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The self-sustained electron-positron cascade process is analyzed in 
connection with pulsars. The electric and magnetic fields of the 
electron-positron plasma surrounding a neutron star and the radio 
emission of such a system are analyzed. 

Eidman [I] has analyzed the self-sustained electron-positron cascade process 
in which the energy which the particles lose in pair production is replenished by 
acceleration of the charges in an external electric field. Under astrophysical 
conditions, however, the particles are much more likely to be moving in both mag- 
netic and electric fields. 

In a strong magnetic field, we know that a ~ ray can be directly transformed 
into an electron-positron pair (see, e.g., [2-4]). To take this effect into ac- 
count we adopt a very simple model: We assume that the particles are moving in a 

slightly curved magnetic field H0 in the region -L < x < L and that there is also 

an electric field E l ( E  1 ~ Ho) parallel to this magnetic field. In the absence of 
charges, the electric field is El = E0/[l -- (x/L)],--L < x < L (x is the coordi- 
nate along the magnetic line of force). We denote the positron density by n I and 
the electron density by n2; then with a sufficiently large radius of curvature 
of the magnetic line of force, we can assume that the electric field is described 
by 

Eo (I) 
= e ( x - - L )  eL n l - - n ,  . 

Here the densities nl and n 2 satisfy 

d n l =  G - - n a c  1 ._  Eo § n: _ n~ --- nl., 
dt L ~L ~ T 

dno = G - - n o . c  I ( E o  , v~ 
dt L \ e L ,  - - n l + n 2 )  -- L -n '2 .  

(2) 

Here 1~.)=[~ ~' y>0 Vg is the particle drift velocity, and G describes the pro- 
~r 9 < 0 '  

duction of pairs per unit time due to y rays emitted by the particles in their 
motion along the magnetic line of force (see below). Equations (2) take into ac- 
count the circumstance that positively charged particles leave this interaction 
region, moving along the magnetic lines of force at a velocity near the speed of 
light c, if nl - n2 - -  E0/eL > 0, while the electrons, on the other hand, leave, 
correspondingly, if nl - n2 - (E0/eL) < 0. Furthermore, the charges escape from 
this region as a result of drift. If we assume that the density of the energetic 
~articles is not too high, we can ignore pair production as well as annihilation 
xn particle collisions in (2). 
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To write an equation for G, we note that since the fields H 0 and ~ under 
these conditions are slightly inhomogeneous and quite intense, with E ~H0, we 
can use the results of [5]. It follows from that paper that a charge under these 
conditions moves primarily along the magnetic line of force at a velocity near 

the speed of light c, and it drifts at a low velocity across ~. During this mo' 
tion it radiates in a synchrotronmanner, governed by the radius of curvature p 
of the magnetic line of force (this is the so-called magnetodrift radiation). The 
charge energy ~ and the radiation frequency ~ are given by 

-- ( 52 il/4 1. 31El, (3)  
mc ~ I 1--r,32 2e 

~,,~ = ~ (1 -y)-~,'~, (4)  

where 6 = v/c, v is the velocity of the particle (6 § I), ~c = c/p and ~ il ~0o 
All the energy which the particle acquires in the field E is expended on this 
radiation: 

f)2 

e ! E I c -  3 c iI--~) -' 

If the energy of the photons which are emitted, ~wT, is quite high, then these 

photons, moving in the field ~0, can themselves produce pairs of particles [2-4]~ 
Accordingly, the particle production should be described by (~ = /iw~) 

G...~ e c l E I  ( n 1 ~ n . , ) l ( ~  _ 2mc~) [ (6) 

Relation (6) takes into account the circumstance that at a given time t the pairs 
are produced by those y rays which were emitted at time t-t3, and the quantity 

ct 3 determines the mean free path of the y rays in the field ~0(r). It should be 
kept in mind that at the time of emission the u ray is moving approximatelyparal- 

lel to H0, and for this ray to convert into a pair the magnetic line of force 

must rotate through a large angle from the direction ~ [2,4] (here k~ = ~/c is 
the momentum of the ~ ray). Relation (6) takes into account the circumstance 
that y rays with energies below 2mc 2 cannot produce pairs. Here we have 

l ( a ; - - 2 m c  e ) =  I 1 for ~.~>2mc ~ 
[0 for - ~  2mc ~. 

