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Abstract. To compute the value of a function f (z)  in the complex domain by means of a converging 
sequence of rational approximants { f,~ (z) } of a continued fraction and/or Pad6 table, it is essential 
to have sharp estimates of the truncation error If(z)  - f,~ (z)I. This paper is an expository survey of 
constructive methods for obtaining such truncation error bounds. For most cases dealt with, {f~ (z) } 
is the sequence of approximants of a continued fractoin, and each f,~(z) is a (1-point or 2-point) 
Pad6 approximant. To provide a common framework that applies to rational approximant fn (z) that 
may or may not be successive approximants of a continued fraction, we introduce linear fractional 
approximant sequences (LFASs). Truncation error bounds are included for a large number of classes 
of LFASs, most of which contain representations of important functions and constants used in math- 
ematics, statistics, engineering and the physical sciences. An extensive bibliography is given at the 
end of the paper. 
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1. Introduction 

Many important functions f(z) of mathematical physics, chemistry, engineering, 
and statistics are represented by convergent sequences { fn(z) } of rational functions 
that are entries of a (1-point or multipoint) Pad6 table for f(z). In most cases of 
practical interest {f,~(z) } is the sequence of approximants of a continued fraction 
(see, e.g., [1], [37], [45] and references contained therein). One reason for the 
importance of Pad6 tables and related continued fractions is that sequences of 
their approximants may converge in larger regions of the complex plane C than 
the power series expansion, which may not converge at all. Also the algorithmic 
character of continued fractions and Pad6 approximants provides efficient methods 
for the computation of special functions. 

To compute the value f(z) = l i m , ~  f~ (z) at a point z ~ C (using { f,~ (z) }), it 
is essential to have realistic upper bounds for the truncation error If (z) - f~ (z)] that 
results from replacing the true value f(z) by an approximant fn(z). Following the 

* Research supported in part by the U.S. National Science Foundation under Grants INT-9113400 
and DMS-9302584. 



212 CATHLEEN CRAVIOTI'O, WILLIAM B. JONES AND W. J. THRON 

advent of high-speed computers, an extensive literature on truncation error analysis 
for Pad6 and continued fraction approximants has developed. This paper is a survey 
of constructive methods for obtaining such truncation error bounds. References to 
a large number of  the original research publications on this subject are contained 
in the bibliography. 

Three types of truncation error estimates are considered. A posteriori bounds for 
the truncation error If  (z) - f n ( z )  I are determined after calculating the approximants 
f o( z ), f l ( z ), . . . , f,~( z ) and related expressions. A priori bounds are expressed in 
terms o fz  and parameters defining f,~(z); they can be used to appraise the truncation 
error at the start of  the computations. A third type of error estimation describes 
asymptotically the speed of  convergence of { f~ (z)}. This paper contains examples 
of all three types of error bounds. However, emphasis is given to aposteriori bounds, 
since they generally give the sharpest error estimates. 

In some cases dealt with in this paper the approximant sequence {f,~(z)} is 
not the sequence of approximants of  a continued fraction (cf., sections 3.2.3 and 
3.2.4). In order to treat all of the approximant sequences {f~(z)} with a uniform 
framework, we introduce linear fractional approximant sequences (LFASs). An 
LFAS F is an ordered pair 

F = (({ (aj,bj, cj, dj)}, {wj}), {f~}), (1.1a) 

where the elements ay, by, ey, dy and converging factors wy are complex numbers 
(possibly functions of a complex variable z) satisfying 

a j d j - b y c j  r j = 0 , 1 , 2 ,  . . . .  (1.1b) 

The nth approximant f~ = v~( F) of F is given by 

f ~ : = v n ( f ) : = T r ~ ( f ,  wn), n = 0 , 1 , 2 , 3 , . . . ,  (1.1c) 

where {Tn(F, w)} and the generating sequence {t~ (w)} are defined by 

ay + ejw 
t S ( w ) : - b y + d j w ,  j = 0 ' l ' 2 ' ' ' ' '  ( lAd)  

and 

To(F, t0F( ), (1.1e) 
Tn(F,w) :=Tn- l (F,  tFn(w)), n = 1,2,3,  . . . .  

An LFAS F is said to converge to a value v(F) E C = C tO [~],  if its sequence 
of approximants {v,~(F)} converges to v(F) ;  i.e., v(F) = l i m , ~  v,~(F). To 
indicate explicitly the association with F of  its elements and converging factors we 
write aj(F), bi(F), c~(F), dj(F) and wj(F).  For convenience we sometimes use 
the abbreviated notation 

F j ( F )  := (aj(F), b j (F) ,c j (F) ,d j (F)) ,  j = 0, 1,2, . . . .  (1.2) 
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The LFAS algorithm .A(F) is the mapping of the ordered pair ({I'j (F) }, {wj(F)  }) 
to {fs} = {vs(F)}.  If F depends on a complex variable z, we may write F(z), 
v(F(z)) and vs(F(z)). 

To obtain upper bounds for the truncation error Iv(F) - vs(F)l, it is useful 
to work with special families 9:" of LFASs that contain F.  For that purpose we 
consider sequences of element regions [2 = {f2j} and converging factors W = 
{wj} satisfying 

r  4, j = 0 , 1 , 2 , . . . ,  (1.3a) 

where 

Fj  = (aj, bj, ej, dj) E f2j implies afl:i - bjej r O, (1.3b) 

and 

w j E C ,  j = 0, 1,2, . . . .  (1.3e) 

For each such pair of sequences (f~, W), we define the family of LFASs 

f" = 5 r ( a , W )  := [LFASsF : F j ( F )  E f2j and wj(F) = wj, 
j _> 01. (1.4) 

For brevity we write 5 r instead of .T([2, W) if the dependence of ~ on (f2, W) is 
clearly understood. We also use subfamilies of 2" defined, for each F E .T and 
n = 0, 1,2,3, . . . .  by 

.Ts(F) := [G E . T :  Fj(G) = F j (F ) ,  j = 0, 1 , 2 , . . . , h i .  (1.5) 

If G E f s ( F ) ,  we say that G is n-equivalent to F, and we call f s ( F )  the n-th 
equivalence class o f f  in Y:. For each f e ~ and integer n > 0, we define the n-th 
limit region Ls(F, .~) for Y~s(F) by 

Ln(F, .~) := e(gn(F, .F)) (e(S) denotes closure of S), (1.6a) 

where 

is(F, .T) := [A E C" ), = lim Vmj (G) j----~ 

for G 6 9r,~(F) and subsequence {mj}]. 
(1.6b) 

If F converges to a finite value v(F), then Ls(F, .T) is not empty, since v(F) E 
gs(F, .~') C_ Ls(F, f ) .  The concept of limit region was first used in the context 
of truncation error analysis by L. Lorentzen, M. Overholt, W. J. Thron and H. 
Waadeland (see, e.g., [48]). Our definition (1.6) differs from their's in that we allow 
gn(F, .T) to contain finite limits of subsequences {f~5 (G)} with G E 5rs(F) even 
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if { v,~ ( G ) } diverges. For a given family 5 r = 5r(f~, W) and for a finitely convergent 
F E 9 r ,  we define the best bound ~3n(F, ~r) of the truncation error Iv(F)  - v n ( F )  l 
for v,~( F) with respect to .~ by 

~n(F,.T') := sup[ lA-vn(F) l  : )~ ELn(F,.T')]. (1.7) 

Clearly Iv(F) - vn(F)l _</3n(F, since v(F) E Ln(F, .T'). The term "best" for 
/3n (F, 5 r)  is based on the fact that the values A E gn (F, ~') are all possible candidates 
for v(F), if we assume that our knowledge about F is limited to the following: (a) 
F E ~ ,  (b) F is finitely convergent, and (c) the only known elements of F are 
F j (F) ,  j = 0, 1 , 2 , . . . ,  n. One can readily see that a given LFAS F can belong m 
many families ~'(~), a E A. I f F  is finitely convergent and F E ~-(1) C_ .T'(2), then 

~ n ( F  ' ~L-(1)) ___ ~n(F, .~'-(2)). (1.8) 

Thus an LFAS F may have different "best" error bounds f~n (F, ~(a)) corresponding 
to different families ~-(a). It is therefore advantageous to use the smallest family ~- 
that is feasible. 

For a given LFAS F,  the linear fractional transformations Tn(F, w) defined by 
(1.1) can be expressed in the form 

T~(F, w) - An + wCn 
B n + w D n '  n = 0 , 1 , 2 , . . . ,  

where the An = An(F), Bn = Bn(F), Cn 
defined by the difference equations 

a) 
b) 

c) 

(1.9) 

= Cn(F) and Dn = Dn(F) are 

Ao :=ao,  bo:=bo, Co:=Co, D o : = d o  
An := a~Cn-1 + bnAn-1, Cn := c, nCn-1 q- dnAn-1, 

n = 1 ,2 ,3 , . . . ,  
Bn := anDn-i + bnBn-1, Dn :-- cnDn-1 + dnBn-1, 

n - -  1,2,3, . . . .  

(1.10) 

They satisfy the determinant formulas 

n 

AnDn - BnCn - ( -1 )  n I-I(ajdj - bjcj) ~ O, n = O, 1,2 , . . .  
j=0 

(see, e.g., [37], Section 2.2). 
An LFAS F in (1.1) reduces to a continued fraction (CF) 

F = a o +  K \ o j ]  = a ~  
j = l  

if the elements aj, bj, cj, dj in (1.12) and converging factors wj satisfy 

a o E C ,  b o = l ,  c o = l ,  d o = 0 ,  

(1.11) 

(1.12a) 

(1.12b) 
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a j r  b j E C ,  c j = O ,  d j = l ,  j = 1 , 2 , 3 , . . . ,  (I.12c) 

and 

w j = 0 ,  j = 0 , 1 , 2 ,  . . . .  (1.12d) 

The nth approximant of a CF (1.12) is then 

vn(F) := T,~(F, 0) =:  a t  + - -  - -  al az a__~_n (1.13) 
bl + bz + " . +  b,~" 

An LFAS F in (1.1) reduces to a modified continued fraction (MCF) 

F = ao + K (aj, bj;wj)  ( 1 . 1 4 )  

j = l  

if  the elements satisfy (1.12 b,c). The n-th approximant ofa MCF (1.14) is given 
by 

v,~(F) : =  T,~(F, w,~) = :  a o  + - -  - -  

al a2 an-1 an (1.15) 
bl + b2 + ' " +  bn-1 + bn + Wn" 

For CFs (1.12) and MCFs (1.14), the difference equations (1.10) reduce to 

A-1 :=  1, At  := at ,  B-1  :=  0, Bo := 1, 
An = bnAn-1 + anAn-2, n = 1 , 2 , 3 , . . . ,  
Bn = bnBn-1 +anB~-2, n = 1,2,3,  . . . .  

(1.16) 

Here Cn = An-1 and Dn = Bn-1,  n ~ 1. Throughout this paper, when referring 
to CFs and MCFs, we make use of  the familiar notation in (1.12) and (1.14), 
respectively. 

Special classes of  LFASs that are dealt with here (Section 3), which are neither 
CFs nor MCFs, are those associated with normalized Carath~odoryfunctions (C- 
functions) 

C:=[ f"  f i sanaly t i candRef ( z )>Ofor l z l<l , f (O)>O ] (1.17) 

and normalized Schur functions (S-functions) 

S :---- I f "  f is analytic and If(z)l < 1 for Izl < 1, - 1  < f (0)  < 1]. (1.18) 

Associated with C-functions are the LFASs F = C[{Sj}z] with generating se- 
quences {t~(w) } of  the form 

- w tF(w);  = Z $r + W tF (w) :=5OI+w'  I+6jW'  j = 1 , 2 , 3 , . . .  (1.19a) 
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where 

6o>O and 0 1 /1<1, j=1,2,3, .o. ,  

and with converging factors 

(1.19b) 

wj = 0, j = 0, 1,2, . . . .  (1.19c) 

Associated with S-functions are LFASs F = S[{Tj }, z] with generating sequences 
of the form 

7j + zw 
rE(w) := l+~ jZW '  7O e R, 17o1 < 1, (1.20a) 

7 j � 9  lT l<l, j = 1 , 2 , 3 , . . . ,  

and converging factors 

wj=O, j = 0 , 1 , 2 ,  . . . .  (1.20b) 

Sequences of value regions V = {Vn} corresponding to sequences of element 
regions 12 = {f~j} and converging factors W = {wj} are discussed in Section 2. 
Methods for obtaining truncation error bounds based on sequences of value regions 
{V,~) are developed (Theorems 2.5 and 2.6). For many special families U(~, W) 
of LFASs, we are able to determine best mmcation error bounds/3,~(F, 9 r) by 
using best sequences of value regions. Applications of the method are described 
in Sections 3 and 4. In Section 3 the method is applied to the following 7 special 
families of LFASs: 

.yw(p) := [ K ( a j / 1 ) : 0 r  lajl <p(1  - p ) ,  aj E C  forj  > 1], 
(1.21) 1 

0 < p < 2'  (Worpitzky) 

usP(p) := [K(a/bj) :lbjl >_ p +  1/p, bj e C for j  >_ 11, 
(1.22) 

