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The problem of feature selection in a totally unsupervised, distribution free 
environment being conceptually ill-defined, the problem has been studied 
in an artifically evolved pseudosupervised environment. The evolution of 
such an environment is achieved by formulating a unified approach to the 
twin problems of feature selection and unsupervised learning. The solution 
of the latter problem leads to the pseudosupervised environment in which 
the features are evaluated by employing a multistate-choice automaton 
model as the feature selector. The methodology developed here is intended 
to be deployed in conjunction with any one of the numerous recursive schemes 
of clustering in which the crudely formed initial clusters are refined in a 
recursive fashion by successively determining the centroids of the different 
clusters and reallocating the samples to the clusters defined by these centroids. 
This allocation is carried out on the basis of distance measures (Euclidean 
or modifications thereof) and is in parallel progress with the feature-evaluation 
process. The clusters, as formulated at each stage of the recursive process, 
provide the pseudosupervised environment for the feature selector. The 
track record of the automaton in terms of probabilities of penalized action 
provides a measure of the efficiency of the different feature subsets in the 
unsupervised environment. 

KEY W O R D S :  Feature selection in nonparametric unsupervised environ- 
ments; simultaneous learning and feature selection; multistate-choice 
automaton for expedient learning in random environment. 
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1. I N T R O D U C T I O N  

The problem of feature selection in supervised environments, in which the 
distributions underlying the pattern classes are known, has been studied 
in depth through a variety of theoretically well-established approaches m~) 
such as those based on divergence, Bhattacharya distance, and similar con- 
cepts. On the other hand, feature selection in supervised but distribution free 
environments has also been studied in fair detail through nonparametric 
approaches (~,~) evolved from sound physical concepts such as interclass and 
intraclass distances as a measure of separability of classes. The problem of 
feature selection in unsupervised or imperfectly supervised environments is 
conceptually not well defined, although some attempts (4) have been made 
under the assumption that the probabilistic description of the different 
classes is available and that samples are available at least with imperfect 
labels. An alternative approach (5) that has been proposed is that of creating 
a pseudosupervised environment through a concurrent solution of the 
unsupervised learning problem, wherein the feature selection can be success- 
fully carried out as before. This simultaneous unsupervised learning is 
achieved therein by updating the parameters of the distributions assumed 
to be known a priori  in form, using the probabilistic, (~) the imperfect, (7) or the 
unfamiliar teacher scheme. (s) In a totally unsupervised and distribution free 
environment, neither a parametric approach, which calls for a knowledge of 
the distributions underlying the pattern classes, nor a nonparametric measure, 
which requires a labeled training samples set, can be construed for evaluating 
the effectiveness of a set of features. Therefore, a significantly different and 
innovative approach is necessary for tracking this problem of feature selection 
in an unsupervised, nonparametric environment. Such an approach is detailed 
in the sequel. 

2. P R O P O S E D  F E A T U R E - S E L E C T I O N  T E C H N I G I U E  

It is clear from Section 1 that this feature-selection problem can be 
defined in unambiguous terms only by creating a pseudo supervised environ- 
ment and visualizing the feature-selection problem in that environment. 
This, in effect, calls for a unified approach to the twin problems of feature 
selection and unsupervised learning. Such an approach would tackle the two 
problems concurrently, with the solution of the unsupervised learning 
problem providing the pseudosupervised environment needed for solving 
the feature-selection problem. This pseudosupervised environment is con- 
tinuously redefined as the learning progresses, thereby enhancing the 
reliability of the feature selector. This approach, although similar in frame- 
work to the one proposed earlier (5) for feature selection in parametrically 
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defined but unsupervised environments, differs significantly in the manner in 
which the pseudosupervised environment is derived. The probabilistic 
descriptions of the classes being unavailable, neither the probabilistic teacher 
scheme (e) nor its modifications (7's) can be applied to obtain reliable labels for 
the given training sample set of unknown or unreliable classification. In 
view of this relatively less tractable environment, recourse is taken to the 
alternative approach of viewing the unsupervised learning problem as one 
of clustering the given set of unlabeled samples. The recursive process of 
homogenizing the initially formulated clusters, which is common to many 
clustering techniques, (1,9,1~ provides the framework for continuously 
updating the labels of the sample set, thereby refining the pseudosupervised 
environment in which the feature selection can be carried out. 

