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Regular-like expressions provide a compact notation for the explicit description 
of context-free languages. In this paper we extend these concepts by establishing 
a one-to-one correspondence between expansive tree languages and regular-like 
sets of trees. Algorithms are developed for constructing an expansive tree 
grammar whose language is defined by a given regular-like tree (RLT) 
expression, and vice versa. These results are then used to obtain RLT equations 
that describe sets of tree resulting from regularity-preserving transformations 
associated with three types of errors commonly found in practice. 

KEY WORDS: Trees; regular expressions; expansive tree grammars; 
regularity-preserving transformations; context-free languages. 

1. INTRODUCTION 

Regular and regular-like expressions are used as compact representations of 
string languages that are of types three and two, respectively, in the 
Chomsky hierarchy. (l~ The requirements of certain areas, such as syntactic 
pattern recognition, for the representation of structures that cannot be 
conveniently handled by string languages has motivated investigations into 
the properties and applications of tree grammars and languages J2-6! In this 
paper we extend the concept of regular-like expressions by establishing a 
one-to-one correspondence between expansive tree languages and regular-like 
sets of trees. 

In the following sections, regular-like tree (RLT) expressions are 
defined and it is shown that the set of trees defined by an RLT expression is 
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generated by an expansive tree grammar. It is also shown that an RLT 
expression can be constructed for the language of an expansive tree 
grammar. In addition, three types of errors in trees that are commonly 
encountered in practice are studied in terms of their representation as 
regularity-preserving transforms. The development is based on operations of 
RLT expressions that yield descriptions of the transformed tree structures. 

2. CONSTRUCTION OF EXPANSIVE TREE GRAMMARS THAT 
GENERATE REGULAR-LIKE SETS 

We use the standard definition of an expansive tree grammar 
G = (Vr, V N, P, S) as finite sets of terminals, nonterminals, expansive tree 
productions, and starting trees. (2'4'5) A V-tree is a tree with node labels from 
a finite set V. 

Definition 1. Let E and F be two sets of V-trees and let k be in V. 
Define the following operations with E and F: 

E �9 kF = the set of V-trees obtained by taking trees of F and replacing 
each node in the frontier with label k by a tree from E. 

E ~ = {k}, the tree with a single node labeled k. 

E "+l;k = E .  kE ";~, n >/O. 

E + k =  (~ E n;k. 
n = l  

00 

E'k= U En;k" 
n = O  

Lemma 1. .k is an associative operation with identity {k}. 

Proo[. It follows from the previous definition that E .  k .  (F.  kG )=  
(E . kF) . kG, and E .  k{k} = {k}. kE. | 

Definition 2. Regular-like tree (RLT) expressions over V and the 
sets of trees they denote are defined recursively as follows: (1) O is an RLT 
expression over V denoting the null set 0 .  (2) a is an RLT expression 
denoting the set {a}. (3) a is an RLT expression denoting the set 

/ \  
X 1 , . .  X n 

{ j a \  }. (4) I fp  and q are RLT expressions denoting sets P and Q, respec- 

X 1 . . .  X n 

tively, then: (a) p § q is an RLT expression denoting the set P U Q; (b) 
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p .  kq is an RLT expression denoting the set P .  kQ; (c)p*k is an RLT 
expression denoting the set P'~. (5) Nothing else is an RLT expression. 

Theorem 1. Let E be a regular-like tree set; then E is generated by 
an expansive tree grammar. 

Proof by construction of the grammars. It is evident that 0,  {a}, 
and { / a  } can be generated by expansive tree grammars. Let P and Q be 

X 1 . . .  X n 

sets of V-trees generated by the expansive tree grammars G p =  
(V, l/p, Pp, Sp) and GQ = (V, Vo., PQ, So! ~ with Vj, ~ VQ = 0. Then the sets, 
(1) P U  Q, (2) P .  kQ, k in V, and (3) P k, k in V, can be generated by the 
following expansive tree grammars: (1) G I = ( V ,  Vpt._)VQ, PpUPo_ , 
Sp ~) SQ). (2) G2 = (V, V o U V~ - Sp, Pz, So), where P2 is (Po. - {X-~ k IX  
is in Vo_}) joined with {X~ x [ X ~  k is in Po., Y ~  x is in Pp, 