To find a qualitative explanation of the behavior described by (3)-(6) we assume 
IE[ = eL[n* - n2[ , n? = n I - n O andn 0 = E0/ee. Then introducing the new dimen- 

sionless variables n = (n~ + n2)/n0, ~ = (n 2 - n~)/n0, tl = ct/L and T = ct3/L; 

and using (2)-(6), we find, for E(t) # 0, 

d-,, = ~,. I-~ ( h  - -  : )  I ''4 [~ + ,, ( q  - -  ":)]" q l  I ~l(z, - --) I q '  t (.~). t (~ - -  :4 - -  
dr1 

--~g--~g-q ~' ~ s g n ~ - - l ( - - ~ ) ~ G - - ~ z . - - ~ g , 1  - -  ~-L - ~ - ! - s g n ~ - l ( - - O ,  (7 )  
2 2 2 2 

d~ ~ ~g~  ~ - -  ~ - -  %~ + ~ + 1 ( - -  ~). ( 8 )  
dr1 2 2 

The range of definition of ~, n is n > ~ - 2 for ~ > i and n -  ~ for ~ < I. 
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Here 

= hc~,~-----T-- ~ 3 - - ~ )  ' g=-L-" a = ~ ' ~ 3 L n o  , t ~ / p  J ' 

s g n ~ = -  { 1 for ~"'-0 
1 for $ < 0 ,  

'Ug 
~g = --j 

C 

Equation (7) takes into account the circumstance that the retardation time satis- 
fies the conditions 0 < t 3 < L/c (the dimension of this system is on the order of 
L). We note that the quantity n determines the total number of particles, while 

gives the electric field E. Equations (7) and (8) should be supplemented with 
a relation giving the delay between the emission of a y ray and its transforma- 
tion into a pair. The mean free path of the 7 ray, do, in a homogeneous field 

k~ is given in [3, 4]: 

do__ 2h Hko- -1 
~.~m~ -H- [ TIL) ] , ( 9 )  

where ~i = e2/he, HkD = m2c3/eh and • = (1/2) (17mv/mc 2) (H~/Hkp). The function 
T(• can be written hpproximately as T(• = 0.16•215 where K~/3(2/3• 

is the Macdonald function [4]. It follows, in particular, that the reaction ~mg 
+ H = e + + e- + H- can occur only at sufficiently large values of the y energy 
and at sufficiently strong magnetic fields H. 

In the case under consideration here the y ray is propagating in an inhomo- 
geneous magnetic field, and at the time of emission we have H = 0. Accordingly, 
if the ~ ray is to be absorbed in pair production, it must traverse a certain fi- 
nite path, given in order of magnitude by 

j ~ dg~-" = l, 
d(,-) 

e{t-- 1:) 

(I0) 

here d(r) is found from (9) if H is replaced by some function H~(r) which deter- 
mines the value of H~ over the entire path traversed by the ~ ray [for r = c(t 
- t3) , we have H = 0]. 

For the qualitative analysis below we assume H~(r) = Hr/p, r ~ L, and, in 
general, p = L. Then Eq. (I0) can be rewritten in terms of dimensionless vari- 
ables as 

t, 

b )[3.4 ~i~3 dr  z, (ii) 
!z--- 

where 

41 ~7-mcHk~ O.16e2m%L TM 
r z = r :L ,  d~ = b = 

3h (3noL/2)314LH'  I ~ ' ~ s,4 : 1,,'~ ( 3 n o / 2 )  