0 < p _< 1, (Sleszytiski-Pringsheim) 

~.St(z) := [K(ajz/1) "aj > 0 for j  _> 1, (1.23) 

0 r 1 4 9  ]argzl<Tr], (Stieltjes) 

,U T(z) := [K(Fjz/(a + Gjz)) : Fj, Gj > O, 0 r z e C, 
(1.24) 

I argz] < 7:1, (Thron) 

~J(z) :__ [K(_a2/(~3j + z))" - o q  2 = 1, ]~1 �9 R; 

0 r  1 3 j � 9  f o r j > 2 ;  (1.25) 

Im z r 0], (real J-fractions) 
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yPgc( , )  := [C[{Sj},z] . {tag(w)} and wj in (1.19), 
(Carath6odory) 

5 "sh(*) :=  [S[{Tj}, z]" {t~(w)} and wj in (1.20), 
(Schur) 

In Section 4 the value region method is applied to the following 4 special families 
of LFASs that are limit k-periodic CFs or MCFs: 

[z[ < 11, (1.26) 

Izl < 1], (1.27) 

K(aj,  1, Xl),  aj --+ a E C -- (--oo,--1/4],  as j --+ oc, (1.28a) 

K(aj /1) ,  aj ---+ 0, as j ---+ oo, (1.28b) 

K(aj,  1, wj),  aj  ~ oc, as j ~ oc, (1.29) 

K(1/bj) ,  bj -+ oo, as j -+ oc, (1.30) 

K(1,bj ,wj) ,  b4i+j-+~j, j = 1 , 2 , 3 , 4 ,  a s i - + c o .  (1.31) 

Section 5 deals with asymptotically best truncation error bounds for limit peri- 
odic LFASs (including limit periodic MCFs). Due to constraints of space and time 
we have had to omit some topics and results on the subject of this paper. Among the 
omissions is a formal discussion about simple sequences developed in [35]. Some 
examples of simple sequences are given in (3.18), (3.35) and Section 3.3. We have 
also omitted applications of tnmcation error bounds to particular special functions 
and results from computational experiments. Examples of such applications and 
experiments can be found in many of the papers given in the references. Before 
continuing with Section 2 we summarize some additional definitions and notation 
that are subsequently used. 

For m = 0, 1,2, . . . .  the m-th tail of an LFAS F (see (1.1)) is the LFAS, denoted 
by F (m) , with elements ~j-(m) , ~.(m)oj , c5 ra) , d5 m) and converging factors wJ m) defined 
by 

F~ m) :=  ( a ? ) ,  "('~)o) ,c) ('~), 4 "~)) :=  (a~+j,b~+j,c~+j,d~+~) 

and 

(1.32a) 

wSm); = wm+j. (1.32b) 

We note that F (~ = F,  

t g(m) (w) F = tm+j (w) ,  

and 

m = 0, 1 , 2 , . . .  and j = 0, 1 , 2 , . . . ,  (1.33a) 

T , ( F ( %  = 

Tn(F (ra) , W) z Tn-t  (g  (m), tF+n(w)), ra = 0, 1 , 2 , . . . ,  
(1.33b) 
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It follows that, for m = 0, 1 ,2 , . . .  and n = 1,2, 3, . . . .  

Tn(F (m), w) F tF o tF+n(W), : tin+ 1 o m + 2 0  �9 �9 �9 

Tm+n(F, w) = TIn(F, Tn(F (ra) , w), 

vn(F (m)) := Tn(F (m) , w (m)) = Tn(F (m) , win+n), 

vm+n(F) := Tra+n(F, wm+~) 

= Tra(F, Tn(F (m) , win+n) = Tra(F, vn(F(m)), 

and 
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v ( F )  :=  lim vn(F) = Tm(F,v(F(m))), m = O, 1,2, . . . .  
n,., .~ o o  

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

T m : = V ( F ( ~ ) ) ,  m = 0 , 1 , 2 , . . . ,  (1.40) 

provided, of  course, that the tails F (m) are convergent. The sequence {v(F (m) } 
is called the right (i.e., correct) tail sequence of F since the ~- in (1.39) is given 
by ~- = v(F) (see (1.38)). Another important tail sequence, called the critical tail 
sequence, is defined by 

~-m : = - h m ( F ) : = T ~ n l ( F ,  oo), m = 0 , 1 , 2 ,  . . . .  (1.41) 

It follows from (1.9) and (1.41) that 

hm(F) = Bra(F)/Dm(F), m = 0, 1,2, . . . .  (1.42) 

2. Truncation Error Bounds from Value Regions 

Let 5 r : ~'(ft ,  W) denote a given non-empty family (1.4) of  LFASs. Let 
{U~(.T') }~___1 be defined by 

F F F 
U n ( ~ ' )  : =  [ t n + l  O t n +  2 0 . . .  0 t n + m ( W n + m )  " ( 2 . 1 )  

F E j  r and m - - 1 , 2 , 3 , . . . ] .  

We begin with the following 

An example of a tail sequence of  a LFAS F is given by 

"cm=Tml(F,'r), m = 0, 1,2, . . . .  (1.39) 

A sequence {7-,,}, where ~-~ E C, is called a tail sequence of an LFAS F if, for 

some ~- 6 C,, 
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THEOREM 2.1. Let .T" = 9r(f2, W) be a given non-empty family (1.4) of LFASs. 
Then 

and 

[ tF(wn) " t ? E .fi'] C__ Un-l(~"),  n = 0, 1 , 2 , 3 , . . . ,  (2.2a) 

[t~(Un(Sr)) �9 F E .T] C_ U~-I(.T'), n = 0, 1,2,3,  . . . .  (2.2b) 
Proof. Condition (2.2a) is an immediate consequence of (2.1). To prove (2.2b) 

let F E .T, n E [0, 1 ,2 , . . . ]  and u E U,~(.T)be given. Then by (2.1)there exists a 
G E .T'~(F) and an integer m > 1 such that 

u = t G t G o G nq-1 0 n-k2 0 . . .  tn_km(Wn_l_m). (2.3) 

It follows from this, (2.1) and tF(W) = t~(w) that 

= o t nq-1 0 ' ' ' 0  tu..]_m(qdJn+m) E Un-l(,~"), (2.4) 
Q . E . D .  

V, A sequence { n},~=-i of non-empty subsets of/2 is called a sequence of value 
regions with respect to 7 = ~'( ~, W) if  the following conditions are satisfied: 

[t~(w,~) �9 F E Y'] C_ V,~-I, n = 0, 1,2, 3 , . . . ,  (2.5a) 

[tF(Vn) " F E .~'] C Vn--1, n = 0, 1,2, 3, . . . .  (2.5b) 

The family of  all sequences of  value regions {Vn} with respect to 7 is denoted by 
V(7) .  It is clear that 

U { n(.l~-)}n=_l E 1;(.~). (2.6) 

From our next result (Theorem 2.2) we see that { Un (.T) } is the "smallest" sequence 
in 1;(7).  We therefore call { Un ( F) } the best sequence of value regions with respect 
to ~.  

THEOREM 2.2. Let .T = U(f2, W) be a non-empty family of LFASs. If {Vn} E 
V(U), then 

Un(7) C_ Vn, n = - 1 ,  0, 1, 2, . . . .  (2.7) 
Proof. Let {Vj} E 1;()r) and n 6 [ -1 ,  0, 1, 2 , . . . ]  and u E U,~(U) be given. 

Then there exists a G E 7 and an integer m > 1 such that u can be expressed 
by (2.3). I f m  = 1, then u = tan+l(Wn+l) E Vn by (2.5a). I f r a  = 2, then 
U tnG+l G G = ~  EtGn+l(Vn+l)by(2.5a)andhenceu E tn+l(Vn-t-1 ) C Vn, 
by (2.5b). Continuing in this manner one can show (by induction) that all expressions 
of  the form (2.3) are in V,~. This proves (2.7). Q . E . D .  

Some elementary but useful properties of value regions are summarized in our 
next result (Theorem 2.3). A proof  is an immediate consequence of the above 
definitions and hence is omitted. 
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THEOREM 2.3. Let 5 r = .T'(f2, W) be a non-empty family of LFASs. Then 
(A) /f{Vn}~=_l is a family of non-empty subsets of C. such that 

wn E V~, n = 0 , 1 , 2 , . . . ,  (2.8) 

and (2.2b) holds, then {V,~} E 'd(U). 
(B) If{Vn} E V(.T'), then {c(V,~)} E ))(U), where c(V,~) denotes the closure 

of 
(C) / f { V  (a) } E V(YZ)forall o~ in an indexsetA, then 

(2.9) 

An approach for obtaining truncation error bounds by use of value regions is 
based on the following: 

THEOREM 2.4. Let b r = .T'(f2, W) be a given non-empty family of LFASs. Let 
F E 3 z converge to afinite value v(F) = limvn(F). Let {g,~} E V($ r)  and let k 
be a non-negative integer such that 

Wn E C(Vn), n =  k , k  + l , k  + 2, . . . .  (2.10) 

Then 

I v ( F ) - v , ~ ( F ) l  <_diamTn(F,c(Vn)), n = k , k +  1 , k + 2 ,  . . . .  (2.11) 

REMARKS (Remarks to Theorem 2.4). Determination of truncation error bounds 
by use of Theorem 2.4 involves the following steps: (a) First we obtain a sequence 
{V,~} E V(~') such that (2.10) holds for some k > 0. (b) Next we find a description 
of the set T,~ (F, c(V,~ )) such that its diameter (diam T,~ ( F, c(V,~))) can be computed. 
Many examples that illustrate these steps are described in Sections 3 and 4. 

Proof of Theorem 2.4. By Theorem 2.3(B), {c(V,~)} E V(gr). Thus an applica- 
tion of (2.5b) yields 

Trt(lg?~ e(grt)) = Trt-I(F~ t F ( e ( g r t ) ) )  C Tn_l(1g'~ c ( g n - 1 ) ) ,  

n = 1,2,3,  . . . .  
(2.12) 

Hence { T,~ (F, c (V,~)) } is a nested sequence of non-empty closed subsets of C. From 
this, (1.1c) and (2.10) we obtain, for all n > k and rn > 0, 

C_ 
(2.13) 
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and hence 

[v,~+ra(F)-vu(F)l <_diamTn(F,e(Vn)), m = 0 , 1 , 2 ,  . . . .  (2.14) 

Assertion (2.11) follows from (2.14). Q .E .D .  

We note in passing that many important convergence theorems for LFASs have 
been proved by first establishing (2.14) and then showing that lim,~__,~ 
diamT~(F,  e(Vn)) = 0 (see, e.g., [37] and [45]). Every closed set that contains 
the set 

[Vn+m(G) " G E )"n(F),  m _> 0] (2.15) 

is called an nth inclusion region for F with respect to ~.  We denote the family of all 
such regions by L~(F, ~).  Clearly T,~(F, e(V,~)) E IN(F, ~)  for all {Vn} E V(7)  
and F E 5 e. Since 

= �9 c 3 : . ( F ) ,  m ___ 0 ] ,  (2.16) 

T~(F, e(Un(Sc) )) is called the best nth inclusion region for F with respect to ~.  
Henrici and Pfluger [21] were the first to use inclusion regions in their develop- 
ment of truncation error bounds for S-fractions (see (1.23) and Section 3). In our 
next result (Theorem 2.5) we show that, subject to stated sufficient conditions, 
the best truncation error bound f~,~(F, . f )  (see (1.7)) can be expressed in terms of 
T,~ (F, c(U,~(~-))). 

THEOREM 2.5. Let ~ = ~'(f~, W) be a non-empty family of LFASs. Let F E Jr 
be convergent to a finite value v( F) and let n be a non-negative integer such that 
T~ ( F, e( U~ ( U) ) ) is bounded. Then 

/3n(F, .T') = sup[]A - v,~(F)] �9 A E T~(F, e(Un(~)))], (2.17) 

provided that at least one of the following conditions holds: 

Form >_ n + 1, wm E Urn(f). (2.18) 

Form >_ n + 1, w~  E e(Um(f))  (2.19a) 

and for every k >_ 1, there exists a sequence {Gj} of finitely converging LFASs 
such that 

Gj E YZn(F) f o r j  >_ 1 and wn+k = lim v(G~n+k)). (2.19b) 
j - - -~ 

Proof. In view of the definition of/3,~ (F, f )  in (1.7) and of (2.17) it suffices to 
show that, if the conditions of Theorem 2.5 hold, then 

L,~(F, Y )  : T,~(F, c(Un(Y))), (2.20) 
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where the nth limit region Ln(F, Or) for Or,~(F) is defined by (1.6). 
First we suppose that condition (a) holds. Let ,k E Tn(F, U,~(Or)) be given. 

