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A model for scene description and syntactical recognition is proposed based 
on branch-and-node-labeled graphs. Generating grammars for scene descrip- 
tions are proposed, and the problem of parsing general descriptions is treated. 
An example of application is given for scenes from a popular Brazilian 
comic strip. 
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"A sentence should contain no unnecessary words 
a paragraph no unnecessary sentences 

for the same reason that a drawing 
should have no unnecessary lines 

and a machine no unnecessary parts." 

William Strunk, Jr., 1918 

1. I N T R O D U C T I O N  

Though  pat te rn  " recogni t ion"  systems exist that  are entirely based on feature 
extraction and pa t te rn  classification by statistical means, (1-3J they are clearly 

inadequate  if  the ul t imate goal is to approach h u m a n  recognit ion capabilities 
by automated  methods)  ~I It  is more or less accepted now that  a system that  
actual ly recognizes say, scenes, must  have as its integral par t  a highly 
structured model  of the universe, of  which the scene being scanned is a sample. 
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So-called "structural methods" have appeared in which, in addition to 
the information contained in partitions of multidimensional feature spaces, 
relational information is also taken into account in the process of  recognizing 
a scene or pattern. Generally speaking, the use of  structural information 
also simplifies the costly and time-consuming feature-extraction step of  the 
process. 

2. S Y N T A C T I C A L  M E T H O D S  

The syntactical models see the patterns as formed by primitive elements 
and the relations among them. Generating grammars are used to provide 
finite models for countably infinite universes and to guide the parsing; the 
extension to two dimensions of  the natural notion of concatenation for 
string grammars, though, is not obvious. Several models have been proposed, 
including those of Kirsch, ~5) Dacey, ~6) the array grammars of Milgram and 
Rosenfeld, C7) and others, such as that of Feder. u6) 

Grammars  that generate graphs have been studied by Pfaltz and 
Rosenfeld3 s) Another reasonable approach has been to propose grammars 
that generate not the scenes or patterns themselves but suitable descriptions 
of  them; see, for instance, Menninga, (9) Shaw, C1~ Pfaltz, (u~ Fu and 
Bhargawa, c12~ and Masumi. ~13) 

The present work is based on the notion of web grammars, as in ref. 8, 
generating not the patterns themselves but their descriptions, as in ref. 11. 

3. G L O G S  

Definition 1. An oriented graph is a pair g = (N, A~ where N is a 
finite, nonempty set of nodes and A is a binary relation on N, A C N • N. 

Definition 2. A vocabulary is a triple ~ =- (V, R, a )  where V is a 
finite, nonempty set of  node labels, R is a finite, nonempty set of  branch 
labels, and cr is a bijection or: R ~ R, such that cr = a -1. 

The branch-and-node-labeled graphs that will be used to describe 
scenes may now be defined. 

Definition 3. A general labeled oriented graph (GLOG) over a voca- 
bulary ~ = (V, R, ~r) is a quadruple co ~-(N,  A,F, E) where (N, A) 
is an oriented graph (the ground graph), F: N--+ V is the node labeling 
function, and E: A --~ ~(R)  - -  {r is the branch labeling function. ~ 

We shall use ~(A) for the power set of A. 
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N o t  all G L O G s  are valid descriptions of  scenes, however.  It  was found 
expedient  to restrict somewhat  the previous definition. 

Definition 4. A G L O G  as in Definit ion 3 is descriptive iff its ground 
graph  is s trongly connected,  symmetric,  antireflexive, and, moreover ,  for  
all a, a '  e A such that  a '  is the symmetr ic  branch of  a, r ~ E(a) iff or(r) e E(a'). 

Descript ive G L O G s ,  as defined above,  are those that  natural ly arise 
in the description of  real world scenes. The funct ion cr in this case associates 
to each spatial relation (e.g., "is above" )  its semantic inverse (e.g., "is below").  
The  other  requirements  for  a G L O G  to be descriptive are also of  the same 
practical nature. 

