
Internatioetal Journal of Computer anti Information Sciences, Vot. 6, No. 4, 1977

Simple-English for
Data Base Communication

J. A. Moyne 1

Received September 1976," revised January 1977

Three classes of the so-called natural languages for communication with
data bases are defined: English-like, pseudo-English, and simple-English.
It is argued that English-like and pseudo-English languages are normally
more difficult to learn and use than artificial programming languages with
no overt claim to English likeness. Simple-English is presented as a family
of languages in which many restrictions (which hamper learning) are removed
through interaction with, and drawing inferences from, the data base and the
underlying system. It is concluded, however, that English likeness and ease
of learning may be contradictory notions.

KEY W O R D S : Ambiguity problems; data base communication; data
base models; English-like and pseudo-English languages; learning problems;
linguistics; narrative languages; semantics; simple-English.

1. I N T R O D U C T I O N

This paper is concerned with a language, or perhaps a family of languages,
for communication with data base systems. Simple-English is not claimed to
be a general-purpose programming language; it is too intimately tied with
particular data bases and their applications to be called general or universal.
We have taken the modest approach of developing models for specific
applications. To develop a lingua franca or the so-called "English as a
programming language," presupposes significant breakthroughs in both
Iinguistics and computer science which, in the opinio~ of the author, are
not forthcoming in the near future

Department of Computer Science, Queens College of The City University of New York,
Flushing, New York.

327
This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum Publishing Corpora-
tion, 227 West 17th Street, New York, N.Y. 10011.

8z81614-5

328 Moyne

We have an abundance of literature in the form of manuals, journal
articles, and technical reports on all aspects of information management
systems including languages for communication with them, but as a point
of departure we can take the CODASYL survey, ~5) which describes 10 large
data management systems, five self-contained and five hostqanguage.
The communicative devices for these systems are the following "functions":
interrogation, update, and data administration Some systems have different
types of languages for each of these functions; others use the same type for
all the functions. However, all the languages for these systems are classified
into the following types:

a. Narrative
b. Keyword
c. Separator (1)
d. Fixed-position

We are here interested in the narrative type, which is also referred to as
English-like. This type of language is represented by seemingly English
sentences with severe restrictions. Examples of the narrative language given
for Data Base Task Group (D~TG) are the followingS:

a. SCHEMA N A M E IS EMPFILE

b. R E C O R D N A M E IS EMPREC (2)

c. L O C A T I O N M O D E IS CALC U S I N G EMPNO

Note the resemblance between these and COBOL statements, which is also
classified as a narrative language. In narrative statements, one can often
include additional noise words which play no role in the interpretation and
understanding or execution of the statement; an example in DBT6 is

THE PRIVACY L O C K FOR THE REMOVE FUNCTION
IS A U T H E N T I C A T E (3)

where the underlined words are noise words.

2. ENGLISH-L IKE A N D P S E U D O - E N G L I S H L A N G U A G E S

A striking characteristic of the narrative languages is that the more
"narrative" they get, the more complex and cumbersome they become.

2 The 10 systems described in the CODASYL report include five self-contained, GIS,
MARK IV, NIPS/FFS, TDMS, UL/1, and five host-language systems, COBOL, OBTG, IDS, ZMS,
SC-1. DBTG is a proposal and has not been implemented. For a discussion of a number of
on-line systems and their languages, see Ref. 9.

Simple-English for Data Base Communication 329

The CODASYL report has some examples of procedures written in the different
languages of the l0 systems, and a cursory examination of these may con-
vince the reader. The author believes that, in general, it is easier for a person
to learn a new simple programming language than to learn to use his own
language (e.g., English) in unfamiliar and artificial ways. It should be pointed
out, however, that by this statement we are not taking any position concerning
the usefulness of narrative languages for various purposes; we are simply
making an observation about complexity of structure and problems of
learning.

Attempts have been made to alleviate learning problems by incorporating
functional procedures into the meaning of English words. Thus, a word
can represent an underlying function in the sense of implicit functions in
FORTRAN, for example. The author developed an experimental programming
language system several years ago on this principle. (1~1 The following is
a program written in this language for generating a concordance of an input
natural language text3:

Read the text from the Input.
Make concordance. (4)
Write on the Output Tape.
Stop.

This programming language had a built-in procedure for concordance
generation that could be used in the above manner. If we did not want to
use this procedure, we could write a concordance program as follows:

" Input" is the next file on the Input Tape,
"List" is an array.

