
International Journal of Computer and Information Sciences, Vol. 12, No. 1, 1983

Regular-Like Tree Expressions 1

A. Barrero, 2 M. G. Thomason, 3 and R. C. Gonzalez 2

Received November 1982; revised January 1983

Regular-like expressions provide a compact notation for the explicit description
of context-free languages. In this paper we extend these concepts by establishing
a one-to-one correspondence between expansive tree languages and regular-like
sets of trees. Algorithms are developed for constructing an expansive tree
grammar whose language is defined by a given regular-like tree (RLT)
expression, and vice versa. These results are then used to obtain RLT equations
that describe sets of tree resulting from regularity-preserving transformations
associated with three types of errors commonly found in practice.

KEY WORDS: Trees; regular expressions; expansive tree grammars;
regularity-preserving transformations; context-free languages.

1. INTRODUCTION

Regular and regular-like expressions are used as compact representations of
string languages that are of types three and two, respectively, in the
Chomsky hierarchy. (l~ The requirements of certain areas, such as syntactic
pattern recognition, for the representation of structures that cannot be
conveniently handled by string languages has motivated investigations into
the properties and applications of tree grammars and languages J2-6! In this
paper we extend the concept of regular-like expressions by establishing a
one-to-one correspondence between expansive tree languages and regular-like
sets of trees.

In the following sections, regular-like tree (RLT) expressions are
defined and it is shown that the set of trees defined by an RLT expression is

Work supported by the Office of Naval Research, Arlington, VA, under Contract N00014-
75-C-0545.

2 Department of Electrical Engineering, University of Tennessee, Ferris Hall, Knoxville,
Tennessee 37916.

3 Department of Computer Science, University of Tennessee, 8 Ayres Hall, Knoxville,
Tennessee 37916.

1

0091-7036/83/0200-0001503.00/0 �9 1983 Plenum Publishing Corporation

828/12/t-1

2 Barrero, Thomason, and Gonzalez

generated by an expansive tree grammar. It is also shown that an RLT
expression can be constructed for the language of an expansive tree
grammar. In addition, three types of errors in trees that are commonly
encountered in practice are studied in terms of their representation as
regularity-preserving transforms. The development is based on operations of
RLT expressions that yield descriptions of the transformed tree structures.

2. CONSTRUCTION OF EXPANSIVE TREE GRAMMARS THAT
GENERATE REGULAR-LIKE SETS

We use the standard definition of an expansive tree grammar
G = (Vr, V N, P, S) as finite sets of terminals, nonterminals, expansive tree
productions, and starting trees. (2'4'5) A V-tree is a tree with node labels from
a finite set V.

Definition 1. Let E and F be two sets of V-trees and let k be in V.
Define the following operations with E and F:

E �9 kF = the set of V-trees obtained by taking trees of F and replacing
each node in the frontier with label k by a tree from E.

E ~ = {k}, the tree with a single node labeled k.

E "+l;k = E . kE ";~, n >/O.

E + k = (~ E n;k.
n = l

00

E'k= U En;k"
n = O

Lemma 1. .k is an associative operation with identity {k}.

Proo[. It follows from the previous definition that E . k . (F. kG)=
(E . kF) . kG, and E . k{k} = {k}. kE. |

Definition 2. Regular-like tree (RLT) expressions over V and the
sets of trees they denote are defined recursively as follows: (1) O is an RLT
expression over V denoting the null set 0 . (2) a is an RLT expression
denoting the set {a}. (3) a is an RLT expression denoting the set

/ \
X 1 , . . X n

{ j a \ }. (4) I fp and q are RLT expressions denoting sets P and Q, respec-

X 1 . . . X n

tively, then: (a) p § q is an RLT expression denoting the set P U Q; (b)

Regular-Like Tree Expressions 3

p . kq is an RLT expression denoting the set P . kQ; (c)p*k is an RLT
expression denoting the set P'~. (5) Nothing else is an RLT expression.

Theorem 1. Let E be a regular-like tree set; then E is generated by
an expansive tree grammar.

