
International Journal of Computer and Information Sciences, Vol. 1, No. 2, 1972

A CUCH-Machine: The Automatic

Treatment of Bound Variables

Corrado B6hm 1 and Mariangiola DezanP

Received December 15, 1971

This paper describes a machine for reducing a ~t-formula (explicitly given or
implicitly by a system of recursive equations) to principal fi-~-normal form,
with particular attention to the memory structures needed for the purpose,
and with some important features: (I) any kind of collision is permitted;
(2) the processing of subformulas which will be thrown away [e.g., ((Axy)x)
in ((ayz)(Zxy)x)] is avoided; (3) there is no need to introduce any fixed point
operator like 0, etc. The machine structure entails: (1) some store to memorize
as side-effects assignment statements with the r.h.s, of a given shape. (2) a
number of stacks, one for every ;~ in the initial formula, partitioned naturally
in classes (chains). These stacks admit as entries only words representing
variables and they are peculiar in that the operations admitted on the top
are writing and erasing and the operations admitted on the pseudo-top are
reading, read-protecting, and resetting readability (the last two operations
are chain operations). This structure is critically motivated. (3) A workstack.
(4) A pointerstack. The computation runs through four phases: r-generation,
/~-run, ~/-generation, ~-run. Every generation- (run-) phase is rather recogni-
tion- (transformation-) oriented, but we found it more stimulating to em-
phasize technical similarities rather than methodological differences. Every
phase is described and four examples are extensively developed.

1. I N T R O D U C T I O N

F r o m a t echn ica l p o i n t o f v iew, this p a p e r pe rhaps fills a gap , in the sense

tha t the re has n o t been p u b l i s h e d so far to o u r k n o w l e d g e a c o m p l e t e a lgo-

r i t hmic t r e a t m e n t o f the so ca l led a - ru le o f the A-calculus (tha t is, the

r e d e n o m i n a t i o n rule fo r va r i ab l e s)3 F r o m a less t echn ica l a n d m o r e gene ra l

1 Istituto di Scienza della Informazione, Universit~t di Torino, Italy.
The reader will find the fundamental notions about CUCH in the appendix.

17t
�9 1972 Plenum Publishing Corporation, 227 West t7th Street, New York, N.Y. 10011.

172 B~hm and Dezani

point of view, our method can be classified as an attempt to smooth the
dualism, too much emphasized today, between the syntax and semantics
of a programming language. I t is true that the proposed algorithm for
both ~- and ~/-reductions has been split into two subsequent phases: generation
and run, the first of which can be thought as a "parsing" or "syntactic
recognition," while the second can be considered as a "semantic" phase of
interpretation. Neverhteless, we try to point out the common features of
both phases, which is given by the creation of side-effects interpreting some
assignment statements, that is, the creation of some pair "name:value."
Besides, there has been introduced the notion of relative level as subscript
for every variable of the initial A-formula in order to identify unequivocally
the subformula where such a variable occurs.

Many authors (1-5,v-~1) would probably easily agree that the A-calculus
can be chosen as a simple theoretical model for several other programming
languages, some major complications in the latter being mainly of a technical
nature. To illustrate the previous statement, there could be produced,
among other things, (a) the A-symbol as a universal type declarator of
variables, (b) a formula of type

(Ax(Ay(AzM)))

as declaration of the procedure M with formal variables x, y, z,
(c) a formula of type

((AxF) a)

and

as the command to apply the procedure F to the actual argument G.
Surprisingly enough, the outcome of this paper displays an inherent

complication of the minimal mechanical devices needed for an efficient
implementation of the reduction 3 algorithm for the pure A-calculus. 4

A little clarification is required for the use of the expressions "efficient"
and "mechanical devices" in the previous statement. Ausiello (1) implemented
the reduction algorithm in the ROMALISP language. He found out that

3 Such a reduction, called "normal reduction," is defined in Curry (Ref. 5, p. 140) and it
consists in reiterating left-to-right applications of p-~/-rules.
Many authors ignore the need for the application of c~-rule prior to some /~-reductions
or, at least, as with Wegner (Ref. 10, pp. 205-208), they state this fact too vaguely to be
sure that their implementation is correct. We do not impose any restrictions on the
choice of names of variables of the initial ;~-formula, allowing any kind of collision
(see, for example, Table I). It is not possible to avoid variable collisions by a preliminary
pass renaming all bound variables so that they are distinct from each other and from the
free variables. Indeed, a ,~-formula without variable collisions may generate through a
single application of a/~-reduction rule a formula where collisions occur. For example,

((,~x(xx))(Ayy)) ~-~ ((,~yy)(hyy))

A C U C H - M a c h l n e : The Automat ic Treatment of Bound Variables 173

/3-rule could be more efficiently executed by assigning values to bound
variables instead of executing a material replacement in all occurrences of
these variables. The greatest efficiency of this assignment method is shown
trivially in the case where a large formula is to be substituted for several
occurrences of the same variable and some of these are bound to disappear.
In this paper, we try to generalize this assignment method to all parts of
the algorithm identifying, as Scott (8) and Strachey (9) did, the execution of
assignment statements with the creation of side-effects in some store.

The mechanical device we are presenting is in the spirit of automata
theory, i.e., we have tried to identify the whole machinery required with
some kind of specialized Turing machine. I t comes out that we need several
stacks (one for every occurrence of ,~ in the initial formula) partitioned in
classes of read-protect ion) This means that at a certain moment, it may
happen that all entries at a same "height" in one stack class are protected
f rom reading and that at some subsequent moment, this protection will be
removed.

