angle averaging, interference 
effects are clearly evident in Fig. 3. Note also that 
interference effects can be seen in the reflection and 
transmission factors of Fig. 2. 

. 0  I ! I i ! r 

0.8 

06 

< 0.~ 

Ro 
0.2 

i ~ _ _  - -  �9 

0 20 40 60 80 
e [OEG] 

Fig. 2. Reflection, transmission and absorption factors 

for a lamellar sample with n o = i, n = 1.5, 

k = 0.0005 cm -I, d = i cm and v = 70 GHz. 
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I , I , I , I , I i I , I i 

0,6 0.8 1.0 1.2 1.4 1.6 1.8 

d [cm]  
20 

The absorption integral of eq. 9 plotted as a 
function of sample thickness for a lamellar sam- 
ple with n o = i~ n = 1.5, k = 0.0005 cm -I and 
v = 70 GHz. 

If the detector signal ratios specified in eq. i0 are 
measured for given I and d, them n and k remain the only 
unknown quantities. Simple numerical techniques can be 
employed to evaluate the integral and determine the locus 
of points in n, k space which satisfy this equation, k 
can then be determined if n is known. If n is only appro- 
ximately known, the accuracy of the corresponding estima- 
tion of k is determined by the structure of the locus in 
n, k space. 

C. Use of a calibration sample 

As an alternative to the hole method, an absorbing 
sample with known dielectric properties can be used to 
calibrate the measurements. The theoretical loss rate 
associated with a lamellar calibration sample can be cal- 
culated from eq. 9. It is convenient to denote this loss 
rate by ~C and also to use the subscript C to identify 
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all other quantities associated with the calibration sam- 
ple. For example, the experimental loss rates for the 
unknown sample and for the resonator, can be obtained 

from eqs. 6 and 7 by replacing Z H and R H by Z C and R C 
respectively. 

D. Cpmparison of multiple samples 

In some circumstances it is unnecessary to use an 
idependently determined loss for calibration purposes. 
The dielectric properties of an unknown sample can be 
obtained directly from comparison of two or more pieces 
of the sample material identical in every respect except 
for their thickness. If two such samples are identified 
by subscripts i and 2 and the corresponding detector si- 
gnal ratios with respect to the empty cavity are called 
RSI and RS2, then application of eqs. 3,5 and i0 to each 
of the samples in turn leads to the following equation. 

ll(n,k,dl ,X) RS2 I-RSI 

) : RSl 
(12) 

Here again, by numerical evaluation of the integrals, 
I I and 12, the locus of points in n, k space which are 
consistent with the measured detector ratios can be 
found. The values of ratios corresponding to additional 
sample thicknesses can also be determined experimentally, 
and each of them defines a curve in n, k space. For 
strongly absorbing samples the intersection of three or 
more such curves can be used to determine n and k simul- 
taneously(8). When absorption in the sample is very 
weak the curves cross one another at too shallow an angle 
for this procedure to be used. However, this same cir- 
cumstance makes it possible to obtain a good estimate of 
k when n is only approximately known. 

A second class of intersample comparisons can also 
be useful; i.e., the comparison of lamellar samples of 
the same thickness but different surface area. Let the 
area of the larger sample, denoted as sample 3, be ~ ti- 
mes as great as that of the first, so that ~$3 = BZSI" 
Denote the ratio of the detector signal measured with 
the larger sample to that measured with the smaller 
sample by R31. Application of eq. 5 to both samples 
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then leads directly to the following result 

BR31-1 ~R 

I-R31 ~SI 
(13) 

Because of this relationship, which we have also veri- 
fied experimentally, the quantity on the left remains cons- 
tant for comparisons between sample i and all other sam- 
ples of the same thickness, regardless of their surface 
area. This relationship can also be derived without pos- 
tulating explicitly that ~$3 = ~SI' but the derivation is 
too long to be reproduced here. The usefulness of eq. 13 
is related to the way in which errors in the measurement 
of the detector ratios are propagated when eq. 12 is used 
to calculate 11/12 from experimental measurements. 

E. Error analysis 

Consider the two measurement sequences symbolized in 
Fig. 4. In the first sequence samples i and 2, which have 

S e q u e n c e  | " c 1 I I 

Sequence 2 " l , 1 I 

I. 2. 

I m 

3 

Fig. 4. Measurement sequences used to illustrate the 
added accuracy which can be achieved by comparing 
samples of different surface area. 
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the same sample area but different thickness are compared. 
This is the situation represented by eq. 12, and it will 
be convenient to denote the ratio 11/I 2 determined in this 

RS2 I-RsI 
W ...... ra- way by RS I (~)~ Recall that the detector 

tios RSI and RS2 result from comparison of the respective 
samples with the empty cavity. 