Proof by construction of the grammars. It is evident that 0, {a},
and { / a } can be generated by expansive tree grammars. Let P and Q be

X 1 . . . X n

sets of V-trees generated by the expansive tree grammars G p =
(V, l/p, Pp, Sp) and GQ = (V, Vo., PQ, So! ~ with Vj, ~ VQ = 0. Then the sets,
(1) P U Q, (2) P . kQ, k in V, and (3) P k, k in V, can be generated by the
following expansive tree grammars: (1) G I = (V , Vpt._)VQ, PpUPo_ ,
Sp ~) SQ). (2) G2 = (V, V o U V~ - Sp, Pz, So), where P2 is (Po. - {X-~ k IX
is in Vo_}) joined with {X~ x [X ~ k is in Po., Y ~ x is in Pp,

/ \ / \
X 1 - . -X, X 1 ... X,

Y is in Sp} joined with (P p - {Y~ x] Y is in Se}). (3) Let K be a
/ \

X 1 ... X ,
symbol not in Vp, and let G3= (V, VpU {K}, P3, S p U {K}), where
P 3 = { K ~ k } U P e L J { X ~ x I X - ~ k i s inPp, Y ~ x is in P~,

/ \ / \
Y 1 " ' " X n X I . . . X n

Y is in S~ }. II

3. CONSTRUCTION OF RLT EXPRESSIONS FOR LANGUAGES OF
EXPANSIVE TREE GRAMMARS

The following definitions and lemmas establishes the properties of RLT
expressions which are similar to properties of conventional regular
expressions. In this section, Theorem 3 establishes that expansive tree
languages are regular-like tree sets by using the RLT equations.

Definition 3. Two RLT expressions are equal, denoted =, iff they
represent the same set of trees.

Lemma 2. Let a, fl, and 7 be RLT expressions. Then

O * k = k

a + q~+ 7) = (a +fl) + y

(1)

(2)

(3)

a . k(~

a . k(fl

(a + #)

a

Barrero, Thomason, and Gonzalez

�9 k?) = (a . k f l) . k7 (4)

+ y) = a . k f l + a . k y (5)

�9 k T = a . k y + f l , ky (6)

�9 k k = a : k . k a (7)

0 �9 k a = a �9 k O = O (8)

a *k = a + a *k (9)

(a ' k) *k = a *k (10)

a + a = a (11)

a + 0 = a (12)

a �9 k a *k = a *k �9 k a = a +~ (13)

a +k = a *k iffk ~_ a. (14)

P r o o f . Equations (1), (3), (4), (5), (6), (7), (8), (11), and (12) follow
immediately from the definitions. Equation (2): a *k = k + a �9 k k +

a . k (a . k k) + . . . ; then from (8), O *k=k. Equation (9): a * k =

k + a �9 k k + . . .; but from (7), a �9 k k = a , so a c a * . Equation (10): follows
from a ~ . k a *k = a *k. Equation (13): follows by expansion of a** and the
associativity of .k. Equation (14): follows by expansion of a +k and a *k. I

Solution of an RLT equation such as

X = X . k (a) + c
/ \

b k

can be found by methods similar to the solution of conventional regular
expression equations (cf. Ref. 1). By direct substitution, we have the
following lemma.

Lemma 3. Given the RLT e q u a t i o n X = X . k a + f l , where a andf l
are RLT expressions, then X = fl �9 k a *k is a solution to the equation. |

Lemma 4. Given the RLT equation X = X . k a + fl, and a solution Z,
then fl �9 k a *k c Z.

P r o o f . Since Z is a solution, Z = X �9 k a + fl, so that f l c Z , fl ' k a c Z,

(]3 . k a) . k a c z fl + fl . k a + fl . k (a . k a) + . . . c Z. But f l -= f l . k k =

f t . k a ~ f t . k a = f t . k a l~k, f t . k (a . k a) = f t , k a 2;k Thus
f l " k (a~ + a l ;k + a2;k + "" ") ~X, and f t . k a *k ~ Z. |

Regular-Like Tree Expressions 5

I .emma 5. X = /3 . ka *k is the unique solution to X = X . ka +/3 iff
the tree k is not in a.

Proof . I f : Assume /3. ka ~k is the unique solution. If k is in a, it
follows by direct substitution that (B + 7) �9 ka*~ is a solution for any 7. Since
this contradicts the original assumption, it follows that k is not in a.