Example 1. Let V = {r, w, h, i} where r ~-~ roof, w *-+ wall, h +-+ house, 
i +-+ window; let R = {a, b, i, s, t} where a +-~ above,  b ~+ below, i ~ inside, 
s ~-+ surrounds,  t +-~ touching; the G L O G  on the right describes the scene 
on the left o f  Fig. 1. In  this case, F(1) = r, E((1, 2)) = {t, a}, etc. 

I t  is clear that  the same G L O G  describes infinitely m a n y  scenes that  may,  
f rom this point  of  view, be considered "equivalent ."  Also, the natural  concept  
o f  i somorphism applies to G L O G s ,  i somorphic  G L O G s  describing the same 
or  equivalent scenes. Also naturally, s u b G L O G s  may  be defined. 

Definition 5. Given two G L O G s  o~ = (N~,  A~, F~, E~) and/8  = (NB, 
A s , F~, EB), over the same vocabula ry  Y-, then /~ is a " s u b G L O G "  o f  c~ 
iff: 1) N~ C N~ ; 2) A s C A~ ; 3) F~ = F~/Ne ; and 4) E~ = E~/A~. fi will be a 
complete  s u b G L O G  of  ~ iff conditions 1 through 4 hold and A~ = A~ n N~ 2. 

4. G L O G  G R A M M A R S  

The definition of  generating g rammars  for  G L O G s  follows closely 
that  for  phase-structure g rammars ,  (13) with the additional difficulty brought  

f 

Ill 

l ( r )  

L 

Fig. 1. A simple scene and its descriptive GLOG. 
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about  by the handling of  graphs. Thus, whenever the left side of  a product ion  
is substituted by its right side, the new connections with the remaining nodes 
must  be unambiguous ly  specified. Also, there must  be some assurance that  
only descriptive G L O G s ,  as in Definition 4, are generated. 

Definition 6. A GLOG Grammar, G L O G G ,  is a triple G = ( ~ ' ,  L P )  
where ~ is a vocabulary  as in Definition 2, where V = VTU VN, 
VT n Vu = ~, I is a set of  single node (trivial) initial G L O G s  whose labels 
are in VN and P is a set o f  triples (productions)(~,/3,  ~b) where c~ and /3  are 
G L O G s  over ~ ,  and ~b is the embedding function, ~b: N~ • R • {--1, +1} --+ 
N~ x R. Moreover ,  in o~ there should be at least one node labeled with a 
nonterminal  symbol.  

As in phrase-s tructure  grammars ,  V~ is the set o f  "non te rmina l s"  and 
VT the set o f  " terminals ."  The triples of  P are rewrit ing (here one could say 
" redrawing")  rules and can also be writ ten ~ ~ fi(~b) or  c~ - -~/3 .  

The embedding funct ion ~b introduced above describes how the new 
G L O G  being inserted, /3, should be connected to the host  G L O G  nodes,  
say No_~. I f  ~(t, r, x) = (n, s), then every node m of  Np_~ linked to t by a 
branch  ( t , m ) - - i n  this case x ~ - + l - - o r ( m ,  t), for  x = - - 1 ,  labeled r 
should be linked in the resulting graph with n by a branch  (n, m) if x = + 1 
or (m, n) if  x ~- --1,  labeled s. 

Example 2. Let V u - - { A }  and VT = { a , b } ,  R =-{r ,s},  cr = { ( r , s ] ,  
(s, r)}, and co the initial G L O G  o~ = {{1}, q~, {(1, A)}, q~}. We can represent  
co as ! (A); let P be given by 

s ?. ( A ) r  
1. I ( a ) l  ~ 3 ( a )  �9 (A) 

r $ 

with ~ ( 1 ,  r, + Z )  = (2, r), ~ ( 1 ,  s, + l )  - -  (2, s), ~ ( 1 ,  r, - -1)  = (2, r),  
~bl(1, s, --1) = (2, s) and 

2. 1(14) ~ 1.(b) 

with ~b~(1, r, +1 )  = (1, r), ~b2(1, s, + 1 )  = (1, s), ~b~(1, r, - -1)  = (I ,  r), 
4~(1, a, - 1 )  = (1, s). 
For  instance, f rom the G L O G  

r Q $ 

A ~ A  (b) 
r 
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we could generate 

11 

A ~ (c) 

G 

It is easy to see that there is a condition of "coherence" for embedding 
functions in that ~b(nl, rz, x) = (n2, r2) iff ~b(nz, e(rl), --x) = (n2, ~(r2)). 
Also, the notion of "derives directly" carries over from the phrase-structure 
grammars and will be indicated by ~ .  

