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Abstract. Factors of a given system of PDEs are solutions of an adjoint system of PDEs related 
to the system's Frrchet derivative. In this paper, we introduce the notion of potential conservation 
laws, arising from specific types of factors, which lead to useful potential systems. Point symmetries 
of a potential system could yield nonlocal symmetries of the given system and its linearization by 
a noninvertible mapping. 

We also introduce the notion of linearizing factors to determine necessary conditions for the 
existence of a linearization of a given system of PDEs. 
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1. Introduction 

Consider  a system of  N partial differential equations (PDEs) R { u }  given by 

G ~ ( x , u , u , u , . . . , u ) = O ,  ~r-- 1 , 2 , . . . , N ,  (1.1) 
1 2 k 

with independent  variables x = ( X l , X 2 , . . . ,  xn)  and dependent  variables u = 
(u 1, u Z , . . . ,  urn); u denotes the set of  coordinates corresponding to all j th -order  

J 
partial derivatives of  u with respect to x (a coordinate in u is denoted by 

OJ u'r 
uT. . 

~l~2...~j ~ Oxil Oxi2 �9 �9 �9 Oxij 

with 7 = 1 , 2 , . . . , m ;  ij = 1 , 2 , . . . , n ;  j = 1 , 2 , . . . , k ) .  

DEFINITION 1.1. A symmetry of  a given system of  PDEs R { u }  is a transfor- 
mation mapping any solution of  R { u }  into another solution. 

This definition is strictly topological and, in particular, coordinate-free. Conse- 
quently, R { u }  should admit a wide range of  continuous symmetries: its family of  
solutions is expected to be invariant under a wide range of  continuous deforma- 
tions. For  the rest of  this paper we consider continuous symmetries characterized 
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by infinitesimal generators whose forms allow such symmetries to be discovered 
and utilized algorithmically. 

DEFINITION 1.2. A (Lie) point symmetry admitted by R{u} is characterized by 
an infinitesimal generator of the form 

m 0 
X =  ~ VU(x,u,u) 

Ou~ /z=l 

with rl linear in the coordinates of u: 
1 

(1.2) 

n 
, .  = ~"(., ~) - ~ ~(~, ~)~. 

i=1 
(1.3) 

An infinitesimal generator (1.2) corresponds to a one-parameter Lie group of 
point transformations 

x~ = x~+e~i(x,u)+O(e2), i = l , 2 , . . . , n ,  

U Iz* = U/z q- eO~/Z(X, U) q- 0 ( s  ~ = 1 , 2 , . . . ,  m. (1.4) 

Under the action of (1.2), a solution u = O(x) of R{u} is mapped into the 
one-parameter family of solutions 

u = ~ ( x ;  e) = e~Uulu=0(x), (1.5) 

where U is the prolongation operator given by 

o 
U = X + (Dirl") + ' "  + (Di, Diz'"Dij rl")Ou~i2...ij +""  

in terms of total differential operators 

0 "r 0 "r 0 
Di = Oxi +Ui-~u~ + ' " +  uii~iz'"i~OuTii2...i~ + ' " '  i=  l ,2, . . . ,n .  

(Summation over a repeated index is assumed throughout this paper.) 
Lie [1-7] gave an algorithm to find the infinitesimal generators of a given 

system R{u}: ff u* = u + erl(x, u, u) + O(e2), then 
1 

G ~  x~ u*~ u*~ ~ . . . ~  
1 2 

m 

= c o (x, ~, ~, ?,. . . ,  ~) + ~ E c ; E < ~  + o(~) ,  
p=l  

where /:[u] is the Fr6chet derivative of R{u}. One can prove the following 
theorem: 
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THEOREM 1.3. X is admitted by R{u}, including its differential consequences, 
if and only if the equations 

m 

= o ,  

p=l  

cr = 1 , 2 , . . . , N ,  (1.6) 

are satisfied for any solution u = O(x) of R(u). 

The determining Equations (1.6) form an overdetermined linear system of 
PDEs with n + m unknowns a 1, a 2 , . . . ,  am; ~1, ~2, . . - ,  ~n. There exist various 
symbolic manipulation programs [8-14] which perform one or more of the fol- 
lowing functions automatically and/or interactively: set up determining equations, 
find the dimension (if finite) of their solution space, and solve them explicitly. 

For a given system R{u}, point symmetries can yield various applications 
including the discovery of new solutions from known solutions (Equation (1.5)), 
the construction of specific invariant solutions [1-7], and the generation of con- 
servation laws through Noether's theorem [4-7]. In addition, one can determine 
algorithmically whether or not R{u} can be linearized by an invertible point 
transformation and construct an explicit linearization when one exists [15, 16, 
6]. 

DEFINITION 1.4. A local symmetry admitted by R{u} is characterized by an 
infinitesimal generator of the form 

X =  ~-'~7U(x,u,u,u, . . . ,u)  . 
1 2 p OulZ 

#=1 

(1.7) 

DEFINITION 1.5. A local symmetry of the form (1.7) is a contact symmetry 
when m = p = 1; a Lie-Biicklund (higher, higher order, generalized) symmetry 
[5, 6], when it is not a point or contact symmetry. 

The algorithm for determining local symmetries of a given R(u} involves 
solving the corresponding determining Equations (1.6). 

DEFINITION 1.6. A nonlocal symmetry of R{u} is a continuous symmetry 
admitted by R{u} which is not characterized by an infinitesimal generator of 
local type (1.7). 