"Text" is " - - " followed by the input.
Repeat the next three sentences until there are less than seven

words left in the text, with index I starting at 1 and
increasing by 1 each time: (5)

Move the first seven words of the text to List(I).
Erase the first word in the text.

Se t heading "Concordance before sort".
Output "Print the heading on a new page and print the List."
Execute output.
Sort the List on the 9th word of each item.
set heading "concordance after sort" and execute output.
End.

More successful attempts have been made by limiting the applications
of such languages to some narrow fields. Many such special-purpose

Examples (4) and (5) are copied from pp. 5-7 of Ref. ! 3.

330 Moyne

languages have been developed with various degrees of success. ~ A further
extension of these attempts is in the development of general-purpose macro
generators for programming languages such as PL/I, FORTRAN, and COBOL.

Contrasting with these developments are systems in which natural
languages play a more significant role in a natural way. For example, in the
systems for English, there are nontrivial grammars of the English language,
and a sentence representing a command or a request, or cenveying a piece
of information is fully analyzed and understood before it is translated into
machine instructions. Thus, there are no "noise words": every word used in
a sentence plays a role in its analysis and understanding. To avoid confusion,
let us call these systems pseudo-English. We use the term pseudo- because of
the practical needs for severe restrictions and because, if the language is
used for more than simple interactive communication with a data base,
the user must write a data management task in a highly procedural manner.
Many such systems have been developed during the past decade. 5 For
example, the author ~14,1~ developed a language for communication with a
data base consisting of the catalogue of a small library of 4000 items. The
system would process queries put to the library such as the following:

Who wrote "Advances in Computers" ?
Find all the books by Altman and list them.
I f you have any books on automata theory, list the authors. (6)
Have any books on compilers been received ?
What documents do we have pertaining to graph theory ?

Another example of what we have called pseudo-English in this paper is
Woods's model for airline flight information: ~2s)

Does American Airlines have a flight that goes from
Boston to Chicago ?

What meals do I get on Flight AA-57 ? (7)
What is the departure time from Boston of every American

Airlines flight that goes from Boston to Chicago ?

Note that the differences between English-like languages [Examples
(2)-(5)] and pseudo-English languages [examples (6) and (7)] are not merely
in some outward appearances, but in the underlying processors for these
languages. In English-like languages, sentences must be written and ordered
as rigid programming language statements, with noise words added as
palatable paddings. The existence of library procedures [example (4)] can

4 For details, see Ref. 21; also seethe Annual Roster of Programming Languages published
by Jean Sammet in Computing Reviews.

5 For details and recent surveys of such systems, see Refs. 11, 17, 22, and 26, and the
references given in those documents.

Simple-English for Data Base Communication 331

help make a program even more deceptively "English." The principal
processor for such languages is usually a compiler with additional prepro-
cessors supplied to handle uncommon operations. In pseudo-English
languages, on the other hand, the English sentences, albeit highly restricted,
must undergo extensive linguistic analysis. The processors for these are
normally written as interpreters in high-level languages (PL/~, LISP, etc:),
requiring additional memory size and costs in processing speeds.

To recapitulate, many of the so-called English-like and pseudo-English
languages suffer from two fundamental drawbacks: first, our claim that
learning to use the English language in a highly restricted and unnatural
way is often more difficult than learning an artificial programming language,
and, second, the fact that underlying such languages are often large systems,
ranging from complex preprocessors to interpreters and other programs
requiring double compilation, lots of memory, and auxiliary storage, and
having relatively slow speeds.

The second objection is being met by technological developments in
higher speeds, larger memories and more efficient storage techniques, multi-
processors, building of high level functions into the hardware, and other
relevant advancements in computer technology. We further discuss the first
drawback in a later section. Before leaving this section, however, let us note
that there is another situation in which the data base is unstructured or
semistructured and the data consists of a running text in a natural language
(e.g., English). An interesting and worthwhile task would be to develop
processors that would analyze and structure the data base for retrieval
purposes. Many attempts in this direction have been made; for some impor-
tant results, see Woods e t al. (28~ and SaltonJ 2~ The surveys noted under
footnote 4 contain reviews of these efforts as well. In this paper, however,
we are concerned with the communicative devices for structured data bases,
and we do not consider the problems of text processing in connection with
the structuring of the data base.