Definition 7. A given GLOGG,  G = (~r P )  is coherent iff every 
production (~,/3, r of P is coherent. 

Theorem 1. Given a coherent G L O G G  G, if p ~ / ~  by G, then, if O 
is a descriptive GLOG, then/x will be descriptive. 

Proof. The proof  is straightforward. It can be shown that A is anti- 
reflexive and symmetric, that (iV,, A,) is strongly connected, and that 
r ~ E,(nl, n2) iff e(r) e E,(n~, nO. [] 

Definition 8. The language L(G) generated by a given G L O G G  G 
is the set L(G) = {co/oJ is a terminal GLOG and I Nc co}. 

Theorem 2. ] f  a given G L O G G  G is coherent and co e L(G), then co 
is descriptive. 

Proof. This follows immediately from Theorem 1 and the fact that 
any G L O G  of I is descriptive. [] 

The well-known Chomsky hierarchy for phrase-structure grammars 
carries over nicely for GLOGGs,  with somewhat unexpected results. Though 
it is simple to define context-sensitive GLOGGs,  we will concentrate on 
context-free and regular GLOGGs.  

Definition 9. A G L O G G  G = (~Y,/, P )  is context-free iff in every 
production (c~,/3, r ~ P, c~ is a trivial one-node G L O G  with a nonterminal 
label. The language L(G) will also be said to be context-free. 
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For a context-free G L O G G  the embedding function ~b can be simplified 
to ~b: R • {--1, @l}--+ N~ • R. 

Example 3. Using the vodhbulary "V of  Example 1, let VN = {<CO>, (h>}, 
Vr = {r, co, i}, I = (.h>, and let the productions be given by 

1. <h �9 > - - , .  r ~ - ~ c o  > 

2. <u~> j ~ < C O >  ~b(a, + l )  = (<co), a), 
~b(i, --1) = ((co), i) 

3. (~.) --+ co ~b(a, @1) = (co, a), ~b(i, -1) = (co, i) 

For  instance, the derivations 

<h> =:~ 

a 0 S 

r ~ <~o> => r ~ i 

b b i 

would lead to descriptions of  scenes such as 

I I I I I I I  
�9 �9 �9 

�9 �9 �9 

the situation being identical to that  of context-free grammars with self- 
embedding rules. 



An Application of Formal Linguistics to Scene Recognition 295 

Theorem 3. It is decidable if a given GL O G  co over ~r belongs to a 
given context-free language L(G); it is also decidable if a given such G 
generates the empty language. It is also decidable if a given context-free 
G L O G G  generates a finite language. 

Pro@ The proofparalMs the corresponding proofs for phase-structure 
grammars. [] 

Definition 10. A context-flee G L O G G  G is linear iffin every production 
(c~,/3, ~b) ~ P, at most one node of/3 is labeled with an element of F~.. It is 
regular iff every production (c~,/3, ~) ~ P is such that # N  e ~< 2 and the replace- 

A o B .A--+.awhereA, B~V~v, ments are of the type �9 ..~ ~ ~ ,  or 

a ~ Vr,  x, y ~ R. The corresponding languages will also be called linear or 
regular. 

Theorem 4. Every regular GLOG language is linear; every linear G LO G  
language is context-free. 