Only tf: Assume k is not in a. Then by Lemma 6 any solution to the
equation can be written in the form X = / 3 . k a ~ k + y , where 7 is not
contained in fl- ka *k. But

/3 " ka*k + 7 = (/3. k a *k + 7) ' ka +/3

= / 3 . ka *k . ka + fl + 7 . ka

=/3" ka *k + 7 ' ka

which implies that 7 = 7 �9 ka. Now, if 7 4: 0 , then k must be in a since
this is the only way in which a tree of minimum depth in 7 can be in 7 " ka.

But k is not in a, by assumption; therefore ? = 0 , and/3 �9 ka *k is the unique
solution. II

Given an expansive tree grammar, the productions in the grammar can
be written as the RLT equations with the nonterminals as the unknowns.
Each unknown will represent the set of tree that can be generated by the
corresponding nonterminal, and solutions to the equations will be unique.

Definition 4. A set of RLT equations with indeterminates {X 1 X n}
is in s tandard f o r m if for each X i there is an equation of the form

ml m2

x, = J=,~ a~ + J=,~ x , . x,,x,~, x,~.., x,~ . x,~(/ b j \), for tP~ > o,

X / l . . . X / p j

where {X1 ,Xn}, {al , a m , } U { b l bin2}, and {Xl ,Xn} have no
common elements and there is a homomorphism h: {X 1 X n } --, {x~ x , }:

h(X~) = xi .

k e m m a 6. Given a set of RL T equations, it is possible to write each
equation in normal form; that is, for each unknown Xi,

X i = & . x ia i +/3i

6 Barrero, Thomason, and Gonzalez

Proof. It is only necessary to point out that in the preceding definition
the operators .x k can be commuted. Thus

r t t 2 m 1

.x, J:,3 X,,X,l... (/ b j \) + j : l I

Xl l . . . Nip j

The preceding results are the basis for the following algorithm.

Algorithm 1. Solution of a set of RLT equations in standard form:

Input. A set of RLT equations in standard form over {X~ X, / .

Output. A set of solutions of the form X; = a t, i = 1,..., n, where a i is a
RLT expression in which no X's appear.

Method. The method consists of successive elimination and back-
substitution.

Step 1: L e t i = l .

Step 2: If i = n, go to Step 4. Otherwise, write the equation for Xi as
Xi-~-Xi .x ia iq- l~ i. Then in the equations for X;+~ X, , replace each
occurence of X i by fli" xia~ ~i.

Step 3: Increment i by 1 and go to Step 2.

Step 4: Write the equation for X; as X i=Xi .x~?~+ ~. Let X~=
6i" xi~ ~'.

Step 5: If i = 1, terminate. Otherwise, replace 6t" xiY~ ~i for X i in the
equations for X;_I X~. Decrement i by 1 and go to Step 4.

Lemma 7. Steps 2 and 4 of the Algorithm are always executable.

Proof. The proof follows from the commutativity of .xk; and .X~r I

Theorem 2. Algorithm 1 gives the unique solution to a set of RLT
equations in standard form. The proof follows from Lemmas 3 through 7. I

Attention can now be given to the sets generated by expansive tree
grammars. An important aspect is to be able to write an RLT equation in
standard from for the set of trees generated by a nonterminal.

Lemma 8. Given an expansive tree grammar G = (V r, V N, P, S), we
can write an RLT equation in standard form for the set of trees generated by
a nonterminal.

Regular-Like Tree Expressions 7

Proof.
and let X i denote the set of trees generated by a nonterminal X i. Let

Let V N = {X 1 , X . }, consider Vu as a set of indeterminates,

m I m 2

xi = J=,Z aJ + J:,Z xl, . x,, ... x , , j . x,,+(/ b j \)

X l l " . " X l p j

for all productions in P of the form X i ~ aj, or

xi~ /bj\
Xtpl "'" Xtpj

I

Theorem 3. The set of trees generated by an expansive tree grammar
is regular-like.