In order to have algorithms to compute or utilize nonlocal symmetries most 
effectively, one should be able to characterize them in terms of infinitesimal gen- 
erators of point symmetries in some coordinate frame. There exists an algorithm 
to find a class of such nonlocal symmetries (potential symmetries) provided sys- 
tem R{u} contains at least one PDE expressed as a conservation law. This allows 
one to introduce potential variables v and a related potential system S{u, v} [6, 
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17, 18]. Consequently, one can extend the known applications and calculations 
of point symmetries to potential symmetries. Moreover, one can discover algo- 
rithmically linearizations by noninvertible mappings [6, 19]. 

In this paper, we develop the notions of potential conservation laws which are 
useful for discovering potential systems, and linearizing factors which identify 
linearizable systems. We clarify and extend results presented in recent papers [20- 
22]. A complete potential symmetry analysis is given for the nonlinear diffusion 
equation. 

2. Potential Symmetries 
Suppose one PDE of R{u} ,  without loss of generality G g = O, is a conservation 
law 

n 

i f  x , u , u , u , . . . ,  u = 0 .  
1 2 k - - I  

i : 1  

Then R { u }  is the system given by 

G ~ r ( x , u , u , u , . . . , u ) = O ,  o- = 1 , 2 , . . . , N -  1, (2.1) 
1 2 k 

n 

, u )  : o 
1 2 k - - 1  

i = l  

If n = 2, let xI = x, X 2 = t. Through (2.2), one can introduce auxiliary 
potential variables v and form potential system S{u,  v} given by 

f l  Ov f2 _ Ov (2.3) 
= O - - i '  - 

ff n >/3, then through (2.2), one can introduce n auxiliary potential variables 
v = (v 1, v 2 , . . . ,  v n) and up to �89 - 1)(n - 2) nontrivial constants {c~ijk} and 
form a gauge-dependent auxiliary system (potential system) S{u,  v} of N + n  - 1 
PDEs: 

n 

1 2 k?l eijkO~ijhox---k' i ----- 1 , 2 , . . . , n ,  
j ,k=l  

G'~(x,u,u,u,... ,u) 
l 2 k 

= 0, a = l , 2 , . . . , N - 1 ,  

where E~jk is the permutation symbol and {c~ijk} satisfies conditions 

Otij k : OLkji, 

n 

ICijk   kl # 0, 
j ,k=l  

i =- 1 , 2 , . . .  ,n. 

(2.4) 

(2.5) 

(2.6) 
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Note that conditions (2.5), (2.6) effectively mean that for particular choices of 
gauge, one need only have n - 1 potential variables. 

More generally, one can introduce �89 n(n - 1) potential variables v = (g,12, 
~i,13,..., ~ ln ,  g,23,.. . ,  ~2n . . . ,  q2n--l,n), where ~pia (i < j )  are components of 
an antisymmetric tensor, such that 

1 2 k - - I  

. j 0 Tuuuu~ij o l~J  i 
----- ~(-1)i<j ~ q- j~-~(--l)i-l<i OXj , i , j  = 1 , 2 , . . . , n ,  (2.7) 

and form a corresponding potential system of N + n -  1 PDEs with m+ 1 n ( n -  1) 
dependent variables u = (u 1, u 2 , . . . ,  urn), 'I 'ij (i < j) .  Since (2.7) is underdeter- 
mined, one can impose suitable constraints (a choice of gauge) on the potentials 
~ i j  to make system (2.7) a determined system [18]. 

If (u(x), v(x)) solves S{u, v}, then u(x) solves R{u}; if u(x) solves R{u}, 
then through integrability conditions (2.3), (2.4), or (2.7) there exists some 
(nonunique) v(x) such that (u(x), v(x)) solves S{u, v}. Since v(x) is not unique, 
it follows that an invertible point or contact transformation in (x, u)-space could 
yield a noninvertible nonlocal transformation in (x, u, v)-space and, vice-versa, 
an invertible point transformation in (x, u, v)-space could yield a noninvert- 
ible nonlocal transformation in (x, u)-space. Consequently, the study of poten- 
tial system S{u, v} through qualitative or quantitative methods which are not 
coordinate-dependent, may yield new results for R{u} and vice-versa. In partic- 
ular, a symmetry of S{u,v} (R{u}) defines a symmetry of R{u} (S{u,v}); a 
point symmetry of S{u, v} (R{u}) could induce a nonlocal symmetry of R{u} 

DEFINITION 2.1. A potential symmetry of R{u}, related to potential system 
S{u, v}, is a point symmetry of S{u, v} which does not project onto a point 
symmetry of R{u}. 

The proof of the following theorem follows immediately: 

THEOREM 2.2. A potential symmetry of R{u} is a nonlocal symmetry of JR{u}. 
In particular, suppose 

x s = 

0 
+ [ 9 " ( x ,  -  S(x, & .  

is a point symmetry of S{u, v}. Then X S reduces a potential symmetry of R{u} if 
and only if at least one component of (c~, ~s) depend essentially on v; otherwise 
X S projects onto a point symmetry of R{u}, namely 

X =  [ ~ " ( x , u ) - ~ ( x , * * ) < * ]  O 
0 U / ,  " 
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Conversely, 
0 

X ~ = [~"(x, u) - ~ ( x ,  u ) r  0 u ,  

yields a nonlocal symmetry of S{u, v} if and only if 

X s = X R + (" (x, u, u, v) 0 
1 1 / O V  12 

is not a point symmetry of S{u, v} for any choice of ~. 