Example 4. Let VN ={S,S '} ,  Vr = 0 ,  
I = .S, and let the productions of P be 

1. S . .~ ( ~ S '  
@ 

2. S _~ ( c : : ~ : ~  ) 
O 

1 

(}, R = {right (r), left (1}) 

r + l )  = (S', r) r --1) • ((, r) 
r + l )  = 0, 0 r --~) = (S', 0 

~be(r, -i-l)  = 0 ,  r) @2(r, - -1 )  - -  ((, r)  
r +2 )  = ((, 0 r --1) = 0, 0 

3. S" -pS ~ )  
D I 

~ba(r , @l) = 0, r) Ca(r, --1) = (S, f)  
r + 1 )  = (s,  0 r - 2 )  = 0,  t) 

The corresponding language is that of  nested parentheses, the same 
generated by the phrase-structure grammar S-+ (S)/(); note that this 
language is known not be "regular," yet it can be generated by a regular 
GLOGG.  

5. P A R S I N G  A L G O R I T H M  

A considerable portion of the total computer time in automatic scene 
analysis is devoted to preprocessing (noise cleaining, deblurring, filtering); 

8z8/6/4-3 
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segmentation (region growing, partitioning, region grouping); property 
measurements (local properties, texture); and shape analysis. (a4,~s~ These 
steps are outside the scope of this work and will be considered as having 
been previously performed, while we focus on the structural analysis. It must 
be said, however, that an interplay between the structural analyzer and the 
previous programs, especially the segmentation and feature extraction steps, 
may simplify them considerably. 

The system considered in this paper has the overall organization shown 
in Fig. 2; the preprocessing subsystem delivers to the lexical analyzer the 
scene already partitioned. The lexical analyzer preclassifies the regions and 
extracts a complete GLOG, with the branches properly labeled by the 
relations in R. Though all parts of the system are operational, we shall 
concentrate on the syntactical analyzer. 

As for languages generated by phrase-structure grammars, our syntac- 
tical analyzer for context-free GLOG languages can proceed top-down or 
bottom-up; there is no direct analog to the left-to-right parsin, however, 
since the nodes of a G L O G  are not naturally totally ordered. Algorithm 2, 
is a bottom-up parser for linear context-free GLO G  languages. 

Definition 11. Given a context-free G L O G G  G = <~//',/, P) ,  and two 
GLOGs O and IX over ~ ,  O directly reduces to IX, p P- ix, iff there exists a p' 
such that ix =~c O', p' is a subGLOG of p, and No' = No. 

Definition 11, at first glance, should read: O directly reduces to ix, O ~-~ ix, 
iff ix ~G O. However, it was found that, in practical applications, it was 
expedient to allow the "erasure" of redundant or unnecessary spatial relations 
during the parsing process. 

Clearly then, if ~ ~G/3, then/3 ~-- ~, but the converse is not true. O u r  
procedure will be, given a GLOG co, to try to find a chain of reductions 
co = coo k-- co~ ~-- ... ~ co,,  until a co, is found that contains a G LO G  co 
belonging to I (set of initial GLOGs). 

One needs, then, an algorithm that will tell whether some /3 from a 
production (~,/3, ~b) ~ P is a subGLOG of a given p and another that will 
substitute such/3 by c~, producing a ix such that p ~ ix. 

SCENE- ~ DESGRIPTIVE 

I I ANA 'zE" I L ""AL'ZE" 
Fig. 2. The syntactical scene recognition scheme. 
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Definition 12. Given a G L O G  co and a node n e No~, the neighborhood 
of  n, nbh(n), is the set o f  nodes connected by  branches o f  w to n; tha t  is, : 

nbh(n) = {m/(n, m) or (m, n) e A,o} . 

Algorithm 1. Given two G L O G s / 3  and p over  ~r there is an algo- 
r i thm for telling whether  /3 is a s u b G L O G  of  p, generating an injection 
~ :  Ne --" No such that  (n l ,  n~) e A~ iff (SC2(nl), ~Q(n~)) ~ Ao, F~(nl) = Fo(O(na)), 
and Ee(nl , n~) C Eo(f2(nl), ~(n2)). 

The algor i thm is given in Appendix  A. Once it is found that  /3 is a 
s u b G L O G  of  p, /z  will be such that  

1. N . = ( N o - - N A w N . .  

2. A .=(Ao~(No- -Ne)2)wAo, . .  

where Ao,~ is the set o f  branches that  reconstitute the connections between 
p - -  ]3 and ~ (its formal  description will not  be given for  the sake of  clarity). 