It is easy tO see that Eqs. (7) and (8) become incorrect in the case r = 0. The 
integral curves of Eqs. (7) and (8) near the ~ = 0 axis behave in the following 
manner: For n < 2B, the integral curves intersect the ~ = 0 axis from left to 
right; for n > 2B, they approach the ~ = 0 axis from both directions. Taking 
this circumstance into account, it is natural to complete the definition of the 
system by assuming the following equation holds for r = 0, n > 28: 

d-~, = G-- ~g -- ~ -- mr, -- I. (12) 
dtz 
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System (7), (8), (Ii), (12) describes an oscillatory regime~ We will first 
determine the qualitative nature of this phenomenon, and then we will give the 
results of a numerical calculation carried out by Ya. I. A!'ber and Z, No Krotovao 
We assume that the system is initially in the state described by ~ = 0~ n = q0 > 
2B~ G = 0. In this state, charges of both signs leave the interaction region. In 
this stage of the process, the system is described by Eqo (12), which corresponds 
to motion downward along the E = 0 axis from the point ~ = no to the point n = 28. 
At the point ~ = 0, n = 2B, the integral curve departs from the ~ = 0 axis and 
enters the region $ > 0, - ~ < n <-~(I + 2B) + 2B, as long as we have G = 0. Now 
the electrons leave the interaction region even more rapidly, the field E intensi- 
fies, and energetic y rays appear (this is the second stage of the process). After 
the first energetic y rays have traversed a distance on the order of their mean 
free path, pair production begins [the corresponding roots ~ of Eq. (ii) and G 
become nonvanishing]. Here n begins to increase rapidly, and ~ begins to decrease 
(the field E decreases). The integral curve rapidly returns to the axis ~ = O, 
q > 26, and begins to move upward along the ~ = 0 axis [see (].2)], as long as the 
condition G ~ 0 is satisfied. As soon as G vanishes, the pair production stops, 
and the integral curve begins tO descend along the ~ = 0 axis do~ to the point 
n = 26 [see (12)]; thereafter, the process occurs in the manner described above~ 
The system thus executes a periodic motion. Figure I shows the results of a nu- 
merical solution of Eqs. (7), (8), (ii), and (12) for the following parameter 
values: L = ~ = 106 cm, H 0 = 1012 G, ~ = l0 sec -I , and E I = (1/3)107 esu, i.e., 
n o = 105 cm "3, ~ = I0 s, b = 5 �9 l0 s , and d I = 10 -3 . We note that in this case 
the time which the system spends in the state ~ = 0 (i.e., E = 0) is I0 times as 
long as the time it spends in the state with ~ # 0. 

Let us now attempt to apply this mechanism to pulsars.* We first note that 
during the rotation of a magnetic rotator (a neutron star) in vacuum, the elec- 

tric field component E I directed along the magnetic field B can have the form 
corresponding to that discussed [see (i)]; i.e., the sign can change along the 

magnetic line of force. For example, if the angle ~ between B 0 and ~ is small 

(~ is the angular rotation velocity and B 0 is the magnetic induction of the neu- 
tron star), then we have El = --(B0~a/c)cos 3 u(r > a, where a is the radius of the 

neutron star, ~ is the angle between B and ~, and r is the distance from the cen- 
ter of the neutron star). 

Now taking into account the circumstance that a neutron star is surrounded 
by an electron-positron plasma, we must determine the structure of the electro- 
magnetic fields surrounding the neutron star. We work from [7], where the field 
of a magnetic rotator in a conducting medium was analyzed. To use the results of 
[7], we must know the conductivity of the plasma surrounding the neutron star. In 
this case of an electron-positron plasma, in which the energy loss of the parti- 
cles is due to magnetodrift radiation [see (3)-(5)], we can evaluate the elec- 
trical conductivity ~2 of the plasma from 

5 . ,  - -  

m'~eff 2e~ (14) 

�9 The pair-production mechanism for pulsars was first used by Sturrock [6]. 
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where ~e~f is the ratio of the energy radiated per unit time, from (5), to the 
energy oz the particle, i.e., ~eff = (2/3)(e2~2/mc 3 (i - B2)3/2), where ~c = c/p 

c 
and n is the particle density. In accordance with (5), we can write Eq. (14) as 
(Eco # 0) 

foo' B. (15) 
120 

We first consider time-independent fields due to the constant component of 
the magnetic induction of the neutron star. In contrast with the system examined 
in [7], in the present case, because of the possible spontaneous production of 

plasma in strong B, Eco (Eco ++ B) fields, the system is primarily in a state 

with Eco = 0. The field Ea which arises periodically is much weaker than the 
corresponding field in an ordinary plasma or in vacuum [7] (according to the nu- 
merical calculation, we have Eco < 5 �9 10 -6 E I , where E I is the field in a vacu- 
um). Furthermore, as will become clear from the discussion below, we have Eco # 
0 only in a small region of the plasma surrounding the neutron star. Accordingly, 
to find the approximate structure of the magnetic field around the neutron star 
under these conditions we can assume Eco = 0. 