Now let v (1) = v; S (I) = S{u, v(1)}. Suppose a PDE of S (1) is a conserva- 
tion law. Then one can introduce further potential variables (and gauge constants 
and/or constraints) v (2) and form potential system S (2) = S(2){u, v0), v(2)} of 
N + 2(n - 1) PDEs with n (2) dependent variables, N + 2(n - l) ~< n (2) ~< 
m + n(n - 1). Point symmetries of S (2) could yield additional nonlocal symme- 
tries of R{u}. Continuing this process with other conservation laws one could 
obtain potential variables v (1) , v(2) , . . . ,  v (J) and corresponding potential systems 
S (1), S(2) , . . . ,  S (J) {u, v (l) , v(2) , . . . ,  v (J) }. Potential system S (J) would involve 
N + J(n  - 1) PDEs with n (J) dependent variables, N + J(n - 1) <~ n (J) <~ 
m + �89 - 1). At any step J ) 2, a point symmetry of S (g) could yield a 

potential symmetry of S (J-l) which is either a point symmetry or nonlocal sym- 
metry of _R{u}. If a potential symmetry of S ( J - l )  yields a point symmetry of 
R{u}, then a 'lost' point symmetry of R{u} is 'recovered'. (A point symmetry 
of R{u}  is said to be 'lost' in S (K) if it does not induce a point symmetry of 
S (K).) 

3. Conservation Laws, Potential Conservation Laws, and Potential 
Systems 

Up to now, in order to obtain potential systems, we assumed that at least one 
PDE of a given system is a conservation law. The question of how to construct 
conservation laws yielding useful potential systems naturally arises. After defin- 
ing the adjoint of an operator, we state some known theorems concerning the 
discovery of conservation laws. 

DEFINITION 3.1. The adjoint of the differential operator s [u] is the differential 
operator s [u] which satisfies 

/aVaCp[u]WP dx = f WPC*P[u]Va dx (3.1) 

on any domain ft C R n, for every pair of k times differentiable functions 

: 

w ( x )  : 

with compact support in f/. 
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In particular, s is the adjoint of s if VC~C~[u]W p - WPE.*P[u]V c~ is a 
divergence expression. 

THEOREM 3.2. Suppose there exists a set offactors (multipliers, characteristics) 
{ha(x, u, u, u , . . . ,  u) ) where the components of u(x) are arbitrary p-times dif- 

1 2 p 

ferentiable functions such that 
N n 

h ~G ~ = ~ Di f  i (3.2) 
c r = l  i = 1  

holds for some {f i (x ,  u, u, u , . . . ,  u)}. Then 
1 2 q 

N 
s ~ = 0 ,  p = l , 2 , . . . , m ,  (3.3) 

o ' = l  

must hold for any solution of R{u} and its differential consequences, where 
s is the adjoint of the Frdchet derivative s of R{u} [5,23]. 

THEOREM 3.3. If  the Frdchet derivative of R{U} is selfadjoint, i.e. s = 
/2" [u], then system R{u} is the set of Euler-Lagrange equations for some vari- 
ational principle with Lagrangian L [5, 23]. 

THEOREM 3.4 (Noether's Theorem [5, 6, 23-25]). If L(x, u, u, % . . . ,  u) is a 
1 2 l 

Lagrangian for R{u} then {h a) yields a set of factors for a conservation law 
of R{u} if both 

m 

( 1 )  x =  �9 
1 2 " "  p . ] O U ~  

is a local symmetry of R{u); 
m n 

(2) ~ .A4~[u]h ~ = ~ DiAi 
o-=1 i = 1  

{Ai(x, u, u, u, .. . , u)}, where Ad[u] is the Frdchet derivative of La- 
1 2 q 

L. 

for some 

grangian 

If (1) 
A ~] =0,  

W ~[u, h] 

and (2) hold then the resulting conservation law is ~in=l Di [W~[u, A] - 
where 

h~ [ o i, Diz , 1 
= " - u  ~ + . . .  + (_l)l_lDi, . . .  OL + 

- Ouiil...it_~ 

+ " "  + (-1)Z-2Di2 "'" Diz_~ Ou.~l~i2...i~_l + 

OL 
-}-''" -{- (Di l" ' "  Di,_l A ~) Ou~l...i,_li. 
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Note that if Z;[u] is not selfadjoint, then only Theorem 3.2 holds. Unlike 
Theorem 3.4, it yields no explicit formula for a conservation law of R{u}. 

In principle any conservation law of R{u} leads to an associated potential 
system: Suppose a set of factors {/~(x,  u, u, u , . . . ,  u)} exists with /~M • 0 SO 

1 2 p 

that (3.2) holds. 
Consider the new system RM{U} given by 

G ~ = 0 ,  c~ = I , 2 , . . . , M - 1 , M  + I , . . . ,N ,  
n 

Dif i = O. (3.4) 
i=1 

It follows that each solution of R{u} is a solution of .RM{u}. On the other hand, 

each solution of .RM{u} is a solution of R{u} or factor system l~M{U} given 
by 

G ~ = 0 ,  ~ = I , 2 , . . . , M - 1 , M  + I , . . . ,N ,  

AM (x, u, u, u,. . . , u) = 0 .  (3.5) 
1 2 p 

Suppose there are solutions of ff~M{U} which are not solutions R{u}. (This 
can only happen when )~M : 0 has a solution u(x).) Since the solution set of 

RM{U} is the union of the solution sets of/~M{U} and R{u}, one would expect 
RM{U} to lose symmetries of R{u}. This leads to the consideration of only 
certain types of factors in order to discover useful potential systems: 

DEFINITION 3.5. A potential factor is a factor which does not vanish for any 
u(x), i.e. 

