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An analysis on forced convection in a channel filled with a Brinkman-Darcy 
porous medium: Exact and approximate solutions 

A. Nakayama,  H. Koyama and F. Kuwahara,  Hamamatsu ,  Japan 

Abstract. An analysis was made to investigate non-Darcian fully 
developed flow and heat transfer in a porous channel bounded by 
two parallel walls subjected to uniform heat flux. The Brinkman- 
extended Darcy model was employed to study the effect of the 
boundary viscous frictional drag on hydrodynamic and heat trans- 
fer characteristics. An exact expression has been derived for the 
Nusselt number under the uniform wall heat flux condition. Ap- 
proximate results were also obtained by exploiting a momentum 
integral relation and an auxiliary relation implicit in the Brinkman- 
extended Darcy model. Excellent agreement was confirmed between 
the approximate and exact solutions even in details of velocity and 
temperature profiles. 

Analyse von Zwangskonvektion in einem mit porSsem 
Brinkman-Darcy-Medium gefiillten Kanal 

Zusammenfassung. Diese Studie untersucht voll entwickelte ,,Non- 
Darcy"-Str6mung und Wfirmetransport in einem por6sen Kanal, 
der durch zwei parallele W/inde gebildet und einem einheitlichen 
Wfirmestrom ausgesetzt wird. Das erweiterte ,,Brinkman-Darcy- 
Modell" wurde angewandt, um den Effekt des viskosen Reibungs- 
widerstands der W/inde auf die hydrodynamischen Charakteristi- 
ken und die W~irmefibertragung zu untersuchen. Ein exakter Aus- 
druck wurde ffir die Nusselt-Zahl unter einheitlichem Wandw/irme- 
strom abgeleitet. Ann/ihernde Ergebnisse wurden durch die Auswer- 
tung einer Impuls-Integral-Beziehung und einer im erweiterten 
,,Brinkman-Darcy-Modell" implizierten Hilfsfunktion erhalten. 
Ausgezeichnete fSbereinstimmung zwischen den gen/iherten und 
den exakten L6sungen konnten sogar in den Geschwindigkeits- und 
Temperaturprofilen festgestellt werden. 
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drag coefficient 
velocity profile function 
half channel height 
permeability 
Nusselt number 
pressure 
Reynolds number 
wall heat flux 
temperature 
flow velocity 
coordinate in the flow direction 
coordinate normal to the channel wall 
porous media shape parameter 
porosity 
dimensionless coordinate, y/h 

0 temperature profile function 
# fluid viscosity 

velocity profile shape factor 
0 fluid density 

Subscripts 

B bulk mean 
c channel center-line 
w wall 

1 Introduction 

In view of possible appl icat ions in geophysical  and energy 
related engineering problems, fluid flow and heat transfer 
within porous media  has recently a t t racted considerable at- 
tent ion [1]. Most  analytical  studies were carried out  using 
the well-known "Darcy  flow model", for the model  leads to 
considerable simplification of mathemat ical  treatments.  The 
Darcy  flow model, however, does not  account for the no-slip 
condit ion which must  obviously be satisfied at all imper- 
meable solid boundaries.  Natural ly,  such a boundary  vis- 
cous effect becomes more  significant for materials  with 
higher porosit ies such as fibrous media  and foam materials. 

Br inkman [2] extended the Darcy  model by adding the 
viscous shear stress term to the Darcy  term. This Brinkman-  
extended Darcy  model  was successfully employed by Chan 
et al. [3], Tong and Subramanian  [4], Laur ia t  and Prasad  [5], 
Sen [6] and Vasseur and Robi l lard  [7] for the problems asso- 
ciated with free convection within fluid saturated porous 
media. Forced convection in Br inkman-Darcy  porous 
media, so far, has received little attention, in spite of 
its impor tance  in possible appl icat ions in heat  transfer 
enhancement  [8]. Kav iany  [9] a t tacked what  appears  to be 
one of the most  fundamental  and impor tan t  forced convec- 
t ion problems,  namely, the forced convection through a po- 
rous channel bounded by isothermal parallel  plates. He, 
however, did not  t reat  the case in which the walls are sub- 
jected to constant  heat  flux. 

In the first half of this paper, we shall extend Kaviany 's  
analysis to the case of constant  heat flux, and derive a closed- 
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form analytical expression for the Nusselt number. Then, in 
the remaining part of this study, we shall treat fully devel- 
oped channel flow by following the approximate solution 
procedure, previously proposed for the Darcian fluid free 
convection [10] and examine the approximate results against 
the exact solution. 

