
International Journal of Computer and Information Sciences, Vol. 6, No. 4, 1977

An Application of Formal Linguistics to
Scene Recognition
Flavio Roberto Dias Velasco 1 and Celso de Renna e Souza 1

Received April 1976; revised November 1976

A model for scene description and syntactical recognition is proposed based
on branch-and-node-labeled graphs. Generating grammars for scene descrip-
tions are proposed, and the problem of parsing general descriptions is treated.
An example of application is given for scenes from a popular Brazilian
comic strip.

KEY WORDS: Scene recognition; syntactical recognition; graph
grammars; artificial intelligence.

"A sentence should contain no unnecessary words
a paragraph no unnecessary sentences

for the same reason that a drawing
should have no unnecessary lines

and a machine no unnecessary parts."

William Strunk, Jr., 1918

1. I N T R O D U C T I O N

Though pat te rn " recogni t ion" systems exist that are entirely based on feature
extraction and pa t te rn classification by statistical means, (1-3J they are clearly

inadequate if the ul t imate goal is to approach h u m a n recognit ion capabilities
by automated methods) ~I It is more or less accepted now that a system that
actual ly recognizes say, scenes, must have as its integral par t a highly
structured model of the universe, of which the scene being scanned is a sample.

1 Computer and Information Sciences, Space Research Institute (INPE), S~o Jos6 dos
Campos, S.P., Brasil.

289
This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum Publishing Corpora-
tion, 227 West 17th Street, New York, N.Y. 10011.

290 Dias Velasco and de Renna e Souza

So-called "structural methods" have appeared in which, in addition to
the information contained in partitions of multidimensional feature spaces,
relational information is also taken into account in the process of recognizing
a scene or pattern. Generally speaking, the use of structural information
also simplifies the costly and time-consuming feature-extraction step of the
process.

2. S Y N T A C T I C A L M E T H O D S

The syntactical models see the patterns as formed by primitive elements
and the relations among them. Generating grammars are used to provide
finite models for countably infinite universes and to guide the parsing; the
extension to two dimensions of the natural notion of concatenation for
string grammars, though, is not obvious. Several models have been proposed,
including those of Kirsch, ~5) Dacey, ~6) the array grammars of Milgram and
Rosenfeld, C7) and others, such as that of Feder. u6)

Grammars that generate graphs have been studied by Pfaltz and
Rosenfeld3 s) Another reasonable approach has been to propose grammars
that generate not the scenes or patterns themselves but suitable descriptions
of them; see, for instance, Menninga, (9) Shaw, C1~ Pfaltz, (u~ Fu and
Bhargawa, c12~ and Masumi. ~13)

The present work is based on the notion of web grammars, as in ref. 8,
generating not the patterns themselves but their descriptions, as in ref. 11.

3. G L O G S

Definition 1. An oriented graph is a pair g = (N, A~ where N is a
finite, nonempty set of nodes and A is a binary relation on N, A C N • N.

Definition 2. A vocabulary is a triple ~ =- (V, R, a) where V is a
finite, nonempty set of node labels, R is a finite, nonempty set of branch
labels, and cr is a bijection or: R ~ R, such that cr = a -1.

The branch-and-node-labeled graphs that will be used to describe
scenes may now be defined.

Definition 3. A general labeled oriented graph (GLOG) over a voca-
bulary ~ = (V, R, ~r) is a quadruple co ~-(N, A,F, E) where (N, A)
is an oriented graph (the ground graph), F: N--+ V is the node labeling
function, and E: A --~ ~(R) - - {r is the branch labeling function. ~

We shall use ~(A) for the power set of A.

An Application of FormM Linguistics to Scene Recognition 291

N o t all G L O G s are valid descriptions of scenes, however. It was found
expedient to restrict somewhat the previous definition.

Definition 4. A G L O G as in Definit ion 3 is descriptive iff its ground
graph is s trongly connected, symmetric, antireflexive, and, moreover , for
all a, a ' e A such that a ' is the symmetr ic branch of a, r ~ E(a) iff or(r) e E(a').

Descript ive G L O G s , as defined above, are those that natural ly arise
in the description of real world scenes. The funct ion cr in this case associates
to each spatial relation (e.g., "is above") its semantic inverse (e.g., "is below").
The other requirements for a G L O G to be descriptive are also of the same
practical nature.