/ \  / \  
X 1 - . -X,  X 1 ... X, 

Y is in Sp} joined with ( P p -  {Y~ x ] Y is in Se} ). (3) Let K be a 
/ \  

X 1 ... X ,  
symbol not in Vp, and let G3= (V, VpU {K}, P3, S p U  {K}), where 
P 3 = { K ~ k } U P e L J { X ~  x I X - ~ k i s  inPp,  Y ~  x is in P~, 

/ \  / \  
Y 1 " ' "  X n X I . . .  X n 

Y is in S~ }. II 

3. CONSTRUCTION OF RLT EXPRESSIONS FOR LANGUAGES OF 
EXPANSIVE TREE GRAMMARS 

The following definitions and lemmas establishes the properties of RLT 
expressions which are similar to properties of conventional regular 
expressions. In this section, Theorem 3 establishes that expansive tree 
languages are regular-like tree sets by using the RLT equations. 

Definition 3. Two RLT expressions are equal, denoted =, iff they 
represent the same set of trees. 

Lemma 2. Let a, fl, and 7 be RLT expressions. Then 

O * k = k  

a + q~+ 7 ) =  (a +fl)  + y 

(1) 

(2) 

(3) 



a .  k(~ 

a .  k(fl 

(a + #) 

a 
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�9 k?) = ( a .  k f l ) .  k7  (4)  

+ y ) =  a .  k f l +  a .  k y  (5) 

�9 k T =  a .  k y + f l ,  ky (6)  

�9 k k  = a  : k .  k a  (7)  

0 �9 k a  = a �9 k O = O  (8) 

a *k = a + a *k (9) 

( a ' k )  *k = a *k (10) 

a + a = a  (11) 

a + 0 = a (12) 

a �9 k a  *k = a *k �9 k a =  a +~ (13) 

a +k = a *k iffk ~_ a. (14) 

P r o o f .  Equations (1), (3), (4), (5), (6), (7), (8), (11), and (12) follow 
immediately from the definitions. Equation (2): a *k = k + a �9 k k  + 

a . k ( a . k k ) + . . . ;  then from (8), O *k=k. Equation (9): a * k =  

k + a  �9 k k +  . . .;  but from (7), a �9 k k = a ,  so a c a * .  Equation (10): follows 
from a ~ .  k a  *k = a  *k. Equation (13): follows by expansion of a** and the 
associativity of .k. Equation (14): follows by expansion of a +k and a *k. I 

Solution of an RLT equation such as 

X = X . k (  a ) + c  
/ \  

b k 

can be found by methods similar to the solution of conventional regular 
expression equations (cf. Ref. 1). By direct substitution, we have the 
following lemma. 

Lemma 3. Given the RLT e q u a t i o n X = X . k a + f l ,  where a andf l  
are RLT expressions, then X = fl �9 k a  *k is a solution to the equation. | 

Lemma 4. Given the RLT equation X = X .  k a  + fl, and a solution Z, 
then fl  �9 k a  *k c Z. 

P r o o f .  Since Z is a solution, Z = X �9 k a  + fl, so that f l  c Z ,  fl  ' k a  c Z, 

(]3 . k a )  . k a  c z ..... fl  + fl . k a  + fl . k ( a  . k a )  + . . .  c Z. But f l -= f l  . k k  = 

f t .  k a  ~ f t .  k a  = f t .  k a  l~k, f t .  k ( a .  k a ) = f t ,  k a  2;k .. . . .  Thus 
f l "  k (  a~ + a l ;k  + a2;k + "" ") ~X, and f t .  k a  *k ~ Z. | 
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I .emma 5. X = /3 . ka  *k is the unique solution to X = X . ka  +/3 iff 
the tree k is not in a. 

Proof .  I f :  Assume /3. ka  ~k is the unique solution. If  k is in a, it 
follows by direct substitution that (B + 7) �9 ka*~ is a solution for any 7. Since 
this contradicts the original assumption, it follows that k is not in a. 