Here, the task of feature selection is viewed as one of evaluating the 
effectiveness of the different feature subsets and, in principle, can be carried 
out by any of the nonparametric approaches suited for operation in a super- 
vised environment. However, in view of  the fact that the environment is not 
a truly supervised one, but tends toward it gradually as the recursive clustering 
process progresses, it is observed that a feature-selection scheme that evaluates 
the features over a large span of operation in a statistical sense is most suited 
for integration with such a clustering process. The multistate-choice auto- 
maton model, m) proposed recently for expedient learning in a random 
environment, has this property and is therefore employed here as the feature 
selector. This multistate-choice automaton model is a modification of an 
earlier finite automaton model proposed by Fu and Li (12) for learning in a 
stationary random environment and shown (13) to be applicable as a feature 
selector in a supervised environment. The new model m) can change from 
a given state to any one of  the other states under penalty, i.e., can choose 
any one of the possible actions whenever a penalty is received by the auto- 
maton, unlike the earlier model, (1~ in which penalty dictated the automaton 
to go only to the next state. In the context of feature selection, this apparently 
small modification becomes conceptually significant, as the arbitrary order 
of  identifying the different feature subsets with the different actions of the 
automaton no longer has any bearing on the outcome of the experiment. 
Thus, the feature-selection process becomes independent, as it should, of  
the arbitrary initial ordering of the feature subsets. Such ordering is necessary 
for associating the subsets with the different possible actions of the auto- 
maton. 

Now consider the multistate-choice of  automaton model (m Mr,K 
with K actions, each corresponding to r states. Here, it is to be noted that, 
for K -- 2, this Mr.2 model will effectively reduce to the Ar.~c (K = 2) model 
proposed earlier by Fu and Li, (12) both the models being conceptually 
equivalent in view of the fact that under penalty the automaton M~,2 also 
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goes to the next state only (the only other available state). The M,.K model, 
in general, changes state under penalty input according to the state transition 
diagram (Fig. 2 of ref. 11). Because the goal of the automaton is to minimize 
the mathematical expectation of the penalty received by it, the expedient 
behavior of this learning automaton model can easily be established. This 
is not presented here, however, since it is available elsewhere in the 
literature, m) 

Here, each action k of the automaton is arbitrarily associated with a 
particular feature subset fk and, depending on the number of feature subsets 
(say K) being evaluated, the automaton is selected to have K actions. Setting 
r = 1, for simplicity in presentation, the automaton model is considered in 
the form Mx,K. Under nonpenalty ( y  = 0), the automaton stays in its 
current state k, while under penalty ( y = 1), the automaton takes a transition 
into one of the  other states 1 .... , i,..., K (i =/: k) according to the state tran- 
sition diagram (Fig. 2 of Tef. 11). The actual state it enters is decided by a 
random number generator with uniform distribution. 

The feature-selection scheme shown in the figure can now be portrayed 
through the algorithm underlying the scheme. 

Algorithm. Let the automaton M1,K be presently in state k. 

1. As a new sample X ~+1 with its pseudolabel Lj+I derived by the clus- 
tering scheme a~ is input to the system, derive the label ~tj+~ by allocating 
the sample X j+~ to the cluster nearest to it (the nearness to a cluster can be 
based on the distance to its prototype such as the centroid or nearest neighbor 
among a set of prototypes of each cluster or other suitable concept). This 
distance is measured in the subspace defined by f~+~, the subset of features 
corresponding to the present state of the automaton. 

xi+i [ . . . . .  

