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This paper describes a machine for reducing a ~t-formula (explicitly given or 
implicitly by a system of recursive equations) to principal fi-~-normal form, 
with particular attention to the memory structures needed for the purpose, 
and with some important features: (I) any kind of collision is permitted; 
(2) the processing of subformulas which will be thrown away [e.g., ((Axy)x) 
in ((ayz)(Zxy)x)] is avoided; (3) there is no need to introduce any fixed point 
operator like 0, etc. The machine structure entails: (1) some store to memorize 
as side-effects assignment statements with the r.h.s, of a given shape. (2) a 
number of stacks, one for every ;~ in the initial formula, partitioned naturally 
in classes (chains). These stacks admit as entries only words representing 
variables and they are peculiar in that the operations admitted on the top 
are writing and erasing and the operations admitted on the pseudo-top are 
reading, read-protecting, and resetting readability (the last two operations 
are chain operations). This structure is critically motivated. (3) A workstack. 
(4) A pointerstack. The computation runs through four phases: r-generation, 
/~-run, ~/-generation, ~-run. Every generation- (run-) phase is rather recogni- 
tion- (transformation-) oriented, but we found it more stimulating to em- 
phasize technical similarities rather than methodological differences. Every 
phase is described and four examples are extensively developed. 

1. I N T R O D U C T I O N  

F r o m  a t echn ica l  p o i n t  o f  v iew,  this  p a p e r  pe rhaps  fills a gap ,  in  the  sense 

tha t  the re  has  n o t  been  p u b l i s h e d  so far  to o u r  k n o w l e d g e  a c o m p l e t e  a lgo-  

r i t hmic  t r e a t m e n t  o f  the  so ca l led  a - ru le  o f  the  A-calculus ( tha t  is, the  

r e d e n o m i n a t i o n  rule  fo r  va r i ab l e s )3  F r o m  a less t echn ica l  a n d  m o r e  gene ra l  

1 Istituto di Scienza della Informazione, Universit~t di Torino, Italy. 
The reader will find the fundamental notions about CUCH in the appendix. 
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point of  view, our method can be classified as an attempt to smooth the 
dualism, too much emphasized today, between the syntax and semantics 
of  a programming language. I t  is true that the proposed algorithm for 
both ~- and ~/-reductions has been split into two subsequent phases: generation 
and run, the first of  which can be thought as a "parsing" or "syntactic 
recognition," while the second can be considered as a "semantic" phase of  
interpretation. Neverhteless, we try to point out the common features of  
both phases, which is given by the creation of side-effects interpreting some 
assignment statements, that is, the creation of  some pair "name:value." 
Besides, there has been introduced the notion of relative level as subscript 
for every variable of  the initial A-formula in order to identify unequivocally 
the subformula where such a variable occurs. 

Many authors (1-5,v-~1) would probably easily agree that the A-calculus 
can be chosen as a simple theoretical model for several other programming 
languages, some major complications in the latter being mainly of  a technical 
nature. To illustrate the previous statement, there could be produced, 
among other things, (a) the A-symbol as a universal type declarator of  
variables, (b) a formula of  type 

(Ax(Ay(AzM))) 

as declaration of the procedure M with formal variables x, y, z, 
(c) a formula of  type 

((AxF) a) 

and 

as the command to apply the procedure F to the actual argument G. 
Surprisingly enough, the outcome of this paper displays an inherent 

complication of the minimal mechanical devices needed for an efficient 
implementation of the reduction 3 algorithm for the pure A-calculus. 4 

A little clarification is required for the use of  the expressions "efficient" 
and "mechanical devices" in the previous statement. Ausiello (1) implemented 
the reduction algorithm in the ROMALISP language. He found out that 