Only tf: Assume k is not in a. Then by Lemma 6 any solution to the 
equation can be written in the form X = / 3 .  k a ~ k + y ,  where 7 is not 
contained in fl- ka  *k. But 

/3 " ka*k + 7 = (/3. k a  *k + 7) ' ka  +/3 

= / 3 .  ka  *k . ka  + fl + 7 . ka  

=/3"  ka  *k + 7 '  ka  

which implies that 7 = 7 �9 ka.  Now, if 7 4: 0 ,  then k must be in a since 
this is the only way in which a tree of  minimum depth in 7 can be in 7 " ka.  

But k is not in a, by assumption; therefore ? = 0 ,  and/3 �9 ka  *k is the unique 
solution. II 

Given an expansive tree grammar,  the productions in the grammar can 
be written as the RLT equations with the nonterminals as the unknowns. 
Each unknown will represent the set of  tree that can be generated by the 
corresponding nonterminal, and solutions to the equations will be unique. 

Definition 4. A set of  RLT equations with indeterminates {X 1 ..... X n} 
is in s tandard  f o r m  if for each X i there is an equation of  the form 

ml m2 

x, = J=,~ a~ + J=,~ x , .  x,,x,~, x,~.., x,~ . x,~( / b j \  ), for tP~ > o, 

X / l  . . .  X / p  j 

where {X1 .... ,Xn}, {al .... , a m , } U { b l  ..... bin2}, and {Xl .... ,Xn} have no 
common elements and there is a homomorphism h: {X 1 ..... X n } --, {x~ ..... x ,  }: 

h(X~) = xi .  

k e m m a  6. Given a set of  RL T  equations, it is possible to write each 
equation in normal form; that is, for each unknown Xi, 

X i  = & . x ia i  +/3i 
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Proof. It is only necessary to point out that in the preceding definition 
the operators .x k can be commuted. Thus 

r t t  2 m 1 

.x, J:,3 X,,X,l... ( / b j \  ) + j : l  I 

Xl l  . . .  Nip j 

The preceding results are the basis for the following algorithm. 

Algorithm 1. Solution of a set of RLT equations in standard form: 

Input. A set of RLT equations in standard form over {X~ ..... X, / .  

Output. A set of solutions of the form X; = a t, i = 1,..., n, where a i is a 
RLT expression in which no X's appear. 

Method. The method consists of successive elimination and back- 
substitution. 

Step 1: L e t i = l .  

Step 2: If  i = n, go to Step 4. Otherwise, write the equation for Xi as 
Xi-~-Xi .x ia iq- l~  i. Then in the equations for X;+~ ..... X, ,  replace each 
occurence of X i by fli" xia~ ~i. 

Step 3: Increment i by 1 and go to Step 2. 

Step 4: Write the equation for X; as X i=Xi .x~?~+ ~.  Let X~= 
6i" xi~ ~'. 

Step 5: If i = 1, terminate. Otherwise, replace 6t" xiY~ ~i for X i in the 
equations for X;_I ..... X~. Decrement i by 1 and go to Step 4. 

Lemma 7. Steps 2 and 4 of the Algorithm are always executable. 

Proof. The proof follows from the commutativity of .xk; and .X~r I 

Theorem 2. Algorithm 1 gives the unique solution to a set of RLT 
equations in standard form. The proof follows from Lemmas 3 through 7. I 

Attention can now be given to the sets generated by expansive tree 
grammars. An important aspect is to be able to write an RLT equation in 
standard from for the set of trees generated by a nonterminal. 

Lemma 8. Given an expansive tree grammar G = (V r,  V N, P, S), we 
can write an RLT equation in standard form for the set of trees generated by 
a nonterminal. 
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Proof. 
and let X i denote the set of trees generated by a nonterminal X i. Let 

Let V N = {X 1 .... , X .  }, consider Vu as a set of indeterminates, 

m I m 2 

xi = J=,Z aJ + J:,Z xl, . x,, ... x , , j .  x,,+( / b j \  ) 

X l l  " . "  X l p  j 

for all productions in P of the form X i ~  aj, or 

xi~ /bj\ 
Xtpl "'" Xtpj 

I 

Theorem 3. The set of trees generated by an expansive tree grammar 
is regular-like. 