N e a r e s t  Gluster  

Supervised | l II ~'j+l 

Label C.omparator Lj+I 

fkJ z 

jb 4~'" Multistate~ 
Choice 
Automaton 
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y=O or I 

t Ordered --I 2;Z;: 

Fig. I. Schematicrepresentationoffeatureevaluationandselectiontechnique(FEAST). 
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2. Compare the labels Lj+~ and AJ+I, and set y according to the 
following rule: 

Lj+I = AJ+I ~ Y = 0 (nonpenalty) 

L~+~ :/= )ti+ 1 =~ y = 1 (penalty) 

3. Under nonpenalty, i.e., y = 0, the automaton remains in the present 
state k; while under penalty y ----- 1, the automaton jumps to one of the other 
states, the actual state at this stage being determined by a newly generated, 
uniformly distributed random number between 0 and K -  1. The corre- 
sponding output f~+2 of the automaton dictates the feature subset to be used 
in processing the next sample. 

4. Go back to step 1 to receive the next input sample X j+2. The proba- 
bility ~r~ of receiving a penalty for deploying a particular feature subset 
fie is estimated as 

0~ k 
"/'rk - -  ~ k  

where fi~ is the frequency of the actionfk (i.e., the number of times the feature 
subset fk was used) and ~k is the frequency of penalized action fk (i.e., the 
number of  times a penalty was received by the automaton for using this 
feature subset fk). 

A track record of the automaton, in terms of the number of times each 
feature subset was used along with the corresponding number of penalties 
received by the automaton for using these subsets, is maintained, and this 
is used to estimate ~rk:k = 1 ..... K. These values o f ~ r ~ : k  = 1 .... , K a t e  
then treated as measures of the effectiveness of the feature subsets and used 
to order the different subsets accordingly. 

3. C O M P U T A T I O N A L  ASPECTS 

The feasibility of  the approach was investigated using the C-1 flightline 
data of the Laboratory for Applications of Remote Sensing (LARS) of 
Purdue University. (14) These data are sensed from an aircraft through a 
12-channel multispectral scanner. Well-identified training samples of this 
data set were used in these experiments by withholding the known labels 
of these samples to simulate the unsupervised environments. Here, these 
labeled samples were used to help the a posteriori evaluation of the results 
of  clustering and feature selection. The very first problem encountered 
in the implementation was that the proposed scheme entailed setting up 
an automaton MI,K, where K is exceedingly large if one has to evaluate 
all possible feature subsets (of sizes 1 through 12). For this case, K = 2 t~ -- I 
and, in general, K ---- 2 N -- 1, where N is the number of individual features 
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defining the data set. Even if only subsets of a particular prespecified dimen- 
sion, say is ( <  N), are to be assessed, one would still need 

N~ 
( N ) _ n  (N ~-n),  n, 

states for the automaton. For n ~ N / 2 ,  this signifies a very large number of 
states. This in turn calls for a prohibitively large number of samples to be 
processed by the feature selector before the statistics derived by the technique 
can be considered reliable and sufficient. To overcome this inadequacy of 
the method in the processing of large dimensional data sets, a suboptimal 
sequential procedure can be constructed. 

Such a procedure involves significantly less computational load without 
sacrificing the essential ingredients of the scheme. The scheme would call 
for at most N states for implementation of the automaton M1./c, i.e., K ~< N, 
at any stage of the sequential procedure. In practice, the procedure can be 
visualized in two ways: 

1. Determine the single best feature out of the given N features at 
the first stage, combine this best feature with each of the remaining (N -- 1) 
features to determine the best subset of two features at the next stage, and 
continue in the same manner until the best feature-subset of requisite dimen- 
sion n is derived. 

2. Alternatively, determine the single worst feature, i.e., evaluate the 
best feature subset of (N -- 1) dimension out of the possible N such subsets 
(derived by dropping out one or the other of the N features) at the first stage, 
similarly determine the best subset of (N -- 2) dimension at the next stage, 
and continue until the best subset of the required dimensionality is obtained. 