ProoL The proof is by construction of an expression denoting the
set generated by the grammar. Let G = (V r, V u, P, S), write a set of RLT
equations in standard form over V N as indicated in Lemma8, and use
Algorithm 1 to solve them. Then let

where the summation is over all l / such that Xti is in S. By Lemma 7 and
Theorem 2, L = L(G). II

Example. To illustrate ideas developed in this section, we consider an
expansive tree grammar used in syntactic pattern recognition to describe
inductor-capacitor electrical circuits with voltage source e, ground g, and
repetitive l - c sections. "'5) The grammar is G--- (V r, V N, P, S) where Vr =
{$, e, g, l, c}; VN= {A,E, G,L, C}; S = {A}, and there are six productions:
(a) A ~ $, (b) E ~ e , (c) G--+g, (d) L ~ l , (e) C--*c,

/ \ I / \ I
E L G C L G

(f) L ~ l. The first step is to write a set of RLT equations in standard form.
I
C

The construction of Lemma 8 yields

A = E . w(L �9 y($)) (15)
/ \

w y

E = G. x(e) (16)
I

x

8 Barrero, Thomason, and Gonzalez

6=g (17)
L =L. y(C. z(/ l)) + C. z(l) (18)

I
z y z

C = C . x(e) (19)
I
x

It is now possible to apply Algorithm 1 to this set of equations; however, in
this particular instance, all that is required is to solve Eq. (18) and perform
judicious substitutions. From Lemma 5 we know that

L = (c . z(t)) , y (C . z())*~ / l \
z y

is the unique solution to Eq. (18). After a series of substitutions, we obtain

A = (g . x(?)), w((g. x(()), y((g. x(()), z(/ l))*Y . y(/ $ ~))

x x x z y w y

Further manipulations yield the equivalent expression,

)*'. y() A = ([). y (/ l \ / S \
g c y e y

I
g g

which has a one-to-one correspondence with the equivalent regular tree
grammar. The *k operation only occurs where there are instances of
repetitive trees.

4. REGULARITYLPRESERVING TRANSFORMATIONS

It is useful at times to describe certain regularity-preserving transfor-
mations via operations on RLT expressions. The three transformations in
this section represent common kinds of errors that arise, for example, in
automated analysis of patterns and in trees used to represent patterns. (4'5'v)

Definition 5. Given a Vr-tree t, let an a error denote the deletion of
a proper subtree of t (a subtree other than the tree itself); a fl error, the

Regular-Like Tree Expressions 9

insertion of a single node descendent at a node of t; and a y error, the change
of the label at a node of t. Let Vr r denote the Vr-trees. Define the operators,

a (t) = { F i t ' in Vrr, t' obtained from t by the deletion of a proper
subtree };

f l (t) = { t ' l t ' in Vrr, t ' obtained by the insertion of a single node
descendent at any node of t}, and

7(t) = { t ' l t ' in V r, t' obtained from t by changing the label of any
node of t}.

Definition 6. Let V x and V r be two finite nonempty sets of symbols
which are disjoint. Let T be a nonempty set of trees with nodes labeled from
V = V N U V r. Let t be a tree in T. Then

avr(t) = { t '] t ' in V ~, t ' obtained from t by the deletion of a proper
subtree },

flvT(t) = { t ' l t ' in V r, t ' obtained from t by the insertion of a single
node descendent labeled x, x in Vr, at any node of t labeled y,
y in Vr},

7v~(t) = { t ' l t ' in V r, t ' obtained from t by changing the label at node
of t from x to y, x a n d y i n V r , x 4 : y } .

Finally, for transformations on sets of trees,

av~(T) = {t' [t ' in ave(t), t in r}.

flv~(T) = {t' I t ' in flv~(t), t in T}.

?v~(T) = {t' I t ' in yvr(t), t in T}.

The next step is to determine the effect of the operators on the basic
trees used to define the RLT sets.

kemma 9. Let V r be a finite nonempty set of symbols. Then

avT(r = o,

arT(a) = 0, for all a in Vr,

aVr() a + a / o \ / \ \

x , . . . x , & . . . x , X l X 3 . . . x ,

+ . . . + a ;
/ \

X l "" Y . _ !