Example 1. Let V = {r, w, h, i} where r ~-~ roof, w *-+ wall, h +-+ house,
i +-+ window; let R = {a, b, i, s, t} where a +-~ above, b ~+ below, i ~ inside,
s ~-+ surrounds, t +-~ touching; the G L O G on the right describes the scene
on the left o f Fig. 1. In this case, F(1) = r, E((1, 2)) = {t, a}, etc.

I t is clear that the same G L O G describes infinitely m a n y scenes that may,
f rom this point of view, be considered "equivalent ." Also, the natural concept
o f i somorphism applies to G L O G s , i somorphic G L O G s describing the same
or equivalent scenes. Also naturally, s u b G L O G s may be defined.

Definition 5. Given two G L O G s o~ = (N~, A~, F~, E~) and/8 = (NB,
A s , F~, EB), over the same vocabula ry Y-, then /~ is a " s u b G L O G " o f c~
iff: 1) N~ C N~ ; 2) A s C A~ ; 3) F~ = F~/Ne ; and 4) E~ = E~/A~. fi will be a
complete s u b G L O G of ~ iff conditions 1 through 4 hold and A~ = A~ n N~ 2.

4. G L O G G R A M M A R S

The definition of generating g rammars for G L O G s follows closely
that for phase-structure g rammars , (13) with the additional difficulty brought

f

Ill

l (r)

L

Fig. 1. A simple scene and its descriptive GLOG.

292 Dias Velasco and de Renna e S o u z a

about by the handling of graphs. Thus, whenever the left side of a product ion
is substituted by its right side, the new connections with the remaining nodes
must be unambiguous ly specified. Also, there must be some assurance that
only descriptive G L O G s , as in Definition 4, are generated.

Definition 6. A GLOG Grammar, G L O G G , is a triple G = (~ ' , L P)
where ~ is a vocabulary as in Definition 2, where V = VTU VN,
VT n Vu = ~, I is a set of single node (trivial) initial G L O G s whose labels
are in VN and P is a set o f triples (productions)(~,/3, ~b) where c~ and /3 are
G L O G s over ~ , and ~b is the embedding function, ~b: N~ • R • {--1, +1} --+
N~ x R. Moreover , in o~ there should be at least one node labeled with a
nonterminal symbol.

As in phrase-s tructure grammars , V~ is the set o f "non te rmina l s" and
VT the set o f " terminals ." The triples of P are rewrit ing (here one could say
" redrawing") rules and can also be writ ten ~ ~ fi(~b) or c~ - -~/3 .

The embedding funct ion ~b introduced above describes how the new
G L O G being inserted, /3, should be connected to the host G L O G nodes,
say No_~. I f ~(t, r, x) = (n, s), then every node m of Np_~ linked to t by a
branch (t , m) - - i n this case x ~ - + l - - o r (m , t), for x = - - 1 , labeled r
should be linked in the resulting graph with n by a branch (n, m) if x = + 1
or (m, n) if x ~- --1, labeled s.

Example 2. Let V u - - { A } and VT = { a , b } , R =-{r ,s}, cr = { (r , s] ,
(s, r)}, and co the initial G L O G o~ = {{1}, q~, {(1, A)}, q~}. We can represent
co as ! (A); let P be given by

s ?. (A) r
1. I (a) l ~ 3 (a) �9 (A)

r $

with ~ (1 , r, + Z) = (2, r), ~ (1 , s, + l) - - (2, s), ~ (1 , r, - -1) = (2, r),
~bl(1, s, --1) = (2, s) and

2. 1(14) ~ 1.(b)

with ~b~(1, r, +1) = (1, r), ~b2(1, s, + 1) = (1, s), ~b~(1, r, - -1) = (I , r),
4~(1, a, - 1) = (1, s).
For instance, f rom the G L O G

r Q $

A ~ A (b)
r

An Application of Formal Linguistics to Scene Recognition 293

we could generate

11

A ~ (c)

G

It is easy to see that there is a condition of "coherence" for embedding
functions in that ~b(nl, rz, x) = (n2, r2) iff ~b(nz, e(rl), --x) = (n2, ~(r2)).
Also, the notion of "derives directly" carries over from the phrase-structure
grammars and will be indicated by ~ .