Then by the definition of U,~(Or) in (2.1), there exists a G1 E Or,~(F) and an integer 
ml  > n + 1 such that 

G1 Ol  G1 )~ = Tn(F, tn+ 1 o tn+ 2 o . . .  o tin, (win,)) = vm, (G1)- 

Since by (2.18) Wry1 E Urn1 (Or), there exists a G2 E Orm, (G1) and an m2 ~ ml  4- 1 
such that 

Oz G2 o t ~  (w~:) wral = tral+l otral+ 2 o �9 �9 �9 

and h e n c e  ), = v ~  z (G2) and w ~  2 E U ~ :  (Or). Cont inu ing  in this manner,  w e  obtain 

a s e q u e n c e  { G j }  of LFASs and a sequence of integers {mj} such that, for each 
j _ > l ,  

Gj+I E Orms(Gj), mj+l ~ mj q- 1, 
. G j + I  .~Gj+I (~jq-1 

Wmy = b m j + l  0 ~ m j + 2  0 �9 ' '  0 t m j + l ( W m j + a ) ,  

and hence 

(2.21a) 

GEOrm~(Gj) f o r j = l , 2 , 3 , . . . ,  and G E M ( F ) .  

Therefore by (2.21) and (2.22), ~ = vine(G) for j _> 1 so that 

= 5m Vmr (G) E Ln(F, Or). 
j --* oo 

(2.22) 

We have shown that Tn(F, Un(Or)) c_ Ln(F, Or) and since Ln(F, Or) is a closed set 
we have 

T,~(F, c(Uu(Or))) C_ Ln(F, Or). (2.23) 

To prove that the inclusion in (2.23) holds in the opposite direction, we let ), E 
g~(F, Or) be given. Then by the definition of s Or) in (1.6a), there exists a 
G E Or~(F) and a subsequence ofnaturai numbers {mj} (with ~T~ 1 ~_~ T~ ~- 1) such 
that 

= l i m  v . ~ r  (2 .24 )  
j---+oo 

/k = Vm~ (Gj) for j = 1,2, 3, . . . .  (2.21b) 

From the definition of or = or(~2, W) in (1.4) and from (2.21a) it follows that there 
exists a G E O r such that 
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Therefore, for all j >_ 1, 

vine(G) :=  Tmi(G, wmr Tn(F, a = tn+lO...OtGm~(Wm~)) ET~(F,U~(~)).  

Hence 

= J-~lim v,~j (G) ~ T~(F, c(U~(3~))), 

which shows that gn ( f , F) C_ Tn ( F, c( Un ( :F) ) ) and so 

L,~(F, ~)  C T,~(F, c(U~(.T))), (2.25) 

since the right side of (2.25) is a closed set. The equation (2.20) follows from (2.23) 
and (2.25). 

Next we suppose that condition (b) holds. Let ;~ E T~ ( F, U,~ (.~) ) be given. Then 
by the definition of U~ (~)  in (2.1) and of 9r,~ (F)  in (1.5), there exists a G ~ ~-~(F) 
and a positive integer k such that 

/~ G a t a = Tn(F, tn+ 1 o tn+ 2 o . . .  o n+k(Wn+k)). (2.26) 

By condition (b) there exists a sequence {Gj } (depending upon 'n and k) such that 
for all j = 1 , 2 , 3 , . . . ,  

Gj E 2Fn+k(G) and wn+k = lim v(G~n+k)). (2.27) 

TO verify the first relation in (2.27) we note that condition (b) of the hypothesis 
places no restrictions on the elements Cm(Gj) for n + 1 <_ m <_ n + k. Hence we 
can set C.~(Gj) = Cm(G) for n + 1 <_ m < n + k and j __> 1. Therefore by (2.26) 
and (2.27) 

= T=+k(G, w~+k) = limj_.~ T=+k(G, v(G~=+k))) 

= l i m j ~  T=+k(Gj, v(G~=+k))), (since Gj E 9r=+k(G) C_ .T',~(F)) 
= l i m j ~  v(Gj), by (1.38). 

It follows that 

.X = lim v(Gj) ~ L~(F, .T') 
j - . - ~  

and hence 

Tn(F, Un(~)) C_ Ln( f ,  ~) .  

Since the right side of the last inclusion is a closed set, we obtain 

Tn(F, c(Un(Jz))) c Ln(F, .F). (2.28) 
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Finally, we note that v(F) E s Jr) so that g~(F, ,~) is not empty. Let ~ E 
g,~(F, Jr) be given. Then by definition of  gn(F, Jr) in (1.6a), there exists a G c 
Jrn(F) and a subsequence {mj } of  the natural numbers such that 

)~ = J~lim Vm5 (G). (2.29) 

Without loss of generality we may assume that ma > n and let kj := mj - n, 
j _> 1. From this and (2.29) it follows that 

), lim c c Tn(F, tn+ 1 o . . .  o tgnk~ (wn~,)) e Tn(F, c(Un(T))), = o tn+ 2 j - - ~  

since t a n+l o . . .  o ta~+ks(W~+k~) ~ U,(jr) for all j _> 1. Therefore g,~(F, jr) C_ 
T~(F, c(U,( j r ) ) )  and, since the right side of  this inclusion is a closed set, we obtain 

L.(F,  Jr) C_ T.(F,  e(U.(F))) .  (2.30) 

The relations (2.28) and (2.30) imply (2.20) and this completes our proof. Q .E .D .  

Our next result (Theorem 2.6) provides explicit and easily computable bounds 
for the truncation error Iv(F) - v,~(F)t when one has value regions V,~ that are 
closed circular disks centered at the corresponding converging factors w,~. If in 
addition the hypotheses of  Theorem 2.5 hold, then V,~ = c(Un(jr)) and hence the 
explicit error bound is the best bound fl~(F, Jr). 

THEOREM 2.6. Let jr  = jr(Q, W)  be a non-empty family of LFASs. Let {V,~} be 
a sequence of value regions corresponding to yr such that for some integer k > 0 
and some sequence of positive numbers {pm }~=k, 

gm:=[ueC" lu--w~l~Pm], m = k , k + l , k + 2 ,  . . . .  (2.31) 

Let F E jr  have a finite value v( F) and let n be an integer such that n >_ k and 
the nth inclusion region Tn( F, Vn) is a closed circular disk (and hence bounded). 
Let D~(F) and hn(F) be defined as in (1.10) and (1.41), respectively. Then: 

(A) 

I v ( F )  - v ~ ( F ) l  ~ sup[I)~ - v . ( V ) l  " A E T~(F, G ) ]  

p~ 1-[ j~=o lay ( F)d~ ( F) - bj( F)ey ( F) l 

ID.(F)I a tw~ + h~(F)l(Iw~ + h~(F)l - p~)" 

(2.32) 

(B) I f  in addition 

v,~ = ~(u . ( j r ) )  (2.33) 

and the hypotheses of Theorem 2.5 hold, then the expression on the right side of 
(2.32) is the best truncation error bound fl,~(F, Jr) for F with respect to jr. 
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Proof. (A): By (1.41) Tn(F, - / ~ ( F ) )  = c~. Therefore, since T~(F, V~) is a 
bounded closed circular disk, we obtain 

- h ~ ( F )  ~ V~. 

Let un E C denote the point of  intersection of  the circular boundary OTn(F, V,~) 
and the line segment [w,~, - h ~ ( F ) ] .  From the defining relations for value regions 
(2.5) (see also the proof of Theorem 2.4) we see that {TIn(F, Vm)}~_,~ is a nested 
sequence of closed circular disks and, for m = 0, 1,2, . . . .  

Vn+m(F) :=  T~+m(F, Wn+m) E Tn+m(F, Vn+m) C Tn(F, Vn). 

Hence 

v(F) = l i m  v,~+,~(F) E Tn(F, Vn). 
m--....* o ~  

Let A E T~(F, Vn) be given and let u E V~ be chosen so that )~ = T,~(F, u). Then 
by (1.9) we obtain 

IX - v . ( F ) t  = t T , ~ ( F , u )  - T . ( F , w . ) I  

= A,~(F) + C.(F)u _ An(F) + C.(F)w,~ 
Bn(F) + Dn(F)u Bn(F) + Dn(F)wn 

_ (w~ - u)(A~(F)D~(F) - Bn(F)Cn(F)) 
- ~B-~(~ T ~ ( T ~  u ~ �9 

Using this with the determinant formulas (1.11) and B~(F) = h~(F)Dn(F) from 
(1.42) yields 

IA-v ,~ (F) t  = Iwn-ulrr~-olaj(F)d~(F)-b~(F)cj(F)l  (2.34) 
IO,~(f)l 2.  lu + ~ ( F ) I .  Iw,~ + h~(F)l  

It is readily seen that 

max Iw,~-ul = p,~ and rain lu+h,ffF)l  = Iw,~+h~(F)l-p,~ > 0,(2.35) 
uE V~ uE V~ 

where the extremum in both cases is attained with u = u,~. An application of (2.35) 
to (2.34) gives (2.32). 

(13) follows immediately from part (A) proved above and Theorem 2.5. Q .E .D .  

One can use Theorems 2.5 and 2.6 to obtain best truncation error bounds 
13,~(F, Y) by determining a simple explicit (geometrical or analytical) description 
of  e(U~(.T)) and of  its image T,~(F, c(Un(T))). Applications of that kind are given 
in Sections 3 and 4 for a number of  important special families 9 r of LFASs (see 
(1.21) to (1.31)). For some of  these applications, e(U,~(,~)) can be determined by 
direct elementary methods. For other families we have made use of the following: 
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THEOREM 2.7. Let ~- = .T'(f2, W) be a given non-empty family of LFASs, such 
that every F E ~ and its tails F (~) converge to finite values v(F('~)), m >_ O. Let 
{V,~} be a sequence of value regions with respect to .T" such that, for some integer 
k_>o, 

[tnF(Vn) " F E .7"] = Vn-1, T$ ~- k -1- 1, k + 2 , . . . ,  (2.36) 

and such that 

l im /sup[diamT'~(F( '~) 'V'~+r")]~ = 0 ,  m = I r  + 1, k + 2 ,  . . . .  (2.37) 
n---*c<) ~ FE~- J 

Then 

e(Vn) = c(Un(U)), n = k, k + 1, k + 2, . . . .  (2.38) 
Proof. By Theorem 2.2, e(Un(.T')) C e(V,~) for n _> 0. Thus it suffices to show 

that 

4v ) c__ c ( u n ( y ) ) ,  n -- k, k + 1, k + 2, . . . .  (2.39) 

Let n >__ k and un ~ V,~ be given. We show that u,~ E e(U,~(~)). From (2.36) 
.F1 . (un+l) Again by there exists an F1 E .Y and a nn+l E V,~+I such that u~ = ~,~+, 

(2.36) there exists an F2 E 9 r- and a u,~+2 ~ V,~+z such that un+l = t~2+2(un+2). 
Continuing in this manner we see that there exist sequences {uj} and {Fj} such 
that, f o r j  -- 1,2,3,  . . . .  

z5 Fj E ~', Un-l-j-1 E Vn+j-1, and Un+j--a = tn+j(Un+j). (2.40) 

Let F E 9 v be defined by Fn+ j (F )  := F~+j(Fj )  for j _ 1. From this and (2.40) 
we have 

Un-l-j--1 ~-- tFq-j(Unq-j), j = 1 , 2 , 3 , . . . ,  

and hence by (1.34), for all m ---- 1,2, 3, . . . .  

F t F F Un = tn+l o n+2 o . . .  o t n T m ( U n + m )  = Tm(F  (n), Un+m). (2.41) 

By (2.5) and (1.33) 

Tm(F  (~) , Vn+m) = T in - I (F  (n), tFm+n(Vn+m)) (2.42) 

C_ T m _ I ( F  (~), V~+m-1), 

V~ and hence {Tin ( F  (n) , ,~+~)}m= 1 is a nested sequence of non-empty subsets of C. 
For m > 1 and j ___ 1, we obtain by (1.33) and (2.5) 

Vm+j (F (n)) : =  Tm+j ( F  (n) , Wn+m+j) 
= Tin+j- 1 (F  (n), tF+m+j (Wn+m+j)) (2.43) 
C Tra+j_l(F(n), Vn+m+j-1) C . . .  C_ Tm(F(~), Vn+ra). 
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Therefor 

v(F ('')) := lim Vm+j(F (~)) E Tn(F ('') , c(Vr,+,~)), j . - -~  

m = 1,2,3, . . . .  
(2.44a) 

By (2.41) and the fact that u,~+,., c V,-,+m for m _> 0, we have 

un = Tn(F ('~), Un+m) E Tm(F ('~), Vn+,~), m = 1, 2, 3, . . . .  (2.44b) 

Thus we conclude from (2.43), (2.44) and the hypothesis (2.37) that 

Un = v(F(n)). (2.45) 

We also have from the definition of U,~(O r )  in (2.1) that 

v. (F (")) := T. (F ("), w.+.d E (2.46) 

so that 

v(F (~)) = lim v~(F ('~)) E c(U~(.T')). (2.47) 
'D't..-*--~ 0 0  

Combining (2.45) with (2.47) yields 

We have shown that V~ C_ c(Un(aV)), from which (2.38) follows. Q .E .D.  