AM (x ,  u, u, u, . . .  , U) = 0  (3.6) 
l 2 p 

has no solutions u(x). 

DEFINITION 3.6. A potential conservation law of R{u} is a conservation law 
of R{u} arising from a set of factors with at least one potential factor. 

DEFINITION 3.7. L e t  /~M{U} be a system (3.4) associated with a potential 
conservation law of R{u} with potential factor A M. A corresponding potential 

system (see (2.3), (2.4), or (2.7)) Sin{u, v} is a useful potential system. 

If a potential system arising from R{u} is not a useful potential system, then 
one would expect it to yield no potential symmetries of R{u}. For example, let 
R{u} be the linear wave equation 

U x x  - -  X - 4 U t t  = O. (3.7) 
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The factor A = 2ut yields 

2~(u~x -x-4u,~)= D~(2~x~)- D~((~) 2 + x-4(~da) 

and, hence, one obtains conservation law and system /~1 {TZ} given by 

Dx(2uzut)  - Dt((uz)  2 + x - 4 ( u t )  2) ~--- 0. (3.8) 

Correspondingly, one has the factor system _~l{u} given by 

ut = 0 (3.9) 

and potential system ~1 {u, v} given by 

vt = 2uzut, vx - - ~  X-4(Ut) 2 q- (Ux) 2- (3.10) 

On the other hand, factor ~ = 1 yields conservation law 

Dz(ux) - Dt(x-4ut)  = 0 (3.11) 

with corresponding factor system/~2{u} given by the equation 

1 = 0 (3 .12)  

and potential system S2{u, v} given by 

Vt = U z ,  Vx  = X - 4 U t  �9 (3.13) 

Conservation law (3.8) is not a potential conservation law; in particular ut = 0 
has solutions (thus ,k = ut is not a potential factor) and almost all solutions of 
us = 0 do not solve Equation (3.7). On the other hand, conservation law (3.11) 
is a potential conservation law (]~2{u} ~--- R{u}; there are no solutions u(x) of 
Equation (3.12)). 

It is interesting to compare the point symmetries of R{u} ,  S l {u ,  v}, and 
S2{u, v} given by (3.7), (3.10), and (3.13), respectively: 

(1) R { u }  admits an infinite-parameter group which leads to its mapping to 
the wave equation uzt = 0 [17, 6]. 

(2) sI{U, v} admits 

^ 0 0 x fl = u , ~  + v , ~ ,  

Xs21 = [u + 2 ( t u t -  xuz)]-~u + 2 ( t v t -  xvx) , 

^ 0 0 
x4 s' = ~ + 2~0v, 
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K s  ~1 = X~-s 71- 2U , 

^ 0 ,  

^ 0 
XvS~= 0---~" (3.14) 

(X4S1 XgS't, X6 ffl, and 17 ~1 are trivial since independent variables are invariant.) 
Note that each infinitesimal generator of ffl{u, v} is admitted by R{u} (ut = 

0) as well as R{u} ,  From the form of (3.14) we see that Sl{u, v} yields no 
potential symmetries of R{u} ,  as to be expected. 

(3) S2{u, v} admits a four-parameter group [17, 6] given by infinitesimal 
generators 

^ 0 o o 0 x 2  s2 = ( t ~  - x~x) N + (tv~ - xvx - 2~) , x ~  = ~ g + v ~ ,  

0 
x ~  = [3t~ - x~ + (t 2 + ~ - 2 ) ~ -  2~t~x] N + 

+[(r + x - ~ ) v ~  - 2~ t~x  - ( t v  + _,~)]o 
0v ' 

^ 0 0 

Infinitesimal generator X ~  yields a potential symmetry of R{u} .  

Factor A = 2ut yields a conservation law and corresponding potential system 
S{u, v} where R { u }  is the wave equation 

1 
u ~  c2 ( z )  ut~ = o. 

For any wave speed c(x) one can show that this potential system has no potential 
symmetries [26] and that the point symmetries of S{u, v} project onto point 
symmetries of both R { u }  and ut = 0. This is to be expected, since A = 2ut is 
not a potential factor of R{u} .  

For physical equations one can have factors depending on u yielding potential 
conservation laws. For example, consider the equation of one-dimensional planar 
gas dynamics R { u }  given by (u = (v,p,p)):  

G 1 = pt + Vpx -k pVx = 0, (3.15a) 

G 2 = fl(vt q- vvx) q- px = O, (3.15b) 

G 3 = p(pt + vpz) + B(p,  p)vz = 0, (3.15c) 
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where B(p,  p) satisfies some constitutive relation. Let A = (/~1/~2/~3) = (v, 1, 0). 
Then the resulting conservation law is a potential conservation law since A 2 = 1 
is a potential factor. It yields /~2{u} given by the system of PDEs (3.15a, c) 
and 

vG I + G 2 = Dt(pv) + Dz(p + pv 2 ) = 0 .  (3.16) 

4. Complete Potential Symmetry Analysis of the Nonlinear Diffusion 
Equation 

As a prototypical example we consider the nonlinear diffusion equation R{u}  
given by 

= (K(.)UxL. (4.t) 