Definition 7. A given GLOGG, G = (~r P) is coherent iff every
production (~,/3, r of P is coherent.

Theorem 1. Given a coherent G L O G G G, if p ~ / ~ by G, then, if O
is a descriptive GLOG, then/x will be descriptive.

Proof. The proof is straightforward. It can be shown that A is anti-
reflexive and symmetric, that (iV,, A,) is strongly connected, and that
r ~ E,(nl, n2) iff e(r) e E,(n~, nO. []

Definition 8. The language L(G) generated by a given G L O G G G
is the set L(G) = {co/oJ is a terminal GLOG and I Nc co}.

Theorem 2.] f a given G L O G G G is coherent and co e L(G), then co
is descriptive.

Proof. This follows immediately from Theorem 1 and the fact that
any G L O G of I is descriptive. []

The well-known Chomsky hierarchy for phrase-structure grammars
carries over nicely for GLOGGs, with somewhat unexpected results. Though
it is simple to define context-sensitive GLOGGs, we will concentrate on
context-free and regular GLOGGs.

Definition 9. A G L O G G G = (~Y,/, P) is context-free iff in every
production (c~,/3, r ~ P, c~ is a trivial one-node G L O G with a nonterminal
label. The language L(G) will also be said to be context-free.

294 Dias Velasco and de Renna e Souza

For a context-free G L O G G the embedding function ~b can be simplified
to ~b: R • {--1, @l}--+ N~ • R.

Example 3. Using the vodhbulary "V of Example 1, let VN = {<CO>, (h>},
Vr = {r, co, i}, I = (.h>, and let the productions be given by

1. <h �9 > - - , . r ~ - ~ c o >

2. <u~> j ~ < C O > ~b(a, + l) = (<co), a),
~b(i, --1) = ((co), i)

3. (~.) --+ co ~b(a, @1) = (co, a), ~b(i, -1) = (co, i)

For instance, the derivations

<h> =:~

a 0 S

r ~ <~o> => r ~ i

b b i

would lead to descriptions of scenes such as

I I I I I I I
�9 �9 �9

�9 �9 �9

the situation being identical to that of context-free grammars with self-
embedding rules.

An Application of Formal Linguistics to Scene Recognition 295

Theorem 3. It is decidable if a given GL O G co over ~r belongs to a
given context-free language L(G); it is also decidable if a given such G
generates the empty language. It is also decidable if a given context-free
G L O G G generates a finite language.

Pro@ The proofparalMs the corresponding proofs for phase-structure
grammars. []

Definition 10. A context-flee G L O G G G is linear iffin every production
(c~,/3, ~b) ~ P, at most one node of/3 is labeled with an element of F~.. It is
regular iff every production (c~,/3, ~) ~ P is such that # N e ~< 2 and the replace-

A o B .A--+.awhereA, B~V~v, ments are of the type �9 ..~ ~ ~ , or

a ~ Vr, x, y ~ R. The corresponding languages will also be called linear or
regular.

Theorem 4. Every regular GLOG language is linear; every linear G LO G
language is context-free.

Example 4. Let VN ={S,S '} , Vr = 0 ,
I = .S, and let the productions of P be

1. S . .~ (~ S '
@

2. S _~ (c : : ~ : ~)
O

1

(}, R = {right (r), left (1})

r + l) = (S', r) r --1) • ((, r)
r + l) = 0, 0 r --~) = (S', 0

~be(r, -i-l) = 0 , r) @2(r, - -1) - - ((, r)
r +2) = ((, 0 r --1) = 0, 0

3. S" -pS ~)
D I

~ba(r , @l) = 0, r) Ca(r, --1) = (S, f)
r + 1) = (s, 0 r - 2) = 0, t)

The corresponding language is that of nested parentheses, the same
generated by the phrase-structure grammar S-+ (S)/(); note that this
language is known not be "regular," yet it can be generated by a regular
GLOGG.