In addition to previously mentioned devices, we need two more classical
structures: a workstack for characters and subscripted variables and a stack
of pointers, both with destructive reading. In order to go deeper into the
motivations of the choices made in this paper, let us assume an Algol-like
point of view. First, the efficiency claims can be fulfilled by evaluating
a variable as late as possible: this means that all variables in every procedure
are initialized by name. Second, remembering remarks (a) and (b), there is
a need for a stack for variable values because a procedure may call itself
recursively. Indeed, in this case, different values are assigned to the same
formal variable, which must be stored for reading at the right moment.
See, for example, Table II.

The stacks of the formal variables associated with the same procedure
form a single class in a very natural way. Third, the need for read-protection
is illustrated by the successive reduction configurations of the following
formula:

((;~y(yx))(;~x(xx)))

In this formula, (hy(yx)) is a procedure with formal parameter y to be applied
to the argument (hx(xx)) (which itself is a procedure). The next step is

((;~x(xx))x)

Here, we are faced with the problem of acting chronologically as follows:
(1) to assign x as value to x by writing it in the x stack; (2) to read the stack

5 An alternative solution (suggested to us by H. R. Strong) could be to collect in one stack
the stacks belonging to the same class. The necessary information could be recovered
allowing every entry to be, instead of a single value, a set of pairs "stack-name:value."

174 B~hm and Dezani

value for x in order to take into account the first occurrence of x; (3) to avoid
a loop; (4) to read the stack value for x in order to take into account the
second occurrence of x; and (5) again to avoid a loop.

We solved this problem by protecting the top of the x stack from
reading at step 3, by releasing this protection at step 4, and by resetting it at
step 5.

When we replace a formal variable by its value, we really jump from
one procedure M to another. We thus need to forget temporarily not only
the value just replaced, but also the values already assigned to the other
formal variables of the same procedure M. The operations of read-protecting
and resetting readability must then act on all variable-stacks belonging to
the same class.

All this is shown in Table I.
In sections 2 and 3, the algorithm is given for the reduction to the

/3-normal form of an explicit ;~-formula. A theorem due to Curry and Feys
(Ref. 5, pp. 132-135) permits us to obtain the/3-~-principal normal form
from the /3-principal normal form executing successively all possible
T-reductions, whose algorithm is the object of Section 4. The above-
mentioned sections need the introduction of one subscripted auxiliary
variable as name for different subformulas. Section 5 allows the introduction
of any number of auxiliary variables representing different formulas (possibly
combinators) and the treatment of formulas implicitly (recursively) defined.
In developing these algorithms, we felt that in this context any dichotomy
between syntax and semantics or between compilation and interpretation was
more misleading than useful.

We think that the CUCH-machine described here can be considered
as a first step toward the identification of the structure of interpreters for
actual programming languages provided with procedures called by name and
with minimal constraints on the choice of identifiers.

2. p - G E N E R A T I O N

2.1. ~3-Generation Statements

According to the particular syntax of ;~-calculus, every subformula
of the given formula is limited by a pair of parentheses; hence let us say that
a subformula is of n-level if the corresponding close-parenthesis is the
nth close-parenthesis scanning the whole formula from left to right.

Consequently, the right subformula of the formula of n-level is of
(n -- 1)-level. Let us assign the (n - 1)-level to the variables, prefixed or
not by ;t-symbol, which are inside a formula of n-level. We have thus defined
the level of every subformula of the original formula (itself included).

A CUCH.Machine: The Automatic Treatment of Bound Variables 175

The notion of level permits us to generate the formula by a sequence of
assignment statements, where we associate to every variable its level as
subscript. To this aim, it is enough to introduce the auxiliary variable F[i]
as name of the subformula not atomic of/-level.

Example. Let us consider the)t-formula (()tx()tyx))(Axx)). We have
the following generation:

Assignment statements Type of assignment statement

F[1]: (ly[0]x[0]) Abstraction

F[2I: (,~x[1]F[1]) Abstraction

FI31: (~x[2]x[2]) Abstraction

F[41: (F[2]F[31) Application

Note. We use the symbol : in order to separate the lhs from the rhs of
an assignment statement.

Let us notice that the whole formula is therefore represented by F[n],
where n is the last subscript used.

2.2. Stacks and S t a c k - C h a i n C r e a t i o n

Every creation of an abstraction statement is immediately followed by
the creation of a variable-stack identified by the name of the just abstracted
variable. The effect of a stack creation will be indicated by the notation

name of variable [level number]:

Let us define as abstraction chain a sequence of abstraction assignment
statements where every left-hand side is a part of the right-hand side of the
next abstraction.

It follows that: (a) Every abstraction statement belongs to exactly one chain;
(b) the same happens to the corresponding variable-stack; (c) the chains are
partition classes of the set of variable-stacks.

The effect of creating a chain of stacks will be indicated by the notation

Z[(i = 1, 2, 3,..)

176 B~hm and Dezani

Example. We consider the same A-formula of the previous example:

Assignment statements Stack chains

FIll: (Zy[0lx[0])]'~-1 y[0]: ['-~-1
F[2I:(Ax[llF[I]) ,, x[1]:
F[3]:(Ax[2]x[2]) xl2l:
F[4] :(F[Z]F[3])

2.3. Comput ing the Generat ion

The machinery needed for the execution of the generation phase can
summarized as follows:

(a) Workstack with following entries:) ("upper case or lower case
variable, possibly subscripted."

(b) Transformation rules for the current subformula just completed
on the top of the workstack. The application of these rules entails the side-
effects corresponding to the creation of assignment statements, of variable-
stacks and of variable-stack chains.

(c) A level counter (LC).