4.1. POTENTIAL SYSTEMS OF R(t t}  

First we determine all potential systems of (4.1) arising from potential conser- 
vation laws for any diffusivity K(u) .  The Fr6chet derivative of (4.1) is given 
by 

s = K ( u ) D  2 + 2K' (u)uxDx - Dt + [K"(u)u2~ + K'(u)uzz] 

= D2x �9 K(u)  - Dr. (4.2) 

The adjoint of (4.2) is s = K(u)D2x + Dt ~ s From Theorem 3.2, if a 
factor A(x, t, u, ux, ut) yields a conservation law of (4.1), then 

s = K(u)D2xA + DtA = 0 (4.3) 

must hold for any solution of (4.1), including its differential consequences. One 
can show that for any K(u)  the only solutions of (4.3) are A = ClX + c2 for 
arbitrary constants Cl, c2. 

Hence there are at most two potential systems arising from potential factors 
= l, A = x; factor A = 1 obviously yields a potential conservation law from 

the form of (4.1); factor A = x yields the potential conservation law x[ut - 
(K(u)ux)z] = Dt[xu] - Dz[x(L(u))x - L(u)] = 0, where K(u)  = L'(u). 
Consequently, we obtain useful potential systems 

{ = 
v t  : (L(u))x, (4.4) 

and 

~2{U, V}: { Vx = x~, 
Vt : x ( r (u ) )  z - L(u). (4.5) 



32 GEORGE BLUMAN AND PATRICK DORAN-WU 

4.1.1. Potential Systems of Sl {u, v} 

The Frtchet derivative of S 1 {u, v} is the operator 

1 
E[u'v] = K ' (u)ux  + K ( u ) D x  -Dx 1 - D t  

I V x :U~ 
TI{u ,v ,w}:  wx = v, (4.7) 

wt = L(u). 

The Frtchet derivative of (4.7) is 

= 

1 - D ~  0 

0 1 - D x  

t((u) 0 -Dr  

with adjoint 

E*[u, v, w] = 

1 0 K(u)  

Dx 1 0 

0 Dx Dt 

Then one can show that the system 

z:* [u, v ,  
"Xl(x,t,u,v,w) 1 
A2(X, t, U, V, W) = O, 

,~2 (X, t, U, V, W) 

where (u(x, t), v(x, t), w(x, t)) is any solution of (4.7), only has the trivial solu- 
tion (AI, A2, A 3) = (0,0,0). 

(4.8) 

with adjoint given by 

fl_.*[u, v] = Dx Dt " 

Then two cases arise out when solving 

E*[u,v] A2(x, t ,u ,v  ) = 0  (4.6) 

where (u(x,t),  v(x,t))  is any solution of Sl{u,v}:  
(1) K(u) arbitrary: Here one can show that the only solution of (4.6) is 

(A1, A2) = (0, 1), leading to potential system 
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(2) K(u) --- u-2:  Here (A1,A 2) = (u-lFl(v,t) ,FZ(v,t)) ,  where (Fl(v,t), 
FZ(v, t)) are arbitrary functions satisfying the linear system 

OF 2 OF 1 OF 2 
F 1 -- - -  -- (4.9) 

Ov ' Ov Ot " 
In Section 5, we show how these factors indicate the linearization of the sys- 
tem 

lrx = u, vt = u-2uz. (4.10) 

4.1.2. Potential Systems of S2{U, V} 

The Fr6chet derivative of S2{u, V} is the operator 

c[~, v] = x(K'(~)~x + K(~)Dx) - K(~) 

with adjoint given by 

[ x - K ( u ) ( 2 + x D z ) ]  
/:*[u, V] = Dz Dt " 

-Dr 

Then two cases arise when seeking factors (/~l(x, t, u, V),/~2(x, t, u, V)) satis- 
fying the corresponding adjoint Equations (3.3): 

(1) K(u) arbitrary: Here the only solution of (3.3) is (A ~, A 2) = (0, x-2).  
These factors yield the potential conservation law (x -2 r 0 if x E R)  

x-2[Vt -x (L(u) ) z  + L(u)] = Dt[x-2V]- Dx[x-lL(u)] = 0 ,  

leading to potential system 

{ Wx =x-W, 
T2{u, V, W}: W t  = x - i L ( u ) ,  

Yx ~ xU. 

It is unnecessary to seek factors for T2{u, If, W}, since one can show that 
T ~ {u, v, w} and T2{u, V, W} are equivalent through the mapping 

v =  x - l V  + W, w =  xW. (4.11) 

However, S*{u, v} and S2{u, V} are not invertibly equivalent since, as will 
be seen in Section 4.2, for any K(u) these systems admit point symmetry Lie 
algebras of different dimension. 

(2) K(u) = u-2:  Here 

(~1, A2)= xu' z 2 
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is the only other solution of Equations (3.3). Obviously )~1 is a potential factor. 
These factors yield the potential conservation law 

[Y  ] IV  2 ] l (Vx - x'u,) -Jr- V (v t  - u - 1 -  xu -2%x)  = Dx  "~u - x + Dt ~ =0, 
xu --~ 

which, in tum, yields systems 

~2: {U, V}: { gt ~- u-1 q- xu-2Ux' (4.12) 
=0, 

k 

,922: {u, V}: { Vz = xu, (4.13) 
=o .  