3 Such a reduction, called "normal reduction," is defined in Curry (Ref. 5, p. 140) and it 
consists in reiterating left-to-right applications of p-~/-rules. 
Many authors ignore the need for the application of c~-rule prior to some /~-reductions 
or, at least, as with Wegner (Ref. 10, pp. 205-208), they state this fact too vaguely to be 
sure that their implementation is correct. We do not impose any restrictions on the 
choice of names of variables of the initial ;~-formula, allowing any kind of collision 
(see, for example, Table I). It is not possible to avoid variable collisions by a preliminary 
pass renaming all bound variables so that they are distinct from each other and from the 
free variables. Indeed, a ,~-formula without variable collisions may generate through a 
single application of a/~-reduction rule a formula where collisions occur. For example, 

((,~x(xx))(Ayy)) ~-~ ((,~yy)(hyy)) 
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/3-rule could be more efficiently executed by assigning values to bound 
variables instead of  executing a material replacement in all occurrences of  
these variables. The greatest efficiency of this assignment method is shown 
trivially in the case where a large formula is to be substituted for several 
occurrences of  the same variable and some of  these are bound to disappear. 
In  this paper, we try to generalize this assignment method to all parts of  
the algorithm identifying, as Scott (8) and Strachey (9) did, the execution of 
assignment statements with the creation of  side-effects in some store. 

The mechanical device we are presenting is in the spirit of  automata  
theory, i.e., we have tried to identify the whole machinery required with 
some kind of specialized Turing machine. I t  comes out that we need several 
stacks (one for every occurrence of  ,~ in the initial formula) partitioned in 
classes of  read-protect ion) This means that at a certain moment,  it may 
happen that all entries at a same "height" in one stack class are protected 
f rom reading and that at some subsequent moment,  this protection will be 
removed. 

In addition to previously mentioned devices, we need two more classical 
structures: a workstack for characters and subscripted variables and a stack 
of pointers, both with destructive reading. In order to go deeper into the 
motivations of  the choices made in this paper, let us assume an Algol-like 
point of  view. First, the efficiency claims can be fulfilled by evaluating 
a variable as late as possible: this means that all variables in every procedure 
are initialized by name. Second, remembering remarks (a) and (b), there is 
a need for a stack for variable values because a procedure may call itself 
recursively. Indeed, in this case, different values are assigned to the same 
formal variable, which must be stored for reading at the right moment.  
See, for example, Table II. 

The stacks of  the formal variables associated with the same procedure 
form a single class in a very natural way. Third, the need for read-protection 
is illustrated by the successive reduction configurations of  the following 
formula: 

((;~y(yx))(;~x(xx))) 

In this formula, (hy(yx)) is a procedure with formal parameter  y to be applied 
to the argument (hx(xx)) (which itself is a procedure). The next step is 

((;~x(xx))x) 

Here, we are faced with the problem of acting chronologically as follows: 
(1) to assign x as value to x by writing it in the x stack; (2) to read the stack 

5 An alternative solution (suggested to us by H. R. Strong) could be to collect in one stack 
the stacks belonging to the same class. The necessary information could be recovered 
allowing every entry to be, instead of a single value, a set of pairs "stack-name:value." 
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value for x in order to take into account the first occurrence of x; (3) to avoid 
a loop; (4) to read the stack value for x in order to take into account the 
second occurrence of x; and (5) again to avoid a loop. 

We solved this problem by protecting the top of the x stack from 
reading at step 3, by releasing this protection at step 4, and by resetting it at 
step 5. 

When we replace a formal variable by its value, we really jump from 
one procedure M to another. We thus need to forget temporarily not only 
the value just replaced, but also the values already assigned to the other 
formal variables of the same procedure M. The operations of read-protecting 
and resetting readability must then act on all variable-stacks belonging to 
the same class. 

All this is shown in Table I. 
In sections 2 and 3, the algorithm is given for the reduction to the 

/3-normal form of an explicit ;~-formula. A theorem due to Curry and Feys 
(Ref. 5, pp. 132-135) permits us to obtain the/3-~-principal normal form 
from the /3-principal normal form executing successively all possible 
T-reductions, whose algorithm is the object of Section 4. The above- 
mentioned sections need the introduction of one subscripted auxiliary 
variable as name for different subformulas. Section 5 allows the introduction 
of any number of auxiliary variables representing different formulas (possibly 
combinators) and the treatment of formulas implicitly (recursively) defined. 
In developing these algorithms, we felt that in this context any dichotomy 
between syntax and semantics or between compilation and interpretation was 
more misleading than useful. 