2.3.1. Algorithm of Generation

Let us denote upper case or lower case variables with 4 , ~,... and lower
case variables with % ~b,....

P1. (Initial conditions): LC ~-- 1, the workstack is empty.

P2. (Copy): We copy the initial A-formula scanning from the left on
the workstack until a subformula is completed.

P3. (Distinction between abstraction and application): If the sub-
formula just completed is an application, go to P8.

P4. (Is this abstraction the first of the chain ?): If the right subformula
of the subformula just completed is an abstraction, go to P7.

P5. (Stack and stack chain creation): We write as side-effect

~ [L C - 1]:

(where q~ is the abstracted variable). This variable-stack must be assigned
to the newly created stack chain ff(rn § 1) (if Cgrn is the last stack chain
created). The first stack must belong to the chain Cgl.

A CUCH-Hachine: The Automatic Treatment of Bound Variables t77

P6.

go to P g .

P7.

(Creation of an assignment statement and erasure chain-symbol

F[LC]: (A~[LC -- 11 ,Sin ~b[LC -- 1])

(Stack creation): We write as side-effect

~ [L C - 1]:

(where ~o is the abstracted variable). This variable-stack must be assigned
to the last stack chain created.

P8. (Alternative creation of an assignment statement): We write as
side-effect

F[LC]: "subformula just completed in which the level

(LC -- 1) is assigned to every lower case variable."

P9. (Replacement): On the workstack, the subformula just completed
is replaced by F[LC].

P10. (Is it finished?): I f there is no more symbol to be copied, STOP.
Otherwise, LC +-- LC + 1, go to P2.

Let us follow the application of this algorithm to the A-formula

Side-effects

Workstack Assignment statements Stack chains

et :(ayEO xtOD yto : I ii ((AxF[1]) F[2]:(Ax[1]F[1]) ,, x[1]:
(F[2](Axx) F[3] :(Ax[2]..,T2x [2]) x]
(F[2]F[3]) F[4]:(F[2]F[3])
F[4]

3. p-RUN

3.1. In i t i a l C o n d i t i o n s

At the end of the generation phase, the following situation is produced:
(a) the workstack possesses has unique entry the variable representing the
whole A-formula to be reduced; (b) assignment statements or side-effect

178 B~hm and Dezani

giving the generation of the A-formula; (c) empty stacks of variables; (d) an
empty pointerstack, which is a pushdown list. 6

In the run phase, we will need both terminal and nonterminal variables.
The terminal variables will be represented by the letter v suffixed with a
natural number in decimal notation or a lower case letter (representing
free variables).The nonterminal variables will be represented by a lower case
or upper case letter subscripted by a levei index.

The workstack is essentially a pushdown list with following possible
entries:) ("not terminal variable terminal variable."

The variable-stacks created in the generation phase are more specialized
than those defined by Ginsburg et aI. I~ What is peculiar to our stacks is
the existence of rules unequivocally determining the reading of one entry not
necessarily on the top. Every reading of one entry is immediately followed
by a locking, called "read-protection," of all entries belonging to the chain
pertinent to that entry. Let us define as a pseudo-top the first unprotected
entry from the top. I f at some instant some entries of one stack are protected,
writing on the stack will mean writing on the top and reading on the stack
will mean reading the pseudo-top of the stack. Symmetrically to the read
protection there is a reset operation (of readability) acting again on the
Pseudo-top of a whole chain.

From the point of view of implementation, the information structure of
the read-protected stack is a pushdown list where every entry has a flag bit
(0 for readable, 1 for not readable). Later on, we will bar the unreadable
entries.

The formula of an /-level represented by F[i] generally entails one
pointer i, which points to the right subformula of the formula itself (a possible
occurrence of the symbol Y m is considered as belonging to the right sub-
formula) .

3.2. Run Evaluat ion Rules

The following sequence of rules will act like a Markov algorithm.
The only difference is the rule 3.2.4, which looks forward and opens more
nesting possibilities.

The choice of the next rule to be applied is unequivocally determined
by the top entries of the workstack.

3.2.1. X m Rule

" • m " on the top of the workstack is immediately conveyed on the
pointerstack top.

I.e., a list writable, readable/erasable only at the top.

A C U C H - H a c h i n e : The Automat ic Treatment of Bound Variables 179

3.2.2. ((~ Rule

"(()t" on the top of the workstack causes writing on the workstack
until and including the close-parenthesis corresponding to the first open, by
a (destructive) reading of pointerstack. In this way, we obtain

((Acp[i] ~[i]) (/5[j])

A possible " S i n " between 5o[i] and q~[i] is immediately conveyed on the top
of the pointerstack.
This formula is now interpreted as an assignment statement. Therefore,
we write ~b[j] on the stack q~[i], leaving on the workstack only the formula
~[i].

3.2.3. (Mp[i] Rule

The value of

is
"()t~[ir'

(Avn

where n is the smallest nonnegative integer j such that vj is not in any stack.
Moreover, the stack ~[i] is loaded with the terminal variable vn.

3.2.4. q~[i] Rule

The value of a nonterminal variable

"q~[i]"

is the result of a read operation on the stack ~[j] where j is the smallest
nonnegative integer not less than i. I f this stack does not exist or is empty,
the value of ~[i] is q~ (this condition is verified only in the case of a variable
occurring free in the initial)t-formula).

Let us suppose that we read the nth entry from the bottom of the stack
~[j] belonging to the chain Cgm. Then, we must execute a read-protection
operation for all n entries of the stack belonging to the chain Cgm and we
must write on the pointerstaek C~mgn.

3.2.5. F[I] Rule

"F[i]" on the top of the workstack causes the replacement process
with its value to be activated; every entry of that value will be written from
left to right on the workstack until one of the rules 3.2.1-3.2.5 is applicable.

