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It has been established that the second hyperpolarizability of short poly- 
enes with 2-10 carbon atoms increases in proportion to N 3"s5 in the complete 
configuration interaction method, and in proportion to N s'gv in the restrict- 
ed Hartree-Fock method. 

The development of polymeric materials with high, nonlinear optical susceptibility 
has placed before theoreticians a problem that is not at all trivial: determination of 
how the higher-order polarizabilities vary with the dimensions of the region of ~-conjuga- 
tion in extended molecular systems. Even though much work has been published in this area 
(see review in [i]), the extremely complicated situation has not been ultimately resolved, 
since the studies that have been reported do not give adequate consideration to electron 
correlation effects. The work reported here was aimed at determining the dependence of 
the ~-component of hyperpolarizability ~(a) on the length of the conjugation chain in even- 
membered polyenes by the most rigorous ~-electron method, i.e., the method of complete con- 
figuration interaction (CCI) of all possible n-states in the LCAO approximation. Also enter- 
ing into our task was a comparison of exact values of a (3) with values calculated within 
the framework of the coupled perturbation theory (CPT) of the restricted Hartree-Fock (HEF) 
method. 

The calculations were performed by the finite field method. In the CCI and RHF models, 
the Gell-Mann-Feyman theorem is observed, and hence the polarizabilities can be calculated 
as the corresponding derivatives of the energy (E) or the field-induced dipole moment (d) 
with respect to the field. We will estimate the accuracy of these two approaches, while 
following the procedure of [2, 3]. To this end, we will represent the energy and the dipole 
moment in the form of Taylor series expansions with respect to the perturbation h: 

E (h) = E (0) - -  d~h, - -  2! 3! 4! ' ( i ) 

r162 o ~ l h j h k h  l 
d~ ( h )  = d~ ( 0 )  - -  r  - -  ~i~ ~ ~ 

,s 2! 3! - , (2)  

where t he  summation p e r t a i n s  t o  t h e  r e p e a t i n g  i n d e x e s ,  w i t h  t h e  t e n s o r  i ndexes  i ,  j ,  . . .  
a s suming  t h e  v a l u e s  x, y,  z. We w i l l  d e n o t e  as A t he  r e l a t i v e  e r r o r s  o f  t he  c a l c u l a t e d  
v a l u e s .  Then, assuming  t h a t  the  a c c u r a c y  in  c a l c u l a t i n g  t he  t o t a l  e n e r g y  A(E) i s  i n d e p e n d e n t  
o f  h and t h a t  t he  e r r o r  in c a l c u l a t i n g  d i s  e q u a l  t o  t h e  e r r o r  A(P) in  t h e  e l e m e n t s  o f  the  
d e n s i t y  m a t r i x  ( P ) ,  we o b t a i n  an a p p r o x i a m t e  e v a l u a t i o n  o f  t h e  e r r o r s  o f  c o m p u t a t i o n  in  
(1)  and (2)  

6e ,= A (r __~ A (E) (M q- 1)l/h M§ 6p = A (~(M)) --~ A (P) M!,'h: M (3)  

For the usual variation calculations, A(E) -~ (Ap)2; and from the relationships (3) the ad- 
vantage of determining the M-th polarizability by means of the energy becomes obvious. When 
we apply to (I) and (2) certain numerical differentiation formulas of [4], for example with 
respect to seven values of the functions, we obtain for the diagonal components of the tensor 
a(a) the expression 
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1 ~0) __ - 6h----- U- [--  E (-- 3h) - -  E (3h) + 12 {E (2h) + E (--  2h)} -- 39 {E (h) + 

§ E (-- h)} § 56E (0)] § 2--7~ - a(7)h (4) § 0 (h6), (4) 

,rz(3) = 1 - ~ [ d ( - - 3 h ) - - d ( 3 h ) § 2 4 7  + 13 {d (-- h) - - d  (h)}J-r GS(7)h(4) 4- 0 (h6)" (5 )  

S i n c e  t h e  e r r o r s  a c c u m u l a t e  in  t h e  summation and c o m p u t a t i o n ,  we can w r i t e  

8e _~ 26.7h (E)h -4 + 0.03a(7)M, (6 )  

6~ ~ 5.5A (P) h -3 + 0.05a(7)h 4. (7 )  

The optimal magnitude of the perturbation is found from (6) and (7) by equating the deriva- 
tives with respect to h to zero: 