5. P A R S I N G A L G O R I T H M

A considerable portion of the total computer time in automatic scene
analysis is devoted to preprocessing (noise cleaining, deblurring, filtering);

8z8/6/4-3

296 Dias Velasco and de Renna e Souza

segmentation (region growing, partitioning, region grouping); property
measurements (local properties, texture); and shape analysis. (a4,~s~ These
steps are outside the scope of this work and will be considered as having
been previously performed, while we focus on the structural analysis. It must
be said, however, that an interplay between the structural analyzer and the
previous programs, especially the segmentation and feature extraction steps,
may simplify them considerably.

The system considered in this paper has the overall organization shown
in Fig. 2; the preprocessing subsystem delivers to the lexical analyzer the
scene already partitioned. The lexical analyzer preclassifies the regions and
extracts a complete GLOG, with the branches properly labeled by the
relations in R. Though all parts of the system are operational, we shall
concentrate on the syntactical analyzer.

As for languages generated by phrase-structure grammars, our syntac-
tical analyzer for context-free GLOG languages can proceed top-down or
bottom-up; there is no direct analog to the left-to-right parsin, however,
since the nodes of a G L O G are not naturally totally ordered. Algorithm 2,
is a bottom-up parser for linear context-free GLO G languages.

Definition 11. Given a context-free G L O G G G = <~//',/, P) , and two
GLOGs O and IX over ~ , O directly reduces to IX, p P- ix, iff there exists a p'
such that ix =~c O', p' is a subGLOG of p, and No' = No.

Definition 11, at first glance, should read: O directly reduces to ix, O ~-~ ix,
iff ix ~G O. However, it was found that, in practical applications, it was
expedient to allow the "erasure" of redundant or unnecessary spatial relations
during the parsing process.

Clearly then, if ~ ~G/3, then/3 ~-- ~, but the converse is not true. O u r
procedure will be, given a GLOG co, to try to find a chain of reductions
co = coo k-- co~ ~-- ... ~ co,, until a co, is found that contains a G LO G co
belonging to I (set of initial GLOGs).

One needs, then, an algorithm that will tell whether some /3 from a
production (~,/3, ~b) ~ P is a subGLOG of a given p and another that will
substitute such/3 by c~, producing a ix such that p ~ ix.

SCENE- ~ DESGRIPTIVE

I I ANA 'zE" I L ""AL'ZE"
Fig. 2. The syntactical scene recognition scheme.

An Application of FormM Linguistics to Scene Recognition 297

Definition 12. Given a G L O G co and a node n e No~, the neighborhood
of n, nbh(n), is the set o f nodes connected by branches o f w to n; tha t is, :

nbh(n) = {m/(n, m) or (m, n) e A,o} .

Algorithm 1. Given two G L O G s / 3 and p over ~r there is an algo-
r i thm for telling whether /3 is a s u b G L O G of p, generating an injection
~ : Ne --" No such that (n l , n~) e A~ iff (SC2(nl), ~Q(n~)) ~ Ao, F~(nl) = Fo(O(na)),
and Ee(nl , n~) C Eo(f2(nl), ~(n2)).

The algor i thm is given in Appendix A. Once it is found that /3 is a
s u b G L O G of p, /z will be such that

1. N . = (N o - - N A w N . .

2. A .=(Ao~(No- -Ne)2)wAo, . .

where Ao,~ is the set o f branches that reconstitute the connections between
p - -]3 and ~ (its formal description will not be given for the sake of clarity).

!

3. F , / (N o -- N~) = Fo/(N o -- N~)

F./N~ ~ F~.

4. E,/(Ao r (No -- Ns) ~) = Eo/(A~ n (No - - Ns)2).

and E,/Ap,~ is a suitable labeling o f the branches linking p - - /3 to ~ (again
its formal description will not be given).

Unfor tunate ly , it m a y happen that the above condit ions are satisfied,
tha t p ~--/z, but t ha t / z is not strongly connected (hence not descriptive).

Definition 12. Given a G L O G G G = (4 / , L P) , a given product ion
(~,/3, ~) will be said to be final, iff F~(n) e V~ for all n ~ N~. Such labels for
n e N B will also be said to be final.

I f co c L(G), then, final product ions surely were used, hence there mus t
be final labels in co. This fact and Algor i thm 1 are exploited in the b o t t o m - u p
pars ing algori thm.