3. Special Families of LFASs with Simple Value Regions 

In Sections 3 and 4 we apply Theorem 2.5 to obtain best truncation error bounds 
/3,~ (F, ~ )  for a number of important special families 5 r of LFASs. Other truncation 
error bounds are included which, though not best, are sharp enough to be useful 
and are easy to compute. Sequences of value regions V = { Vj } with respect to 
families .7"( f2, W) play an essential role in these two sections. The procedure used to 
determine families .T'(f2, W) and associated value regions { Vj } is a generalization 
of an approach developed for continued fractions. It rests on the observation first 
made in [44] that, starting in a "natural" way with element regions {f2j} and 
converging factors {wj }, it may be very difficult to find corresponding value regions 
{ Vj } (or { Uj (5:') } in (2.1)). A simpler approach is to start with sequences { Vj } and 
{wj } and determine a corresponding sequence { f~j }, which may lead to null sets 
12j = 0, j _ 1. One way of doing this for continued fractions (with wj = O, j >_ O) 
was used in [49] and [52] for special cases, and then was formalized by Lane [42] 
for circular disks V,~ and arbitrary continued fractions K(an/br,). We refer to the 
generalization of this procedure, described in Section 3.1, as the VWf2-method. 
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3.1. THE VW~-METHOD 

Starting with a sequence V = { ~ } of non-empty subsets of C. and a sequence of 
complex numbers W = {w j} satisfying 

wj E Vj, j = 0 , 1 , 2 , . . . ,  (3.1) 

we determine a sequence f~ = { f ~ j }  of subsets of  C 4 by  

f~j : :  [Fj := (aj, bj, cj, dj) E C 4 �9 aj + ejVj C l/j-l], 
bj + djVj - (3.2a) 

j = 0, 1 , 2 , . . . ,  

with the restriction that 

ajdj - bjcj 7 L 0 for all Fj  = (aj, bj, cj, dj) E f~j (3.2b) 

We call this procedure the VWf~-method. It follows from (1.1) and (2.5) that {l~} 
is a sequence of  value regions with respect to the family F ( f l ,  W) of LFASs (1.4) 
provided 

t i C 0 ,  j = 0 , 1 , 2 ,  . . . .  (3.3) 

In practice, conditions (3.2b) are ensured by imposing special conditions for the 
generating sequence 

aj + ejW 
t F ( w ) : - b j + d j w  , j = 0 ,1 ,2 ,  . . . .  (3.4) 

As an illustration of  the above we start with 

V j : = V o : = [ u e C ' O < l u ] < _ l / 2 ] ,  w j : = 0 ,  j = - l , 0 , 1 , . . . , ( 3 . 5 a )  

and generating functions of  the form 

aj 
tFo (W) := w, tlf (w) : :  l + w '  aj r O, j = 0 , 1 , 2 ,  . . . .  (3.5b) 

Then (3.1) and (3.2b) are satisfied and (3.2a) reduces to 

t o  := [Fo = (0, 1, 1,0) E C 4] (3.6a) 

and 

[ -  
E C  4 -  

a j  ] 

' I + V o  - J ' [ _  
j = 1,2,3,  . . . .  (3.6b) 
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It is readily shown from (3.5a) and (3.6b) that 

f2j = f~l = [rj = (aj, 1,0, 1) E C 4" 0 < lajl <_ 1/4], (3.7) 

j = 1,2,3, . . . .  

In the example described above j r  = j r ( f  t, W) is the family of all continued 
fractions (CFs) 

F =  K such that aj E E = [a c C " O < lajl <_ l/4]. (3.8) 
j = l  

In 1865 Julius Worpitzky [66] proved that all CFs (3.8) converge to finite values. 
The set E is therefore called a simple convergence region for CFs of the form 
K(aj /1)  and this set E is the first known example of a convergence region for 
CFs (see [28] for a discussion of Worpitzky's contributions to CF theory and his" 
times). Best truncation error bounds/3,~(F, ~') for the family of CFs (3.8) are given 
in Section 3.2. 

In most (but not all) of the special families )r(f~, W) of LFASs that have been 
studied extensively, the determination of {f~j } defined by (3.2) is simplified (as 
in the preceding example) by holding constant all but one of the components in 
Fj = (aj, bj, cj, dj) E f~j. The determination of {f2j} in (3.2) can be (and usually 
is) simplified further by choosing regions Vj whose boundaries are circles or lines 
in C, or else intersections of such regions. An additional simplification is attained 
when{Vj }, {wj } and { ftj } are all constant sequences; that is, 

Vj = Vo, w j  = Wl, ~ j  • ~1 for all j k 1. (3.9) 

When this occurs we use the terms simple value region Vo and simple element region 
[21. In the following Section 3.2 we consider families j r  with simple value regions 
Vo such that c(Vo) is a closed circular disk and the corresponding ~2t is a simple 
element region. 

3 .2 .  FAMILIES OF LFASS WITH SIMPLE CIRCULAR DISK VALUE REGIONS 

We begin this section with a result that is an immediate consequence of Theorem 
2.6. 

THEOREM 3.1. Let j r  = jr(f2, W) be a family of LFAS continued fractions (CFs) 

~ ( _ ~ . )  al a2 a3 (e j=O,  d j = l  w j = 0 ,  (3.10) 
K \ ~ 3 /  - b l + b z + b 3 + . . . '  
j = l  

see (1.12). Let { Vj } be a sequence of value regions with respect to jr such that for 
some integer k >_ 0 and sequence of positive numbers {PJ } j~=k, 

vj=[u C: lul<_pj], j = k , k  + l , k  + 2, . . . .  
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Let F C Jr have a finite value v ( F) and let n be a given positive integer with n > k. 
Let vn(F) and hn(F) be defined by (1.15) and h~(F) :=  Bn(F)/Bn-1 (F). If the 
nth inclusion region Tn( F, Vn) is a bounded circular disk, then: 

(A) 

Iv(F) - v~(F) l  <_ sup~[[A - v~(F) [  �9 A c T,~(F, V,d] 

Pn YIj=I l a j (F) l  (3.11) 
= ( Ih~(F) I_p , , ) . IB ,~(F)B ,~_I (F) I  

= (Ih,(F)l-O,d Iv,~(F) - v ,~- l ( f ) l .  

(B) If, in addition, 

Vn = c(Un(jr)) (3.12) 

and the hypotheses of Theorem 2.5 hold, then the expressions on the right side of 
(3.11) give the best truncation error bound/3n(F, .T) for F with respect to jr. 

A number of special families 9 r = jr(f~, W) have best value regions {Urn(jr)} 
and converging factors {Wm } satisfying 

Urn(jr) = Uo(jr), m = 0 , 1 , 2 , . . . ,  (3.13a) 

and 

wm=Oec(Uo(7)):=[ueC'lul<_p], p > 0 ,  m>_0.  (3.13b) 

We give results for four such families in this section. 

3.2.1. Worpitzky Family Jrw(p) 

For 0 < p _< �89 we call 

jrW(P):= [ f ( (a j /1 ) "  a j E C ' j = a  O<Iajl<-p(1-P) '  J > l  I (3.14) 

the p-Worpitzkyfamily of LFASs. Since 0 < p(1 - p) <_ 1/4, it follows from 
Worpitzky's convergence region result (see (3.8)) that every F e jrw(o) has a 
finite value v(F). The family 5 rW(~ (f~, W) has element regions 

f~o := (0,1,1, 0) sothat tFo(W)-W f o r a l l F e j r  W(p), (3.15a) 

and 

•j = a l  = (Eo(p),  1, o, 1), 
where Ea(p) := [u E C" 0 < lul ~ p(1 - p)], (3.15b) 

and converging factors wj = 0, j > 0. Our results for ~g(p )  are summarized by 
the following: 
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THEOREM 3.2 (.~w(p)). Let p satisfying 0 < p < 1/2 be given. Then: 
(A) ~w(p) has a simple best value region 

u ~ ( ~  W(,')) = Uo(f  w(p)) = [u E C "  0 < lul < P], 

m = - 1 , 0 ,  1,2, . . . .  
(3.16) 

(B) For each F E ~rW(p) and each positive integer n, the best truncation 
error bound/3n(F, ,~W (p) ) for vn ( ( F) with respect to ~ w  (p) is given by 

(3.17) 

P I-I~=l lad(e)l 
~(F,.~W(P)) = (I/~(F)[  _ P) " IB~(F)B,~-I(F)] 

_ P 
-- (ih~(F)l - p)iv'~(F) - Vn_l(F)l.  

(C) If in addition, 0 < p < 1/2, then 

[v(F)-v~(F)l<_ ~ Iv~(F)-V~_l(F)l , n - - 2 , 3 , 4 ,  . . . .  (3.18) 

REMARKS.  It follows from (3.16) and the definition of Um (.T W(p) ) in (2.1) that, 
i f0  < p < 1/2, then 

Iv(F)l __ p for all F E .~W(p). 

Proof of Theorem 3.2. (A): Let {Vj(p)} be defined by 

YAp) :-- Vo(p) :-- [u e c .  o < lul < p], j = - 1 , o ,  1,2, . . . .  (3.19) 

To prove (A) it suffices to show that 

{Vj(p)} E I)(.T W(p)) and Vo(p) c Uo(.T'W(P)). (3.20) 

We prove {Vj(p)} E ~,'(.T W(p)) by verifying that conditions (2.5) hold. Condition 
(2.5a) is an immediate consequence of (3.14), (3.19) and p(1 - p) < p. Condition 
(2.5b) (with n > 1) is equivalent to 

l+Vo(p) C ~  for a l l a E E a ( p ) : = [ z E E "  0 < l z l < p ( 1 - - p ) ] ,  
a - V o ( p )  

which can be readily proven. To show that Vo(p) c Uo(.F W(p)) we let u denote an 
arbitrary point in Vo. For each n ___ 0, let gn denote the nth approximant of the CF 

( - p ( 1 - p ) ' ~  p ( 1 - p )  - p ( 1 - p )  - p ( 1 - p )  
I + K  ~ ] j ~ 1 1 + 1 + 1 + - - .  1(3 .21 ) 
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so that 

9 o : = 1  and 9 ~ : = 1  p ( 1 - p ) ,  for n = l ,  2, 3, . . . .  (3.22) 
9r~-1 

We now prove (by induction) that 

1 
- < 1 - P < 9 ~ < 9 ~ _ 1 < 1  , n = 1,2 ,3 ,  (3.23) _ _ ~ . . .  

Since 9o :=  1 and 91 = 1 - p(1 - p), one can see that (3.23) holds for n = 1. As 
our induction hypothesis we assume that 

1 - - p < g k < g k _ l < 1  , k = 2 , 3 , . . . , n - -  1, (3.24) 

for some positive integer n. Then 1 - p < 9n-1 implies 

9n = 1 p(1 - p) > 1 p(1 - p) _ 1 -- p. (3.25) 
9n-1 1 - -p  

Furthermore, 

g n _ l _ g n : g n _ l _ _ ( 1  p ( 1  - -  p ) )  - - _ _ _  
gn- 1 

= p ( 1 - p ) - 9 n _ 1 ( 1 - g n _ l  ) > 0  

9n- 1 

i f f  

(3.26) 

g n - - l (  1 - -  gn--1) < p(1 - p ) .  ( 3 . 2 7 )  

This inequality holds since 1 < ( 1 -  p) < 9~-1 < 1 and f ( x )  :=  x ( 1 -  x ) i s  

decreasing on the interval �89 < x ___ 1. We have established (3.23). Worpitzky's 
theorem ensures that the CF (3.21) converges to a finite value g = l i m n ~  gn. 
Therefore from the recurrence relations (3.22) we see that 9 satisfies the quadratic 
equation 

p(1 - p) 
9 = 1  

9 

whose roots are p and (1 - p). From this and (3.23) we conclude that {9~}n~__o 
decreases monotonically to the limit 9, with 

1 
N g = l - - p <  1. (3.28) 

Let e :=  p -- [u[, en :=  9~ -- (1 -- p), n >__ 0, and let no _> 1 be chosen so that 

eno _< e(1 - -p)  (3.29) 
p - c  
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We then define a by 

[al : = ( p - e ) [ ( 1 - p ) + e n o ]  and a r g a : = a r g u .  (3.30) 

It follows from (3.30) that 

l al =lul  
gno 

a n d  lal  = p ( 1  - p)  - [ c (1  - p )  - c ~ ( p  - ~ ) 1 %  p ( 1  - p ) ,  

and hence by (2.1) 

U z - -  
a 

c Uo(~w(P)). 
g~o 

This completes the proof of (A). 
(B): It follows from conditions (2.2), that {T~(F, Uo(Srw(o)))} is a nested se- 

quence of subsets of C if F E ~-w(p). Therefore since for n > 1, 

T,,(s c_ . . .  c_ TI(F, c(Uo(TW(P)))) c_ c(Uo(fW(P))), 

we see that Tn(F, c(Uo(.~w(P)))) is a bounded, closed circular disk. We wish to 
apply Theorem 3. I(B). For that purpose it suffices to verify that condition (b) of 
Theorem 2.5 holds. Let n > 1 and k _ 1 be given. Then for each j > 1, we define 
a CF Gj E ~-w(p) as follows: 

am(Gj) :=am(F) f o r m = l , 2 , . . . , n + k ,  

1 a~+k+l(Gj):=- and am(Gj)=-p(1-p)  f o rm>n+k+2 .  
3 

Condition (b) of Theorem 2.5 follows from the fact that the CF (3.21) has value 
1 - p ,  and 

lim v(G~+k)) = lira ( l l ~ / j p ) =  0 =: W~+k. 
j ~  j ~oo  

Assertion (B) follows then from Theorem 3. I(B). 
(C) follows immediately from (B) and the fact that Tn (F, - h ~  (F)) = oo, so that 

-hn(F) ~ c(Vo(1/4)) = C(Uo(ff~W(I/4))) and hence [h~(F) > 1/2. Q.E.D. 