3. A H O D E L D A T A BASE

In order to describe a generalized language that is independent of any
data base, we must assume a generalized logical data structure. The actual
storage structure can be varied as long as we can map it into a standard
logical data structure. Let us then define a very simple logical data
structure.

We assume a data base D consisting of an arbitrary number of files F:

D = (F~ ,F~ ,F , , . . . ,F , ,) (8)

332 Moyne

Let us assume further that each file F~ is stored as a matrix in which each
row R e Fi can be represented as

R = (I , N , { P z , P 2 , P ~ l k >~0)) (9)

where I is a unique identification number, possibly a pointer, N is the name
or head of a data group, and each P~ is a property of N. Thus, each row R
is a data group or record, and each element E in the group can be referred
to as a data element. I f the file is, for example, an employee file, then each
/~:would be an employee record, where I might be his person number, N his
name, and P~ his age, education, salary, etc. Note, incidentally, that while
each data element E is a variable-value pair, the variables need be recorded
or "unders tood" only once in each file as the column headings of the file
matrix. An employee file may, then, conceptually look something like the
following:

M A N - # N A M E BIRTH SALARY SKILLS ...

::' 12345 Jones, TD 110237 25670 A, B, C ...

54672 Smith, JB 052346 17850 B, X, D ... (10)

Obviously, some of the column headings such as N A M E and SKILLS may
i~ave complex structures and may contain subheadings such as F1RSTI
MIDDLE, LAST or CODE, DESCRIPTION, etc., but these details are

!

easY to detect and implement and we need not be concerned about them here.
Note that any data group G in an entire data base with the above logical

Structure can be represented or referenced as

i . G = (Fi, I j , {Plj, P2j , Pk~} l i, j ~ 1; k ~ 0) (11)

However, for the simple identification of any G E D, we need only the pair
(Fi , Ij). Let us represent this pair as 4; then any data element E in the data
base can be represented as

E = @, P,~) (12)
- !

This element can represent, for example, the salary o f a man in an employee
file Whose person number is I5 �9 We can then think of this data base structure
as: a collection of data elements each of which can be referenced or accessed
as noted above. This will, incidentally, give us a multifile access device.

We must now reduce each statement for communicat ion with the data
base into a number of E-pairs. The statement might give some Boolean
function of E-pairs and request the retrieval of others. For example, the

Simple-English for Data Base Communication 333

sentence, "What is the salary and birth data of employee 12345 with skill A ?"
(assuming that employee file is file No. 15) might be reduced to ~ :

~b = F15, 12345
E = ~b, SKILLS(A)
E = ~b, SALARY (13)
E = ~b, BRITH DATE

Given: Person-No ^ Skills
Requested: Salary ^ Birthday

The learning problems notwithstanding, the language types listed under
(1) as well as what we have called pseudo-English languages can generally
undergo this sort of analysis. For example, although the linguistic analysis
of sentence (14), as described in ref. 10, is complicated, the final result can be
easily stated in terms of our present analysisn:

Have any books on automata been written ?
Given: A = Type of document (book) ^ Topic (automata) (14)
Requested: All A in D

Within the confines of this paper, we cannot engage in detailed discussion
of the analysis and translation of pseudo-English languages. I t has been
demonstrated that under the present state of the art English-like and pseudo-
English languages can be processed with reasonable success. ~1~ The
fundamental difficulty in their application remains the problem of learning,
and we discuss this problem in the next section. We also argue that the
problems of ambiguity inherent in pseudo-English languages are learning
problems.

4. S I M P L E - E N G L I S H L A N G U A G E S

We use the term simple-English to distinguish a family of languages
f rom the English-like and pseudo-English systems described in this paper~
The objective of simple-English and its underlying processors is to reduce
to the minimum the learning drudgery of the user. I f we want these languages
t o be general and relatively independent of specific applications or storage
structures, we must assume a most general data structure such as the model
described in this paper,

Actual analysis of (14) in Ref. I0 involves processing through a transformational grammar
of English which we cannot describe in this paper. For details see Refs. 6 and 10; see
also Ref. 15 for an introduction to transformational grammars written for computer
scientists.. At this point, a vigilant reader may object to the interpretation of (14) as
"All A in D" and say that (14) is a yes/no question or, at most, that it must be interpreted
as "Exists A in D." Later in this paper, under "Problems of Ambiguity," we make a
further observation concerning this interpretation.