We work from the Maxwell equations in a conducting medium with a conductiv- 
ity o2 (r > a): 

r o t B =  4r~Z~./~, ro t /~= 0 ,  r . . . .  T~. (16 )  
C 

It follows from the symmetry of the problem that in the spherical coordinate sys- 
tem r, ;~, .~ with axis coinciding with the rotation axis of the neutron star the 

49- -~ 

fields B and E are independent of the angle ~~ Then from the requirement Eco = 0 
+ + + 

or B rot B = 0 we find = {Br, B~, B,}, E = {Er, E,,+, E~}, E~ = 0) 

Br 0 
�9 + (B~sinO)--B,~d--(rB~)-_O. (17) sm ~ Or ' Or 

Since B r and B~ cannot vanish simultaneously (at the r = a boundary the field 
component B r must be continuous), we have B~ = 0. Also using the conditions 

~B/a~ = 0 and E+ = 0, we find that we have rot B = 0 or that we have E = 0 if 
O 2 ~+0, 

Then, by analogy with [7], we find the following results for ~2<< oi (~I is 
the conductivity of the neutron star: 

B, .~-- Bii {cos O~ -- sin O, 0}, 

E~----"I [~'/~tl]=c B'l-2r{ s i n ~ ' c  +s in2~,0]  for r < a ,  

~B,i B ,a"  I 1 1 cos~, s~nl~, 0 , E~-O for r > a ,  

(18) 

(19) 

where V = [~r], a is the radius of the neutron star, B~ = B0cos60, and 60 is the 

angle between ~ and the homogeneous magnetic induction B of the neutron star. 

We note the following in connection with Eqs. (16) and (17). 

Since there is a discontinuity in E~ at the boundary, it follows from the 

condition rot E = 0 that a strong radial electric field of the type E~ = (Btt~a2/ 

6c)6 (r - a)(3 cos 2 ~I- i) is concentrated near the boundary (there is an electric 
double layer concentrated at the boundary). In this case the first equation 
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§ + + § 
should be written in the form rot B = (4~/c)(a2E + Jst), Jst = {Jr~ 0, 0}~ Jr = 
-~2E*. Since, on the other hand, we must have Eco = 0 within the plasma (see the 

r 
discussion above), we must move the boundary between the rotating and fixed media 
right up to the surface of the neutron star~ Accordingly, within the framework 
of the present analysis, this circumstance can be taken as an argument that the 
plasma is not entrained in the rotation of the neutron star. Here, of course, we 
are not thinking of a thin plasma sheath, whose interaction with the surface of 
the neutron star is governed by factors ignored here (e,g., nonelectromagnetic 
forces; if dl is the height of the irregularities on the surface of the neutron 
star, then this transitional sheath cannot be thinner than dl). 

Since the conductivity ~2 is assumed high, the equations for the variable 
parts of the fields due to B~ = Bosin60 are [7] 

B~B{sin~)cosl~,  cos~cos~, --sinp}, 

~ = __ __l [ V B ~ ] =  B _ ~ - -  sin2~), --sin2~), 0 cos,~ 
C C 

for r < a ,  or 

I (I - 
b _ ~ - - B •  -'~ .... ~l sin}) cos}L1,0, - ~- sin 21)(COS',h--sinP-I)}, 

i 

r C 

(21) 

for r > a, where oi ~ 02, d = c/ 12~ o-, ..~ is the skin thickness, d +i a~ ~ = ~ - ~t, 
and ul = ~ + (r - a)/d. 