3.2.2. Pringsheim-gleszyhski Family U Ps(p) 

For 0 < p < 1, we call 

] p + ~ _< Ibjl < oo (3.31) 
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the p-Pdngsheim-Sleszyrlski family of LFASs. Since p + ( l /p)  _> 2, it follows 
from the Pringsheim-~leszyfiski criterion (see, e.g., [37], Theorem 4.35 and [59]) 
that every F E 9 rPs(p) has a finite value v(F).  The family 5 rPs(p) has element 
regions 

f /o :=(0 ,1 ,1 ,0 )  sothat tFo (W) = W for all F E U Ps(p) (3.32a) 

and, for j > 1, 

K2j : :  ~21 : :  (1, Eb(p), O, 1), 

Eb(p) := [u E where C o 

/ 
1 ] 

P + - _< lu l  < o~ , p 

(3.32b) 

and converging factors wj = 0, j _> 0. Our results for ,~'PS(p) are summarized in 
the following: 

THEOREM 3.3  (~2PS(p)). Let p satisfying 0 < p < 1 be given. Then: 
(A) ~PS(p) has a simple best value region Uo( Y cPS(p)) satisfying 

c(Uo(~=PS<p>)) = [u E c "  0 ~ lul ~ p]. (3.33) 

(B) For each F E ~.PS(p) and each positive integer n, the best truncation 
error bound fl~( F, ~Ps(p)) for v,~( F) with respect to 5 rPs(p) is given by 

P 
~ ( F ,  ~=PS(p)) = ( Ih~(F) l  - p) . IB,~(F)B~-I(F)[ 

= P I v n ( F )  - -  Vn-I(F)[ .  
(Ih~(F)l  - p) 

(3.34) 

(C) If, in addition, 0 < p < 1, then 

P Iv~(F)-v~_l(f)l,  n = 2 , 3 , 4 ,  . . . .  (3 .35)  Iv(F)  - v~(~) l  _ 1 - p 

REMARK. It follows from (3.33) and the definition of Uo(S cPs(p)) in (2.1) that, 
if 0 < p < 1, then 

Iv(F)l < p for F E ~PS(p). (3.36) 

Proof. (A): Let {Vj(p)} be defined by 

Vj(p) := Vo(p) := [u E C" 0 < lu[ <_ p], j = -1 ,0 ,  1,2, . . . .  (3.37) 

To prove (A) it suffices to show that 

{Vj(p)} E V(.~ PS(p)) and Vo(p) = e(Uo(jfPS(~ (3.38) 
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We prove { Vj (p) } C )2(.T Ps(p) ) by verifying conditions (2.5). Condition (2.5a) fol- 
lows directly from (3.31), (3.37) and p + (1/p) > p. Condition (2.5b) is equivalent 
to 

1 
b + Vo(p) c_ - -  

Vo(p) (3.39) 

for a l lbEEb(p) :=  u E C "  p + ~ _  

which can be readily shown. To prove that 

Vo(p) = e( Uo( .rPs(p))  ) (3.40) 

we make use of Theorem 2.7. First we show that 

[tFn (Vo(p)) �9 F C ~PS(p)] = Vo(p). (3.41) 

In view of (2.5b) it suffices to verify 

Vo(p) c_ [tnv(i/b(p)) �9 F e .T "Ps(p)] (3.42) 

or, equivalently, Vo(p) C 1/(Eb(p) + Vo(p)); that is, 

1 
c Eb(p) + Vo(p). (3.43) 

vo(p)  

Let v C l/Vo(p) be given and letq~ := argv, sothat l ip  < iv[ < ooand 
0 < q# < 2'rr. 

Let b and u be defined by 

Ibl : =  Iv l + p, argb := #, u := - p e  i~~ 

It follows from this that 

b + u = (Ivl + p)e  ~~ - pe i~' = v, b E eb(p) and u E Vo(p). 

This proves (3.43) and hence also (3.41). Condition (2.37) can be written 

( sup [diamT~(F (~), Vo(p))] ~ = O. (3.44) lim 
n.---*~ [ ,FG.Tps(p  ) J 

This is an immediate consequence of a theorem due to Hillam (see, e.g., [12], 
Theorem 2.7; [22]). Thus (A) follows from Theorem 2.7. 

(B): We apply Theorem 3.1(B). For that purpose we note that Try(F, Vo(p)) is a 
bounded circular disk, since by (2.2) {Tn(F, ~(p) )  } is a nested sequence of closed 
disks and T,~(F, Vo(p)) C T~-I (F, Vo(p)) C_ . . .  c_ Vo(p). It suffices to verify that 
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condition (b) of Theorem 2.5 is satisfied. Let n > 1 and k _> 1 be given. Then for 
_ "12 PS(p) rwa as follows: each j > 1, we define a CF G 5 E., u+k ~--] 

bm(Gs) := bin(F), m = 1 , 2 , . . . , n  + k, 

bn+k+l(G5) : =  j, 
b r , ( G j ) : = p + I / p ,  r a = n + k + 2 ,  n + k + 3 ,  . . . .  

Then 

lim v(G~ '~+k)) = l ira 1 
5-,~ 5-*~ j + v(G~+k+l)) 

= O = :  Wn+k~ 

since v ( G ?  +k+l)) is the value of the  periodic CF K ( 1 / ( p  + 1)) and hence, by 

(3.36), Iv(G~+k+l))l <_ p. 
Therefore (B) follows from Theorem 3. I(B). 
(C) follows from Theorem 3.1(A) and the fact that T,~(F, - ~ ( F ) )  = oo, so 

t h a t - h ~ ( F )  ~ Vo(1) = [u ~ C" 0 _< lul < 1]; hence Ih (F)l > 1. Q.E.D.  

3.2.3. Positive Perron-Carathdodory Family ~'PPC(z). 

Let 

z E D := [u C C" 0 < lul < 1] (3.45) 

be given. We define the family f.PPC(z) of LFASs F = C[{55} , z], called positive 
Perron-Carathdodory approximant sequences, as follows: 

~PPC(z ) . - [LFASs  F �9 t ] ; ( w ) -  aS+eSw ] "- b 5 + djw'  j = 0, 1 ,2 , . . .  , (3.46a) 

where the generating sequences {t f ( w )  }~r have the form 

tFo (W) := 60 1 - w ttf (w) := z ~j + w 1 +----'~' 1 + 6 5 ~ '  j = 1 , 2 , 3 , . . . ,  (3.46b) 

where 

5 o > 0  and 6 5 E D ,  j = 1 , 2 , 3 , . . . ,  (3.46c) 

and the converging factors w 5 = 0, for j _> 0. To emphasize the dependence of 
the 65 on F we may write 65(F ). Each F E fPpC( , )  is related to the positive 
Perron-Carathdodory CF (PPC-fraction ) 

250 1 (1 -15112)z 1 (1 -[~5212)z 
50 - T + 51z + 51 + 52z + 62 + . . .  (3.47) 
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in the following way: We define sequences {s~(w)} and {S,~(F, w)} by 

1 
SFo(W) := 6o + w ,  s~(w)  :-- 5jz + w '  j = 1 , 2 , 3 , . . .  (3.48a) 

s f ( w )  :=- 1-26~ s +l(w ) .- (15j+to-15j12)z' j = 1 , 2 , 3 , . . .  , (3.48b) 

~o(F,w) : =  8g(w), Sn(F,w) : =  Sn_l(F, sFn(w)), 
(3.48c) 

n = 1 , 2 , 3 , . . . ,  

and we let P,~(F, z) and Q=(F, z) denote the nth numerator and denominator, 
respectively, of  the CF (3.47). It follows that 

s (y,w) = + wP _l(F,z) 
Q n ( F , z ) + w Q n _ I ( F , z ) '  n = 1 , 2 , 3 , . . . ,  (3.49) 

tFo(W) =SF 0 8 I F ( W - I ) ,  t;(W) =_[8~josF , - 1 , 1 - 1  
o 2 j + l t  w )l , (3.50a) 

j = 1 , 2 , 3 , . . . ,  

Tn( f ,  w) = S2n+I(F, w -1) = P2n+I(F, z)w + P2n(F, z) 
Qzn+I(F, z)w + Qzn(F, z) ' (3.50b) 

n = 0, 1, 2, . . . .  

Therefore, for n = 0, 1, 2, . . . .  

vn(C) :=  Tn(F, O) - P2n(F, z) 
Q2n(F, z) ' (3.51) 

and 

A,~(F) = Pz~(F,z), B~(F) = Q2,~(F,z), C~(F) = P2~+I(F,z), 
D,~(F) = Q2,~+1 (F, z), 

where A,~, Bn, C,~, D,~ are defined by the difference equations (1.10). 
The class d of  normalized Carathdodoryfunctions is defined by 

C := [ f"  f is analytic andRe  f ( z )  > 0 for Izl < 1, f (0)  > 0]. (3.52) 

It can be seen that all functions of the form 

e/~ + z 
f ( z )  = " ~ 3 ~  - z '  

j=l (3.53) 

) ~ j > 0  for l < j <_ n, -rc < Ol < O2 < .. .  < O~ = Tr 

are in d. We consider the subclass Cc of  d defined by 

Cc := [f E d  �9 f is not o f the  form (3.53) and f i s  not constant]. (3.54) 
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For each F E ~'PPC(z), we let v(F(z))  denote the value of F considered as a 
function of z. In [33], Theorem 10.2, it was shown that, 

F(z)  E .T "PPC(~) ==> f ( z )  := v(F(z))  E C~, 

and, conversely, f ( z )  E Cc implies that there exists a unique F(z) E yreec(,) such 
that f ( z )  = v(F(z)) .  The following result (Theorem 3.4) gives best truncation 
error bounds for vn(F(z)).  

THEOREM 3.4 (.fPPC(z)). Let z E C, satisfying 0 < Izl < 1 be given. Then." 
(A) The family of LFASs uPPC(z) has a sequence of best value regions given 

by 

u-,(~ppc<z))  = U A(5o), 
6o>0 

(3.55a) 

where 

l+lzP 
A(6o) :-- [u e C" I u -  r(eo)l < n(5o)], r(5o) := ~o~-=~, 

~olzl n(5o) := 1_N2, 
(3.55b) 

and 

Um(~ PPC(z)) :=  ['/z E C "  0 _ lul < Izl], m = 0, 1,2, . . . .  (3.55c) 

(B) For each F E y:PPC(z) and each integer n >_ 1, the best truncation error 
bound for v,~(F) with respect to jrPgc(z) is given by 

~n(F, yPPC(z)) = 260 I-I~=l (1 - 15jl2)z '~+1 (3.56) 
IQz,~(F, z)l(lQz,~(F, z)l - IzQz,~+l(F, z)l) '  

where Q2n and Q2,~+1 are defined by (3.49) and (3.52). 
(C) For each F E ~.pPc(z) and integer n >_ 1 

45~ (3.57) 
I v ( F )  - v,~(F)l ~ 1 - I z l  2 " 

REMARKS.  (1) We have omitted the point z = 0 in Theorem 3.4, since, i fz  = 0, 
v,~(F(O)) = T,~(F(0),0) = 50 for all n _> 0, and hence v(F(O)) = 60. (2) 
60 E A(5o), since 60 > 6o(1 -- Izl) = r(5o) - R(5o) > o. 

Proof. (A): Let { Vj } be defined by 

V-1 :=  U m((5o), A(5o) de f inedby  (3.55b), (3.58a) 
60>0 

vj :=  [u E C" 0 ~ lul < Izl], j = 0, 1,2,  . . . .  (3.58b) 



PADI~ AND CONTINUED FRACTION APPROXIMANTS 

By (3.55) and (3.58) 

tog(o) = 5o(F) e A(5o) = tog(Vo) _ v_~, 

Therefore (2.5) holds for n = 0. For all n > 1, 

for all 50 > O. 

t~(O) = 5~(F)z E Vn-1 for all 0 _ tSn(F)[ < 1, 

and 

t ~ ( v , )  = [~ e c . 

since 

Ir~l + P~ < lzl < a 

where 

zS,~(1 - I z l  2) 
Fn :---- 

1 -Izl215~12' 

l u -  r~l < P~] _c v~-i  
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(3.59a) 

(3.60a) 

for all F E .7" PPC(~), (3.60b) 

(3.60c) 

izl2(1 -lS,~l 2) 
/L~ := 1 -Izl=lS~l 2 (3.60d) 

(see, e.g., [39], Lemma 3.2, for more details on proof of  (3.60c)). 
It follows from (3.60) that (2.5) holds for all n _ 1. Therefore 

{Vj} E ]](.~'PPC(z)). (3.61) 

We now show that 

Vj C U.[.~ PPC(z)h _ j~ j, j = - 1  0,1,2,  . . . .  (3.62) 

In fact, for j > O, 

-- Vo := [u e c -  o _< lul < Izl] -- [~lz" o _ 1611 < 1] 

= It1F(o). F e ~PPc(z)]  c_ Uo(7~PC(z)).  

and, since tog(Vo) = A(5o(F)) ,  we have 

V_, := [A(5o(F)) " F E .T PPc(z)] = [tog(Vo) �9 F 6 .T PPc(z>] 

C U-1 (,~'PPC(z)). 