Algorithm 2, Given a G L O G co over ~Y and a linear
G L O G G G = (~-/~,/, P) there is an algori thm that parses co
whether co ~ L(G) (see Definition 8).

context-free
and decides

298 Dias Velasco and de Renna e Souza

The complete algorithm is given in Appendix B. There is no implication
that the structural description obtained from a successful application of
Algorithm 2 is unique; instead of generating all possible descriptions, we
postulated that the more complex productions be tried first, so that a richer
description could be obtained.

6. A N A P P L I C A T I O N

To test the applicability of the model proposed, a particular universe
Of scenes was chosen; since for "real-life" scenes the preprocessing required
would be considerable and since the emphasis of the model was not on
preprocessing techniques, it was decided that a simplified universe should
be chosen. The final decision was to utilize a familiar Brazilian comic strip,
"Monica," as a source of simplified scenes. In these scenes, the regions are
clearly defined and uniformly colored, and the renditions of objects (cars,
houses, trees, fences, etc.) are highly simplified. Yet, it represents a very
rich, highly structured universe, very much related to that of our daily
lives and perfectly recognizable to a human being.

A GLOGG G was written by (.human) inference, from a sample of
the comic strips, with 40-odd productions, easily expandable to allow for new
characters, new objects, etc. In the implementation, the scene was represented
by a 128 • 128 matrix, and INPE's image processing system (GE's IMAGE
100) was used for the preprocessing stages.

Figure 3 shows a typical scene after preprocessing, with levels of gray
representing different colors. Note the effects of both quantizing and random
noise

The overall recognition algorithm was implemented as show in Fig. 4.
The region identifier utilizes a region-growing algorithm using the four-

neighbor concept/1~) Some attributes of the regions are also obtained. It
was found that, for the universe under consideration, the color of the region
and its position in the frame were sufficient for the subsequent analysis, thus
simplifying the feature-extraction step. The lexical analyzer I provides the
syntactical analyzer with tentative multiple classifications, while the com-
puting of the various relations among the regions is done at the lexical
analyzer II.

The complete system was programmed in the B-6700's Extended ALGOL.
The source deck has approximately 1100 cards. The complete processing
of the scene shown in Fig. 3 took nearly 21 sec: 15 sec for region identifi-
cation and 1 sec for the lexical analyzer I. These times were found to be
typical. Figure 5 shows the output corresponding to Fig. 3.

An Application of Formal Linguistics to Scene Recognition 299

Fig. 3. Typical 128 • 128 matrix scene after preprocessing.

TENTATIVE ~ L 0 G G "~
REGIONS] CLASSIFIOAT~ON ~ ~ i J

GOMIG l < REGION LEXICAL S YNTACTIGAL
so~l ,OENT,~,OAT~ / /ANALYS, S ~ ANA.u

I ,

t LEXICAL
I
i ANALYSIS ~II

Fig. 4. Implementation of the recognition algorithm.

300 Dias Velasco and de Renna e Souza

5 FQUR~ SKY CO'HOSED ~YI
1,

~** FOUND CLDUU COMPOSED BY:
2.

.~* FOUND SKY COMPOSED BY:
3.

*** EGUN~ TREE COMPOSED BY:
B. q.

STRUCIURAL DESCRIPTI~NZ
LEAVES REGION" tl ABOVE' TOUCHING ' TRUNK REGION" B

*** FOUND SKY CQ~POSEn OyI
7.

*** ROUND EYE2 COHPOSEO BY:
10, l l , g ,

STRUCTURAL O~SCRIRTIONI
EYE REGION" g SURROUNDS IRIS REGION" 11
EYE REGION" 9 SURROUNDS IRIS REGIOn" tO
IRIS REGION" 11 BY THE SIDE oF IRI~ RERION- 10

*** FOUND EYE CO'POSED ~Y;

STRUCTURAL DERCRIPTIDN~
FACE REGION" 6 SURROUNDS EYE REGION- O

*** FOUND HEAD COMPOSED BY1
lqJ 13~ 6, lOP 11, q ,

STRUCTURAL DESCRIPTIDN~
HEAO REGION ~ 0 SURROUNDS ~OUTH REGION = 13
HEAD REGION* 0 SURROUNDS TONGUE REGION" IQ
MOUTH REGION ~ 13 TflUG~ING T~RRU~ REGIOn" I~