Equations (20) and (21) contain only the maximum field components, it would 

seem to follow from Eq. (21) that an electromagnetic field E .... Bi would cause the 
plasma to rotate as if it were a solid object. The kinetic energy per unit vol- 
ume of the plasma associated with this motion is on the order of W~ = m(~a) 2 n/ 

i_~2 2, where n is the particle density. However, this rotation must occur in 

a constant magnetic field B~ (E~ = 0) with an energy density B~/8~ much larger 

than Wn. Accordingly, the magnetic field B!I does not lead to this process, and 
the assumption that the plasma at r > a does not move as a whole is not internal- 
ly contradictory in this sense. We again emphasize that this circumstance is a 
consequence of the spontaneous production of the plasma, i.eo, the condition 

E 11 = 0. Otherwise, the field due to B0~r would itself entrain the plasma. We al- 

so note that Eqs. (19) and (21) imply the existence of a certain field Eco = (Bil 

~), but this field is weak under the condition a ~ d and is localized in a small 
region near the boundary. 

The equations for the fields in the region r > a have a remarkable feature, 
which may yield an explanation for the pulsed nature of the emission of pulsars 
(see the discussion below). It follows from (21) that in the case tan ~I = 1 the 

magnetic field in the skin is weak (it does not exceed B: I with ~0 = i). If, on 
the other hand, we have tan ul # 1 (d/a ~(I), then the component B~ is strong, 
and it will hinder the escape of particles from the region surrounding the neu ~ 
tron star. In the region tan vl = I, on the other hand, the particles leave the 
system more rapidly, in accordance with the onset here of the oscillatory regime 
discussed above, which is in turn established throughout the space around the 
neutron star by the plasma. 

To apply the results obtained earlier [see (7)~ (8), (ii)] to pulsars, we 
must set E0 = naB0/c (E0 is the electric field component parallel to the magnetic 
field in the case in which the neutron star is rotating in a vacuum), we must as- 
sume the dimension of the system to be L = a (a is the radius of the neutron ~ 
star), and we must set no = E0/eL. The particles in the oscillatory system are 

moving primarily in meridional planes along the lines of force of B~I + B in the 
region tan ~i = i. 
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It follows from a numerical solution of Eqs. (7), (8), and (ii) that the 
electric field E = Eco which arises in the second stage of the oscillatory pro- 
cess vanishes very rapidly. For the parameter values listed above, the field Eco 
vanishes over a time At on the order of 5 �9 10 -5 L/c, i.e., at = 10 -9 sec (with 
L = I0 ~ cm). This vanishing of the field Eco occurs because of an abrupt change 

in the current due to motion along B of the charges along the magnetic lines of 
force [see (I) and (2)]. The scale time for this process is on the order of At. 
This current is sharply bounded spatially by the surface of the neutron star. If 
this surface is smooth, this process of the vanishing of the field Eco can be- 
come an effective source of radio emission. It is not difficult to show that the 
magnitude of the volume radiating coherently, V, is V = ~a~ 2 where ~ = 2~c/~ is 
the emitted wavelength, | is the emission frequency, 2~/~ ~ At, 2~/~ ~ c/dl, dl 
is the thickness of the transitional region, which is governed in particular by 
the height of the irregularities on the surface of the neutron star (see the dis- 

cussion above). In other words, in a given direction R there is efficient emis- 

sion from a disk (of radius ~ ai and thickness ~) at the boundary of the neutron 

star; the axis of this disk lies parallel to R. The emission mechanism is analo- 
gous to the emission during S decay. The total emission intensity is 

f__ o~2 ~ ~,3 (22) 
C 

where V = ~a~ 2, ~ is the number of events in which the field Eco vanishes per 
second (~ = c/a), n is the particle density. Setting n = n o = E0/ea = 10 I~ cm -3, 

= 103 cm, and a = l0 s cm (see the discussion above), we find I = I0 I~ ergs/sec, 
in accordance with experimental data. Since we have (~H/~) = (eB~l - ~2)/mc~ 

2 2 I, m~/~2= (4~e2n#l _ ~')/mm ~ 1 in this case, the radio emission'should freely 

escape the generation region. This emission is pulsed. Emission occurs in a 

given direction R when this direction falls in the meridional region governed by 
tan ~i = i. The pulse width is characterized by the ratio d/a (the pulse repeti- 
tion period is ~/~. 
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