! 

3. F , / (N  o -- N~) = Fo/(N o -- N~) 

F./N~ ~ F~. 

4. E,/(Ao r (No --  Ns) ~) = Eo/(A~ n (No - -  Ns)2). 

and E,/Ap,~ is a suitable labeling o f  the branches linking p - - /3  to ~ (again 
its formal  description will not  be given). 

Unfor tunate ly ,  it m a y  happen  that  the above condit ions are satisfied, 
tha t  p ~--/z, but  t ha t / z  is not  strongly connected (hence not  descriptive). 

Definition 12. Given a G L O G G  G = (4 / ,  L P ) ,  a given product ion  
(~,/3, ~) will be said to be final, iff F~(n) e V~ for  all n ~ N~. Such labels for  
n e N B will also be said to be final. 

I f  co c L(G), then, final product ions  surely were used, hence there mus t  
be final labels in co. This fact and Algor i thm 1 are exploited in the b o t t o m - u p  
pars ing algori thm. 

Algorithm 2, Given a G L O G  co over ~Y and a linear 
G L O G G  G = (~-/~,/, P )  there is an algori thm that  parses co 
whether  co ~ L(G) (see Definition 8). 

context-free 
and decides 
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The complete algorithm is given in Appendix B. There is no implication 
that the structural description obtained from a successful application of 
Algorithm 2 is unique; instead of generating all possible descriptions, we 
postulated that the more complex productions be tried first, so that a richer 
description could be obtained. 

6. A N  A P P L I C A T I O N  

To test the applicability of the model proposed, a particular universe 
Of scenes was chosen; since for "real-life" scenes the preprocessing required 
would be considerable and since the emphasis of the model was not on 
preprocessing techniques, it was decided that a simplified universe should 
be chosen. The final decision was to utilize a familiar Brazilian comic strip, 
"Monica," as a source of simplified scenes. In these scenes, the regions are 
clearly defined and uniformly colored, and the renditions of objects (cars, 
houses, trees, fences, etc.) are highly simplified. Yet, it represents a very 
rich, highly structured universe, very much related to that of our  daily 
lives and perfectly recognizable to a human being. 

A GLOGG G was written by (.human) inference, from a sample of 
the comic strips, with 40-odd productions, easily expandable to allow for new 
characters, new objects, etc. In the implementation, the scene was represented 
by a 128 • 128 matrix, and INPE's image processing system (GE's IMAGE 
100) was used for the preprocessing stages. 

Figure 3 shows a typical scene after preprocessing, with levels of gray 
representing different colors. Note the effects of both quantizing and random 
noise 

The overall recognition algorithm was implemented as show in Fig. 4. 
The region identifier utilizes a region-growing algorithm using the four- 

neighbor concept/1~) Some attributes of the regions are also obtained. It 
was found that, for the universe under consideration, the color of the region 
and its position in the frame were sufficient for the subsequent analysis, thus 
simplifying the feature-extraction step. The lexical analyzer I provides the 
syntactical analyzer with tentative multiple classifications, while the com- 
puting of the various relations among the regions is done at the lexical 
analyzer II. 

The complete system was programmed in the B-6700's Extended ALGOL. 
The source deck has approximately 1100 cards. The complete processing 
of the scene shown in Fig. 3 took nearly 21 sec: 15 sec for region identifi- 
cation and 1 sec for the lexical analyzer I. These times were found to be 
typical. Figure 5 shows the output corresponding to Fig. 3. 



An Application of Formal Linguistics to Scene Recognition 299 

Fig. 3. Typical 128 • 128 matrix scene after preprocessing. 

TENTATIVE ~ L  0 G G "~ 
REGIONS ] CLASSIFIOAT~ON ~ ~ i J 

GOMIG l < REGION LEXICAL S YNTACTIGAL 
so~l  ,OENT,~,OAT~ / /ANALYS,  S ~ ANA.u 

I ,  . . . .  

t LEXICAL 
I 
i ANALYSIS ~II 

Fig. 4. Implementation of  the recognition algorithm. 
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*5* FQUR~ SKY CO'HOSED ~YI 
1, 

~** FOUND CLDUU COMPOSED BY: 
2. 