10 Barrero, Thomason, and Gonzalez

#~(o) = 0 ,

#,. (a) = y~
x in V T

x . k(a), k not in Vr,
1

k

flv~(/ a) = S ' x . k(a
x , . v , / < \

X 1 , , , X n k X 1 . . . X n

+ . - . + a),

X 1 ... X~ k

where X~ ,..., X, are not in V r;
%(~) = o ,

%(a)= ~, x
x in V T
x ~ a

7 v . (/ ~ \) : Y~ x ,
x, . . . / \

X 1 . . . X n x c a X 1 . . . X n

where X 1 X , are not in V r.

Proof. The proof follows immediately from the definitions. Moreover,
the resulting sets are regular-like. I

Lemma 10. Let P and Q be regular-like sets over V r U {k}, k not in
Vr. Then: (a) av~(P U Q) = av~(P) u av,(Q), (b) flv,(P U Q) =
flzr(P) U flv~(O), (c) 7v~(P u Q) = 7vT(P) u 7vT(O).

Proof. The result follows immediately by applying the operators to
one tree at a time. I

Lemma 11. Let P and Q be regular-like sets over V r U {k}, k not in

Vr. Then: (a) avT(P, kQ) = arT(P), k a + P . kazT(O), (b) flvT(P, ka) =
flz~(P) . kQ + P . KflvT(a), (c) 7 , r (P . kQ) = 7,r(P) �9 k a + P . kTv~(a).

Proof. P . kQ is obtained by replacing nodes with label k at the
frontier of trees in Q with trees from P. Modifications at a node not labeled
with k can be done before or after the replacement. I

Lemma 12. Let P be a regular-like set over V r U {k}, k not in V T,
and the tree k not in P. Then: (a) a V (p * k) = F k . kVr(P)ak " p*~, (b)
flvr(P*k) --_ p*, . kVr(P)flk " p,k, (c) 7vr(P*k)r = P*k . kVr(P)Tk " p**.

Proof. For part (a):

p*k = {k} + P*k . kP

Regular-Like Tree Expressions 11

Then

But

Thus

avT(P*k) = ~vT({k}) + avT(P *k . kP)

avT(P *k . k P) = av~(P~k) �9 k P + P*k . kavT(P)

av (P *k) = av (P*k), kP + . ka (P)

and since the tree k is not in P, by Lemma 7 the unique solution to this

equation is

avT(p*k) = P*k . kav~(P) . k p *k

The proofs for parts (b) and (c) are s imilar . |

Theorem 4. Let p be a RLT expression over V N U V r, denoting the

regular-l ike set P, and V~ = {k[. k or *k are operators in P/ . Then ar t (P) ,
flvT(P), and yvT(P) are regular-like.

Proof. The proof is based on Lemmas 9, 10, 1 l , and 12; and follows
by induction on the number of appl icat ions of the rules, in Definit ion 2, used
to construct p. |

Corollary. Let p be a RLT expression over V~,~ V r , denoting the
regular-l ike set P of Vl-trees, and V x = {k] �9 k or *k are opera tors in p}.
Then a(P) , fl(P), and 7(P) are regular-like. |

REFERENCES

1. A. Salomaa, Formal Languages (Academic Press, New York, 1973).
2. W. S. Brainerd, "Tree Generating Regular Systems," Infor. and Contr. 14:217-231 (1969).
3. J. W. Thatcher and J. B. Wright, "Generalized Finite Automata Theory with Application

to a Decision Problem of Second Order Logic," J. Math. System Theory 2:57-82 (1968).
4. R. C. Gonzalez and M. G. Thomason, Syntactic Pattern Recognition: An Introduction

(Addison-Wesley, Reading, Mass., 1978).
5. K. S. Fu and B. K. Bhargava, "Tree Systems for Syntactic Pattern Recognition," IEEE

Trans. Comput. 22:1087-1099 (1973).
6. M. A. Arbib and Y. Give'On, "Algebra Automata I: Parallel Programming as a

Prolegomena to the Categorical Approach," Infor. and Contr. 12:331-345 (1968).
7. M. G. Thomason and R. C. Gonzalez, "Syntactic Recognition of Imperfectly Specified

Patterns," IEEE Trans. Comput. C24:93-95 (1975).