We think that the CUCH-machine described here can be considered 
as a first step toward the identification of the structure of interpreters for 
actual programming languages provided with procedures called by name and 
with minimal constraints on the choice of identifiers. 

2. p - G E N E R A T I O N  

2.1. ~3-Generation Statements 

According to the particular syntax of ;~-calculus, every subformula 
of the given formula is limited by a pair of parentheses; hence let us say that 
a subformula is of n-level if the corresponding close-parenthesis is the 
nth close-parenthesis scanning the whole formula from left to right. 

Consequently, the right subformula of the formula of n-level is of 
(n -- 1)-level. Let us assign the ( n -  1)-level to the variables, prefixed or 
not by ;t-symbol, which are inside a formula of n-level. We have thus defined 
the level of every subformula of the original formula (itself included). 
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The notion of level permits us to generate the formula by a sequence of  
assignment statements, where we associate to every variable its level as 
subscript. To this aim, it is enough to introduce the auxiliary variable F[i] 
as name of the subformula not atomic of/-level. 

Example. Let us consider the )t-formula (()tx()tyx))(Axx)). We have 
the following generation: 

Assignment statements Type of assignment statement 

F[1]: (ly[0]x[0]) Abstraction 

F[2I: (,~x[1]F[1]) Abstraction 

FI31: (~x[2]x[2]) Abstraction 

F[41: (F[2]F[31) Application 

Note. We use the symbol : in order to separate the lhs from the rhs of 
an assignment statement. 

Let us notice that the whole formula is therefore represented by F[n], 
where n is the last subscript used. 

2.2. Stacks and S t a c k - C h a i n  C r e a t i o n  

Every creation of an abstraction statement is immediately followed by 
the creation of a variable-stack identified by the name of  the just abstracted 
variable. The effect of  a stack creation will be indicated by the notation 

name of  variable [level number]: 

Let us define as abstraction chain a sequence of abstraction assignment 
statements where every left-hand side is a part of the right-hand side of the 
next abstraction. 

It follows that: (a) Every abstraction statement belongs to exactly one chain; 
(b) the same happens to the corresponding variable-stack; (c) the chains are 
partition classes of the set of variable-stacks. 

The effect of creating a chain of  stacks will be indicated by the notation 

Z[ (i = 1, 2, 3,..) 
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Example. We consider the same A-formula of the previous example: 

Assignment statements Stack chains 

FIll: (Zy[0lx[0]) ]'~-1 y[0]: ['-~-1 
F[2I:(Ax[llF[I]) ,, x[1]: 
F[3]:(Ax[2]x[2]) . . . .  xl2l: 
F[4] :(F[Z]F[3 ]) . . . .  

2.3. Comput ing the Generat ion 

The machinery needed for the execution of the generation phase can 
summarized as follows: 

(a) Workstack with following entries: ) ( "upper case or lower case 
variable, possibly subscripted." 

(b) Transformation rules for the current subformula just completed 
on the top of the workstack. The application of these rules entails the side- 
effects corresponding to the creation of assignment statements, of  variable- 
stacks and of  variable-stack chains. 

(c) A level counter (LC). 

2.3.1. Algorithm of Generation 

Let us denote upper case or lower case variables with 4 ,  ~,... and lower 
case variables with % ~b,.... 

P1. (Initial conditions): LC ~-- 1, the workstack is empty. 

P2. (Copy): We copy the initial A-formula scanning from the left on 
the workstack until a subformula is completed. 

P3. (Distinction between abstraction and application): If  the sub- 
formula just completed is an application, go to P8. 