This proves (3.62) and hence (A). 
(B): Since the conditions of  Theorem 2.6(B) hold (with condition (a) of  Theorem 

2.5), we have for n > 1 

~,,(F, ~PPC(~)) _- Izl 1-IYj=o [ai(F)d~(F) - bj(F)ci(F)[ 
I D = ( F ) I 2 1 h = ( F ) I ( I h ~ ( F ) [  - Izl) 

250 I-[~=1 (1 - 15j12)lzl ~+1 

[ B ~ ( F ) I ( I B ~ ( F ) I  - I z D ~ ( F ) I )  
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which gives (3.56), using (3.52) and 

ao(F)  = 60, 

a j ( F )  = ~jz, 

This proves (B). 
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1 z Qzn+I(F' z) 
Q2n(F, z) .12 >- O. 

3.2.4. Positive Schur Family F sh(z). 

Let 

z E D : = [ u e C "  o___ lul < 1] 

(3.67) 

(3.68) 

(C): Our proof of (3.57) makes use of Theorem 2.4. In [39], Lemma 3.3, we 
obtain 

450 [Ijn__1 (1 - lSj[ 2) IZ] n-i-1 
diamTn(F, Vn) = IQz,~(F, z)[ 2 - IzQzn+I(F, z)[ 2' (3.63) 

n = 1,2,3, . . . .  

Using Christoffel-Darboux formulas derived in [40, Section 2], we obtain the in- 
equality 

n 

[Qz,~(F,z)[ z - l zQzn+l(F,z) l  2 >_ (1 - I z l  2) l-I(1 -]6j12), 
j = l  (3.64) 

n = 1,2,3, . . . .  

Combining (3.63) and (3.64) with Theorem 2.4 yields 

460 I'Ijn= 1 ( 1  - 16jl 2) Izl '~+~ 
Iv(F) - v~(F)t < IQz~(F, z)[ 2 - ]zQ2~+I(F, z)l 2 (3.65) 

and hence (3.57). Q .E .D .  

REMARK.  One can readily show that fl~,(F, ~-ppc(z)) is at least as small as the 
bound given by (3.65). In fact, that statement holds iff 

[Q2~(F, z)l 2 - IzQ2~+I(F, z)l 2 (3.66) 

_ 21Q2,~(F, z) I(IQ2,~(F, z)l - IzQz,~+l(F, z)l). 

Dividing both sides of (3.66) by IQ2~(F, z)[ z and rearranging terms, we obtain the 
following inequality that is equivalent to (3.66): 

bo(F) = 1, co(F) =-5o ,  do(F) = l, 

b j ( F ) = l ,  c j ( F ) = z ,  d j ( F ) = 6 j ,  j = 1 , 2 , 3 ,  . . . .  
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be given. We define the family .~Sh(z) of LFASs F = S[{Tj}, z], called positive 
Schur approximant sequences, as follows: 

7j + zw j 
~ S h ( z ) : =  L F A S s F "  t~(w) -- l + ~/jzw' j = O ,  1,2, . . .  , (3.69a) 

where 

7o~R, 17o[<1 and 7 j c C ,  ] T j l < l ,  j = 1 , 2 , 3 , . . . ,  (3.69b) 

and converging factors w~ := 0, j = 0, 1 ,2 ,  . . . .  To emphasize dependence of 7j 
on F we may write 7 j (F) .  Each F E uSh(z) is related to the positive Schur CF 

% +  (1 -1%12)z 1 (1 -17112)z l 
(3.70) 

'~OZ + "71 + ~/1Z + 72 + ' "  "' 

in the following way: We define sequences {s~ (w)} and {S=(F, w)} by 

1 
SFo( w ) : = 7 0 + w ,  s~ (w) :=  , j = 1 , 2 , 3 , . . . ,  (3.71a) 

7 j + w  

(1 - 17jl2)z 
s2~+l(W) : -  , j = 0, 1 , 2 , . . . ,  (3.71b) 

~/jz + w 

~o(J~w) := 8FO(W), & ( ~ W )  := S n - l ( f ,  8~(w)), 

n = 1 ,2 ,3~ . . . ,  
(3.71~) 

and let P,~(F, z) and Q,,(F, z) denote the nth  numerator and denominator, respec- 
tively, of  the CF (3.70). It follows that 

Sn(F~w ) ~-- Pn(F', Z) 7t-wPn_l(F~z) 
Qn(F,z) + wQn- l (F , z ) '  n = O, 1 ,2 , . . . ,  (3.72) 

8 F {W--IM--1 t f (w):=[s2~o 2j+1, jj , j = 1 , 2 , 3 , . . . ,  

P2n+I(F, z)w + P2n(F, z) 
Tn(F, w) = S2n+I(F, w -1) = Q2n+l(g, z)w + Q2m(F, z) ' 

n = O, 1, 2, . . . .  

Therefore, for n = 0, 1, 2, . . . .  

(3.73a) 

(3.73b) 

Vn(f  ) :z Tn(F, O) = S 2 n + l ( F ~  (x3) - P2n(F' z) 
Q2,~(F, z)  ' 

(3.74) 
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and 

A,~(F) = P2n(F, z), B,~(F) = Q2,,(F,  z) ,  
C,~(F) = P2,~+I(F, z), D,~(F) = Q2nq-l(/p, Z), 

(3.75) 

where A,,, Bn, C,~, D,~ are defined by the difference equations (1.10). The class S 
of normalized Schurfunctions is defined by 

S := [ f"  f is analytic and If(z)l <__ 1 for Izl < 1, 

- 1  < f ( o )  < 11. 
(3.76) 

It can be seen that all functions of the form 

YI" z + :oj Ico~l 
r(~.z. = : * *  1 + ~ j z  

< 1 
j = l  

n 

j = l , 2 , . . . , n ,  l e l = l ,  eI-[~jeR 
j = l  

(3.77) 

are members of S. We consider the subclass Sc of S defined by 

Sc := [f E S : f is not of the form (3.77) and f is not constant]. (3.78) 

For each F E ~rSh(z), we let v(F(z)) denote the value o f F  considered as a function 
of z. In [50] and [32] it is shown that 

F E ~-sh(~) ~ v(F(z)) e & 

and, conversely, f(z) E Sc implies that there exists a unique F E ~Sh(z) such that 
f(z) = v(F(z)). The following result (Theorem 3.5) gives best truncation error 
bounds for vn(F(z)) with respect to .~sn(,). 

THEOREM 3.5 ()rsn(z)). Let z E D := [u E C" 0 _ Jul < 1] be given. Then 
(A) The family of LFASs fSh(z) has a sequence of best value regions given 

by 

U-l(~ 'Sh(z) )  = U tff (D) 
--1<3'0<1 

= U [ cc- 
- 1 < % < 1  

C D  

lu  - c (7o )1  < r ( 7 o ) ]  (3.79a) 

where 

7o(1 - [ z l  2) 
~(7o) : -  

1 - 7o2tzl 2 ' 

r ( 7 o )  . -  (1 - 7g) lz l  
1 - 721zl 2 '  

(3.79b) 
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Um(.Y "Sh(z)) = D, m = 0, 1,2, . . . .  (3.79c) 

(B) For each F E f.Sh(z) and each integer n > O, the best truncation error 
bound for vn(F) with respect to ~Sh(z) is given by 

lzl '~+11-l~=o(1 -17 j l  2) . (3.80) 
13~(F, ~Sh(~)) = IQ2,~(F, z)l" (IQ2r~(F, z)l - IQ2,~+I(F, z)l) 

Proof. (A): A proof of (3.79c) can be found in [31], Lemma 7. The first equality 
in (3.79a) follows from the definition of U-1 in (2.1) and from (3.79c). The second 
equality in (3.79a) follows from elementary conformal mapping of D by the linear 
fractional transformation tFo(W). 

(B) follows immediately from Theorem 2.6(B), since wra : 0 E Um(.~Sh(z)), 
a j (F)  = 7j. bj(F) = 1, c j (F)  = z, d j (F)  = ~/jz, h~(F) = B ,~ (F) /D , (F ) ,  
B , ( F )  = Q2,~(F, z) and D n ( g )  = Q2,~+I(F, z). Q.E.D.  

REMARK.  A proof of Theorem 3.5 was given in [31], Theorem 10, using essen- 
tially the same methods as employed in Theorem 2.6(B). 

3.3. FAMILIES OF LFASS WITH OTHER SIMPLE VALUE REGIONS 

In this section we obtain best truncation error bounds for Real J-Fractions, Stieltjes 
Fractions, Modified Stieltjes Fractions, and Positive T-Fractions. For each of these 
families of LFASs (CFs), the best value regions are simple and they are half-planes 
or intersections of half-planes with part or none of the boundaries included. We 
make use of the following: 

THEOREM 3.6. Let ~" = f'(f2, {0}) be a family of LFASs of continued fractions 
(CFs). Let {Uj(gr)} denote the best sequence of value regions corresponding to 

o o  

,Y. Let F = K j = l ( a j / b j )  c Y~ be convergent to a finite value v(F),  let n be a 
positive integer such that T~( F, c( U,,( f ) ) ) is bounded and let condition (a) or (b) 
of Theorem 2.5 hold. Then 

r ~') = !v~(F) - V~_l(F)l 

i h ~ ( F ) l i n f [ ]  - I  

Proof. From Theorem 2.5, 

(3.81) 

/3,,(F, ~') = suP[IT,,(F, u) -v ,~(F) l  �9 u ~ e(Un(F))].  (3.82) 
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From (1.1c), (1.9) and (1.11) we have 

IT~(F, u) - v,~(F) I = 12r~(F,u) - T,~( F,O)I 

I A~ + uAn-1 An 
= B~ + uBn-1 Bn (3.83) 

Ivy(F) - v,~-1(F)l 

Ih4 1 - h n  1 

From (3.82) and (3.83) we obtain (3.81). Q .E .D.  

To apply Theorem 3.6 to a CF K(aj/by),  we make use of  specific information 
on the location of h~(F) .  From (1.42) and (1.10c), we have 

an an an- 1 a2 
h~(F) = bn + - b,~ + 

hn_ l (F )  bn-1 + bn-2 + " "  + bl (3.84) 

n = 1,2,3, . . . .  

For each of the following special families of LFASs (CFs), we use information 
about the value regions to obtain information about the location of {hn(F)},  and 
then we apply geometric arguments to determine 

lj ] 
inf h~(F) u " u E c(Un(T)) . 

3.3.1. Real J-Fractions jrJ(z). 

Let z E C - R be given. The family .T J(z) of  real J-fractions is defined by 

. r  J(z) : =  ~ ( f~ ,  W )  
1 - c q  2 - a 2  2 

= F "  F -  f l l + ~ Z + f 2 + z + f 3 + z + . . . ,  (3.85) 

O C aj e R ,  3j E R, j >_ I] , 

where f~ = {f~j} and W = {wj} = {0}, 

~-~1 : =  (1, [31 -l- Z : 31 E R] ,  0, 1) 

~2j : :  ( [ - a2  : 0 # a C R ] , [ 3 + z  : 3 C R],0, 1), 

The generating sequence {t~(w)} for F ~ .T J(z) is given by 

1 
ZFO (713) : =  W, t f  (w) .-- 1~ 1 -t- Z Jr- W' 

(3.87) 2 
--OLj--1 j = 2, 3,4, . . . .  

t~'(~)  . -  ~j + z + ~ '  

(3.86a) 

j = 2, 3, 4, . . . .  (3.86b) 
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THEOREM 3.7. Let z E C - R be given and let jrJ(z) denote the family of real 
J-fractions (3.85). Then: 

(A) The best sequence of value regions {Un(YrJ(z)) }noo=0 with respect to fJ(z)  
is given by 

Uo(~ "a(z)) = u E C" ~ - 2IImz----~' u # , (3.88a) 

H : = [ u c C "  I m u > 0 ] , i f z E H  +, 
Un(~ J ( z ) ) = V ( z ) : - -  H -  : = [ u E C "  I m u < 0 ] , i f z ~ H - ,  (3.88b) 

n = 1,2,3, . . . .  

(B) If  F = F(z)  E yrg(z) converges to a finite value v(F) and if n is a 
positive integer, then the best truncation error bound flu(F, UJ(z)) for vn( F) with 
respect to y:g(z) is given by 

Ih,~(F(z))l ]v,~(F(z)) - v,~-l(F(z))l. (3.89) 
13,~(F, .YJ(z)) = 1i m h(F(z))l 

Proof. (A) follows directly from the definition of {Un(fJ(z))} in (2.1) (see also 
Theorem 9 in [37]). 

(B): We show that condition (b) of Theorem 2.5 holds and then apply Theorem 
3.6. From (3.88) it is clear that 

wm :=  0 E c(Um(5~J(z)), for m = 0, 1,2, . . . .  