180 B~hm and Dezani

If the next applicable rule is one of 3.2.1, 3.2.3-3.2.5, we write on the pointer-
stack the interruption point consecutively to a left subformula, the ")" symbol
consecutively to a right subformula.

3.2.6. D-Completion Rule

If none of the previous rules is applicable, we execute a destructive
reading of the pointerstack:

(a) A pointer on the top of the pointerstack causes the writing on
the workstack from the corresponding interruption point.

(b) "Cgmgn" on the top of the pointerstack causes the execution of
a reset operation of readability for all n entries of the stacks belonging to the
chain Cgm.

(c) "~Y'm" on the top of the pointerstack causes the erasure of all
tops of the stacks belonging to the chain Tin.

(d) ")" on the top of the pointerstack is conveyed on the workstack.

(e) If the pointerstack is empty, the/3-reduction of the initial ,X-formula
is completed.

3.3. Run M a c h i n e r y

The machinery needed for the execution of the run phase can be summarized
as follows: (a) workstack; (b) assignment statements produced during the
generation phase; (c) variable-stacks and pertinent chains; (d) pointerstack;
(e) run evaluation rules 3.2.1-3.2.6 like a Markov algorithm.

Tables I and II contain the whole reduction to normal form of two
h-formulas.

Table I. Program: ((~y(yx))(~x(xx)))

/~-Generation
Workstack Assignment statements Stack chains

((Ay(yx) F[1 l:(y[01x[0])

((hyF[11) F[2]:(Ay[1]~IF[1])

(F[21(~x(xx) F[3]:(x[2]x[21)

(F[2](;ucF[3]) f[4]:(,~x[31~2F[31)

(F[2IF[4]) F[5]:(F[2]F[4])

f[51

"•[y[1]:

Table continued

A CUCH-Machine: The Automatic Treatment of Bound Variables

Table I (continued)

&RLrN

Rule number
Workstack Pointerstack Stack chains

181

F[51
.5

(f[21 5
.5

((ay[1JF[1])F[4]) ,~e~l

.2

FI l l ,,Y'I
.5

(y[O] 1 =U1

.4
(F[4] ~1 •11 -Y'I

.5
((hx[3]F[3])x[0]) ~Y'2 -Y'I

.2
F[3] ~ 2 ~ f l

.5
(x[21 3 ,,~('2 ~g'l

.4

(x[0] E2 g l 3 ;U2 ,~g'l

.4
(x E2 g l 3 of'2 :r

.6
(xx[2]) ,r J{'l

.4

(xx[O] E2 g l) cr ~F1

.4

(xx E2 d~l) .~2 :r

.6

(xx) .~2 .~ I

.6
(xx) ,,,Y"I

.6

(xx)

~--~-'1 y[1]:

))

y[ll:F[4]

))

y[1]:F[4]

y[1]:F[4]

))

y[1]:

"•-I x[3]:

))

x[3]:x[O]

x[3]:x[O]

x[3]:x[O]

x[3]:x[0]

X[3]:

828/x/z-6

/~
-G

en
er

at
io

n
W

or
ks

ta
ck

Ta
bl

e
II

.
P

ro
gr

am
:

((.
~x

(.~
y(

x(
xy

)))
)(~

.x
(X

y(
x(

xy
)))

))

A
ss

ig
nm

en
t

st
at

em
en

ts

St
ac

k
ch

ai
ns

(O
xO

y(
x(

xy
)

((
ax

(a
~(

xF
01

)
(O

xO
yF

[2
])

((,

~x
F[

3]
)

(F
[4

](
~x

(A
y(

x(
xy

)
(F

[4
l(O

x(
;ty

(x
F[

5D

(F
[4

]O
x(

Ay
F[

6]
)

(F
[4

](
(A

xF
[7

])

(F
[4

]F
[8

])

F[
91

F
[l

 l:
(x

[O
]y

[O
])

F[

21
:(x

[1
 IF

[I
 l)

F[

3]
:(

Ay
[2

]~
IF

[2
])

F

[4
]:

O
~x

[3
]F

[3
1)

F[

5]
:(

x[
4]

y[
4]

)
F[

6]
:(

x[
5]

F[
5]

)
F[

7]
:(X

y[
6]

oY
'2

F[
6]

)
F[

Sl
:(~

x[
Tl

F[
71

)
F

t9
]:

(F
[4

]F
[8

])

x[
3]

:

[-~
2[

 y
[6

]:

x[
7]

:

~-
R

un

R
ul

e
nu

m
be

r W
or

ks
'ta

ck

Po
in

te
rs

ta
ck

St

ac
k

ch
ai

ns

F[
91

.5

 (F
[4

]
.5

 (O
x[

 3]
F[

 3]
)F

[8
])

.2

 F[
31

.5

 (.~
y[

2]

.3
 (;w

0

9 3 3

"•
[y[2

]:

x[
3]

:

,,
x[

3]
:F

[8
]

y[
2]

:v
0

,,

"~
-[

 y
[6

]:

x[
7]

:

w
 o:

3 17

.6
.1

 0v
0F

[2
]

.5
 (~

vO
(x

[l]

.4
 (z

vo
(f

[a
]

.5
 Q

, vO
((

~x
[7

lF
[T

l)V
[l

])

.2
 O

v0
F[

7]

.5
 O

vO
(h

y[
6]

.3

 (h
vO

(A
v l

.6

.1
 (h
vO

(h
vl

F[
6]

.5

 (a
vO

O
v]