ProoL The proof is by construction of an expression denoting the 
set generated by the grammar. Let G = (V r,  V u, P, S), write a set of RLT 
equations in standard form over V N as indicated in Lemma8,  and use 
Algorithm 1 to solve them. Then let 

where the summation is over all l / such  that Xti is in S. By Lemma 7 and 
Theorem 2, L = L(G). II 

Example. To illustrate ideas developed in this section, we consider an 
expansive tree grammar used in syntactic pattern recognition to describe 
inductor-capacitor electrical circuits with voltage source e, ground g, and 
repetitive l -  c sections. "'5) The grammar is G--- (V r, V N, P, S) where Vr = 
{$, e, g, l, c}; VN= {A,E, G,L,  C}; S = {A}, and there are six productions: 
(a) A ~  $ , (b) E ~ e ,  (c) G--+g, (d) L ~  l , (e) C--*c, 

/ \  I / \  I 
E L G C L G 

(f) L ~ l. The first step is to write a set of RLT equations in standard form. 
I 
C 

The construction of Lemma 8 yields 

A = E .  w(L �9 y( $ )) (15) 
/ \  

w y 

E =  G.  x(e) (16) 
I 

x 
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6=g (17) 
L =L.  y(C. z( / l  )) + C. z(l) (18) 

I 
z y z 

C = C .  x(e) (19) 
I 
x 

It is now possible to apply Algorithm 1 to this set of equations; however, in 
this particular instance, all that is required is to solve Eq. (18) and perform 
judicious substitutions. From Lemma 5 we know that 

L = ( c .  z(t)) ,  y (C .  z( ))*~ / l \  
z y 

is the unique solution to Eq. (18). After a series of substitutions, we obtain 

A = ( g .  x(?)), w((g. x(()), y((g. x(()), z( / l  ))*Y . y( / $ ~  )) 

x x x z y w y 

Further manipulations yield the equivalent expression, 

)*'. y( ) A = ([). y ( / l \  / S \  
g c y e y 

I 
g g 

which has a one-to-one correspondence with the equivalent regular tree 
grammar. The *k operation only occurs where there are instances of 
repetitive trees. 

4. REGULARITYLPRESERVING TRANSFORMATIONS 

It is useful at times to describe certain regularity-preserving transfor- 
mations via operations on RLT expressions. The three transformations in 
this section represent common kinds of errors that arise, for example, in 
automated analysis of patterns and in trees used to represent patterns. (4'5'v) 

Definition 5. Given a Vr-tree t, let an a error denote the deletion of 
a proper subtree of t (a subtree other than the tree itself); a fl error, the 
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insertion of a single node descendent at a node of t; and a y error, the change 
of the label at a node of t. Let Vr r denote the Vr-trees. Define the operators, 

a ( t ) =  { F i t '  in Vrr, t' obtained from t by the deletion of a proper 
subtree }; 

f l ( t ) =  { t ' l t '  in Vrr, t '  obtained by the insertion of a single node 
descendent at any node of t}, and 

7(t) = { t ' l t '  in V r,  t' obtained from t by changing the label of any 
node of t}. 

Definition 6. Let V x and V r be two finite nonempty sets of symbols 
which are disjoint. Let T be a nonempty set of trees with nodes labeled from 
V =  V N U  V r. Let  t be a tree in T. Then 

avr(t  ) = { t ' ] t '  in V ~, t '  obtained from t by the deletion of a proper 
subtree }, 

flvT(t) = { t ' l t '  in V r, t '  obtained from t by the insertion of a single 
node descendent labeled x, x in Vr, at any node of t labeled y, 
y in Vr}, 

7v~(t) = { t ' l t '  in V r, t '  obtained from t by changing the label at node 
of t from x to y, x a n d y i n  V r , x 4 : y } .  