334 Moyne

Let us recall that we want simple-English to be used for writing tasks
(programs) for transactions with a data base, and not just for individual
statements for interactive on-line processing. Tasks for computer processing
are normally written as procedures or algorithms; writing procedures in a
highly restricted natural language is difficult and, as noted before, presents
ample learning problems f o r the user.

A characteristic of simple-English in the context of this paper is that
it must be nonprocedural. In cases where we need a procedural language
for some application, the existing programming languages would be more
appropriate. I f there is any difficulty in learning such languages, then it
seems that our efforts would best be spent in inventing simple artificial
languages for layman applications. This simplicity cannot, however, be
achieved by making such artificial languages English-like or pseudo-English;
in fact, it may be achieved by moving in the opposite direction, as in APL.
The crux of our argument is that ease of learning and English-likeness do not
presuppose each other; on the contrary, empirical evidence has shown them
t 0 b e contradictory terms in many cases5

By nonprocedural we mean thisa: The language should have no explicit or
implicit GOTO statements, DO-loops, or the need for referring explicitly
to any statement that is to follow a current statement. On the other hand,
the underlying system must have the capability to record and remember the
relevant results obtained from previous statements contained in a task.
This specification should not, however, be confused with the current con-
cerns about structured programming and GOTO-less programs (cf. Knuth~8)).
The processor for simple-English, whether a compiler or an interpreter,
must process the " task" and translate it into suitable machine instructions.
In processing each statement, the processor should have the capability to
draw inferences from the previously processed statements or from a uni-
versal semantic component, and perhaps to make some predictions about
what statements may follow. None of this should, however, require an overt
reference (GOTO) to actual individual statements in the task,

Before any further discussion of simple-English, we should perhaps
point out that other models have been developed by the author as well as
by other scholars for communication in English with computer systems.
Discussions and surveys of such systems are available in the litera-
ture. 1~,1~176 A survey of various proposals for the semantic component

7 To take an example from programming languages, experiments by the author and his
colleagues at Queens College have shown that beginning students, irrespective of their
background, learn and master APL and FORTRAN faster than COBOL and also make many
fewer errors in the former two languages.

8 For recent discussions and definitions of nonprocedural languages, and other articles
in the proceedings also relevant for review, see Ref. 24.

Simple.English for Data Base Communication 335

of such natural language systems appears in Pacak and Pratt, (18) and
Winograd's (27) limited but significant model for using heuristic procedures
for language analysis and understanding is relevant for our purposes. There
are also programming languages and systems that provide powerful tools
for developing natural language systems: starting with COMIT, (3~ developed
for computational linguistics and machine translation, to special versions
Of LISP and CONNIVER and PLANNER (7'25) as tools for heuristic processing and
the kind of inferential procedures involved in language "understanding"
(see Bobrow and Raphael (2) for a survey of such languages).

Most of the other models are concerned with using restricted English
in query and question-answering systems, generally involving the processing
and execution of individual questions or commands. Our concern with
simple-English is to develop a family of languages for writing complete
tasks or programs in a nonprocedural manner.

5. P R O B L E M S O F A M B I G U I T Y

The simple-English languages proposed in this paper must have
reasonable grammars of English in their processors and, in order for these
languages to be most general and require the least effort in learning, the
grammars must recognize and account for the various ambiguities that can
occur even in the most simple English sentences, in fact, for the English-like
and many of the existing pseudo-English languages developed for practical
purposes, a major problem of learning lies in the artificial removing of the
inherent ambiguities from sentences. This practice requires the user to be
constantly conscious of some particular meaning of words and phrases,
and, in general, of the use of common English sentences in restricted and
unfamiliar ways. On the other hand, in practical data base communication,
the computer system cannot have nondeterministic procedures resulting in
more than one analysis and interpretation for an input statement. This,
then, is the dilemma of using English as a programming language. The
problem remains unresolved in any practical sense. In this section, however,
we propose a pragmatic approach for making simple-English a reasonable
language family for data base management. The examples of ambiguous
sentences used in this section are all related to a model of a pseudo-English
system developed by the author (z4) and a model of simple-English outlined
in the following section.