Choice of one of these two procedures is dictated by the value of n 
relative to N, as that decides the computational expense involved in the 
sequential process. Conceptually, of course, the latter is more satisfying 
as reliance is at no time placed on the performance of a single feature. 
However if n is closer to unity, i.e., if a very small set is sought, the former 
approach is better suited. I f  n is closer to N, then the latter procedure is both 
conceptually and computationally more desirable in view of the lesser number 
of steps in the sequential process. But, it is to be noted that the computation 
needed at each step in the latter approach is higher because the distances are 
measured in a correspondingly higher-dimensional space. Thus, strictly 
from a computational point of view, the two approaches balance out, not 
at n N N / 2 ,  but at a value of n much closer to N. Depending on whether 

% N-z 
/ o r  ~ i  

i = 1  ) i=n 
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i.e., according to whether 

< N ( N -  1) 
n 2 o r  

> 2 

either the former or latter approach is to be adopted. Of course, one could 
visualize a far simpler implementation, namely, ordering the features by 
evaluating all the individual features simultaneously in one stage and selecting 
the n best features directly out of the ordered set of  N features. This is 
considered unsuitable because the effect of  cross-correlation between features 
is not taken into account at all by this overly simplified procedure. For  
example, if two features are individually determined as good in discriminating 
between the same two classes, the combination of these two features may not 
necessarily be superior to the combination of using the better of these 
features with another feature that is good in discriminating a third class. 
This is particularly significant in a multiclass environment. This, therefore, 
justifies the higher computational expense of the sequential procedure out- 
lined above. 

4.: TEST RESULTS A N D  C O N C L U D I N G  REMARKS 

This  sequential procedure was coded and tested using the nine-class 
12,dimensional training data set (of beans, corn, oats, rye, alfalfa, s0il, 
red clover, wheat I, and wheat II) of Purdue LARS C-1 flightline data se t. 
The labels of the input data set were withheld to simulate the unsupervised 
environment. The clustering resulted in essentially 10 clusters with a good one= 
to-one correspondence between the clusters as evolved and the known patterp 
classes except for the case of red clover, which separated into two separate 
clusters. A close scrutiny of  the red clover samples reveals a rather large 
spread along features 11 and 12 (which were discerned as the most significant 
features) compared with the variations within other classes and even between 
other classes. This, of course, is not a serious discrepancy, as subclusters 
can always be recombined at a later stage. This multiclass environment 
(rather than a simple two-class one) was used for testing because it represents 
a more realistic unsupervised envrionment in which one has no knowledge 
of  the actual number of classes. Of course, this makes the evaluation of the 
feature-selection results a little more complex, as most of the other published 
results ts,13.14) of feature selection on this data set relate to two class environ- 
ments. Even those I~) that relate to multiclass supervised environments tackle 
the problem as a set of sequential or batch two-class problems rather than as 
a concurrent multiclass problem. In spite of these differences, the feature 
ordering obtained here (Table I) compares favorably (albeit not identically) 
with that derived elsewhere through supervised ~3,13,14~ or unsupervised 
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Table I. Feature Ordering Derived by Processing C-I 
Flightline Training Data Set Through FEAST 

Feature Order 

11 
12 
5 
2 
8 

10 
6 
9 
1 
3 
4 
7 

I 

methods. (51 Of course, the discrepancies result because the feature subset 
optimal for a particular pair of classes is not necessarily the best for the total 
multiclass problem environment and because the clusters resulting from the 
clustering process cannot be exactly matched with the external class distinc- 
tions. The feature ordering thus obtained can be employed to define the best 
feature subset of any dimension, say n, by using the first n features of the 
ordered set. 

It is therefore believed that this feature evaluation and selection technique 
(FEAST) can be reliably employed for feature selection in unsupervised 
nonparametric environments, requisitioning the suboptimal sequential 
procedures whenever the dimensionality of the data set is relatively large. 
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