~pt--- ~ 2.34A (E) l/s (~(7))--1/8, ( 8 ) 

t ~ p t ~  1,84A (E) '/7 (a(7)) -bT. (9 )  

By s u b s t i t u t i n g  (8)  i n t o  (6)  and (9)  i n t o  ( 7 ) ,  we o b t a i n  t he  minimum p o s s i b l e  e r r o r  

6E ~-- 1.76A (E) b~ (a(7)) ~/~, (10)  

6p ~ 1.555 (p)4/7 (~!7))s/7.6p. ( 11 ) 

Now we will divide the error with respect to energy (i0) by the error with respect to the 
density matrix (ii): 

6c ~ 1.14A (E)t/2A (p)-4/7 (a(7))~/14 .Sp. 

We will take as typical values A(E) = 10 -14 and 5(P) = 5.10 -8 , 
from the Huckel approximation for ethylene: 

a(r) ~-: 1575l s 128~,-, 

and we will estimate a (7) 

where ~ is the resonance integral of the bond; I is the bond length. We will set f = 

1.4 A and ~ = -2.274 eV; then a (7) = 1.04.1012 au. After increasing this last result by 
five orders of magnitude as a safety factor, we find the ratio between errors for the 
polyenes 

6z ~ 0,036p. 

It can be seen that even with extremely favorable assumptions, the calculation of hyperpolar- 
izability on the basis of energy leads to an error that is two orders of magnitude smaller 
than when the calculation is based on the dipole moment, even though in the latter case the 
formula that is used is for a derivative that is one order lower. 

Specific calculations of ~(s) were performed in the same system of semiempirical param- 
eters I from ]5], where the dependence of ~(1)on the conjugation chain length was investi- 
gated. Solution of the CCI equations was accomplished by the wave oeprator method [6, 7] 
in a two-step gradient method, with an accuracy of the norm of the gradient 5.10 -8 . Cal- 
culations in the Hartree-Fock approximation were performed by a cyclic procedure for obtaining 
self-consistency with gradient acceleration [8], also with an accuracy of 5"I0 -s with respect 
to the density matrix. The excitation parameter, according to Eq. (8), was 0.000972 au 

(0.05 eV/~). The error for the diagonal components of the tensor ~(3) was a few atomic 
units. 

Before we proceed to examine the dependence of a (s) on the length of the polyene chain,�9 
let us dwell on the simplest case of a n-system, namely ethylene. The analytical expres- 
sion that we found in the CCI method for the longitudinal xxxx component of a (~) has the 
form (in atomic system of units) 

48~U* (r ~ § 4r~ ~ - -  ~ V r  ~ § 482) 
~ x x  (so) = (r ~ + r - + 4~ ~ + 4 ~ )  ~ VV 
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a (a) (Si) = -- ~6 (4~ + F~) X X X X  

481~~1 ' ( P  + 4rly- + 15 ~ V U  + 41~ ~) (12 ) 
~ x x  (S~) = ( r  2 - -  F I/F-' q- 413 ~ q- 41~) 4 ~ ' 

E ( S o ) : : F - - ] / ~ + 4 ~  ~, E(S  0 = 2 F ,  E ( S ~ ) = F +  ]/1 - ~ + 4 ~  z, 

where F = (Y0 - X z ) / 2 ;  Y0 and Xz a r e  t h e  Coulomb i n t e g r a l s  o f  e l e c t r o n i c  r e p u l s i o n  on t he  
same and d i f f e r e n t  a toms ,  r e s p e c t i v e l y ;  t h e  e n e r g y  o f  t he  l e v e l s  i s  r e f e r r e d  t o  t w i c e  t he  
v a l u e  o f  t h e  i o n i z a t i o n  p o t e n t i a l ,  and i t  i n c l u d e s  t h e  r e p u l s i o n  o f  n u c l e i .  We w i l l  com- 

p a r e  a ( a )  (So,  CCI) w i t h  CPT in t he  H a r t r e e - F o c k  method,  and ( f o r  c o m p l e t e n e s s  o f  t h e  p i c -  
t u r e )  w i t h  t h e  sum ove r  t he  s t a t e s  (SS) :  

3~I ~ 3Z ~ (C + 2~) 
~ (So, - 

~ ( ~  (So, Bye; _ (3) ss)  
s (r - ~)~ ' 2~ (r - 2~) ~ �9 (13) 

The role of interelectron interaction is manifested in that when the C-C bond is lengthened, 