P4. (Is this abstraction the first of the chain ?): If  the right subformula 
of the subformula just completed is an abstraction, go to P7. 

P5. (Stack and stack chain creation): We write as side-effect 

~ [ L C -  1]: 

(where q~ is the abstracted variable). This variable-stack must be assigned 
to the newly created stack chain ff(rn § 1) (if Cgrn is the last stack chain 
created). The first stack must belong to the chain Cgl. 
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P6. 

go to P g .  

P7. 

(Creation of  an assignment statement and erasure chain-symbol 

F[LC]: (A~[LC -- 11 ,Sin ~b[LC -- 1]) 

(Stack creation): We write as side-effect 

~ [ L C -  1]: 

(where ~o is the abstracted variable). This variable-stack must be assigned 
to the last stack chain created. 

P8. (Alternative creation of an assignment statement): We write as 
side-effect 

F[LC]: "subformula just completed in which the level 

(LC -- 1) is assigned to every lower case variable." 

P9. (Replacement): On the workstack, the subformula just completed 
is replaced by F[LC]. 

P10. (Is it finished?): I f  there is no more symbol to be copied, STOP. 
Otherwise, LC +-- LC + 1, go to P2. 

Let us follow the application of this algorithm to the A-formula 

Side-effects 

Workstack Assignment statements Stack chains 

et  :(ayEO   xtOD yto : I ii ((AxF[1]) F[2]:(Ax[1]F[1]) ,, x[1]: 
(F[2](Axx) F[3 ] :(Ax[2]..,T2x [2]) . . . .  x ] 
(F[2]F[3]) F[4]:(F[2]F[3]) . . . .  
F[4] . . . .  

3. p-RUN 

3.1. In i t i a l  C o n d i t i o n s  

At the end of the generation phase, the following situation is produced: 
(a) the workstack possesses has unique entry the variable representing the 
whole A-formula to be reduced; (b) assignment statements or side-effect 
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giving the generation of the A-formula; (c) empty stacks of variables; (d) an 
empty pointerstack, which is a pushdown list. 6 

In the run phase, we will need both terminal and nonterminal variables. 
The terminal variables will be represented by the letter v suffixed with a 
natural number in decimal notation or a lower case letter (representing 
free variables).The nonterminal variables will be represented by a lower case 
or upper case letter subscripted by a levei index. 

The workstack is essentially a pushdown list with following possible 
entries: ) ( "not  terminal variable . . . .  terminal variable." 

The variable-stacks created in the generation phase are more specialized 
than those defined by Ginsburg et aI. I~ What is peculiar to our stacks is 
the existence of rules unequivocally determining the reading of one entry not 
necessarily on the top. Every reading of one entry is immediately followed 
by a locking, called "read-protection," of  all entries belonging to the chain 
pertinent to that entry. Let us define as a pseudo-top the first unprotected 
entry from the top. I f  at some instant some entries of one stack are protected, 
writing on the stack will mean writing on the top and reading on the stack 
will mean reading the pseudo-top of the stack. Symmetrically to the read 
protection there is a reset operation (of readability) acting again on the 
Pseudo-top of a whole chain. 

From the point of view of implementation, the information structure of 
the read-protected stack is a pushdown list where every entry has a flag bit 
(0 for readable, 1 for not readable). Later on, we will bar the unreadable 
entries. 

The formula of an /-level represented by F[i] generally entails one 
pointer i, which points to the right subformula of the formula itself (a possible 
occurrence of the symbol Y m  is considered as belonging to the right sub- 
formula) .  

3.2. Run Evaluat ion Rules 

The following sequence of  rules will act like a Markov algorithm. 
The only difference is the rule 3.2.4, which looks forward and opens more 
nesting possibilities. 

The choice of the next  rule to be applied is unequivocally determined 
by the top entries of the workstack. 

3.2.1. X m  Rule 

" • m "  on the top of the workstack is immediately conveyed on the 
pointerstack top. 