Let k be a given positive integer. We then define {Gj}, for j > 1, by 

1 -o~2(r) 2 --OLn+k- 1 (F) 
Gj 

: - / ~ l ( F )  + z-}-132(F) + Z + "  "+ fln+k(g) + Z + (3.90) 
- 1  - 1  - 1  - 1  

j + z +  z + z + z + . . .  

The periodic CF 

- 1  - 1  - 1  
H : -  

z + z + z + . . .  

converges to a finite value v(H) satisfying 

v(H) 2Imz  1 i _< 21Im z-------T 

It follows that each Gj converges to a value v ( G j) 6 C and I z +v  (H) ] > jim z] > 0. 
Hence 

--1 [ 1 1 
Iv(G~+t:)l = j + z + v ( n ) ,  <- j - I z  + v ( n ) [  < j - I I m z l '  

for sufficiently large j .  
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Therefore limj__.~ v(G~ n+k)) = 0 = w,~ for all m _> !, and so condition (b) 
of Theorem 2.5 holds. Next we show that T,~(F, U~(A'J(~))) = T~(F, V(z)) is 
bounded. By (2.2) 

Tn(F~ V(z))  = Tn_I(F, tFn(V(z))) C_ Tn_I(F~V(z)) C_.., 

C_ TI(F, V(z)) C_ Uo(FJ(Z)). 

From (3.88a), U0( .~  J(z)) is a bounded set. By (3.84) and (2.56) we obtain 

1 1 

h ~ ( F )  - ~ , ~  - z - V ( z )  

and hence 

1 [o 1]  
-hn(F------~ �9 ~ w �9 C" < 21imz----- ~ . 

It follows from this and (3.81) that (3.89) holds. Q.E.D.  

3.3.2. Stieltjes Fractions 5 rSt(z). 

Let z E S~ := [u E C �9 0 < I arg u I < 7r] be given�9 We define the family jeSt(z) of 
Stieltjes Fractions by 

. r  st(~)) := $'(~, W) = IF(z) �9 F ( z )  = K ( - ~ ) ,  

a j > 0 ,  j > _ l ] ,  
(3.93a) 

where 

= { J} j :o ,  w = {wj};r = {o}, (3.93b) 

f2o := (0, 1, 1, 0), 

~j:=([ajz" a j > 0 ] , l , 0 , 1 ) ,  j = 1 , 2 , 3 ,  . . . .  
(3.93c) 

The generating sequence {tF(w)} for F ---- F(z) = K(ajz /1)  E F St(z) is given 
by 

a A F ) z  tFo(W) : = w ,  tf(w) := 1 + w '  j = 1 ,2 ,3 ,  . . . .  (3.94) 

THEOREM 3.8. Let yrst(z) be the family of Stieltjes fractions (3.93) for a given 
z C S~. Then: 
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(A) The best sequence of value regions {U,~(~'st(~))}~_ o with respect to 
3 cst(z) is given, for m >_ O, by 

um(~ "st(z)) = U(z):= / 
[uEC:  0<argu<argz] ,  

/f0 < argz <Tr, 
[ u ~ C :  argz_<argu<0], 

i f - rr  < arg z < O, 
[u E C : arg u = 0], 

/farg z =0. 

(3.95) 

(B) [_etF = F(z)  := K(ajz /1 )  E ~-st(z) convergetoafinitevaluev(F) and 
let n be a given positive integer. Then the best truncation error bound 13n ( F, 5 rSt( z) ) 
for vn(F) with respect to )rst(z) is given by 

13,~(F, 5V St(~)) = Kr,(F(z))Iv,,(F(z)) - v,~-I(F(z))], (3.96a) 

where Kn( F(z)  ) is defined as follows: 
Case(a) (0 < l argzl < 7r/2) 

K n ( F ( z ) )  = 1, ifO < l argzl < ~ (3.96b) 

Case (b) Suppose that 7r/2 < I arg z I < 7r. 
(b l )  

K , ~ ( F ( z ) ) -  It~(F)I ifO < targ (~---~)I < ~. (3.96c) 
/im (h~(F)) I ' 

(52) 

(3.96d) 

(b3) 
1 (3.96e) 

where 

/ 3 : - 2 7 r - l a r g z  l -  arg(  1 h,~(F)) (3.96f) 

Proof. (A): Suppose 0 < argz < 7r. Let {Vj} be defined by (see (3.95)) 

V j : = V : = V ( z ) : = [ u E C -  0 < a r g u < a r g z ] ,  j = 0 , 1 , 2 ,  . . . .  

Let 

H I : = [ u E C "  Imu>0] ,  / / 2 : = [ u E C "  argz--Tr<argu_<argz], 
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so that V = H1 f-1//2. It follows that 

t~(H1) C_ H2 and t~(H2) C_ HI 

forall G �9 Srst(z), j = 1 , 2 , 3 , . . . ,  

t ~ ( V ) = t ~ ( U l ) n t ~ ( H 2 )  C H I A  H2 = V, 

and 
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t~(O) = aj(G)z �9 V, j = 1,2,3,  . . . .  

j = 0, 1 , 3 , . . . ,  

a2 > 01 = [to G o t~  o t~(O) �9 G �9 9rSt(z)]. 

Therefore V = V~ = Uj(.Tst(z)), j = 0, 1, 2, . . . .  A similar argument holds for 
-Tr < arg z < 0 and for arg z = 0. This proves (A). 

(B) To apply Theorem 3.6, we verify that condition (b) of Theorem 2.5 holds. 
Let k be a given positive integer. Let {Gj }~=1 be defined by 

al(F)z az(F)z an+k(F)z ( 1 / j ) z  z Z z 

Gj . -  1 + 1 + . - . +  1 + 1 + 1 + 1 + 1 + . . .  

It follows that 

Gj e $',~+k(F) for j > 1 and w,~+k = 0 = lim v(G~'~+k)). j---,~ 

Moreover, since w m =  0 E c(Um(.TSt(z))) for m _> n + 1, condition (b) of 
Theorem 2.5 holds. We also note that T,~(F, U(z)) is a bounded set, since 

Tn(F, U(z)) C__ Tn- I (F ,  U(z)) C . . .  C TI(F, U(z)) = tFI (U(z)), 

and the set tF1 (U(z)) is the intersection of a circular disk and a half-plane, provided 

0 <  I argz[ < l r .  
If arg z = 0, then z > 0 and 

tF(U(z)) = [ -alZ " 0 < ?s < 0(3] 7---[X e R +" 0 < x < alz] 
L l + u  

is bounded. Therefore by Theorem 3.6,/3,~ (F, F st(~) ) is given by (3.81). It remains 
to find estimates for 

i n f [ ( h s  ) 1) " uEU(z ) ]  " 

alz 
- -  �9 a l  > O, V = 1 + a2z 

�9 O O  " We have shown that {Vj }j=o is a sequence of value regions with respect to y-st(z). 
By an elementary geometrical argument one can show that 
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By (3.84) 

an Z an - -  1Z a2 Z 
h~(F)  = 1 + - -  

1 + 1 - 5 - . - + 1  

It follows from this and t~(U(z)) C U(z ) fo r j  >_ 1 and G E F at(z), that 

- 1  - 1  
I~(F)  E l + U(z) and so c 

h~(F)  1 + U ( z )  

We consider cases for which 0 < arg z < 7r. (Similar arguments hold for - r  < 
arg z < 0 and arg z = 0 and hence they are omitted.) One can readily show that 

1 
U(z) - [ u c C "  a r g z < a r g u < O ]  

and that - 1 / ( 1  + U(z)) is a region in C bounded by the interval - 1  < u < 0 and 
by the circular arc passing through - 1  and O, tangent at u = - 1  to the line with 
angle of inclination equal to arg z. 

Case (a) If 0 < arg z < 7r/2, then 

- 1  1 

Ih~(F)l 
and hence (3.96b) follows from (3.81). 

Case (b) Suppose that 7r/2 < arg z < 7r. 
(bl) IfO < larg (-1/h,~(F)) I _< 7r/2, then 

- 1  - 1  
inf [ ( h r , ( F ) ) - 1  " u E  U ( z ) ] =  Im ( ~ - - - - - - ~ ) l - ] I m h n ( F ) l  

i h ~ ( F )  l 2 " 

Hence (3.96c) follows from (3.81). 
(b2) IfTr/2 < targ ( - 1 / h ~ ( F ) ) l  < (37r/2) - argz, then 

- 1  i n f [ ( _ _ _ ~ ) _ l ,  u E U ( z ) l  - 1 
Ih~((F)l' 

and so (3.96d) follows from (3.81). 
(b3) If (37r/2) - argz < arg (= - 1 / h ~ ( F ) )  < 7r, then 

i n f I ( - ~ @ F )  ) 11 ] sin [27r - arg z - arg (h~-----~) ] 
- u " u ~ U ( z )  - -  I h ~ ( F ) l  

and hence (3.96e) follows from (3.81). For the computations used to obtain bE and 
b3, we have used the fact that the ray arg u ---- (37r/2) - arg z is perpendicular to 
the line passing through the ray argu = - arg z. Q.E.D.  

We state without proof the following useful result originally given by Hendci 
and Pfluger [21] (see also Theorem 4.4 in [39]). 
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THEOREM 3.9. ([21]; [39, Theorem 4.4])IfF(z) - K ( a j z / 1 ) ,  aj > O, j >_ 1 is 
an S-fraction converging to a finite value v( F(  z) ), then, for n >_ 2, 

Ivn(F(z ) )  - v n - , ( F ( z ) ) l ,  

Iv(F(z)) - vn(F(z))l < csc_l fargzf/f( 
_< 7t"/2, 

- a r g z l ) l v n ( F ( z ) ) -  Vn-l(F(z))l, 
ifTr/2 < [ arg zl < ft. 

3.3.3. Adjusted Stieltjes Fractions .~ASt(z). 

Let z E C be given with IArg zl < rr/2. We define 

ff~ZSt(z) :~_~_ ( ~ ,  {0}n=l),~176 

where 

(3.97) 

O~ 
= (~n}n=l := {(1, [U E C" argu ~ argz],0, 1) }n=l. ~ (3.98) 

Then 

[ ( 1 )  0 ] yraSt(z)= ~ ~jZ . bj > (3.99) 
i= l  

is called the family of Adjusted StieIUesfractions. 

THEOREM 3.10. Let U Ast(z) be the family of LFaSs defined by (3.97)-(3.99). 
Then 

(A) The best sequence of value regions {Uj(.~ Ast(z)) }~--o with respect to 
U Ast(z) satisfies 

e(Uj(fAS (z))) :=  (3.100) 
-- V :-- [u e C" 0 < IArgul __ IArgzl], 

j =0 ,1 ,2 ,  . . . .  

(B) l f F  = F(z)  ~ fASt(z) converges to a finite value v(F(z))  E C and i fn 
is a positive integer, then the best truncation error bound for vn( F ( z) ) with respect 
to fASt(z) is given by 

f i n (F ,  f A S t ( z ) )  = Kn(F(z))[vn(F) - Vn--1 ( F ) ] ,  (3.101a) 

where 

1, iflargzl < arg --1 ) 7r - -  (~-----~ 2'  

/f[arg ( h - - ~ )  -- ~ < [argz[. 

A proof of this theorem can be given that is very similar to that of Theorem 3.8 
and hence it is omitted. 
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3.3.4. Positive T-Fractions: fT(z).  

Let z ~ S~ :=  [u E C : 0 _< [ arg zl < 7r] be given. We define 

0 ~ ~:~(=) := ~(~, { }~_-o), (3.1o2) 

where 

f2 = {ftn}r~=l, f2n :=  ([Fnz" Fn > 0], [l+Gnz" Gn > 0],0, 1,)(3.103) 

for n = 1, 2, 3 , . . . .  Then 

Flz F2z 
f - T ( z )  _= F " F - -  1 q- G l Z  q- 1 + GzZ +." " 

(3.104) 3 
Fn, Gn > 0, n = 1 , 2 , 3 , . . . J  

is called the family of  Positive T-fractions. 

T H E O R E M  3.11. Let fT(=)  be the family of  LFASs defined by (3.102)-(3.104). 
Then: 

(A) The best sequence of value regions {U,~(C -T(=)) }~---o with respect to fF(=) 
satisfies 

[u �9 0 < a rgu  < a rgz ] / f a rg  z > 0, 
Un(2 ~T(z)) :=  U ( f  T(z)) :=  [u" a rgz  < a rgu  < 0] ifargz < 0, (3.105) 

[u" a rgu  = 0], ifargz = O. 

(B) l f  F(z)  ~ fT(~) converges to a finite value v(F(z))  ~ C and if n is a 
positive integer, then the best truncation error bound for v,z( F(  z) ) with respect to 
~ ( z )  is gfi~en by 

M~(f, .F ~(~)) = K~(F(z))Iv~(F) - v~_~ (F)  I, 

where K,~( F(z)  ) is defined as follows: 
Case (a) (0 _< l argzl _< 7r/2) 

K~(F(z))  := I, i f 0 < l a r g z  l <  ~r 

Case (b) Suppose that 7r/2 < I arg z[ < 7r. 
(bl) 

t o(z i 
K ~ ( F ( z ) )  . -  IIm hn(F)l' 

(b2) 

(3.106a) 

(3.1o6o) 

(3.106e) -<5 .  

arg z I . (3.106d) 
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(b3) 

Kn(F(z)) := [cscfl[, if 3~r 2 - l a r g z [  < arg (~--~F))[, (3.106e) 

where 

-1  

Proof. (A): Suppose 0 < arg z < ~r. Let {Vn} denote the (constant) sequence 
of  sets 

V n : = V : = [ u "  0 < a r g u < a r g z ] ,  n = 0 , 1 , 2 ,  . . . .  