,% 

Since A 2 is not a potential factor, only ~2 leads to a useful potential system, 
given by 

2 . ,  TI{U,V,W}:  W t = 2  x -  , 
v 2 

}a&= 7 .  
--2 

The Fr6chet derivative of T 1 {u, V, }4;} is given by 

xu-2Dx -- (u -2 + 2xu-3ux) 

[U, V, "}/~] = 2 -,7~2V 
0 

with adjoint 

- D t  0 
- 2 ( x u )  -1 - D t  

2x-2V - D x  

(4.14) 

--U-2(2 + xDx) z-Tfu 0 

~* [u, V, I/V] = Dt - 2 ( x u ) - I  2 x - i V  

0 Dt Dx 

It rams out that the only solution of 

A1 (Z, t, U, V, ~/V) 
s A2(x, t, u, V, W) =0, 

A 3 (z, t, u, V, W) 
when (u(x, t), V(x ,  t), W(x ,  t)) solves (4.14), is (A 1 , A 2, A 3) = (x -2, 0, 0). The 
resulting potential conservation law yields system 

--2 )At = 2 x -  V 
U l{u, V, W, Z}: x'u ' 

Zx = x-2g~ 
Zt - 1 . 

X U  



FACTORS TO DISCOVER POTENTIAL SYSTEMS 35 

One can show that this potential system admits only trivial factors of the form 

The factors and potential systems arising for the nonlinear diffusion equation 
R{u} are summarized by the following diagrams: 

Case I: K(u) arbitrary 

s2{ , v} 

Case H." K(u) = U -2 

(/~1'~2)=(0'1) ~ Tl{u,  V, W} no factors 

> T2{u, g~ W} > 
(.~1 ,/~2) = (0,X--2)  no factors 

S 1 {U~ V} 'linearizing' factors 

R{U} T i{u ,  V, W} 

~ (~1 ,/~2)=(0,X--2 ) f 

$2{~, V} 

(A~A2~_( ~ r 
, /-- ,,Tff, j ] l 

--2 TI{ ,v,w} 

> 

'linearizing' factors 
) 

( AI '~2'A3)=(x-2,0,0) --2 factors 
> ~ t " , ' "  ~ J  1-TI'fTA, 1/''IA), 7~\ no 

4.2. SYMMETRY CLASSIFICATION OF R{u} 

The infinitesimal generators of symmetries of R{u} arising from point sym- 
metries of systems R{u}, S 1 {u,v}, T l{u,v,w}, S2{u, V}, T~{u, V, W}, and 

U~{u, 17, YV, Z} depend on the form of diffusivity K(u) • const, modulo scaling 
and translations in u. 

4.2.1. Point Symmetries of R{u} 

(1) K(u) arbitrary: 

0 X2 R = ut 0 Xl  R = ux Ou' Ou' X~  = (zux + 2rut)3- ~. 
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(2) K(u) = u~: 

x, ~, x#, xL x4 ~ = (2~,- ~.ux)0~ 

(3) K(u)  = 'tt-4/3: 

0 x~,... ,xf, x f  = (3~ + ~ ) g  

4.2.2�9 Point Symmetries of S 1 {U, V} 

(1) K(u) arbitrary: 

0 xf' = x f + ~ N ,  

X3S~= Xf + (xvz + 2 tv t -  v) ff-~, 

(2) K(u) = u;~: 

x ? =  x f  + ~ ~  

xS~ o 
=Or" 

0 
s '  XsS 1 = X4 R + ((2 + A)v - AxVx)ov X1S1, �9 �9 �9 , X 4  , 

(3) K ( u )  = 1 ~aarctanu iT-~-c , a = const: 

X 1 S I , . . � 9  S1, X5 S1 ---- [(U 2 +  1) +VU x +atut] -+- [X+VV x +atv t ]ov  

(4) K(u) = 'tt-z: 

S1 SI $1 uz f 2  0 0 X2 , X5 , Xec = [Fl(v,t)uz + (v,t)]~u + F l ( v , t ) v ~  - 
�9 . .  ~ OV ~ 

where (F 1 (v, t), F2(v, t)) is an arbitrary solution of  the linear system 

OF1 -- OF2 OF1 -- F 2. (4.15) 
Ot Ov Ov 

4.2.3. Point Symmetries of T 1 {u, v, w) 

(1) K(u) arbitrary: 

0 
o x ~  1 = x s' + ~t  o ~ '  xF = Xl~:+ ~x o~' 
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X Tt = Xs3 ~ + (xwz + 2 t w t -  2 w ) : w '  

x s r l  __ 0 
Ow" 

(2) K(u) = u'X: 

T l T 1 
X 1 , . - . , 1 5  , 

( 3 )  / ( ( ~ t )  = 1 eaarctan u ,  1-77 a = const: 

0 
X 4  TI ---- x 4 S l ~  I- X OW' 

X T1 ---- X5 ~1 "~- [2(1 + A)w - AXWx] 7w" 

37 

T 1 T 1 X 6  T1 X~ I -i I- [ l ( x 2  V 2) + V'U) x -}- atTJ)/;] 7,/~" X l  , . . . , X 5  , = 

(4) K(u) = u-2: 

T 1 T 1 T 1 o01 
X 2 , . . .  X 6 , Xoo = Xoc q- [F  3 ( v , t )  - v F  l (v , t )  Jr - f  l (v , t )wx] 0 

' 0'//) ' 

where (F  1 (v, t), F 2 (v, t), F 3 (v, t)) is an arbitrary solution of the linear system 

0 F  3 OF 3 OF 1 
__ /~1  - -  F 2 ,  - -  F 2. (4 .16)  

Ov ' Ot Ov 

(5) K('tt,) = U-4/3:  

T1 T1 X7 T1 = X5 R -Jr- (xv - w -]- X2Vx) ff-~v -iv (X2Wx - xw)  oq~13, X l  , - . . , X 6  , 0 

(6) K(u) = U - 2 / 3 :  

TI X7 T1 = (3uv + wuz) 0 + (v 2 -I- WVx)~-0~v -t- ww x 0W" X 1 T I , . . . , X 6  , 0 

4.2.4. 