I.e., a list writable, readable/erasable only at the top. 
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3.2.2. ((~ Rule 

"(()t" on the top of  the workstack causes writing on the workstack 
until and including the close-parenthesis corresponding to the first open, by 
a (destructive) reading of pointerstack. In this way, we obtain 

((Acp[i] ~[i]) (/5[j]) 

A possible " S i n "  between 5o[i] and q~[i] is immediately conveyed on the top 
of  the pointerstack. 
This formula is now interpreted as an assignment statement. Therefore, 
we write ~b[j] on the stack q~[i], leaving on the workstack only the formula 
~[i]. 

3.2.3. (Mp[i] Rule 

The value of  

is 
"()t~[ir' 

(Avn 

where n is the smallest nonnegative integer j such that vj is not in any stack. 
Moreover, the stack ~[i] is loaded with the terminal variable vn. 

3.2.4. q~[i] Rule 

The value of a nonterminal variable 

"q~[i]" 

is the result of  a read operation on the stack ~[j] where j is the smallest 
nonnegative integer not less than i. I f  this stack does not exist or is empty, 
the value of ~[i] is q~ (this condition is verified only in the case of a variable 
occurring free in the initial )t-formula). 

Let us suppose that we read the nth entry from the bottom of the stack 
~[j] belonging to the chain Cgm. Then, we must execute a read-protection 
operation for all n entries of  the stack belonging to the chain Cgm and we 
must write on the pointerstaek C~mgn. 

3.2.5. F[I] Rule 

"F[i]" on the top of the workstack causes the replacement process 
with its value to be activated; every entry of that value will be written from 
left to right on the workstack until one of the rules 3.2.1-3.2.5 is applicable. 
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If  the next applicable rule is one of 3.2.1, 3.2.3-3.2.5, we write on the pointer- 
stack the interruption point consecutively to a left subformula, the ")" symbol 
consecutively to a right subformula. 

3.2.6. D-Completion Rule 

If  none of the previous rules is applicable, we execute a destructive 
reading of the pointerstack: 

(a) A pointer on the top of the pointerstack causes the writing on 
the workstack from the corresponding interruption point. 

(b) "Cgmgn" on the top of the pointerstack causes the execution of 
a reset operation of readability for all n entries of the stacks belonging to the 
chain Cgm. 

(c) "~Y'm" on the top of the pointerstack causes the erasure of all 
tops of the stacks belonging to the chain Tin. 

(d) ")" on the top of the pointerstack is conveyed on the workstack. 

(e) If  the pointerstack is empty, the/3-reduction of the initial ,X-formula 
is completed. 

3.3. Run M a c h i n e r y  

The machinery needed for the execution of the run phase can be summarized 
as follows: (a) workstack; (b) assignment statements produced during the 
generation phase; (c) variable-stacks and pertinent chains; (d) pointerstack; 
(e) run evaluation rules 3.2.1-3.2.6 like a Markov algorithm. 

Tables I and II contain the whole reduction to normal form of two 
h-formulas. 

Table I. Program: ((~y(yx))(~x(xx)))  

/~-Generation 
Workstack Assignment statements Stack chains 

((Ay(yx) F[1 l:(y[01x[0]) 

((hyF[11) F[2]:(Ay[1 ]~IF[1 ]) 

(F[21(~x(xx) F[3]:(x[2]x[21) 

(F[2](;ucF[3]) f[4]:(,~x[31~2F[31) 

(F[2IF[4]) F[5]:(F[2]F[4]) 

f[51 

"•[ y[1 ]: 

Table continued 



A CUCH-Machine:  The Automatic Treatment of Bound Variables 

Table I (continued) 

&RLrN 

Rule number 
Workstack Pointerstack Stack chains 

181 

F[51 
.5 

(f[21 5 
.5 

((ay[1JF[1])F[4]) ,~e~l 

.2 

FI l l  ,,Y'I 
.5 

(y[O] 1 =U1 

.4 
(F[4] ~1 •11 -Y'I 

.5 
((hx[3]F[3])x[0]) ~Y'2 -Y'I 

.2 
F[3] ~ 2  ~ f l  

.5 
(x[21 3 ,,~('2 ~g'l 
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(x E2 g l  3 of'2 :r 
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.4 