*** FOUND HEAD COMPOSED BVI
14, 13~ G, IO~ II, R,

STRUCTURAL DESCRIPTION;
HEAD REGZON ~ 0 ABOVE. TOUCHING SHIRT REGION" 15
SHIRT REGION" 15 AROVE. TOUCHIND SHORTS REGION- 19

* * * FDUN~ CER2 COMPOSED BY:
16~ 2n , 15, t9~ 14, 13P 6 . I 0 , l I , 9 ,

STRUCTURAL 6ESCRIPTION~
CEBI REGIDH" O TOUCHING AR~ REGION" 24
DEBt REOION~ 0 TOUCHING ARM . REGION" 18
ARM REGION ~ B4 By THE SIDE OF ARM REGIRN" 16

*** FOURO ORB2 COMPOSED BY:
16p 15, Ig, I~~ 13, B* IO, 11, 9.

STRUCTURAL DESCRTPTIDN:
CEBI REGIDN~ 0 TOUCHING ARM REGION" 16

* . * FOUND CEBoLI COMPOSED BY:
2~. 23. 22. 26~ ~7. 25, 16. 15. 19m %A, 13~ 6=
l O , 11. g,

STRUCTURAL DESCRIPTION:
CEB2 REGION" 0 ABDVEP TDLIOHING LEG REGION" 25
CEG2 REGION" 0 ABOVE. TDUCHIN~ LEG RED,ON" 2#
LEO REGION~ 25 TOUCHING SOCKS REGION" 27
LEG REGION ~ 25 BY THE RIDE OF LEG REGION" 2a
SOCKS REGION" 27 ABOVEp TOUCHING SHOE REGION" 26
SOCKS REGION- 2T By THE sIO~ OF SOCKS REGION" B3
SHOE REGION~ 26 BY THE SIDE OF SHOE REGION" 22
LEG REGION- 2A TOUCHIN~ SOCKS REGION- 23
SOCKS REGION- 2~ ABOVE. TOUCRING $HO~ REGION- 22

*** FOUND ROUSE COMPOSED BYI
1B, 20 , 21, IR ,

STRUCTURAL OESCRIpTIOR: !
ROOF REGION- 12 ABOVE. TOHCHINO ~ALE REGION" IB
WALL REGION- 1B SURROUNDS wINOOK REGION" 21
KALL REGION" i~ SURROUNDS WINDOW REGION- ~0
WINDOH REGION" 21 By THE SIDE OF ~INDOW REGION- ~0

*** FOUN~ GRASG CO~POSED BYI

**** NON'CLASSIFIED REGIONS:
5, 2B. 2g,

Fig. 5. Output corresponding to the scene of Fig. 3L

An Application of Formal Linguistics to Scene Recognition 301

7. C O N C L U S I O N S

Through the use of branch-and-node-labeled graphs (GLOGs) as
structural descriptions of scenes, and their generating grammars, it was
possible to describe a chosen restricted universe and implement a complete
syntactical recognition scheme, the performance of which was clearly
surprising. It is obvious that the universe can be enriched, that more attri-
butes of the regions can be used, and that the parsing algorithm can be some-
what improved in terms of its running time. However, these improvements in
the particular implementation chosen to illustrate the method would not
add to the method itself or to the basic ideas involved.

One interesting topic for further study is the problem posed by partially
hidden objects. The two-dimensional frame being a projection of a three-
dimensional scene, its information content is certainly smaller, and a good
portion of it must be supplied by the viewer when recognizing the original
(three-dimensional) scene. One could increase the grammars in order to
describe partial objects, but only with the danger of inserting ambiguity.

Fuzzy models aS) also show promise in scene recognition and should
be fully exploited.