.~* FOUND SKY COMPOSED BY: 
3. 

*** EGUN~ TREE COMPOSED BY: 
B. q. 

STRUCIURAL DESCRIPTI~NZ 
LEAVES REGION" tl ABOVE' TOUCHING ' TRUNK REGION" B 

*** FOUND SKY CQ~POSEn OyI 
7. 

*** ROUND EYE2 COHPOSEO BY: 
10,  l l ,  g ,  

STRUCTURAL O~SCRIRTIONI 
EYE REGION" g SURROUNDS IRIS REGION" 11 
EYE REGION" 9 SURROUNDS IRIS REGIOn" tO 
IRIS REGION" 11 BY THE SIDE oF IRI~ RERION- 10 

*** FOUND EYE CO'POSED ~Y; 

STRUCTURAL DERCRIPTIDN~ 
FACE REGION" 6 SURROUNDS EYE REGION- O 

*** FOUND HEAD COMPOSED BY1 
lqJ 13~ 6,  lOP 11, q ,  

STRUCTURAL DESCRIPTIDN~ 
HEAO REGION ~ 0 SURROUNDS ~OUTH REGION = 13 
HEAD REGION* 0 SURROUNDS TONGUE REGION" IQ 
MOUTH REGION ~ 13 TflUG~ING T~RRU~ REGIOn" I~ 

***  FOUND HEAD COMPOSED BVI 
14, 13~ G, IO~ II, R, 

STRUCTURAL DESCRIPTION; 
HEAD REGZON ~ 0 ABOVE. TOUCHING SHIRT REGION" 15 
SHIRT REGION" 15 AROVE. TOUCHIND SHORTS REGION- 19 

* * *  FDUN~ CER2 COMPOSED BY: 
16~ 2n ,  15, t9~ 14, 13P 6 .  I 0 ,  l I ,  9 ,  

STRUCTURAL 6ESCRIPTION~ 
CEBI REGIDH" O TOUCHING AR~ REGION" 24 
DEBt REOION~ 0 TOUCHING ARM . REGION" 18 
ARM REGION ~ B4 By THE SIDE OF ARM REGIRN" 16 

*** FOURO ORB2 COMPOSED BY: 
16p 15, Ig, I~~ 13, B* IO, 11, 9. 

STRUCTURAL DESCRTPTIDN: 
CEBI REGIDN~ 0 TOUCHING ARM REGION" 16 

* . *  FOUND CEBoLI COMPOSED BY: 
2~. 23. 22. 26~ ~7. 25, 16. 15. 19m %A, 13~ 6= 
l O ,  11. g,  

STRUCTURAL DESCRIPTION: 
CEB2 REGION" 0 ABDVEP TDLIOHING LEG REGION" 25 
CEG2 REGION" 0 ABOVE. TDUCHIN~ LEG RED,ON" 2# 
LEO REGION~ 25 TOUCHING SOCKS REGION" 27 
LEG REGION ~ 25 BY THE RIDE OF LEG REGION" 2a 
SOCKS REGION" 27 ABOVEp TOUCHING SHOE REGION" 26 
SOCKS REGION- 2T By THE sIO~ OF SOCKS REGION" B3 
SHOE REGION~ 26 BY THE SIDE OF SHOE REGION" 22 
LEG REGION- 2A TOUCHIN~ SOCKS REGION- 23 
SOCKS REGION- 2~ ABOVE. TOUCRING $HO~ REGION- 22 

*** FOUND ROUSE COMPOSED BYI 
1B, 20 ,  21, IR ,  

STRUCTURAL OESCRIpTIOR: ! 
ROOF REGION- 12 ABOVE. TOHCHINO ~ALE REGION" IB 
WALL REGION- 1B SURROUNDS wINOOK REGION" 21 
KALL REGION" i~ SURROUNDS WINDOW REGION- ~0 
WINDOH REGION" 21 By THE SIDE OF ~INDOW REGION- ~0 