(1) K(u) arbitrary: 

xf2= x# + o ~  

X3~2 __ 0 
OV" 

(2) K(u) = u:~: 

o ~ X 2  ~2 X l  , 

Point Symmetries of •2 {U, V} 

XS22 = X f  + (xVx + 2tVt - 2V) 0 
OV' 

6'2 X4 s2=x4 R + ( 2 ( A + I ) V  AxVx) fV .  13 , 
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(3) K(u) = u - 4 / 3 :  

s~ s2 x s~ x ~  + ~ 2 v x - -  X t ~. . , 1 4  ~ 
0 

OV" 

4.2.5. Point Symmetries of Y~{u, V, W} 

Here K(u) = u -2 with admitted infinitesimal generators 

0 
0 X2 ~21 -- XS2 2 + (xWz + 2tWt - 3W) 0W'  X~l ~ = x~2 + w ,  o w '  

--2 --2 
X 3  T1 = X4~2"q - 2(xI'Vx - W) 0 X4 T, _ O 

o w  ' o-w 

4.2.6. Point Symmetries of U){u, V, W, Z} 

Here K(u) = u -2 with admitted infinitesimal generators 

- 2  0 

xy  ~1 : x  T ~' + ~' o-/, o x ~ :  xy ,+  (.~x + ~,~, - ~ /o~  

-~ -~ S~ 7~ ~ j~ o 
xU1 = x 3 T I - 4  - 2 x Z  x X I :  X 1 X 1 =  

' OZ" 

We now analyze the above symmetries in view of the material presented in 

Sections 2 and 3: 
When K(u) = u -4/3, the point symmetry X5 R is 'lost' in Sl{u, v}, since it 

induces no point symmetry of Sl{u, v}. In particular, X5 R induces a nonlocal 
symmetry of S l{u, v} which is represented by the infinitesimal generator 

0 
X5 S' = X R q- (x2vz + x v -  D ; l v ) ~  v. 

On the other hand, S 1 {u, v} yields potential symmetries of R{u} given by X~ 1 
when K(u)  -- 1 eaarctanu, and by X ~  when K(u) : u -2. The latter sym- 

1 + u  2 
metry leads directly to the linearization of R{u} by a noninvertible mapping [6, 
15, 16]. 

For any K(u), T 1 {u, v, w} 'covers' R{u} and S 1 {u, v}, since the point sym- 
mettles of Tl{u, v, w} project onto all point symmetries of both R{u} and 
Sl{u, v}. In particular, the point symmetry X5 R, 'lost' in Sl{u, v}, is 'recov- 
ered' as a point symmetry of Tl{u, v, w}. Moreover, if K(u) = u -2/3, the point 
symmetry X T' yields a potential symmetry of Sl{u, v} and a (new) nonlocal 

symmetry of R{u}. 
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For any K(u), the point symmetry X1R is 'lost' in S2{u, V}, since it induces 
no point symmetry of S2{u, V}. One can show that X1R induces a nonlocal 
symmetry of S2{u, V} which is represented by the infinitesimal generator 

X s2 = X1R + ( x u -  Dflu) 0 
OV" 

All other point symmetries of R{u} induce point symmetries of S2{u, V} 
and, in turn, S2{u, V} yields no potential symmetries of R{u}. 

Since T2{u, V, W} is equivalent to Tl{u, v, w}, through mapping (4.11) it 
follows that each point symmetry of T 1 {u, v, w} accordingly maps into a point 
symmetry of T2{u, V, W}. In particular, it is interesting to note that the point 
symmetry X R 'lost' in S2{u, V} is 'recovered' as the point symmetry 

0 c ~  X T2 = X l  R -J- (Vx  - x - I V  - W)_--.~i-TT r -q- ( W  x -[- x - l W )  ~@~ 
f . I V  O VV 

of T2{u, If, W}. 
Finally, the potential systems -T~{u, V, W}, U~{u, V, W,Z},  which only arise 

for K(u) = u -2, are disappointing since they do not 'recover' X R as a point 
symmetry, their point symmetries yield no nonlocal symmetries of R{u}, and, 
unlike T2{u, V, W}, do not lead directly to the linearization of R{u}. 

5. Linearizing Factors 

Suppose R{u} is a linear system of PDEs given by 

m 

G ~  p:O,  c r = l , 2 , . . . , N .  (5.1) 
p=l 

Let L* [x] be the adjoint of linear operator L[x]. From the definition of the adjoint, 
the proof of the following theorem is obvious: 

THEOREM 5.1. A set of factors A(x) = (/~l(x),/~2(x),... , / ~ N ( x ) )  yields a 
conservation law for (5.1) if and only if 

N 
L*P[x])~ ~ (x) = O, 

o ' = 1  

p = l , 2 , . . . , m .  