Finally, for transformations on sets of trees, 

av~(T ) = {t' [t '  in ave(t),  t in r}. 

flv~(T) = {t' I t '  in flv~(t), t in T}. 

?v~(T) = {t' I t '  in yvr(t), t in  T}. 

The next step is to determine the effect of the operators on the basic 
trees used to define the RLT sets. 

kemma 9. Let V r be a finite nonempty set of symbols. Then 

avT(r = o, 

arT(a) = 0,  for all a in Vr,  

aVr( ) a + a / o \  / \ \ 

x , . . . x ,  & . . . x ,  X l X 3 . . . x ,  

+ . . . +  a ; 
/ \  

X l  ""  Y . _  ! 
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#~(o) = 0 ,  

#,. (a) = y~ 
x in  V T 

x .  k(a), k not in Vr, 
1 

k 

flv~( / a  ) =  S '  x . k( a 
x , . v ,  / < \  

X 1 , , ,  X n k X 1 . . .  X n 

+ . - . +  a ), 

X 1 ... X~ k 

where X~ ,..., X,  are not in V r; 
%(~)  = o ,  

%(a)= ~, x 
x in  V T 
x ~ a  

7 v . ( / ~ \  ) :  Y~ x , 
x, . . .  / \  

X 1  . . .  X n  x c a  X 1  . . .  X n  

where X 1 ..... X ,  are not in V r. 

Proof. The proof follows immediately from the definitions. Moreover, 
the resulting sets are regular-like. I 

Lemma 10. Let P and Q be regular-like sets over V r U {k}, k not in 
Vr. Then: (a) av~(P U Q) = av~(P ) u av,(Q), (b) flv,(P U Q) = 
flzr(P) U flv~(O), (c) 7v~(P u Q) = 7vT(P) u 7vT(O). 

Proof. The result follows immediately by applying the operators to 
one tree at a time. I 

Lemma 11. Let P and Q be regular-like sets over V r U {k}, k not in 

Vr. Then: (a) avT(P, kQ) = arT(P), k a  + P .  kazT(O), (b) flvT(P, ka )  = 
flz~(P) . kQ + P . KflvT(a ), (c) 7 , r (P .  kQ) = 7,r(P) �9 k a  + P . kTv~(a). 

Proof. P .  kQ is obtained by replacing nodes with label k at the 
frontier of trees in Q with trees from P. Modifications at a node not labeled 
with k can be done before or after the replacement. I 

Lemma 12. Let P be a regular-like set over V r U  {k}, k not in V T, 
and the tree k not in P. Then: (a) a V ( p * k ) = F k .  kVr(P)ak  " p*~, (b) 
flvr(P*k) --_ p*, . kVr(P)flk " p,k, (c) 7vr(P*k)r = P*k . kVr(P)Tk " p**. 

Proof. For part (a): 

p*k = {k} + P*k . kP 
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Then 

But 

Thus 

avT(P*k ) = ~vT({k}) + avT(P *k . kP)  

avT(P *k . k P ) =  av~(P~k) �9 k P  + P*k . kavT(P) 

av (P *k) = av (P*k), kP + . ka  (P) 

and since the tree k is not in P, by Lemma 7 the unique solution to this 

equation is 

avT(p*k ) = P*k . kav~(P) . k p  *k 

The proofs for parts  (b) and (c) are s imilar .  | 

Theorem 4. Let p be a RLT expression over V N U V r,  denoting the 

regular-l ike set P, and V~ = {k[ .  k or *k are operators  in P/ .  Then ar t (P) ,  
flvT(P), and yvT(P) are regular-like. 

Proof.  The proof  is based on Lemmas  9, 10, 1 l ,  and 12; and follows 
by induction on the number  of  appl icat ions  of  the rules, in Definit ion 2, used 
to construct  p. | 

Corollary. Let p be a RLT expression over V~,~ V r ,  denoting the 
regular-l ike set P of  Vl-trees, and V x = {k] �9 k or *k are opera tors  in p}. 
Then a(P) ,  fl(P), and 7(P) are regular-like. | 
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