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A Boussinesq elliptic operator is an ordinary differential operator 

z = 03 

(we write 0 for d /dz ,  as is customary in the theory), such that (i) its coefficients 
are algebraic functions over an elliptic curve X = C/A, which is to say u and v 
are doubly-periodic meromorphic functions of x with the period lattice A; (ii) L is a 
Boussinesq (or 3rd KdV) solution in the sense of  [1]: there exists a W E Gr (3) such 
that L 1]3 is the KP solution associated to W and evaluated at zero higher-times. 

In [2] (Lemma A3.6 and Theorem 7.6), a [Boussinesq] elliptic operator is proved 
to be equivalent to the data: (F, k, ~) E W(n, X), namely the isomorphism class 
of a 'minimal [Boussinesq] tangential cover'  of degree n (cf. Section 1 below) 
7r: (F,p) ~ (X,q), a tangential function k[E H ~  H~ and an element 

of the generalized Jacobian of F, Pic a-1 [if, moreover, g(F) # 1, we call these 
BTC (n, X)]. The Treibich-Verdier theory (cf. [2-5]) provides us with a moduli 
space W(n,X) of minimal tangential covers; it also answers the KdV question 
(analogous to Boussinesq) by classifying the minimal hyperelliptic tangential covers: 
there is a finite number of these for all given X and n, and none of them belong 
to W(n, X) unless n = 1, for they are not minimal among all tangential covers. 
But for Boussinesq (and higher 'Nth  KdV')  the situation is quite different basically 
because the general elliptic curve does not have an automorphism of order N. In [6], 
the search was confined to the Galois-Boussinesq tangent covers, for which such an 
automorphism exists; X is essentially unique and the answer is much the same as 
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for KdV, except for the fact that some may belong to W(n,  X), i.e. be minimal as 
covers, a smooth example was constructed in [7]. 

But if we omit the Galois property, the family of BTC may have dimension 
greater than zero, as we observe below. The goal of this paper is to state Verdier's 
program for classifying Boussinesq (and Nth KdV) tangential covers in terms of the 
monodromy of the corresponding elliptic operators. 

In Section 1, we recall the terminology that we need from the Treibich-Verdier 
theory; we give a Grassmannian interpretation of tangential covers and ask some 
questions natural to this context. In Section 2, we explain Verdier's idea. In Section 3 
we give examples. 

The Nth KdV elliptic solitons make up a locus whose geometry is interesting in 
its own fight (in the vein of a Schottky question), has number-theoretic significance 
(cf. the tantalizing arithmetic of those KdV elliptic solitons whose existence depends 
on A, [4] 6.7), and involves varieties of dimension higher than one. As J.-L. Verdier 
said in his Colloquium talk at Boston University (October 1988), the KP equation 
still holds fiches unexplored. 

1. G r a s s m a n n i a n  Fo rm ula t io n  

We use the notation Gr as in [1] for the (connected component of spaces W of virtual 
dimension 0 of the) Grassmannian of H = L2(S 1, C). 

1.1. DEFINITION. Let Gr2 be the subspace Gr consisting of those W such that the 
corresponding KP solution/~w is periodic in z = tl ,  with respect to some lattice A. 

1.2. DEFINITION (cf. [2], 2.2). Let F be a (projective, integral) curve of (arithmetic) 
genus > 0, p E F a smooth point and ~r: (F,p) ~ (X ,q)  a finite, pointed morphism 
to an elliptic curve. ~r is said to be a tangential cover if ~r*(X) is tangent to At(F)  
at the origin of Jac F, where Ar is the Abel map. 

1.3. PROPOSITION. An element W E Gr2 gives rise to an algebro-geometric KP 

solution; in fact, to a tangential cover (F, p) ~ (X,  q), where X = C/A. 

This is a consequence of Proposition 5.1 in [1] and Appendix 3 in [2]. 

The subscript 2 refers to the two periods; in [1], subspaces Gr0 C Grl are defined 
loop-theoretically and shown to correspond to solutions of the rational type (no 
periods) or exponential type (one period). That Gr0 is dense in Gr is easily seen by 
interpreting its elements as graphs. I think it likely that for any fixed lattice A the 
elements of Gr2 that correspond to it also give a dense subspace of Gr, but I have 
no evidence for that.* What we can do is to let A approach a singular limit within 
Gr (2) = {W E GR s.t. z2W C W}: 

* This has been proved, cf. E. Colombo, G. P. Pirola and E. Previato, J. reine angew. Math. 1994. 