In measurement sequence 2, three samples are compared 
to one another in pairs. Samples i and 2 bear the same 
relationship to one another as before. Sample 3 has the 
same thickness as sample i but a surface area ~ times as 
large. Let the ratio of the detector signal measured 
with sample 2 in the cavity to that measured with sample 
I in the cavity be denoted by R21. Similarly R31 is the 
detector signal ratio for samples 3 and i. By applying 
eq. 5 to each of the samples in succession and then invo- 
king eq. 13 the ratio 11/I 2 can also be expressed as fol- 
lows. 

I l ~21(1-R31) 

: <%i-l)(1-R21) 

If, it is now assumed that the sample thickness and B 
are perfectly known and also that the percentage error in 
the measurement of each of the detector ratios has the sa- 
me value, s then a straight-forward error propagation 
calculation shows that the percentage error in W can be 
written as follows for each of the measurement sequences. 
In both cases 

AE : (G2+H2) 1/2 kE (15) 
w R 

For sequence l, 

G l+V l+V~ (16) 
: V ~ H - VW 

For sequence 2, G is unchanged but 

: (W-l) (I+~W) 
VW(~-l) (17) 
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The factor V in eqs. 16 and 17 is the ratio of the ra- 
te of loss in sample 2 to that inherent in the resonator~ 

i.e., V = ZS2/~R. Note also that W = ~ i/~$2, and that 
�9 S . 

~S3/~B = 6VW. In order to avold undue perturbatlon of 
the field in the cavity we have assumed that neither 
~S2/~R nor ~S3/~R should exceed unity. Under these condi- 
tions G has a minimum value of 2, but achieving this va- 
lue with a low-loss dielectric sample requires that the 
resonator losses be extremely small. W and hence H, can 
vary over a considerable range depending on the sample 
parameters and the comparison sequence that is employed; 
i.e., hole method, standard sample, multiple sample, etc.. 
Some representative plots which show the potential advan- 
tage of the three-sample sequence corresponding to eq. 14 
are shown in Fig. 5. Note that a large value of ~ can 
usually be achieved experimentally only for relatively 
strong absorbers. For a weak absorber, the initial sam- 
ple diameter must be relatively large in order to produce 
a measurable signal, and a large increase in sample dia- 
meter is then precluded by the finite dimensions of the 
cavity resonator. 

2 5 l . _ _ _ _ '  . . . .  �9 . . . .  '_ . . . .  L _ ~ _ _ '  . . . . .  ' _ - _ _ _ _ - ? Z T _ _ . , ' _ L _  _ 

[ 

2 0 J  . . . . . . . . . . . . . . . . . .  -6 . . . . . . . . . . . . . . . . . . .  
! 

: c 
10 . . . . . .  ~ . . . . . . . . . . . . . . . . . .  

5 

Q 
2 I I 1 I l i i I 

10 2 0  

Fig. 5. Error reduction resulting from use of sample se- 
quence 2. Dashed lines correspond to sequence i 
and solid lines to sequence 2. a) V = I, W = ~i; 
b) V = O.5, W = 0.i; c) V = 0.1, W = O.5. 
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A. Description 

The overal experimental system is shown schematical- 
ly in Fig. 6. The untuned cavity resonator is a cylin- 
der 40 cm in diameter and 80 cm long. it has highly re- 
flecting gold-plated walls with textured inner surfaces, 
and a mode stirrer, which rotates at about 15 Hz. The 
mm-wave power is radiated from a horn inside the resona- 
tor, which is directed at an off-center point on the mode 
stirrer. The input power is measured by crystal detector 
i. A small fraction of the field intensity inside the 
resonator is coupled out with a horn and measured by a 
second crystal detector 2. Both detector signals are 
amplified and averaged with a time constant, which is 
long compared to the period of the mode stirrer, in order 
to integrate over the modes of the resonator. To correct 
for power variations in the source, the signal of detec- 
tor 2 is divided by that of detector i. Backward-wave 
oscillators are used as mm-wave sources (Siemens RWO 60, 
RW0 80, RWO II0). An extra loop is employed to control 
the output-level and frequency. 

Brnadband Multimode Resonator 

Cryostat / Detector 2 

Direct. Cot 
20 3solator / I~ 

/ Attenuator / ~ ;s 

levoling loop I / ~  t" [  

Cavity Frequency-metor 

pier 
dB) 
lator 

l 

�9 - - -Lt~itol  Storage OscJlloscope~--- 
I 

L, c ..,or I 

Horn 

Fig. 6. Schematic diagram of the untuned resonator set- 
up. 
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The degree of isotropy and homogeneity of the radia- 
tion inside the resonator has been measured in two diffe- 
rent ways: i) Changing the polarization of the out-cou- 
pling horn and also moving it to different positions does 
not alter the time-averaged, normalized detector signal 
by more than • ii) Changing the position of the 
sample inside the resonator changes the detector signal 
by less than • The same variability is observed 
when the two detectors are compared directly to one ano- 
ther. Thus the measurement uncertainties associated with 
cavity imperfections and incomplete mode stirring are com- 
parable to the detector errors, and the overal reproduc- 
tibility of the measurements is about • 

The resonator has 60 mm diameter openings at six dif- 
ferent positions. Each of them has a flange 30 mm long 
which is capped at the outermost extremity. One of these 
is used as the calibration hole when Lamb's procedure is 
employed. 