***  FOUN~ GRASG CO~POSED BYI 

****  NON'CLASSIFIED REGIONS: 
5, 2B. 2g, 

Fig. 5. Output corresponding to the scene of  Fig. 3L 
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7. C O N C L U S I O N S  

Through the use of branch-and-node-labeled graphs (GLOGs) as 
structural descriptions of  scenes, and their generating grammars, it was 
possible to describe a chosen restricted universe and implement a complete 
syntactical recognition scheme, the performance of which was clearly 
surprising. It is obvious that the universe can be enriched, that more attri- 
butes of the regions can be used, and that the parsing algorithm can be some- 
what improved in terms of its running time. However, these improvements in 
the particular implementation chosen to illustrate the method would not 
add to the method itself or to the basic ideas involved. 

One interesting topic for further study is the problem posed by partially 
hidden objects. The two-dimensional frame being a projection of a three- 
dimensional scene, its information content is certainly smaller, and a good 
portion of it must be supplied by the viewer when recognizing the original 
(three-dimensional) scene. One could increase the grammars in order to 
describe partial objects, but only with the danger of inserting ambiguity. 

Fuzzy models aS) also show promise in scene recognition and should 
be fully exploited. 

A P P E N D I X  A .  A L G O R I T H M  1 

The following algorithm will tell, given GLOGs /~ and p over ~ if/3 
is a subGLOG of p: 

procedure subGLOG (fi, p); 
glog fl, p; (fl = (NB, As ,  FB, E~), p --  (No,  Ao, Fp, Eo) ) 
begin 

set D, K; ; set R; 
node n, m; ; function ~; 
comment subGLOG will try to find a function 

~: Ne --+ N, ,  one-to-one, such that: 
1) Vx ~ N~, F~(x) = Fo(~(x)) , 
2) V(x, y) ~ As ,  (~(x), ~(y)) ~ Ao and 

E~(x, y) c Eo(~(x), ~(y)) 
D and K are sets of nodes, (D C N~ and K C No), 
such that: 
1) x ~ D ~:~ ~(x) is defined 
2) y ~ K  ~> y = ~ ( x ) , x e D  
3) if y ~ K and y = ~(xl) and y = ~(x2) then xl = x2 
The algorithm will stop when D is equal to Ne ; 

let n ~ N; D : =  {n}; 
R : =  {t ~ N o [ F~(n) = Fo(t)}; 



302 Dias Velasco and de Renna e Souza 

comment R will count  the nodes of  N~ that  have the same label as that  is, 
likely candidates for ~(n); 

while R ~ d? 
do begin 

let m ~ R; 
K : =  {m}; 

: =  {(n, m)); 
/ f  equivalent (n, m,/3, p) 
then 

begin 
output  ("/3 is s u b G L O G  of  p, 
with isomorphism ~"); 
goto finis; 

end; 
R : =  R --  {m}; 
end; 

output  ("/3 is not  a s u b G L O G  of  p"); 
finis; end s u b G L O G  

boolean procedure equivalent (n, m,/3, p); 
node n, m; GLOG/3 ,  p; 
begin 

set H; 
function ~ ; 
comment given n e Nz and m ~ N o , such that  

Fz(n) = go(m), then equivalent (n, m, /3, p) is true iff 
3~.  : nbh(n) --+ nbh(n), an injection such that: 
a) if x ~ nbh(n) c~ D then ~.(x) = ~(x) 
b) Vx ~ nbh(n): 

1. Ftr go(an(X)), 
2. EB((n, x)) C Eo((cr~(x)) ) and 

E~((x, n)) C Eo((a.(x), m))) 
3. equivalent (x, a.(x),/3 - -  n, p - -  m) is true, where 

/3 --  n and p - -  m are G L O G s  such that  
N~_. = N~ - -  {n} ,  No_~ = No - -  {m}; A~_. = 
&c~ N~_. • NB . . . . . .  