We can divide the ambiguities in English into three types: lexical,
syntactic, and semantic. Examples of lexical ambiguity are found in the
following sentences:

a. Do you have any books on computers?
b. I saw the leg of lamb. (15)

8z8/6[4-6

336 Moyne

In (15a) the preposition on could mean "on the top of" or "about," "con-
cerning," etc.; in (15b) s aw could be the past tense of to see or it could be the
verb meaning "to cut with a saw." For structural ambiguity, we can cite
the following example:

We subscribe to many journals in the library. (16)

Here the prepositional phrase "in the library" can modify we with the reading
that we who are in the library subscribe to many journals (which may or
may not be in the library). Compare this with

We write to many subscribers in the library. (17)

On the other hand, the phrase "in the library" in (16) can modify . journals,

meaning that many of the journals in the library are subscribed to by us.
Under semantic ambiguity, we lump together various ambiguities ranging
from those that can be accounted for by formal semantic features and
selectional restrictions to those statements whose truth value can only be
determined from extralinguistic knowledge of the world sources. Current
debate on semantic theory is too controversial and the state of the art too
fluid to draw any dividing lines among semantic subcategories. Furthermore,
if we push semantics to its logical conclusion, all other ambiguities also fall
under this category. For example, the following sentences may be considered
to have structural ambiguities similar to (16):

a. The cook bought the vegetables in the bag. (18)
b. The cook bought the vegetables in the store.

However, the nouns bag and s tore can have certain features or attributes
attached to them in the lexicon that rule out the reading in (18a) in which
the cook goes into a bag to purchase vegetables. Thus, theoretically it is
feasible to envisage a grammar system with a lexicon and semantic base
including features, semantic markers, and other components that can fully
account for a language, including ambiguities and anomalies at all levels, m
In practice, however, the construction of such a grammar for computer
applications is not feasible, Apart from a number of unresolved crucial
questions about the nature of languages, the construction of a dictionary
containing this sort of semantic marker and extralinguistic information
amounts to, as Bar-Hillel (z~ pointed out over a decade ago, the building of
a universal encyclopedia with unlimited bounds, for "the number of facts
we human beings know is, in a certain very pregnant sense, infinite" (p. 177).

Human beings disambiguate sentences through contextual references
and by inference from their encyclopedic knowledge. I f we place restrictions
on these devices to make the language manageable for computer applications,

Simple-English for Data Base Communication 3]7

we impose severe learning problems. The author ~17~ has proposed an approach
in which the burden of restriction is not on the language user but on the
comprehension of the computer system. This will then allow the user to use
the language in a relatively unrestricted fashion, but the computer will
understand the language in its own limited ways. The principle behind this
proposal is very simple:

The computer system shall accept only what it
can understand and process. (19)

By computer system in this context, we mean the language processor ptus the
ability to carry out certain instructions (i.e., compilation and execution).
We can perhaps best illustrate this principle by giving some examples.
Consider first the sentence in (15a), "Do you have any books on computers ?"
Following our previous simplified examples, this sentence might be analyzed
as follows:

Given: A' = books on the top of computers
A" = books about computers (20)
A - - A ' v A "

Requested: All A in D

At the t ime of execution, the computer system will realize that it has no
capability to reaeh on the top of any computer; the A' interpretation is,
therefore, rejected and we have A = A" unambiguously. As another example,
consider the sentence in (14), "Have any books on automata been written ?"

Given: A' = book on the top of automata ^ written
A" = book about automata ^ written (21)
A ~ - A ' v A "

Requested: All A in D

Here again the system will be unable to verify the truth value of A' and will
reject it.

Our second example in (21) raises another question which can be better
illustrated with the following example:

Can you tell me if you have any books about automata ? (22)

Queries such as (14) and (22) are, strictly speaking, yes/no questions; but the
user more often wants for the answer not just a yes or a no but a list of tise
books. This is automatically achieved by the principle in (19) if the syste m
has no way of determining about its own capabilities.

Given: A = book about automata
Requested: Q(CAN TELL(A in D)) v (all A in D) (23)

338 Moyne

Similar constraints can be imposed by interaction with the data base and/or
the information contained in other statements in a task description. For
example, the sentence

List the names of all employees in the Accounting Department
with five dependents. (24)

has structural ambiguity in that the phrase five dependents can modify
employees or Accounting Department. Let us represent this sentence as
"List all X in Y with Z; we then have

Given: A' = X (Z) C Y
: A" = X C Y(Z) (25)

A = A ' v A "
Requested: All A

If, however, the data base has dependents listed for employees but not
for the Accounting Department, then the A" interpretation will be rejected. 9

6. SAMPLE I M P L E M E N T A T I O N

Complete detailing of the specifications and implementation of a
simple-English language, like any other language, requires 'much more space
than can be afforded by a section in a short, general article. In this section,
therefore, we try to describe some of the main features of a sample implemen-
tation in order to give the reader an overview of the language and
its processor.