~(3) of the quasihomopolar level S o tends toward 0, and the quasi-ionic states $2 and S 3 
tend toward infinity; ~(~) (S I, CCI) +-~; a(3) ($2, CCI) + +~ [it is considered that 

y ~ i/l and a ~ exp (-l), and that as ! + =, F + u Here, e(3) (So, CPT) has a regular 

zero limit, but ~(3) (So, SS) + +~, since all three configurations (ground, singly excited, 
and doubly excited) have a quasi-ionic character (E 0 = 26 + F, E z = 2F, E 2 = -26 + F), and 

the energy denominators tend toward zero as ~ increases; see analogous considerations for 

~(z) in [5]. This is not the sole defect in the calculation of hyperpolarizability as a 
sum over the states. Actually, if we substitute into (13) standard values of the semi- 

empirical paramters, we can wee that ~(~) (So, SS) is more than twice the value of ~(3) 

(So, CPT). Moreover, by varying F and 6, we can change the sign of ~(3) (So, SS) or can, 
in general, cause this value to revert to zero. This example is a good illustration of 
the general rule of inadequacy of the coupled and so-called uncoupled variants of Hartree- 
Fock perturbation theory in calculations of a(3) [i]. 

With physically justified values of the parameters, as can be seen directly from a 
comparison of (12) and (13), electron correlation even changes the sign of a(3): 

~(3) (So, CCI) > 0; ~(3) (So, CPT) < 0; a(3) (So, SS) < 0. Let us note that the sum 

~(~) (So, CCI) + a(~) (Sz, CCI) + a(3) ($2, CCI), the same as the analogous sum a(z)[5], 
is equal to zero with any internuclear distance I �9 This fact is a reflection of a general, 
readily proved rule: The sum of overall states of the K-th corrections of perturbation theory 
is equal to zero when K e 2. 

Let us pass on now to an analysis of numerical results for longer polyenes. In Table 

1 we have listed the individual components of ~(~) and the invariant ~(3)_--I_ ~axxx.~ ~> ~ %,juy(~ --{- 
p_ (3) \/~ 
-~xxy~)o. The planar polyenes in the trans configuration are positioned in the xy plane, 

with the x axis passing through the odd atoms. It can be seen from the data of Table i 
that interelectron interaction in the polyenes, with an increase in the number of carbon 

atoms N > 2, changes the sign of a(3). In the Hartree-Fock model, the change in sign of 

g(3) when the change is made from ethylene to butadiene is apparently general in character, 

since it is also observed in ab initio calculations [i]. In the RHF, a(3) increases sharp- 
ly in comparison with the value calculated by the Huckel method, and CCI reduces the hyper- 

polarizability relative to RHF. For g(z), the opposite trend is observed [5]. The depen- 

dence of g(3) on the dimension of the conjugated system is expressed as follows: 

~(3) (.Huckel .),"--N 3'~ a(3) (RHF) ~ N 5'97, ~(3) (CCI), ~ N 3'95. (14 )  

Let us note that on plots of logN as a function of log~--~ in these three cases, all points 

of log~--~ff lie essentially on straight lines in the interval of N from 2 to I0. It is 

evident that the CCI leads to an increase in a(a) with increasing N that is intermediate 
between the Huckel approximation and the RHF. For comparison, we have listed below the 
proportionalities found from literature sources [i, 8]: 
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TABLE 1. Hyperpolarizabilities (au) of Even-Membered Poly- 

o~( 3 ) 
yyyy 

Huckel I RHF I CCI 

enes in Different Methods 

r 
XXX~ 

N 
H'uckel I RHF CCI 

2 --17704 --1746 2122 --1967 --193 
4 --53838 1 6 7 2 2  4 3 2 6 9  --8797 --589 
6 161033  158772 238245 --23667 --1417 
8 1356216 705069  797050 --49770 --3316 

10 4893892 2229930 2010898 --90304 --5828 

o~(3) 

Huckell ~d~P I CCi 

236 --6295 --619 756 
890 --46167 1750 10971 

2064" --159780 26196 56121 
3742 --406557 126234 180685 
5893 --875066 414109 446001 

a (MINDO) ~ N 4'00, ~(3):(ab initio)N N 4'35, ~(3) (ab initio) N N 5'32. 

Thus, the relationships (14) obtained in this work point out, on the one hand, the 
basic role of electron correlation in calculations of hyperpolarizability of extended ~- 
electron systems; and on the other hand, they offer a means for estimating the increase 

in~-T~-as the conjugated system is extended in the relatively short polyene chains that 
are of practical importance. 
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