MONODROMY OF BOUSSINESQ ELLIPTIC OPERATORS 51 

1.4. PROPOSITION. Gr(22) = Gr2 fq Gr (2) is dense in Gr (2). 

Proof. Gr (2) has a cell decomposition such that there is exactly one cell Ck of each 
dimension k; it corresponds to the generalized Jacobian of the curve y2 = xEk+l and 
its closure contains all the cells of smaller dimension. Thus, it is enough to remark 
that the solutions corresponding to Ck are limits of solutions corresponding to Gr~ 2). 
Tiffs follows from [4] (6.4), where it is proved that Ince's potentials k(k  + 1)pA(X) 
are indeed initial conditions for a solution belonging to Gr~ 2) (in fact, the unique 
solution whose corresponding tangential cover F --* X has degree k(k  + 1)/2). 

However, for higher N /> 3, the question of the existence of elements in Gr(2 N) 
(corresponding to curves of genus > 1) is wide open. For N = 3, the following was 
proved [6]: 

(i) If  the Galois-Boussinesq tangential covers (GBTC) are defined to be those 
tangential covers for which X has an automorphism of order 3 which lifts to 
F, then X is unique up to automorphism and for any integer n there exist a 
finite number of GBTC of X that have degree n; their (arithmetic) genus g 
is such that nx/'ff-~]'~ ~ g ~< 2v/-~ + 1 + 1. It is not known whether there are 
GBTC of all genera. 

(ii) The minimal GBTC of degree n are in 1 : 1 correspondence with rational 
curves belonging to the linear system I~(n, a, b)l on a certain rational surface 
S, which is defined by six numbers ai, hi, 0 ~< i x< 2, satisfying: 

(1) 2hi = ai(mod 3), 

(2) bi + n = ei(mod 3), where eo = 1, el = e2 = O, 

(3) ai <<. 2bi and bi <<. 2ai, 
( 4 )  a i  n - 

(iii) The 'exceptional' GBTC are (up to isomorphism) exceptional divisors on a 
certain surface T2 (birational to the ruled surface over X whose e-invariant 
is 0). Equivalently, they satisfy 

(5) E 2 : o ( a  2 + b 2 - aibi) = 3(n + 1). 

1.5. EXAMPLE. As proved in [7], the hyperelliptic curve F1 with affine equation 
w 2 = 0 6 - 1 is a degree 2 GBTC of the elliptic curve w z = ~73 _ 1. It is in fact an 
exceptional GBTC. 

Proof. F1 dominates some minimal GBTC of degree 2. The only solution of 
conditions (1)-(4) for n = 2 is (a; b) = (1, 2, 2; 2, 1, 1). A corresponding GBTC F 
has 

3 2-1  
i=0 

= 2  

and F is minimal if and only if g(F) = 2 ([6], 2.4). Thus, I" 1 must be minimal and 
it is exceptional because (5) holds. 
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1.6. Remark. If we remove the Galois condition, then the moduli space of GBTC 
of a given elliptic curve X may have dimension > 0. In fact, for degree n = 2 and 
fixed (X, q) the moduli space of BTC has dimension 1. 

Proof. The moduli space W(2, X) of minimal tangential covers together with 
a choice of tangential function has dimension 2, while the isomorphism classes 
of minimal tangential covers have dimension 1 ([3] and [4]). By Riemann-Roch, 
h~ = 3 - 2 + 1 + hl(3p) = 2, thus the tangential cover is Boussinesq unless it is 
KdV, namely h~ = 2. But there is only a finite number of isomorphism classes 
of these by [4]. 

2. B o u s s i n e s q  O p e r a t o r s  

For general N, the moduli space of tangential covers that have a function with Nth 
order pole at p and are regular elsewhere correspond to the following problem. 

PROBLEM. Classify the algebraic differential operators 

L : 0 N --1.- UN_2(x )O  N - 2  + . . .  --1" uo(z ) ,  

whose coefficients are elliptic functions defined on a given curve X, which have 
regular singular points ([8] II; [1] 6.10) and which commute with a differential 
operator B of order relatively prime with N (we refer to this last property by saying 
that L is algebraic). 

Verdier's plan was the following. Given L as above, algebraic over X with regular 
singular points, the kernel of L - A gives a rank N local system on X for any A ([8], 
1.4.5), hence we have a morphism r A 1 ~ (moduli space of rank N local systems 
over X). The goal would be that of splitting the local system into N subsystems 
of rank 1 because the space 79~ N) is geometrically easier to study, where 7)1 is the 
moduli space of local systems of rank 1 over X, and embed F into a compactification 
of 79~ N), where 

F ~ ~D~ N) 

N : I  J. ,7 
p1 

and the map r can be continued across or if and only if L is algebraic. The details 
haven't been worked out. 