(x
[S

]
.4

 (,t
vO

(A
vl

(F
[l

]
.5

 (~
vO

(~
vl(

(x
[O

]
.4

 (~
vO

(~
v~

((F
[S

]
.5

 O
vO

(h
vl

((
(h

x[
7]

F[
7l

)y
[O

])

.2
 O

vO
@

vl
(F

[7
]

.5
 (,~

v0
(A

vl
 ((

1y
[6

]f
[6

1)
f[

5]
)

.2
 (h

v0
(,~

vl
F[

6]

.5
 (~

vO
(~

v~
(x

[5
]

~
1

)

2
c/

fl
)

~1
 d

~l
 2

 ,
)f

l
)

,)r

)

,X
"l

7
~

)

~2
)

*~

)

6
~

2
)

,J
fl

)

~
2

g
l

6
~

(2
)

 .
~

1
)

1
~2

 d
~l

 6
 ~

Y
'2

)
~t

~l
)

~r

gl

1
c~

2
el

6

$2

)
~Y

'I
)

c~
2

el
 6

 2
/{

'2
)

3f
'l

)

~
2

g
l

6
~r

)

.-~
f'l

)

~2

~2

)
~

)

w
2

~2

)
~

)

6
~f

'2
 ~

.('
2)

 .~
r

)

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
6]

:v
l

y[
6]

:v
l

y[
61

:v
lF

[5
1

x[
7]

:F
[1

]

x7
:F

[1
]

x[
7]

'F
[1

] y
[0

]

x[
7l

:F
[l

]
y[

0]

T
ab

le
 c

o
n

ti
n

u
ed

> C

"r

m
. -I

fD

e'
, g 3 -t

3 m

0 C
 <

ii

i
,,

,,
.

,
m

i

/9
-R

un

R
ul

e
nu

m
be

r W
or

ks
ta

ck

Po
in

te
rs

ta
ck

Ta
bl

e
II

(c
on

tin
ue

d)

St
ac

k
ch

ai
ns

.4
 (a

vO
(~

v ~
 (y

[o
 I

.4
.5

(;

w
O

(~
vl

(v
O

F[
5]

.5

 (,~
vO

O
v l

(v
O

(x
[4

1
.4

 O
tvO

O
~v

 l (
 vO

(y
[O

]
.4

 (a
vO

(a
vR

vo
(v

o
.6

 (~
vO

O
v l

 (v
o(

 vo
y[

 4]

.4
 (A

vO
(A

vl
(v

O
(v

O
F[

5]

.5
 O

w
O

(~
vl

(v
O

(v
O

(x
[4

]
.4

 (a
vO

(a
v R

vO
(v

O
(t~

[U

.5
 (a

vO
(a

v~
(v

o(
vo

((
x[

O
]

.4
 (h

vO
(~

v l
 (v

O
(vO

((F
[8

]
.5

c~
2

~2
 6

 ,
~

2
~

2
)

.~
1

)

)
r

~f
'2

)
~

1
)

5)
~

2~
2)

~
)

if
2

~2
 5

)
~/

'2
 ,.

,Y
'2)

 1
)

~1
 g

l
oK

2 ,
g2

 5
)

..,
Y

'2 ,
Y

t"2
)

1
)

))
 r

,Y

f2
)

~
1

)

rg
2

g2
))

 .
-~

2
,,5

"2
)

.Y
fl

)

5
qr

@

2)
)

,Y
-('

2 .
,~

2)
 ~

Y
~I

)

cg
2

gl
 5

 (
g2

 r

))
 ~

g'
2

~
2

)
~

1
)

g2
 g

l
5

of
f2

 o~
2)

)
a(

2
..~

2
)

.Y
{'l

)

gl
 g

l
1

cg
2

gl
 5

 c
g2

 #
2

)
)

.-.
.Y

'2 .
Y

g'2
)

,.,
Y

'I)

(h
vO

(h
vl

(v
O

(v
O

((
(h

x[
7]

F[
7]

)y
[O

])
 ~

2
~1

 5
 (

Y2
 4

2
))

 .
~

2
,Y

{'2
)

 .Y
~'

l)

.2
 (~

O
(~

vl
(v

O
(v

O
(F

[7
]

,,

"
•

J

y[
2]

'v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

tF
[8

]

y[
2]

:v
0

x[
3]

:F
[8

1

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

1

"•,
1

y[
6]

:v
l F

[5
1

y[
6]

:v
l F

[5
]

y[
6]

:v
l

F[
5]

y[
6]

:v
l

F[
5]

y[
6]

:v
l F

[5
]

y[
6]

:v
l F

[5
]

J

x[
7]

:F
[l

l y
[0

]

x[
7]

:F
[1

]y
[0

]

x[
7]

:F
[1

]
y[

0]

x[
7]

:F
[1

]
y[

0]

x[
7]

:F
[l

]
y[

0]

x[
7]

:F
[1

] y
[0

]

x[
7]

:F
[1

] y
[0

] y
[0

]

w
 o."