For this implementation, we have developed an abstract robot-cook
that receives instructions for meals and responds by generating a procedure
for the preparation and serving of the meals. Let us trace through an example:

I want a rare hamburger for lunch. (26)

This sentence, as we see below, may or may not involve a large number of
operations depending on what is stored in the various files at the time of the
processing of the sentence. Without getting into detailed discussion of the
linguistic analysis of (26), we note that there is a lexicon in the processor
that includes "rules" as definitions of words. These rules generally represent
words as operand-operator pairs in which the operator is a meta symbol,
Often a function or macro name with one or more arguments as its collective

9 For a variant of this approach in which the resolution of ambiguity is at the level of
linguistic analysis resulting in a unique parse, see Ref. 16.

Simple.English for Data Base Communication 339

operand. Thus, in processing the sentence in (26), the following rules, among
others, may be used.

I. hamburger --~ BROIL (meat patty) ^ COOK (mode)
2. meat patty --~ MOLD (ground meat) ^ AMOUNT (�88
3. ground meat --+ GRIND (meat) ^ TYPE (cut) ^ AMOUNT (�88 5) (27)
4. mode-+ rare] medium]well done
5. meat --> beef l pork i lamb j ...
6. cut --~ sirloin i chuck r round i ...

The operators BROIL, MOLD, etc., as indicated above, are complex symbols
and would expand to other operator-operand pairs. For example, BROIL
is defined as: SELECT (oven); SET TEM 6 (broil). Furthermore, primitive
words in the lexicon have features or attributes associated with them; for
example, associated with the word r a r e is a time feature of 3 rain (these
attributes are in addition to the standard syntactic and semantic features
required for the analysis of sentences).

The structure of the data base is conceptually identical with the model
that we have described in this paper, except that items and their attributes
are coded and stored in a compact way for efficiency. We have a data base
called kitchen (K) which contains three files: refrigerator (R), kitchen table
(7"), and pantry shelves (S). In addition to the rules, such as those in (27),
entries in the lexicon have other features associated with them; for example,
for the attributes of hamburger, we have its ingredients: chuck beef, salt,
pepper Every entry has also storage class attributes indicated for primary
and secondary storage; for example, meat has refrigerator as its primary
and kitchen table as its secondary storage. Thus, when meat is called for,
first the R file is searched and then the T file. If both the searches fail, there
is no meat in storage. Meat items in the R file conceptually are organized
as in the following table:

Item no. (I) Name (N) Kind (P1) Cut (P~) Weight (P~) Quantity (P4)

000162 meat beef sirloin 2 1

000163 meat beef chuck 6 1
: : : : : ."

(28)

Returning to the sentence in (26), let us assume that the sentence is used
for the first time and we have meat items stored in the data base (file R)
as shown in (28). Beef chuck will be selected along with Rule 3 in (27) which
invokes the GRIND operator. Note that the AMOUNT operator in this
rule has lower and upper bounds ranging from ~ to 5 lb. The selection of

340 Moyne

amount is random. A random number generator will select a number between
~- and 5 in increments of �88 Suppose 3 is selected. Thus, 3 lb of beef chuck is
taken [i.e., 3 is subtracted from the original storage of 6 lb in the R file (28)
leaving 3 lbs of chuck behind]. After the "execution" of Rule 3, we store in
the data base 3 lb of ground meat. Rule 2 will then apply. In Rule 2 the
A M O U N T is invariant; that is, each time a meat patty is made from 1 lb
of ground meat. However, there is no restriction to the number of times that
this rule can reapply. 1~ Potentially, the rule may apply and reapply until all
the 3 lb of ground beef has been made into 12 meat pattie s. Actually, the
number of times that this rule applies is again governed by the output of
the random number generator whose lower bound at this time is one, and its
upper bound is the amount of ground meat in storage divided by the required
amount for each patty. Let us assume number 4 is generated for this decision;
we will then make four meat patties and store them in the file R and deduct
1 lb from the abount of ground meat in storage. Next, Rule 1 will apply. The
number of times that this rule will apply is governed by the number of
hamburgers asked for in the original input sentence. In the present case,
we will make one hamburger. The data in the R file [cf. (28)] will now look
like the following:

000162 meat beef sirloin 2 1
000163 meat beef chuck 3 1

- ~ �9 : �9

000195 ground
meat beef ground 2 1

000196 meat
patty beef patty ~ 3

(29)

I f the sentence in (26), with the storage items as shown in (29), is used
again, only Rule 1 in (27) will apply, since meat patty is available in storage
and there is no need for Rules 2 and 3. After the sentence in (26) has been
processed again, the entry for meat patty will change to

000196 meat patty beef patty �89 2 (30)

In tracing through the processing of (26), we have left out many of the
details, but we have given enough to give the reader a general view. One

10 Some of the rules in the lexicon are marked as repetitive; these rules can reapply to the
same construction as long as the conditions for their application hold. Other rules, not
marked as repetitive, can apply only once in each cycle. The details of this are not im-
portant for our present discussion.

Simple-English for Data Base Communication 34t

further point about (26), however, bears some further explanation. The word
lunch in (26) is defined by the following "rule":

lunch --~ (first course ^ main course ^ desert ^ beverage) ^ TIME (hour)

(31)

The word hamburger in the lexicon has an attribute indicating that it is a
"main course," and tea and coffee, for example, are marked as beverages.
Since the sentence in (26) does not refer to any first course, desert, or beverage
item, these will be marked as nill in the final analysis of this sentence.

We can update the files in the data base by "shopping instructions";
that is, write and execute a task (program) in the same laguage, for example:

Check the refrigerator; if we are short of meat, buy 5 lb of
steaks, 2 lb of stew meat, and 2 lb of ground beef. We may also (32)
need lemon juice, green peas, and flour. Get two loaves of white
bread from the bakery. Etc.

Notions such as "short of" are arbitrarily defined over a certain weight range.
We can also automate the file updating by establishing a minimum threshold
for each item and automatically increase the storage quantity of the item by
some arbitrary increment when it reaches the specific threshold.

Two other implementations of simple-English languages are underway
at present. One is in the area of on-line high school geometry exercises and
the other is in propositional calculus. But descriptions of these will have to be
subjects of other communications after sufficient work has been done in them.

The preliminary implementation of the "robot-cook" has been done
by a number of students of the author. The programs written in eL/1 are
highly modular and run on IBM 370/168. In the lexicon, so far there are
about 150 words and 50 rules. The size of the data base is variable, and grows
or diminishes in the course of a run. At present, we have allowed a matrix
with a maximum dimension of 200 • 12. Perhaps the most difficult and
somewhat messy modules are those dealing with linguistic analysis, disam-
biguation, etc. While study and experiments continue in linguistic analysis,
we use models previously developed by the author and his colleagues/G,l~
A number of new procedures for disambiguation have been written in
PL/1 and FORTRAN and these are now being tested.

The implementation of geometry exercises is also being done in PL/1,
while for the propositional calculus project LISP is being used.

7. C O N C L U S I O N S

Some significant achievements notwithstanding, we have argued that
English-like and pseudo-English languages may not be as desirable as more

342 Moyne

formal programming languages for writing tasks for data base communi-
cation. We have proposed a family of simple-English languages which may
diminish the learning problems in the English-like and pseudo-English
languages. This is done through continuous contextual analysis, interaction
with the data base, and drawing inferences. We have also introduced special
ways for treating ambiguities, thus reducing the needs for placing restrictions
on the language. By citing various models and developments and outlining
an implementation, we have suggested that the state of the art permits the
construction of a simple-English processor.

We should hasten to point out that we do not in the least claim that
simple-English as described in this paper has no major unresolved problems.
It is perhaps only relatively more expedient than English-like and pseudo-
English languages. The reader must have noticed that even some of the
examples we have given in this paper do not readily fall within the purview
of our ambiguity treatment, and it is easy to make up other counterexamples
that defy any deterministic analysis for practical purposes.

We believe that continued investigations in processing natural languages
by computers have important theoretical and practical consequences for
both linguistics and information sciences, but the notion that ease of learning
and facility in usage can be had by moving superficially in the direction of
natural languages for programming computers is an illusion. I f we need
simple languages for layman applications, we should invent artificial
languages that do not superficially resemble natural languages and will not,
therefore, confuse the casual user by similarities with his native language.
On the other hand, when natural language is appropriate (particularly in
data base communication), then the resemblance must be much more
than surface deep.