B. Measurements 

Measurements were made with disc-shaped samples of 
PTFE, polyethylene and plexiglas. In order to improve 
the approximation to the lamellar configuration used in 
the calculatlons, the edges of the discs were covered 
with aluminium foil. For each material, measurements 
were made by the hole method, by the use of a standard 
calibration sample, and by intercomparison of samples 
of different thickness. 

The standard calibration sample was a fused silica 
disc (Schott Suprasll I), 80 mm in diameter and 4.98 mm 
in thickness. For this sample n = 1.96 • 0.01 and 
k = (8.12 • 0.01) X 10 -4 cm -I at 56.7 GHz. Measurements 
with this sample yield a value of ~ 2 X 105 for the Q of 
our untuned resonator cavity. 

Since more than one sample thickness was available 
for each material, the hole and standard sample methods 
were repeated for each thickness. Note that eqs. 15 and 
16 can be usedto estimate the error associated with the- 
se methods simply by replacing ZS2 by either Z H or ZC in 
the definitions of V and W. This procedure establishes 
confidence limits on the experimental determination of 
the right hand side of either eq. i0 or eq. 12. Numeri- 
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cal evaluation of the appropriate integral(s) then defi- 
nes a region in n, k space for each value of the sample 
thickness d, and the experimental results for the samples 
of different thickness are self-consistent only for the 
n, k domain where these regions overlap. 

The results for plexiglas are shown in Fig. 7. Note 
that in this case the standard sample method yields 
an absorption coefficient that is only very weakly depen- 
dent on n, whereas the two-sample comparisons yield lit- 
tle information on k but greatly restrict the range of 
possible n values. The two sets of date are mutually 
consistent only for the narrow range of n and k values 
that is shaded black. The hole method measurements show 
an intermediate sensitivity to n and k, but produce k 
values which are inconsistent with the results of the 
other two methods. We attribute this discrepancy to the 
complex structure of the calibration hole, which apparen- 
tly presents an effective area for photon escape which is 
only ~ 40% of its geometric area. 

k(cm") 

O.OIC 

0.005 

I I | I I I I ~ .  

0 1.50 1.60 n 
I I I I I I 

Fig. 7. Regions in n, k space determined by applying 
eaeh of the three measuring techniques to plexi- 
glas at 70 GHz, a) comparison of multiple sam- 
ples of plexiglas of different thickness; b) 
comparison with a standard Suprasil sample; 
e) hole method. 
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For the weaker absorbers, PTFE and polyethylene~ the 
comparison of samples of different thickness served only 
to fix an upper limit on k. The standard sample method 
produced a much more tightly defined value, which once 
again is very insensitive to n. The results are given in 
Table I. 

TABLE I. Experimental results for PTFE, polyethylene and 
plexiglas at 70 GHz. 

Sample 

PTFE 

Polyethylene 

Plexiglas 

Area 

[cm 2 ] 

153.56 

153.56 

78.16 

Thickness 

[mm] 

1.82 

3.75 
7.92 

1.99 
3.94 
7.99 

1.75 
3.69 
7.67 

1.38" 

1.46" 

1.56 

k 

(10-4cm -I) 

2.1 _+ 0.2 

1.9 -+ 0.2 

32 -+ 3 

* Values extrapolated from far-infrared measurements 
(i0,11). 
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IV. Conclusion 

We have demonstrated several techniques for measuring 
the imaginary part of the complex index of refraction of' 
low-loss dielectrics. Used in concert they can also yield 
the value of n for absorbers of intermediate strength, 
such as plexiglas. The requirement to use an estimated 
value of n in the case of very weak absorbers is rendered 
less objectionable by the very weak dependence of k on n 
in these substances. For scattering samples like powders 
the methods presented here appear to be the best yet pro- 

posed for dielectric measurements in the mm- and submm- 
wave regime. 

Because of the weak absorption of the materials con- 
sidered here it was necessary to use samples of relative- 
ly large surface area for the measurements. As a conse- 
quence, use of the three-sample sequence illustrated in 
Fig. 4 was not attempted. It can easily be calculated, 
for example, that even in the case of plexiglas the use 
of a disc large enough to fill the entire cross-sectional 
area of our cavity resonator would reduce AW/W only by a 
factor of 3. When measurements are to be made on strong 
absorbers much greater increases in precision can be 
achieved by this means(8). 
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