N

,5
 (~

v0
(~

vl
(v

0(
v0

((
ay

I6
lF

[6
])

y[
4]

)
.2

 (~
vO

(~
v l

 (v
O

(v
O

F
[6

]
.5

 (a
vo

ov
 R

 v
o(

vo
(x

[5
1

.4
 (~

vO
(h

v ~
 (v

o (
 vo

(y
 [O

]
.4

 (~
vO

(a
v l

 (v
O

(v
O

(v
O

.6

 (a
vO

(a
v~

 (v
O

(vO
(vO

 F[
 5]

.5

 (~
vo

(a
v~

(v
O

(v
O

(v
O

(x
[4

]
.4

 (a
vO

(a
v~

 (v
O

(vO
(v

O
O

e[
 o]

.4

 (a
v0

(h
v 1

 (v
O

(v
O

(v
O

(v
O

.6

 O
wO

O
, v l

 (v
O

(v
O

(v
O

(vO
y[

 4 l

.4
 O

vO
(a

vl
(v

O
(v

O
(v

O
(v

O
yO

]
.4

 (~
vO

(a
vl

(v
O

(v
O

(v
O

(v
O

vl

.6
 O

vO
(a

v l
 (v

O
(v

O
(v

O
(v

O
v l

)
.6

 O
vO

(h
v l

 (v
O

(v
O

(v
O

(v
O

v l
))

.6

 O
vO

(a
 ~ (

vO
(v

O
(v

O
(v

O
v ~

))
)

.6
 (~

vO
O

v~
(v

O
(v

O
(v

O
(v

O
vl

)))
)

.6
 (a

vO
(a

vl
 (v

O
(vO

(vO
(vO

v l
))

))
)

.6
 (~

vo
(~

v~
(~

o(
vo

(v
o(

vo
v~

)))
)))

�9
 Y
f2

 c
g2

 @
2

)
)

o'
f2

 .
.~

2
)

..:
r

)

6.
5.

5"
2

cg
2

~2
)

)
..,

Y
'2

...
Y

'2
)

.Y
gl

)

~g
2

~3
 6

 .Y
{'2

 cg
2

,~
2

)
)

,Y
g'2

 ..Y
{'2

)
,Y

{'I
)

qr

~1
 c

g2
 ~

3
6

.Y
.(2

 cg
2

~2
)

)
 ,

.g
'2

 .Y
g2

)
.Y

~I
)

) ,
-~

2
cg

2
~2

)
)

 ,Y
-('

2 ,~
g'2

)
,.Y

~I
)

5
) .

Y
{'2

 qr

~2
)

)
 ,Y

.('
2 ,.

.Y
'2)

 ..
.,Y

'I)

cg
2

~3
 5

)
 0

r
cg

2
~2

)
)

 ,-
,Y

'2
,Y

,('
2)

 ,.
Yt

"I
)

qr

d+
l c

g2
 ~

3
5

) ,
..Y

(2
 cg

2
d'

2
)

)..
Y

r2
,Y

{'2
)

 o
U

1
)

)
)

..,'
.Y

'2 q
r

~'
2

)
)

a'g
'2

 .Y
~2

)
,Y

{'I
)

cg
2

,r
)

)
,Y

{'2
 cg

2
,#

2
))

 .
...

U
2 .

Y
~2

)
-..

Y
'I)

cg
2

~1
 c

g2
 g

3
)

)
.Y

~2
 cg

2
~2

)
)

 ,
.g

'2
 ,Y

l2
)

.Y
~I

)

)
,.Y

~2
 qr

g2

)
)

 ,-
,Y

'2
,-Y

g2
)

,Y
{I

)

�9
 Y
.('

2 q
Y2

 e
2

)
)

..:
.g

'2 .
-..

Y'
2)

 a
Y

('l
)

)
zg

'2
 .-

.Y
'2)

 ~
tl

)

�9
 .g
'2

 .-
Yg

'2)
 .

.~
I

)

�9
 ~r

)

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:v
0

x[
3]

:F
[8

]

y[
2]

:
x[

3]
:

y[
6]

:v
l

F[
5]

 y
[4

]
x[

7]
:F

[1
]

y[
0]

 y
[0

]

y[
6l

:v
l

F[
51

 y
[4

]
x[

7l
:f

[1
]

y[
0]

 y
[0

]

y[
6]

:v
l

F[
5]

 y
[4

]
x[

7]
:F

[1
]

y[
0]

 y
[0

]

y[
6]

:v
l

F[
5]

 y
[4

]
x[

7]
:F

[1
]

y[
0]

 y
[0

]

y[
6]

:v
l

F[
5]

 y
[4

]

y[
6]

:v
l

F[
51

 y
[4

]

y[
6]

w
l

F[
51

 y
[4

1

y[
6]

:v
l

F[
5]

 y
[4

]

y[
6]

:v
l

F[
51

y[
6]

:

y[
6]

:

x[
7]

:F
[1

]
y[

0]
 y

[0
]

x[
7]

:F
[1

]
y[

0]
 y

[0
]

x[
7]

:F
[1

]
y[

0]
 y

[0
]

x[
7]

:F
[1

]
y[

0]
 y

[0
]

x
[7

] :
F[

1
] y

[0
]

x[
7]

:

x[
7]

:

I=
,

t'l

C t'l

"1
"

n -o

fD

oo
 .-.
I

ll
r

e,
, 3 n 3 o 13

a,
, <

186 Bt~hm and Dezani

4. q - R E D U C T I O N

W e wil l ~/-reduce a n a l r e a d y / ~ - r e d u c e d h - f o r m u l a a n d the re fo re in this
f o r m u l a every b o u n d v a r i a b l e is r e p r e s e n t e d b y a v - s y m b o l suff ixed wi th
a n o n n e g a t i v e in t ege r in d e c i m a l n o t a t i o n . T h e f o r m u l a is sub jec t to a

Table II I .

n-Generation
Workstack

Program : (lwO(lwl((vO(lw2(hv3(v2v3))))vt)))

Assignment statements Counter "Black list"