Vx ~ nbh(n) n D do a.(x) : =  ~(x); 
H : =  nbh(x) - -  D; 
comment in H are the nodes o f  nbh(n) no t  yet assigned to D (set o f  nodes 

to which ~ is defined presently), 
let J be the set of  injections a: H -+ nbh(m) - -  K 
such that  Fz(x ) = Fo(a(x)); 
while J ~ 
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do begin 
let ~ e J ;  J : =  J - -  {(~); 

cr n : =  o'~ U o'; 

ff Vx e nbh(n), F~((n, x)) C E,((m, ~(x)) and E~((x, n)) C E,((~(x),  m)) 
then begin 

D : - - D w H ;  
K : =  K W ~ * ( H ) ;  

ifVx e Hequivalent (x, ~(x),/~ -- n, p -- m) 
then begin equivalent : = true; goto finis end; 
else begin (Reconstruct ~, D, K) 

: =  ~ - - H  • nbh(m); 
D : = D - - H ;  
K : =  K -- ~*(H); 
end 

end 
end; 

equivalent : = false; 
finis: end. 

C O M M E N T S  O N  T H E  A L G O R I T H M  

As can be seen, the algorithm used does not exploit heuristic methods 
to accelerate the processing time. A complete search is done among all 
possible alternatives, and the algorithm stops as soon as one solution is found. 
The backtracking, if a wrong path is searched, is done by the usual 
means. 

However, the "combinational explosion" that would make the algorithm 
impractical is avoided because of two facts. First, the GLOGs on the right- 
hand side of the productions are very limited in their number of nodes. 
In our case, the largest number was 7, while the average was around 3. 
Second, the fact that both the nodes and branches are labeled drastically 
reduces the number of possibilities to be searched. 

Even though this algorithm does not constitute a novelty, it was included 
to illustrate some of the difficulties that appeared during the computer imple- 
mentation. Also, a clear need was felt for better tools to handle graph 
structures, other than the usual high-level languages (ALGOL,  FORTRAN, P L - t ,  

etc). Another valid observation is that the representation of a graph by 
adjacency matrices, with the purpose of  simplifying the use of existing iso- 
morphism algorithms, is not very practical in our case due to the constant 
structural changes of the graphs involved. 
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A P P E N D I X  B. A L G O R I T H H  2 

procedure syntactical analysis (co, G); 
G L O G  co; G L O G G  G; 
begin 

node n; 
set F, T; production p; 
F : =  {n ~ N~ I F~(n) is final}; 
eomment 

F is the set of  all nodes such that  F~(n) is the final terminal; 
the algorithm will search all these nodes, trying to start 
the parsing. I f  this is not  possible, the algorithm will stop 
with the exit "fai l";  

while F v ~ (~ 
do begin 

let n ~ F; 
T : =  (q ~ p [ q = (~,/3, ~b) is final and 

F(n) ~ F*(N~)}; 
while T ~ 
do begin 

letp = (a,/3, ~,b) ~ T; 
i f  s u b G L O G  (/3, co) then 
begin 

reduce (using p) co ~-/x; 
/ f  test (F~(n), co) then 
begin 

output  ("co contains a G L O G  from L(G)");  
goto finis 

end 
end; 
r : =  r -  (p} 

end; 
end; 

output  ("co does not  contain a G L O G  from L(G)") 
finis: end 

boolean procedure test (% cu); 
G L O G  ~, co; 
begin 

set T; production p; 
comment test (~, co) is true iff either ~ s I (initial G L O G )  or 3v c P, 

p = (~, 3, ~b), where A ~ F*(N~) (A is the name of  ~) 
such that: 
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1) S s u b G L O G  of co; co ~ / ~  using p and  

2) test (7, co) is true; 

~f ~ ~ I then test : = true 
else begin 

T : =  {q ~ e ,  q = (7, ;~, ~)/& ~ F~*(N~), 
where A is the name of o~}; 

while T v~ 
do begin 

let p = (y, 3; ~) e T; 
/ f  subGLOG(3 ,  co) then 
begin 

reduce (using p) co ~--/~; 

i f  test (y,/~) then 
begin 

test : =  true; 
goto finis 

end 
end; 
r : =  T - - { p }  

end; 
test : = false 

end; 
finis: end test 
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