2 Governing equations and boundary conditions 

Figure 1 shows a two-dimensional porous channel and its 
coordinates (x, y). We shall assume, the fluid and solid matrix 
in the channel are in thermal equilibrium, and treat them a s  
a continuum. The governing equations for the fully devel- 
oped flow, namely, the Brinkman-extended Darcy model 
and energy equation, are given by 

IJ dZu # dP 
c dy a K U = ~ x  ' 

0Cpu 

Since 

(1) 

aT a2T 
~-x = k - - .ay z (2) 

the velocity and temperature fields are symmetric 
about the channel center line, only the upper half of the 
channel will be taken into consideration. The appropriate 
boundary conditions for Eqs. (1) and (2) are: 

du a T  
y : 0 :  d y : 0 ,  a y = 0  (3a, b) 

aT qw 
y=h:  u=0,  - (3c, d) 

ay k 

where u is the Darcian (apparent) velocity in the x-direction, 
while Tis the local temperature. Both upper and lower im- 
permeable walls are subjected to constant heat flux qw- e and 
K are the porosity and permeability of the porous medium, 
respectively; Q, # and Cp are the density, viscosity, and heat 
capacity of the fluid, respectively; p, the local pressure; k, the 
equivalent thermal conductivity of the fluid-saturated po- 
rous medium. 
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Fig. 1. A channe l  and  coord ina te  sys tem 
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The first left hand-side term of Eq. (1) (Brinkman term) 
denotes the viscous effect (which is significant near the wall) 
while the second term (Darcy term) expresses the effect of the 
bulk friction due to the presence of solid matrix. 

3 Exact solution 

Kaviany [9] integrated the momentum Eq. (1) using the 
boundary conditions given by Eqs. (3a) and (3c), and ob- 
tained the following exact expression for the axial velocity u 
normalized by its bulk mean us: 

u c~ (cosh 0{ - cosh 0{ 17) 

u B 0{ cosh 0{ - sinh ~ ' (4) 

where 

rl= y/h (5a) 

and 

0{ = h/(K/e)1/2 (5 b) 

is the dimensionless parameter defined as the ratio of the 
channel half height h to the boundary layer length scale 
(K/e )  1/2. Moreover, the total drag coefficient C:, as the sum 
of contributions from the boundary viscous drag (Brinkman 
term) C:~ and the bulk frictional drag (Darcy term) C:o, can 
be given by 

dp) 0{3 
C: =- 2 h - dx /~o (UB/e) 2 = C:B + C:D -- 8 cosh 0{ 

Re 0{ cosh a - sinh 0{ 

(6) 
where 

2 ~- du y o/Q ( b / B / e ) 2  = 8 0{2 sinh 0{ c:B (7 a) 
e dy = Re a cosh c~ - sinh 0{ 

and 

8 0{ 2 

C:o = 2 K uB h/ ~ ( U B / e )  2 - R e  (7b) 

Let us treat the energy Eq. (2), and derive an analytical 
expression. Upon integrating Eq. (2) once over the range, 
O < y < h ,  we have 

h dTB Q Cp uB ~ - =  qw (s) 

where T B is the bulk mean temperature. The foregoing equa- 
tion may be used to eliminate a T/ax (=  d TB/dx ) from Eq. (2): 

U d20 

UB -- dtl2 (9) 

Where 

k(T--T~,) 
0 

qwh 
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is the dimensionless temperature referenced to the local wall 
temperature T,~. The boundary conditions given by Eqs. (3 b) 
and (3 d) can be replaced in terms of the dimensionless vari- 
ables as 

dO 
q=0:  ~ = 0  ( l la)  

t /= l :  0 = 0 .  (11b) 

Substituting the Kaviany's solution (Eq. (4)) into (9), we may 
integrate Eq. (9) with aid of (11 a) and (11 b), to obtain the 
dimensionless temperature distribution as follows: 

1 
0 =  

0~ (~ cosh c~ - sinh c 0 

x [ ~ ( ~ / 2 - 1 )  co sh0~-cosh (~ / )+cosha  1. (12) 

After some integration, we finally obtain the following ana- 
lytical expression for the Nusselt number of our primary 
concern: 

4 h q ~  1 
N u  = - 4 / S  o (u/u~) d~ 

k ( T ~  - T O  o 

48 ~ (c~ cosh a - sinh ~)2 
(13) 

= 2 a (:& - 6) cosh 2 ~ + 15 sinh 2 ~ + 2 ~ (~2 _ 9) 

4 A p p r o x i m a t e  s o l u t i o n  

Cheng [11] applied the classical integral method to the prob- 
lem of the Darcian fluid free convection over flat surfaces. 
The authors subsequently improved their approximate meth- 
od by introducing an auxiliary relation implicit in the energy 
equation in a differential form [10], and then extended the 
method to analyze various Darcian flow cases such as free 
convection over non-isothermal curved surfaces with and 
without thermal stratification [10, 12] and combined free and 
forced convection over non-isothermal curved surfaces [13]. 

In what follows, we shall propose an approximate solu- 
tion procedure similar to the previous one successfully em- 
ployed for the Darcian fluid flows, to analyze forced convec- 
tion of the Brinkman-Darcy fluid within a porous channel. 