(;~v0 0
(Av0(;~vl 1

OvO(,~v l ((vO ,, vO
(hvO(,~vl((vO(Av2 2 ,,
QvO()w l ((vO(hv2(hv3 3 ,,
(AvO(Avl((vO(hv2(,~v3(v2v3) F[1]: (v2v3) v2
OvO(,~vl((vO(hvZ(hv3F[1]) F[2]: (Av3F[1])
(,~vO(.~vl((vO(hv2F[2l) F[3]: Ov2F[2])
OvO(avl((vOF[3]) F[4]: (v0F[3])

(hvO(hvl(F[4]vl) F[5I: (F[4lvl)
OvO(AvlF[5]) F[6]: OvlF[5])
Ov0F[6]) F[7]: Ov0F[6])

F[TI 3

n-Run
Workstaek Pointerstack Side-effects "Black list"

F[TI
(;~v0F[6])
(hvO(hvlF[5l)
(AvO(;~vl(F[4lvl)))
(hv0F[4])

(~vO(vOF[3 l)
OtvO(vO(~v2 3
(;~vO(vO(hv lF[2])
(hvO(vO(hv l (;~v 3 2
(hvO(vOOw l (hv2F[1])
(hvO(vO(hv 10w2(v 1 v2)))
(,~vO(vO(Av l v l)
OtvO(vO(,~vlvl))
OvO(vO(hvlvl)))
OvO(vO(hvlvl)))

)
)
)
)

))
))
)

vO v2

v2:vl v3 :v2 vO vl

A CUCH-Nachine: The Automatic Treatment of Bound Variables 187

generation phase like fl-generation, where, however, no level of calculus
is assigned to the variables, which are now all terminal. No stacks are created.
The bound variable, which occurs as the lhs of an application or more than
once as the rhs, is marked in a "black list," because the formula is certainly
not reducible with regard to this variable. Moreover, the greatest number n
that occurs as sufftx for a v in the A-formula is stored.

The run phase has essentially only one rule:

(Avi(~[j] vi))

on the top of the workstack, iff vi does not occur in the "black list," it is
replaced by

In addition, we write as side-effects

v(i -Jr- 1):vi

v(i + 2):v(i + 1)
, . ,

vn:v (n - 1)

Also, in the T-run, the pointerstack allows us to follow the nesting of the
subformulas. Table III shows an example.

5. P R E F I X I N G T O A X - F O R M U L A A S E Q U E N C E
O F A S S I G N M E N T S T A T E M E N T S

We present an extension of the method so far described which allows
us to write any number of assignment statements to the left of the given
A-formula to be reduced. The aim is twofold: (1) to handle efficiently more
than one occurrence of the same A-subformula (i.e., generating it once only)
and/or (2) to define a A-formula recursively.

As an example, we would like to process expressions of the kind

(D := ~) (a := ~[D]) (~ := ~) (~C)

where ~ , ~#, o~ are given A-formulas and D occurs in ~.

5.1. Generat ion

In addition to the generation rules, let us add for every assignment
statement the following prescriptions:

(a) The auxiliary variable of the rhs must be the corresponding lhs
symbol

Table IV. Program: (K:=(l~x(hyx)))(h=(hxx))(KI)

fl-Generation
Workstack Assignment statements Stack chains

(K:= (ax(ayx)
(K: = (axK[l])

(K: = K[21)
q: = (axx)
(I := 111])

(KO
F[l l

K[1]:(LKy[O]K,Y~ IKx[O])
K[2]:(hKx[l lK[1])
K:K[2]
I[1]:(Mx[O]I,.g'llx[O])
I:1[1]

F[ll:(K/)

"7"~1 [Ky[0]:
Kx[1]: IZI Ixii :

B-Run
Rule number

Workstack Pointerstack Stack chains

F[1]

.5
(K

.5
(K[2]

.5
(QtKx[1]K[1])I)

.2
K[1]

.5
(AKy[0]

.3
(;w0

.6.1
(~vOKx[O]

.4
(;WO1

,5
(avo(atx[Ol

.3
(avo(avl

.6
(2wO(~tv l lxO

.4
OwO(Avlvl

.6
(~vO()wlvl)

.6
(avO(avlvl))

F1

K1

) K X ' I

K ~I g l) K ,.~1

I 1 K ~ 18 1) KX ' I

I.X~I) K ~ I g'l) K.-~I

I~1 g113~I)KWI~I)K3C1

K ~ I 81) K,X#I

~ 1 Ky[0]: Kx[1]:

,, Kx[1]:I

Ky[O]:vO ,,

Ky[O]:v--O Kx[1]:I

Ky[O]: Kx[1]:
i i i

Z [lx[O]:

Ix[O]:vl

Ix[Ol:vl

Ix[01:

Ix[0l:

A CUCH-Hachine: The Automatic Treatment of Bound Variables t89

(b) Every chain symbol and every lower case variable belonging to
the rhs must be prefixed with the corresponding lhs symbol.

(c) To take into account a : = assignment statement, it is sufficient to
generate 7 rhs = 1/as [n] and to construct

lhs : rhs

Collisions between auxiliary variables are not permitted, therefore no
A-formula can be assigned to the symbol F.

5.2. Run

All rules behave as before with the exception of rule 3.2.4, which is
also entered by any occurrence of an upper case letter subscripted or not.
Table IV gives an example.

A P P E N D I X

As a language, the CUCH has an alphabet which is the union of the
following three alphabets: (1) an alphabet consisting of infinite variables; (2) an
alphabet consisting of a finite number of constants; (3) the alphabet {(,A,)}.

CUCH words are called formulas. The construction of this language,
which permit building up new formulas from atomic formulas, is as follows:

(1) Each variable and each constant is an atomic formula.

(2) I f d and ~ are formulas, then (ds~) is a formula obtained (by
definition) by means of the application of d to N.