A P P E N D I X A . A L G O R I T H M 1

The following algorithm will tell, given GLOGs /~ and p over ~ if/3
is a subGLOG of p:

procedure subGLOG (fi, p);
glog fl, p; (fl = (NB, As , FB, E~), p -- (No, Ao, Fp, Eo))
begin

set D, K; ; set R;
node n, m; ; function ~;
comment subGLOG will try to find a function

~: Ne --+ N, , one-to-one, such that:
1) Vx ~ N~, F~(x) = Fo(~(x)) ,
2) V(x, y) ~ As , (~(x), ~(y)) ~ Ao and

E~(x, y) c Eo(~(x), ~(y))
D and K are sets of nodes, (D C N~ and K C No),
such that:
1) x ~ D ~:~ ~(x) is defined
2) y ~ K ~> y = ~ (x) , x e D
3) if y ~ K and y = ~(xl) and y = ~(x2) then xl = x2
The algorithm will stop when D is equal to Ne ;

let n ~ N; D : = {n};
R : = {t ~ N o [F~(n) = Fo(t)};

302 Dias Velasco and de Renna e Souza

comment R will count the nodes of N~ that have the same label as that is,
likely candidates for ~(n);

while R ~ d?
do begin

let m ~ R;
K : = {m};

: = {(n, m));
/ f equivalent (n, m,/3, p)
then

begin
output ("/3 is s u b G L O G of p,
with isomorphism ~");
goto finis;

end;
R : = R -- {m};
end;

output ("/3 is not a s u b G L O G of p");
finis; end s u b G L O G

boolean procedure equivalent (n, m,/3, p);
node n, m; GLOG/3 , p;
begin

set H;
function ~ ;
comment given n e Nz and m ~ N o , such that

Fz(n) = go(m), then equivalent (n, m, /3, p) is true iff
3~. : nbh(n) --+ nbh(n), an injection such that:
a) if x ~ nbh(n) c~ D then ~.(x) = ~(x)
b) Vx ~ nbh(n):

1. Ftr go(an(X)),
2. EB((n, x)) C Eo((cr~(x))) and

E~((x, n)) C Eo((a.(x), m)))
3. equivalent (x, a.(x),/3 - - n, p - - m) is true, where

/3 -- n and p - - m are G L O G s such that
N~_. = N~ - - {n} , No_~ = No - - {m}; A~_. =
&c~ N~_. • NB

Vx ~ nbh(n) n D do a.(x) : = ~(x);
H : = nbh(x) - - D;
comment in H are the nodes o f nbh(n) no t yet assigned to D (set o f nodes

to which ~ is defined presently),
let J be the set of injections a: H -+ nbh(m) - - K
such that Fz(x) = Fo(a(x));
while J ~

An Application of Formal Linguistics to Scene Recognition 303

do begin
let ~ e J ; J : = J - - {(~);

cr n : = o'~ U o';

ff Vx e nbh(n), F~((n, x)) C E,((m, ~(x)) and E~((x, n)) C E,((~(x), m))
then begin

D : - - D w H ;
K : = K W ~ * (H) ;

ifVx e Hequivalent (x, ~(x),/~ -- n, p -- m)
then begin equivalent : = true; goto finis end;
else begin (Reconstruct ~, D, K)

: = ~ - - H • nbh(m);
D : = D - - H ;
K : = K -- ~*(H);
end

end
end;

equivalent : = false;
finis: end.

C O M M E N T S O N T H E A L G O R I T H M

As can be seen, the algorithm used does not exploit heuristic methods
to accelerate the processing time. A complete search is done among all
possible alternatives, and the algorithm stops as soon as one solution is found.
The backtracking, if a wrong path is searched, is done by the usual
means.

However, the "combinational explosion" that would make the algorithm
impractical is avoided because of two facts. First, the GLOGs on the right-
hand side of the productions are very limited in their number of nodes.
In our case, the largest number was 7, while the average was around 3.
Second, the fact that both the nodes and branches are labeled drastically
reduces the number of possibilities to be searched.

Even though this algorithm does not constitute a novelty, it was included
to illustrate some of the difficulties that appeared during the computer imple-
mentation. Also, a clear need was felt for better tools to handle graph
structures, other than the usual high-level languages (ALGOL, FORTRAN, P L - t ,

etc). Another valid observation is that the representation of a graph by
adjacency matrices, with the purpose of simplifying the use of existing iso-
morphism algorithms, is not very practical in our case due to the constant
structural changes of the graphs involved.