REFERENCES

1. Y. Bar-Hillel, Language and Information (Addison-Wesley, Reading, Mass., 1964)o
2. D. G. Bobrow and B. Raphael, "New programming languages for artificial intelligence

research," ACM Comput. Rev. 6(3):153-174 (September 1974).
3. Center for Applied Linguistics, Research Trends in Computational Linguistics (Center

for Applied Linguistics, Washington, D.C., 1972).
4. N. Chomsky, Aspects of the Theory of Syntax (MIT Press, Cambridge, Mass., 1965).
5. Feature Analysis of Generalized Data Base Management Systems, CODASYL Systems

Committee, ACM, New York (May 1971).
6. P. Culicover, J. Kimball, D. Lewis, D. Lovernan, and J. Moyne, "An Automated

Recognition Grammar for English," Technical Report FSC 69-5007, IBM, Cambridge,
Mass. (1969).

7. C. Hewitt, "PLANNER, A Project MAC report," MAC-M-386, MIT, Cambridge,
Mass. (October 1968); revised August 1970.

Simple-English for Data Base Communication 343

8. D. E. Knuth, "Structured programming with go to statements," ACM Comput. Surv.
6(4):261-301 (December 1974).

9. F.W. Lancaster and E. G. Fayen, b(ormation Retrieval On-Line (Melville, Los Angeles,
1973).

10. D. B. Loveman, J. A. Moyne, and R. G. Tobey, "Cue: A Processor System for Restrict-
ed Natural English," Proceedings of the Symposium on Information Storage and Re-
trieval, University of Maryland (1971), pp. 47-59.

11. C. A. Montgomery, "Linguistics and information science," J. Am. Soe. Inf. Sci.
(May-June 1972), pp. 195-219.

12. J. A. Moyne, "A Simulated Computer for Natural Language Processing," Technical
Report TR 00.1463, IBM (1966).

13. J. A. Moyne, "Introduction to an Operational RELADES," Technical Report TR
00.1442, IBM (1966).

14. J. A. Moyne, "Proto-RELADES: A Restrictive Natural Language System," Technical
Report BPC 3, IBM, Cambridge, Mass. (1967).

15. J. A. Moyne, "An introduction to transformational grammars," Int. J. Comput.
Math. 2:169-181 (1968).

16. J. A. Moyne, "Informational retrieval and natural language," Proc. Am. Soe. Inf.
Sei. 6:259-263 (1969).

17. J. A. Moyne, "Some Grammars and Recognizers for Formal and Natural Languages,"
in Advances in Information Systems Science, Julius T. Tou, Ed. (Plenum, New York,
1974).

18. M. Pacak and A. W. Pratt, "The Function of Semantics in Automated Language
Processing, Proceedings of the Symposium on Information Storage and Retrieval,
University of Maryland (1971), pp. 5-18.

19. R. Rustin, Ed., Natural Language Processing (Algorithmics Press, New York, 1973).
20. G. Salton, Automatic Information Organization and Retrieval (McGraw-Hill, New

York, 1968).
21. J. E. Sammet, Programming Languages: History and Fundamentals (Prentice-HalI,

Englewood Cliffs, N.J., 1969).
22. S. Y. Sedelow and W. A. Sedelow, Language Research andthe Computer (The University

of Kansas, Lawrence, 1972).
23. R. M. Schwarcz, J. F. Burger, and R. F. Simmons, "A deductive question-answering

for natural language inference," Commun. ACM, 13(3):167-183 (March 1970).
24. "SIGPLAN, Proceedings of a symposium on very high level languages," SIGPLAN

Notices, ACM:9(4) (April 1974).
25. G.J. Sussman, and D. V. McDermott, "From conniver to planner, a genetic approach,"

Proc. FJCC (1972).
26. D. E. Walker, "Automated Language Processing," in Annual Review of Information

Science and Technology, Vol. 8, Carlos A. Cuadra, Ed. (American Society for In-
formation Science, Washington, D.C., 1973).

27. T. Winograd, Understanding Natural Languages (Academic Press, New York, 1972).
28. W. A. Woods, "Semantics for a Question-Answering System," Report No. NSF 19

to National Science Foundation, Harvard University, Cambridge, Mass. (1967).
29. W. A. Woods, R. M. Kaplan, and B. Nash-Webber, "The Lunar Sciences Natural

Language Information System: Final Report," BBN Report No. 2378, Bolt Beranek
and Newman, Cambridge, Mass. (1972).

30. V. Yngve, COMIT, 2nd ed. (MIT Press, Cambridge, Mass.).

Printed in Belgium