(xx[O] E2 g l  ) cr ~F1 
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) )  
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) )  
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) )  

y[1]: 

"•-I x[3]: 

) )  
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X[3]: 
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4. q - R E D U C T I O N  

W e  wil l  ~/-reduce a n  a l r e a d y / ~ - r e d u c e d  h - f o r m u l a  a n d  the re fo re  in  this  
f o r m u l a  every  b o u n d  v a r i a b l e  is r e p r e s e n t e d  b y  a v - s y m b o l  suff ixed wi th  
a n o n n e g a t i v e  in t ege r  in  d e c i m a l  n o t a t i o n .  T h e  f o r m u l a  is sub jec t  to  a 

Table II I .  

n-Generation 
Workstack 

Program : (lwO(lwl((vO(lw2(hv3(v2v3))))vt))) 

Assignment statements Counter "Black list" 

(;~v0 0 
(Av0(;~vl 1 

OvO(,~v l ((vO ,, vO 
(hvO(,~vl((vO(Av2 2 ,, 
QvO()w l ( (vO(hv2(hv3 3 ,, 
(AvO(Avl((vO(hv2(,~v3(v2v3) F[1]: (v2v3) . . . .  v2 
OvO(,~vl((vO(hvZ(hv3F[1]) F[2]: (Av3F[1]) . . . . . .  
(,~vO(.~vl((vO(hv2F[2l) F[3]: Ov2F[2]) . . . . . .  
OvO(avl((vOF[3]) F[4]: (v0F[3]) . . . . . .  

(hvO(hvl(F[4]vl) F[5I: (F[4lvl) . . . . . .  
OvO(AvlF[5]) F[6]: OvlF[5]) . . . . . .  
Ov0F[6]) F[7]: Ov0F[6]) . . . . . .  

F[TI 3 . . . .  

n-Run 
Workstaek Pointerstack Side-effects "Black list" 

F[TI 
(;~v0F[6] ) 
(hvO(hvlF[5l ) 
(AvO(;~vl(F[4lvl)) ) 
(hv0F[4] ) 

(~vO(vOF[3 l ) 
OtvO(vO(~v2 3 
(;~vO(vO(hv lF[2 ] ) 
( hvO( vO( hv l ( ;~v 3 2 
(hvO(vOOw l (hv2F[1] ) 
(hvO(vO(hv 10w2(v 1 v2)) ) 
(,~vO(vO(Av l v l ) 
OtvO(vO(,~vlvl ) ) 
OvO(vO(hvlvl)) ) 
OvO(vO(hvlvl))) 

) 
) 
) 
) 

) ) 
) ) 
) 

vO v2 

v2:vl v3 :v2 vO vl 
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generation phase like fl-generation, where, however, no level of  calculus 
is assigned to the variables, which are now all terminal. No stacks are created. 
The bound variable, which occurs as the lhs of an application or more than 
once as the rhs, is marked in a "black list," because the formula is certainly 
not reducible with regard to this variable. Moreover, the greatest number n 
that occurs as sufftx for a v in the A-formula is stored. 

The run phase has essentially only one rule: 

(Avi(~[j] vi)) 

on the top of  the workstack, iff vi does not occur in the "black list," it is 
replaced by 

In addition, we write as side-effects 

v(i -Jr- 1):vi 

v(i + 2):v(i + 1) 
, . ,  

vn:v (n -  1) 

Also, in the T-run, the pointerstack allows us to follow the nesting of the 
subformulas. Table III shows an example. 

5. P R E F I X I N G  T O  A X - F O R M U L A  A S E Q U E N C E  
O F  A S S I G N M E N T  S T A T E M E N T S  

We present an extension of  the method so far described which allows 
us to write any number of  assignment statements to the left of the given 
A-formula to be reduced. The aim is twofold: (1) to handle efficiently more 
than one occurrence of  the same A-subformula (i.e., generating it once only) 
and/or (2) to define a A-formula recursively. 