304 Dias Velasco and de Renna e Souza

A P P E N D I X B. A L G O R I T H H 2

procedure syntactical analysis (co, G);
G L O G co; G L O G G G;
begin

node n;
set F, T; production p;
F : = {n ~ N~ I F~(n) is final};
eomment

F is the set of all nodes such that F~(n) is the final terminal;
the algorithm will search all these nodes, trying to start
the parsing. I f this is not possible, the algorithm will stop
with the exit "fai l";

while F v ~ (~
do begin

let n ~ F;
T : = (q ~ p [q = (~,/3, ~b) is final and

F(n) ~ F*(N~)};
while T ~
do begin

letp = (a,/3, ~,b) ~ T;
i f s u b G L O G (/3, co) then
begin

reduce (using p) co ~-/x;
/ f test (F~(n), co) then
begin

output ("co contains a G L O G from L(G)");
goto finis

end
end;
r : = r - (p}

end;
end;

output ("co does not contain a G L O G from L(G)")
finis: end

boolean procedure test (% cu);
G L O G ~, co;
begin

set T; production p;
comment test (~, co) is true iff either ~ s I (initial G L O G) or 3v c P,

p = (~, 3, ~b), where A ~ F*(N~) (A is the name of ~)
such that:

An Application of Formal Linguistics to Scene Recognltlon 305

1) S s u b G L O G of co; co ~ / ~ using p and

2) test (7, co) is true;

~f ~ ~ I then test : = true
else begin

T : = {q ~ e , q = (7, ;~, ~)/& ~ F~*(N~),
where A is the name of o~};

while T v~
do begin

let p = (y, 3; ~) e T;
/ f subGLOG(3 , co) then
begin

reduce (using p) co ~--/~;

i f test (y,/~) then
begin

test : = true;
goto finis

end
end;
r : = T - - { p }

end;
test : = false

end;
finis: end test

R E F E R E N C E S

1. M. A. Aiserman, "Remarks on two problems connected with pattern recognition,"
in Methodologies of Pattern Recognition, M. S. Watanabe, Ed. (Academic Press,
New York, 1969).

2. L. Kanal, "Patterns in pattern recognition: 1968-1974," IEEE Trans. Inf. Theory
29(6) (November 1974).

3. L. Kanal and B. Chandrasekaran, "On Linguistic, Statistical and Mixed Models for
Pattern Recognition," University of Maryland Computer Science Technical Report
No. 152 (1971).

4. F. D. Preparata and S. R. Ray, "An approach to artificial non-symbolic cognition,"
h~ Sci. 4:65-86 (January 1972).

5. R. A. Kitsch, "Computer interpretation of english text and picture patterns," IEEE
Trans. Electron. Comput. 13(4):363-376 (1964).

6. M. F. Dacey, "The syntax of a triangle and some other figures," Pattern Recognition
2:1-31 (January 1970).

7. D. L. Milgram and A. Rosenfeld, "Array Automata and Array Grammars," Proceed-
ings of the IFIP Congress, 1971 (North-Holland, Amsterdam, 1972), Booklet TA-2,
pp. 166-i73.

8. J. L. Pfaltz and A. Rosenfeld, "Web Grammars," University of Maryland Computer
Science Technical Report No. 69-84 (January 1969).

306 Dias Velasco and de Renna e Souza

9. L. D. Menninga, "A Syntax-Directed Approach to Pattern Recognition and Descrip-
tion," AFIPS Fall Joint Computer Conference Proceedings, Las Vegas (November
1971).

10. A. C. Shaw, "Formal picture description scheme as a basis for picture processing
systems," Inf Control 14:%52 (1969).

11. J. L. Pfaltz, "Web grammars and picture description," Comput. Graphics Image
Process. 1:193-220 (1972).

12. K. S. Fu and P. H. Bhargawa, "Tree systems for syntactic pattern recognition," IEEE
Trans. Comput. 22:1087-1098 (December 1973).

13. A. Masumi, "Picture Analysis by Graph Transformation," Ph.D. Thesis, University
of Illinois at Urbana-Champaign (1973).

14. A. Rosenfeld and J. S. Weszka, "Picture Recognition," University of Maryland
Computer Science Technical Report No. 344 (1974).

15. W. J. M. Kickert and H. Koppelaar, "Application of fuzzy set theory to syntactic
pattern recognition of handwritten capitals," IEEE Trans. Syst. Man. Cybern. SMC-6
(2) (February 1976).

16. J. Feder, "Plex languages," Inf. Sci. 3 (July 1971).