Theorem 5.1 combined with the observation that conservation laws are invari- 
ant under contact transformations [27] leads one to consider u-dependent factors 
which yield conservation laws. In particular, if R{x, u} is linearizable by an 
invertible contact transformation it is necessary that it admit u-dependent factors 
of the form 

A ~ x ,u ,u ,u , . . . ,u  = A p  x,u,u,u, . . . ,  FP(X), 
\ 1 2 p 1 2 
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where 

A~(x ,u ,u ,u , . . . , u ) ,  o-,p = 1 , 2 , . . . , N ,  
1 2 p 

are specific functions of the components of (x, u, u, u, . . . , u) and F(X) = 
1 2 p 

(FI(X) ,F2(X) , . . .  ,FN(X)) are arbitrary functions satisfying a linear sys- 
tem 

N 
~_,L*P[X]F ~=0,  p= l,2,. . . ,rn; (5.2) 
o ' = 1  

X = (X1 (x, u), X2 (x, u) , . . . ,  Xn(x, u)) yields independent variables for a result- 
ing linear system (X can depend on components of u in the scalar case) given 

1 

by 

m 

Lp[X]U p=O, o ' = l , 2 , . . . , N ,  
p = l  

with dependent variables U = (U 1, U 2 , . . . ,  urn); L[X] is the adjoint of linear 
operator L* [x]. This yields necessary conditions for linearizing R{u} [22] and 
leads to the following definition: 

DEFINITION 5.2. Factors A ~ = A~(x, u, u, u , . . . ,  u), ~r = l, 2 , . . . ,  N, are lin- 
1 2 p 

earizing factors for R{u} provided corresponding adjoint Equations (3.3) can 
be expressed in the form (5.2). 

If a given system R{u} admits linearizing factors, then it is unnecessary to 
determine a corresponding conservation law since such a conservation law does 
not help in finding an explicit linearization of R{u}. In particular one must still 
apply specific symmetry algorithms [6, 15, 16] to construct linearizations when 
they exist. We now consider four examples: 

5.1. NONLINEAR DIFFUSION EQUATION 

The nonlinear diffusion system (4.4), for K(u) = u -2, admits linearizing factors 
with arbitrary functions satisfying (4.9). The application of linearization algo- 
rithms [6, 15, 16] yields the mapping of (4.4) to the heat equation, which is the 
adjoint equation of (4.9). 

5.2. BURGERS ~ EQUATION 

Burgers' equation u~ -- uu~ -- ut = 0, written in conservation form (,k = 2) 
Dx(2ux - u 2) - Dt(2u) = 0, yields potential system S{u, v} given by 

v~ = 2u, vt = 2ux - u 2. (5.3) 
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One can show that (5.3) admits linearizing factors 

(/~1, ,,~2)= e-,~/4(1 u.Fl (x, t) q_ F2(x, t) ,  F l ( x , t ) ) ,  

where (F 1 (x, t), F2(x, t)) is an arbitrary solution of the linear system 

OF 1 OF 1 OF 2 
Ox - -  F 2 '  0t = - -  O x  " ( 5 . 4 )  

Again the application of linearization algorithms [6, 15, 16] yields the mapping 
of (5.3) to the heat equation, which is the adjoint equation of (5.4). 

5.3. NONLINEAR TELEGRAPH EQUATION 

The nonlinear telegraph system 

Vt = Ux, Vz -~ U-2Ut -k- 1 - u -1 (5.5) 

admits linearizing factors (A1, A2) = (F ~ (X, T), u - IFZ(x ,  T)), where (X, V) = 
( x - v , t - l o g u ) ,  and (FI (X ,T) ,  FZ(X,T))  is an arbitrary solution of the linear 
system 

O F  1 O F  2 O F  1 O F  2 
- -  - -  - -  F 2 = 0 ,  - -  + - 0 .  ( 5 . 6 )  
OX + OT OT OX 

The application of linearization algorithms [6, 15, 16] yields the mapping of (5.5) 
to a linear system, which is the adjoint of (5.6). 

5.4. NONLINEAR DIFFUSION EQUATION REVISITED 

For arbitrary K(u),  the nonlinear diffusion system (4.7) admits no factors of the 
form ,~a(x, t, u, v, w), c~ = 1, 2, 3. However, when K(u)  = u -2 ,  it does admit 
linearizing factors 

(,~1 /~2,)~3) = (u - lF l (v , t ) ,  u-2uxFl(v , t )  _ F2(v,t),  uF3(v,t)) ' 

where ( f  1 (v, t), F 2 (v, t), F 3 (v, t)) is an arbitrary solution of the linear system 

OF 1 OF 1 OF 2 
- -  - F 3 = - F  1. ( 5 . 7 )  

Ov = F2, Ot Ov ' 

Again, application of linearization algorithm [6, 15, 16] leads to the mapping of 
the nonlinear diffusion system (4.7), when K(u)  = u -2, to the adjoint of system 
(5.7), namely the linear heat equation system. 

6 .  R e m a r k s  

Other approaches to obtain nonlocal symmetries by 'covering systems' [28- 
30] or to obtain linearizations [31] appear to be restricted to PDEs with two 
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independen t  variables.  The  approaches  presented  in this paper  to obtain useful  

potent ia l  sys tems  or  l inearizing factors  clear ly ex tend to sys tems o f  P D E s  with 

three or  m o r e  independen t  variables.  A specific example  o f  such a potent ia l  

sy s t em y ie ld ing  potent ia l  symmet r i e s  will be presented  in a future paper. 
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