Remarks. (1) The condition is necessary: if L is algebraic, then there exists a 
differential operator B that commutes with L, has order prime with N and is also 
defined over X; the common solutions of L - A and B - p, give the required rank 1 
local systems over X, for #1,. �9 #N eigenvalues for the action of B on the kernel of 
L - A. By a result of Novikov [9], the sufficiency is ensured if the Floquet solution 
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of L, defined for generic L, is defined on an algebraic curve: in which case the 
monodromy curve of L with respect to A coincides with the algebraic curve of the 
pair L, B. 

(2) The analogous situation holds for the 'usual' algebro-geometric KP solutions, 
as follows: an operator 

L - O N -1- UN_2(x)(9 N-2  + . . . . a t .  Uo(x ) 

with meromorphic coefficients and regular singular points, corresponds to an algebro- 
geometric KP solution if and only if the N formal series 

r  Z), 0~b(0, z), . . . ,  (9N-Ir  Z), 

converge for large z, where r is a (normalized) solution of L - z N ([1], 5.22) which 
amounts to saying that the map from z N E A 1 to the local system of solutions can 
be extended to pm. 

(3) In the Nth KdV TC situation 

r - L ~ x  

N : I  ,L , l  
p1 

the image under 7r, of the linear series )r is constant. 
Proof. Taking the sum in the group X of the points in the r-image of any divisor 

in IA*(~)I gives a map p1 ~ X which must be constant. 

3. Examples 

To conclude, we look at the moduli spaces of BTC from a different angle, namely the 
Calogero-Moser-Krichever system (CMK), whose definition is recalled in [2]. In 
[2], an open dense set of the phase space of this integrable system is identified with 
TSymnX \ A, the tangent space to the symmetric product of X minus all diagonals. 
As recalled in [2], Section 7, if we write a point in the phase space a s  (xi,Pi) and 
denote by V, t the motions under two specific CMK Hamiltonians, then 

u ( x , y , t ) =  2 E  ~a(*- x i ( y , t ) )  
1 

is an elliptic soliton if and only if for all i = 1 , . . . ,  n 

Oy 2 
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and 

Ot = \ Oy ] - 3 E P(xi - xk ) �9 (6) 
k#i 

Case n = 2. As a consequence of (6), we can determine the KdV/Boussinesq 
solutions. The tangential polynomial ([10] and [3]) 

F(#, c~) = 4# 2 + 2#(pl + t92) + PiP2 + 4p(Xl - x2) - 4Eo(a) (7) 

is an invariant of  the motion and the evolution takes place on the Jacobian of the 
corresponding curve F. 

3.1. PROPOSITION. (i) The set of  KdV solutions in the CMK phase space consists of 
curves isogenous to X,  where the generalized Ince potentials of  [1 1] evolve linearly. 

(ii) The set of  Boussinesq solutions is a two-dimensional subvariety, a Jacobian 
of  genus 2 where the flows evolve. One initial condition gives rise to a Boussinesq 
operator L = 0 3 - 3 x 2p(x)0 - 3Eol(x) + c where c does not depend on x. 

Proof. ( i ) B y  (6) 

OXi_O and E o ' ( z l - z 2 ) = 0 ;  Pi --  cgy i 

thus Xl - x2 is a point of order 2 and the curve (7) #2 + p(Zl - x2) - p(a)  = 0 is a 
singular 2 : 1 cover of  X. 

(ii) Choosing Xl - xz arbitrary gives a curve (7) which has genus 2 by the Hurwitz 
formula (covers X with 2 branch points), since the Boussinesq condition (6) implies 

0 _ 0, P2 = - P l ,  p2 = 3EO(Xl _ x2). 
0 t -  

A Boussinesq operator L = 0 3 + u(x, y)O + v(x, y) is such that vr = �89 (u~ + u ~ )  (a 
straightforward consequence of the KP equation) and for a Boussinesq solution 

n 

y )  = - 3  - 

i=1 

this implies 

Vx --  -2 i=1 ~ Y  x i  91 (;g - x i ( y ) )  -- ~ i=1 

For the CMK system, dxi/dy = Pi are independent of x, so 

3 n 
= ~ ~ (Pi~(x - xi) - ~'(x - xi)) + f(Y), 

i=1 

as claimed. 
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It should be possible to extend Ince's result (cf. [4]) and prove that the Boussinesq 
operators L = 03 - 3 n p ( z ) O  - 3np'(x) are algebraic for every positive integer n. 
As for the generalized Ince potentials of [11], their Boussinesq counterpart will 
probably involve the trigonal analog of triangular numbers, cf. [12], and again signify 
vanishing properties of Jacobian theta functions. 
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