(3) If we denote by ~-[x] any formula F, and if we are interested in
the free occurrences of x in o~[x] (notice that x may not occur in F), then (by
definition) (Axo~[x]) ~ (AxF) is a formula obtained from F by abstraction
(relative to x). However each occurrence of x in (AxF) is said to be bound
(from h; notice that free =- not bound).

The morphology of CUCH is, according to the Backus notation,

(variable) I t i u [v [w I x l Y t z . . .

(constant) = B [C] I I K i Q [c . i w . . -

(formula) = (variable)](constant) l(A (variable)(formula))l

((formula)(formula))

Here, n is the final level.

190 B~hm and Dezani

The C U C H constants are o f three types. Some o f them, like S, B, C , / ,

K, 0 , W, C , , etc., are names o f closed formulas, s Let us give, for example

the definition o f / , K, and 0 :

I = (; txx) , I~ = (; tx(~yx)) , o = (; tx (hyy))
A A A

Some of them, like 0, are means o f defining classes of formulas: In such cases,
the corresponding reduct ion rule holds for each element o f the class. The rule
for 0 is

Oa = (a(Oa)) where a is any formula

The operator 8 (universal discriminator for normal forms) is not representable
by any closed formula.

The relation between pairs o f formulas is as follows:

(1) Immediate reduction, d is said to be immediately reducible to
by means of the ~-, /3-, and wrules, respectively, and we write d - - ~
if at least one of the following definitions holds:

(~) F & G iff F ~ (hx~-[x]) and G = 0Wo~[y]), where F is a sub-
formula o f d , ~ is the result o f the substitution o f G for one o f the occur-
rences o f F in d , and y does no t occur free in o~-[x] but it is free for x in
~-[x].~

(8) F~--~ G iff F =-- ((hx~[x])M), G ~ ~ [M] , where F and G are as
in (~), and M is a formula free for x in ~-[x].

07) F~-~ G iff F ~ (hx(Mx)) and G ~- M, where F and G are as in (~),
M is a formula, and x does no t occur free in M.

(2) Reduction. d is said to be reducible to ~ , and we write d ~ ~ ,
if there is a finite sequence o f formulas, d ~ F1, F2 ,..., F~ ~ M such that
for each 1 ~< i ~< n - - 1, we have Fi -~F(i -k 1).

(3) Conversion. d is said to be convertible to ~ , and we write d = ~ ,
iff, under the conditions o f the preceding paragraph, we have Fi ~ F(i -k 1)
or F(i -k 1)-~Fi.

According to the Church-Rosse r theorem (Ref. 5, pp. 108-150), if
d = ~ , then there is c~ such that A ~ q~ and ~ =~ qf. A n impor tan t con-
sequence o f this theorem is that if ~r = ~ and in ~ neither the/3-rule nor

8 "Closed" means "without free variables."
9 y does not occur free in ~[x] both ff it does not occur and if it occurs bound. A formula

M is said to be free for x in~[x] if, denoting byS[M] the result of the substitution of M
for every free occurrences of x inJ[x], every free occurrence of a variable z in M is still
free im~'[M]. If x does not occur free in~[x], then we have~'[M] = ~[x].

A CUCH.Machine: The Automatic Treatment of Bound Variables |91

the q-rule is appl icable , then ~ is unique up to some appl ica t ions o f the s-rule.

In this case, is said to be in normal form. A ra ther obvious ref inement o f this
t heo rem is: A n y two formulas reducible to no rma l forms and mutua l ly
convert ible can be reduced to the same principal normal form, where all
b o u n d var iables be long to a given a lphabe t and occur in a fixed order.
A n o t h e r i m p o r t a n t consequence o f the C h u r c h - R o s s e r theorem is tha t i f sO"
does a d m i t a no rma l form, then an a lgor i thm does exist for obta in ing it.

A C K N O W L E D G M E N T

We are indebted to the referee for indicating topics needing greater clarity.

R E F E R E N C E S

1. G. Ausiello, "Automatic reduction of CUCH expressions by means of the value
method," Atti del I Congresso Nazionale dell'AICA, Napoli 26-29 settembre 1968
(Rome, 1971), pp. 174-184.

2. C. Brhm and W. Gross, "Introduction to the CUCH," in Automata Theory, ed. by
E. R. Caianiello (Academic Press, New York, 1966), pp. 35-65.

3. C. BShm, "The CUCH as a formal and description language," in Formal Languages
Description Languages for Computer Programming," ed. by T. B. Steel, Jr. (North-
Holland, Amsterdam, 1966), pp. 179-197.

4. A. Church, "The calculi of lambda-conversion," Ann. Math. Stud. No. 6, Princeton
University Press, 1941.

5. J. B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North-Holland, Amsterdam,
1958).

6. S. Ginsburg, Sheila A. Greibach, and Michael A. Harrison, "One-way stack automata,"
ACM, 14(2): 389-418 (1967).

7. P. Landin, "A correspondence between ALGOL 60 and Church's lambda notation,"
Comm. ACM (February/March 1965).

8. D. Scott, "Outline of a mathematical theory of computation," Oxford University
Computing Laboratory Programming Research Group (1970).

9. C. Strachey, "Towards a formal semantics," in Formal Languages Deseription Languages,
for Computer Programming, ed. by T. B. Steel, Jr. (North-Holland, Amsterdam, 1966),
pp. !98-216.

10. P. Wegner, Programming Languages, Information Structures and Machine Organisation
(McGraw-Hill, New York, 1968).

11. C. McGowan, "The correctness of a modified SECD machine," 2rid Annual ACM
Symposium on the Theory of Computation, 1970, North Hampton, pp. 149-157.

Printed in Belgium