As an example, we would like to process expressions of  the kind 

(D := ~) (a := ~[D]) (~ := ~ )  (~C) 

where ~ ,  ~#, o~ are given A-formulas and D occurs in ~. 

5.1. Generat ion 

In addition to the generation rules, let us add for every assignment 
statement the following prescriptions: 

(a) The auxiliary variable of  the rhs must be the corresponding lhs 
symbol 



Table IV. Program: (K:=(l~x(hyx)))(h=(hxx))(KI) 

fl-Generation 
Workstack Assignment statements Stack chains 

(K:= (ax(ayx) 
(K: = (axK[l]) 

(K: = K[21) 
q: = (axx) 
( I :=  111]) 

(KO 
F[l l  

K[1]:(LKy[O]K,Y~ IKx[O]) 
K[2 ]:( hKx[ l lK[1]) 
K:K[2] 
I[1 ]:(Mx[O]I,.g'llx[O]) 
I:1[1] 

F[ll:(K/) 

"7"~1 [ Ky[0]: 
Kx[1]: IZI Ixii : 

B-Run 
Rule number 

Workstack Pointerstack Stack chains 

F[1] 

.5 
(K 

.5 
(K[2] 

.5 
( QtKx[1]K[1])I) 

.2 
K[1] 

.5 
(AKy[0] 

.3 
(;w0 

.6.1 
(~vOKx[O] 

.4 
(;WO1 

,5 
(avo(atx[Ol 

.3 
(avo(avl 

.6 
( 2wO( ~tv l lxO 

.4 
OwO(Avlvl 

.6 
(~vO()wlvl) 

.6 
(avO(avlvl)) 

F1 

K1 

) K X ' I  

K ~I  g l  ) K ,.~1 

I 1 K ~  18 1) KX ' I  

I.X~I ) K ~ I  g'l ) K.-~I 

I~1 g113~I)KWI~I)K3C1 

K ~ I  81 ) K,X#I 

~ 1  Ky[0]: Kx[1]: 

,, Kx[1]:I 

Ky[O]:vO ,, 

Ky[O]:v--O Kx[1]:I 

Ky[O]: Kx[1]: 
i i i 

Z [  lx[O]: 

Ix[O]:vl 

Ix[Ol:vl 

Ix[01: 

Ix[0l: 
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(b) Every chain symbol and every lower case variable belonging to 
the rhs must be prefixed with the corresponding lhs symbol. 

(c) To take into account a : =  assignment statement, it is sufficient to 
generate 7 rhs = 1/as [n] and to construct 

lhs : rhs 

Collisions between auxiliary variables are not permitted, therefore no 
A-formula can be assigned to the symbol F. 

5.2. Run 

All rules behave as before with the exception of  rule 3.2.4, which is 
also entered by any occurrence of  an upper case letter subscripted or not. 
Table IV gives an example. 

A P P E N D I X  

As a language, the CUCH has an alphabet which is the union of the 
following three alphabets: (1) an alphabet consisting of infinite variables; (2) an 
alphabet consisting of a finite number of  constants; (3) the alphabet {(,A,)}. 

CUCH words are called formulas. The construction of this language, 
which permit building up new formulas from atomic formulas, is as follows: 

(1) Each variable and each constant is an atomic formula. 

(2) I f  d and ~ are formulas, then (ds~)  is a formula obtained (by 
definition) by means of  the application of  d to N. 

(3) If  we denote by ~-[x] any formula F, and if we are interested in 
the free occurrences of  x in o~[x] (notice that x may not occur in F), then (by 
definition) (Axo~[x]) ~ (AxF) is a formula obtained from F by abstraction 
(relative to x). However each occurrence of  x in (AxF) is said to be bound 
(from h; notice that free =- not bound). 