The Brinkman-extended Darcy law (Eq. (1)) can be re- 
written in a dimensionless form as 

d2f  g h 2 dp 
_ _  _ e 2 f _  ( 1 4 )  
drl 2 # u~ dx 

where 

f =u/uc (15) 

and u C is the velocity along the duct center line at y = 0. 
Let us integrate the foregoing equation over the upper 

half of the channel utilizing Eq. (3 a): 

q= J01 df _ ~ 2 e f d r l _ a h 2  dp (16) 
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Furthermore, we shall introduce the following auxiliary rela- 
tion by writing Eq. (14) at the wall. 

dZf _ a h 2 dp (17) 
dtl 2 n= l 11 u c dx 

where the boundary condition given by Eq. (3c) has been 
implemented. Upon combining Eqs. (16) and (17), we have 

q=l 1 ~=I" 
d f  _o~2Sfdt l  d2f  (IS) 
dtl o = dtl ~ 

The foregoing integral momentum equation may be used to 
estimate the boundary and bulk frictional drags. For that 
purpose, we shall introduce a one parameter family of veloc- 
ity profiles as follows: 

f =  1 -- r/r . (19) 

When r = 2, Eq. (19) reduces to the parabolic function for the 
Poiseuille flow. Since we expect [ to be greater than 2, 
Eq. (19) automatically satisfies the boundary conditions 
given by Eqs. (3a) and (3c). Substituting Eq- (19) into (18), 
and carrying out differentiation and integration, we obtain a 
quadratic equation for the shape factor (, which may easily 
be solved for ( as 

1 +X/9 +4~2 ) ~=~(1 
Upon noting 

1 
uc/u B = 1/y f dv 1 = ( 1 + ~ 1 / ( -  

0 

(20) 

3 + X//9+ 4C~ 2 

1 +, , /9  +4~ z 
(21) 

the drag coefficients Cy, Cy B and CyD can be evaluated from 

@ = CyB + Cyo = 8 ((2 - 1 )  /Re = 4 (3 + Zcd + , f ~  4~te) /Re 

where (22) 

CTB = 8 (4 + 1)/Re = 4 (3 + ~ ) / R e  (23 a) 

and 

CzD = 8 ~2/Re. (23 b) 

Furthermore, substitution of Eqs. (19) and (21) into the 
energy Eq. (9) gives 

1 + r d20 
- -  (1 - t f )  - ( 2 4 )  

dq 2 �9 

The foregoing equation can be integrated twice using the 
boundary conditions, namely, Eqs. (11 a) and (11 b), which 
yields 

1 r 1+((1_~/2  ) (25) 
0=( ( [+2~(1- -~ /  )--  2 [ -  " 

Finally, we obtain an approximate formula for the Nusselt 
number integrating the product f0  over the channel, namely 

4 / ( 1  + ~ )  } 12([+3) (2r (26) 
N u =  / \ T j o f O d r l =  2 r  
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5 Results and discussion 

Figure 2 shows the effect of the parameter c~ on the center 
line velocity level. As c~ increases uc/u B asymptotically de- 
creases to unity, indicating the establishment of a slug flow. 
The approximate solution (shown by a solid line) appears to 
be in good agreement with the exact solution (shown by a 
dashed line). Details of velocity profiles are shown in Fig. 3 
for c~ = 1, 5 and 15. The velocity profiles generated by Eqs. 
(19) and (20), in fact, closely follow the profiles given by the 
exact solution, Eq. (4). The friction groupings, C s Re, C:B Re 
and CsDRe are plotted in Fig. 4 over the range 0.1 _<c~N 103. 
For e < 1, the bulk frictional drag (Darcy's pressure drop) 
is almost negligible, and the flow behaves just like the 
Poiseuille flow. For ~ > 10, on the other hand, the bulk fric- 
tional drag predominates over the boundary viscous drag. 
As a result, the curve of the total drag (C s Re) overlaps onto 
the line of the bulk frictional drag (CsD Re) for large c~. The 
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difference between the approximate and exact solution is 
hardly discernible in the figure. In Fig. 5, the dimensionless 
temperature profiles given by Eqs. (25) and (20) are com- 
pared against those of the exact expression, Eq. (12), derived 
in this study. It is seen that the temperature field becomes 
more uniform as the velocity profile becomes flatter for 
large c~. Again, the approximate solution appears to be in 
good accord with the exact solution. Finally, the Nusselt 
numbers for the case of constant heat flux are plotted in 
Fig. 6 following the resulting exact and approximate 
formulas, namely, Eqs. (13) and (26). (The results obtained by 
Kaviany [9] for the case of constant wall temperature are 
also presented for reference.) Reasonable agreement between 
the approximate and exact formulas can be confirmed from 
the figure. It can be shown that the two formulas possess 
the same asymptotic values, namely, Nu=140/17 for the 
Poiseuille flow (at ~ = 0) and Nu = 12 for a Darcy flow (at 
(g---* 00). 
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6 Concluding remarks 

An analysis was made for forced convection in a two- 
dimensional porous channel subjected to uniform heat flux. 
The Brinkman-extended Darcy model was used to account 
for the boundary viscous effect on the hydrodynamic and 
heat transfer aspects. An approximate solution method 
which bases on the momentum integral relation was found 
quite accurate for evaluating the frictional drags and Nusselt 
numbers. Even the details of velocity and temperature pro- 
files generated by the approximate formula agree quite well 
with those based on the exact solution. 
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