The morphology of CUCH is, according to the Backus notation, 

(variable) . . . .  I t i u [ v [ w I x l Y t z . . .  

(constant)  = B [ C] I I  K i Q [ c .  i w . . -  

( formula)  = (variable) ](constant) l(A (variable)(formula))l  

( ( formula)(formula))  

Here, n is the final level. 
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The C U C H  constants are o f  three types. Some o f  them, like S, B, C , / ,  

K, 0 ,  W, C , ,  etc., are names o f  closed formulas,  s Let  us give, for  example 

the definition o f / ,  K, and 0 : 

I = (; txx) ,  I~ = ( ; tx(~yx)) ,  o = ( ; tx (hyy) )  
A A A 

Some of  them, like 0, are means o f  defining classes of  formulas:  In  such cases, 
the corresponding reduct ion rule holds for each element o f  the class. The rule 
for  0 is 

Oa = (a(Oa)) where a is any formula  

The operator  8 (universal discriminator for  normal  forms) is not  representable 
by any closed formula.  

The relation between pairs o f  formulas is as follows: 

(1) Immediate reduction, d is said to be immediately reducible to 
by means of  the ~-, /3-, and wrules, respectively, and we write d - - ~  
if at least one of  the following definitions holds: 

(~) F &  G iff F ~ (hx~-[x]) and G = 0Wo~[y]), where F is a sub- 
formula  o f  d ,  ~ is the result o f  the substitution o f  G for one o f  the occur- 
rences o f  F in d ,  and y does no t  occur free in o~-[x] but  it is free for  x in 
~-[x].~ 

(8) F~--~ G iff F =-- ((hx~[x])M), G ~ ~ [ M ] ,  where F and G are as 
in (~), and M is a formula  free for  x in ~-[x]. 

07) F~-~ G iff F ~ (hx(Mx)) and G ~- M, where F and G are as in (~), 
M is a formula,  and x does no t  occur free in M. 

(2) Reduction. d is said to be reducible to ~ ,  and we write d ~ ~ ,  
if there is a finite sequence o f  formulas,  d ~ F1, F2 ,..., F~ ~ M such that  
for  each 1 ~< i ~< n - -  1, we have Fi -~F( i  -k 1). 

(3) Conversion. d is said to be convertible to ~ ,  and we write d = ~ ,  
iff, under  the conditions o f  the preceding paragraph,  we have Fi ~ F(i -k 1) 
or  F(i  -k 1)-~Fi.  

According to the Church-Rosse r  theorem (Ref. 5, pp. 108-150), if 
d = ~ ,  then there is c~ such that  A ~ q~ and ~ =~ qf. A n  impor tan t  con- 
sequence o f  this theorem is that  if ~r = ~ and in ~ neither the/3-rule nor  

8 "Closed" means "without free variables." 
9 y does not occur free in ~[x] both ff it does not occur and if it occurs bound. A formula 

M is said to be free for x in~[x] if, denoting byS[M] the result of the substitution of M 
for every free occurrences of x inJ[x],  every free occurrence of a variable z in M is still 
free im~'[M]. If x does not occur free in~[x], then we have~'[M] = ~[x]. 
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the q-rule is appl icable ,  then ~ is unique up to some appl ica t ions  o f  the s-rule.  

In  this case, is said to  be in normal form.  A ra ther  obvious  ref inement  o f  this 
t heo rem is: A n y  two formulas  reducible  to no rma l  forms and mutua l ly  
convert ible  can  be reduced  to  the  same principal normal form,  where all 
b o u n d  var iables  be long to a given a lphabe t  and  occur  in a fixed order.  
A n o t h e r  i m p o r t a n t  consequence o f  the  C h u r c h - R o s s e r  theorem is tha t  i f  sO" 
does  a d m i t  a no rma l  form,  then an a lgor i thm does exist for  obta in ing  it. 

A C K N O W L E D G M E N T  

We are indebted to the referee for indicating topics needing greater clarity. 
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