Suppose F(z) ~ :F T(z). Then 

= 

I + G l z + V  

for some F,z > 0. Let 

H1 := [u" Im u > 0] and //2 :=  [u" arg z - 7r < arg u < arg z]. 

One can show that 

tF(z)(H1) C HI and tgn(z)(H2) C_ HE. 

It follows that 

tg(z)(V) = t~(Z)(H1 r] H2) = TF(~)(H,) ~] TF(~)(H2) C H, N H2 = V. 

Furthermore, every point in V can be expressed as FlZ/(1 + Glz) for some 
F1, G~ > 0. Therefore V C_ c(U,~(fT(z)) and by (2.4) U,~(f'T(z)) C V. A similar 
argument holds when -Tr < arg z < 0. 

�9 O O  (B) Let k > 1 be given. Define {Gs}j= 1 by 

F1Z g2z gn+kg Z 
Gj . -1  +Glz  + 1 +G2z +. . .  + 1 +G~+kz + ( l / j )  + z + 

Z Z z 

l + z + l + z + l + z + . . .  

An argument analogous to one in the proof of Theorem 3.7 shows {Gj }~=1 satisfies 
the hypothesis of Theorem 2.5. By (3.84) 

F~ z F2 z 
h n ( F ( z ) ) = l + G n z +  I + G n - l Z + . . . + I + G l z '  n = 2 , 3 , 4 ,  . . . .  
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By (2.5b), (Fnz)/(1 + Gn-lZ + U(.T'T(z))) C_ U(.~T(z)), whenever Fn, Gn-1 > 0 
and thus hn(F(z)) E 1 + Gnz + U(.F T(z)) and hence 

- 1  1 
E 

- 1  - Gnz - U(.~(z))" 

The remainder of our proof is similar to that given for Theorem 3.8(B) and hence 
is omitted. Q . E . D .  

We conclude this section by stating the following result. Jefferson [30] gave this 
result for the special case with Gn = 1, n > 1. The general form given here was 
proved by Gragg [18]. 

THEOREM 3.12. Ira positive T-fraction 

( F, z ) _  &z F2z F3z 
F =  K 1-+--G,~zJ l + G l z + l + G 2 z + l + G 3 z + . . . '  

r~=l  

Fn, Gn > 0 

converges to a finite value v( F), then for n >_ 2, 

Iv(F) - v~(F)l  ~ K~(F(z))lv,~(F) - v~-~(F)l ,  

where 

1, ifO < l argzl <- rc/2, 
= icscCargz)t, ifrr/2 < largzl < 

4. Best Truncation Error Bounds for Limit k-Periodic MCFs 

Many modified continued fraction (MCF) expansions of special functions have the 
form 

K (aJ(z),bi(z),wJ(z)), 
j = l  

where the elements a i (z), b i (z) and converging factors wj (z) are complex-valued 
functions of a complex variable z. The MCF is called periodic with period k if 
a~k+m(Z) = a,~(z), b~k+,~(z) = b,~(z), w~k+,~(z) = w~(z)  for m _> 1 and 
r > 0. The MCF is called limit k-periodic if, for m = 1, 2, 3, . . . .  

lim ark+re(Z) = am(Z), lim brk+m(Z) = ~3re(Z) 
?t, --.-.~ ~ 7"--'~ 0 0  

and 

lim w~k+~(z) = w.~(z). 
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An MCF is called limit periodic if it is limit 1-periodic. Section 4.1 deals with limit 
periodic MCFs 

K (aj(z), 1, wj(z)), where lim aj(z) = a(z),  lim wj(z) = ~(z),  
j = l  j----~OO j - - - ~  

where a(z) E C - ( - c ~ , - 1 / 4 ]  in Section 4.1.1 and a(z) = cxD in Section 4.1.2. 
Section 4.2 deals with MCFs 

K (1, bj(z), wj(z)),  
j = l  

where limj._,o~ bj(z) = cx~ in Section 4.2.1 and where the MCF is limit 4-periodic 
in Section 4.2.2. 

4.1. LIMIT  P E R I O D I C  CFS K(aj /1)  AND MCFS K(aj, 1,wj) 

Our interest in this section is in best truncation error bounds for continued fractions 
(CFs) 

oo ( ~ )  al a2 a3 (4.1) 
K - -  1 + 1 + 1 + . . .  

j = l  

and modified continued fractions (MCFs) K(aj ,  1, wj) whose elements aj satisfy 
a limit-periodic condition of  the form 

lim aj = a E C = C U [c~]. (4.2) 
j---+OO 

Most of the results in this section apply to the case in which 

lim aj = a E C - ( - ~ , - 1 / 4 ] .  (4.3) 
j--*c~ 

By using the parabola theorem of  [53] one can readily prove: 

THEOREM 4.1. I f  the elements aj of a CF F = K(aj /1)  satisfy (4.3), then F 
converges to a value 

v(F) = lim vn(F) E ~2 = C t2 [cx~]. (4.4) 
n----~oo 

If a number a satisfies (4.3), then the fixed points X l and x2 of the transformation 

a (4.5) t(w) - 1 + w 

are given by 

t 1 1 V/a 1 1 X l =  a + ~ - ~ ,  x 2 = -  + ~ - ~ ,  (Re v / - -  > 0) , (4.6a) 
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and they satisfy 

IXl[ <~ IX2[, X2 = --(Xl + 1), a = --XlX2. (4.6b) 

The periodic CF K(a/1)  converges to the attractive fixed point 

= v(K(a/1)) ,  where K ( a ~  a a a Xl (4.7) 
\ 1 ]  l + l + l + - . -  

(see, e.g., [37], Theorem 3.2). If  F = K(a f f l )  is a limit-periodic CF satisfying 
(4.3), then for the nth tail F('~) of  F ,  we have 

lim v(F  ('~)) = v(K(a/1))  = v(F) = Xl. (4.8) 

(see, e.g., [3"]], pp. 113-114). With F = K( a f f l )  and {T~(F,w)} defined by 
(1.1e) and with generating sequence { t~(w)}  given by 

as fo(W) := w, t~(w) := 1 + w '  j = 1 , 2 , 3 , . . . ,  (4.9) 

we obtain (see (1.38)) 

v(F) = Tn(F,v(F(n))), n = 1,2,3,  . . . .  (4.10) 

Equations (4.8) and (4.10) provide motivation for considering MCFs K (a j, 1, w s) 
with converging factors 

wj = xl = v(K(a/1)) ,  j = 1,2,3,  . . . .  (4.11) 

THEOREM 4.2. (Lemma 2.1 in [5]). If the elements a s o f f  = K(aj /1)  satisfy 
(4.3), then the critical tail sequence { - / ~ ( F ) }  (see (1.42)) satisfies 

l im ( - h ~ ( F ) )  = Xl i fv(F) = oo (4.12a) 

and 

l im ( - h ~ ( F ) )  = x2 = - ( x l  + 1), i fv(F)  6 C. (4.12b) 
gg---+OO 

We now consider families .T" = .T(~2, W) of LFASs defined in the following: 

4.1.1. K(aj,  1, xl), a s -+ a E C - ( - o o , - 1 / 4 ] .  

Let a, 1r k {as}j= 1 and {PJ}s=tr satisfy 

a c C - ( - o o , - 1 / 4 ] ,  0 _ < k E Z ,  
O y~ a s c C, j = l , 2 , . . . , k ,  (4.13a) 
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0 < pj < Ix21, f o r j = k , k + l , k + 2 , . . . ,  (4.13b) 

pjpj-l<pj-llXZl-pj]Xll, f o r j = k + l , k + 2 ,  k + 3 , . . . ,  (4.13c) 

where xl and x2 are defined by (4.6a). Let f~ = {f2j} and W = {wj} be defined 
by 

f~o := [(0, 1, 1,0)], (4.14a) 

Qj := (Ej, I ,0,1)  and wj =Xl ,  j = 1 ,2 ,3 , . . . ,  (4.14b) 

where 

[aj], j = l , 2 , . . . , k ,  
Ej  := [u e C" lu(1 + ~1) - x~(Ix212 - P~)I + Pjlul 

< pj_l(lX2[2 _ p2)], j > k + 1. 

We define a family 5 r := f(f~,  W) of LFASs by 

a k t o  ~c" := .~"(~, W) :~- .~'(a, 1, ]~, { J}l ,  { P J } k  ) 
:= [F = K(aj, 1, X l )  : {aj} satisfies (4.3) and 

OCa:iEE:i, j___l]. 

Condition (4.13c) implies that 

a 
a E E ~  and hence X l -  

l + x l  
- - E U j ( . )  r) f o r j _ > k + l .  

(4.14e) 

(4.15) 

If a ~ 0, the element set Ej, for j > k + 1, in (4.14c) is a closed, bounded, 
convex subset of C with an axis of symmetry given by the line passing through the 
ray argu = arga. The boundary OEj of Ej  (for j > k + 1) is called a Cartesian 
oval. 

If a = 0, then xl = 0, xz = - 1  and Ej  (for j > k + 1) in (4.14c) reduces to 
the circular region 

E j - - [ u ~ C :  lul___pj_l(1-pj)] ,  j _ _ > k + l .  (4.16) 

A sequence of value regions {Vn} with respect to ~'(f2, W) is given by 

[uec" lu-zll<p~], n = k , k + l , k + 2 , . . . ,  
V?~ : z  an+l -- (4.17) l+(v.+lu[zl]), n = k - l , k - 2 , . . . , 1 , O .  

For n > k, the value-region-defining conditions (2.5) can be verified by using the 
VWf~-method described in Section 3.1. For 0 < n < k -  1, conditions (2.5) follow 
directly from (4.17). The following result was proven in [5], Theorems 2.2 and 2.4. 
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THEOREM 4.3. Let ~ = f ( f ~ ,  W)  be a family of  LFASs of  the form (4.15) and 
let F = K ( a j ,  1, Xl) E ~" be given. Then: 

(A) F = K ( a j ,  1, Xl) and K ( a j / 1 )  converge to the same value v(F)  E C = 
c u [ ~ ] .  

(B) I f  there exists an integer ko > k such that 

[hko(F) + xl] > Pko, (4.18) 

then 

I h n ( F ) + X l l  > Pn, n = ko + l , k o  + 2, ko + 3, . .  . ,  (4.19) 

and F = K(a j ,  1, Xl) and K ( a j / 1 )  converge to the same finite value v(F)  E C. 
(C) Ifl imj+o~ pj = 0 and K ( a j / 1 )  converges to a finite value f ,  then there 

exists an integer ko >_ k such that (4.18) holds. Hence f = v(F)  E C. 

The results in our next theorem were proven in [5], Theorems 3.1 and 4.1. 

THEOREM 4.4. Let .T = j z (~ ,  W)  = Jr(a, 1,k,  {aj}kl, {pj}~) be a family of  
LFASs (4.15) and let F = K(a j ,  1, x l )  E ~ be given. Then: 

(A) I f  there exists an integer ko >_ k such that 

Ihko(F)+x,I > pko (i.e. ,-hko(F) ~ Vko), 

then F converges to a finite value v( F)  E C and, for  all n >>_ ko + 1, 

Iv(F) - v=(F)l 

(4.20) 

< Pn I-Ijn=l laj(F) l 
- I B ~ - I ( F ) I 2 I h ~ ( F )  + Xll(I/~(F) + xil- p~) (4.21) 

p~lh~(g)l 
Ih~(F) + Xll(lh~(F) +Xl l  - ,9,) 

�9 Ivn(F) - v~_,(F)l.  

(B) I f K ( a j / 1 )  converges to afinite value v ( K ( a j / 1 ) )  and/flimj__,~ pj = 0, 
then there exists an integer ko > k such that (4.20) holds and hence (4.21) holds 
f o r n  >_ ko + l: 

(C) Let { pj } satisfy the following additional conditions for  all j > k + 1: 
(a) I f a  E C - ( -oo ,  0] and a := arg a, then 

and 

pj--llX21- DjIXl] • ~COS(C~/2) ,  (4.22a) 

pj-1 < ~ cos + Re (x le  -i~'12) = Re + e -i'~/2 . (4.22b) 
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(b) I f - � 8 8  < a < O, then 

1 / 1 1 
(P j - -1  -[- I x l l ) ( l x 2 l  - pj) <_ -~ and Pj--1 ~-- V a  -[- -~ ~-- 231 if- ~.  (4.23) 

I f  there exists an integer ko >_ k such that (4.20) holds, then the truncation error 
bound in (4.21) is the best bound f~,~(F, 9 c') for  vn(F) with respect to Jr for  n > 
ko+  1. 

Proof. (A): We make use of  Theorem 2.6 with W m =  Xl. Condition (4.20) 
implies that -hko(F)  q~ Vko. Therefore since Tko(F, -hko(F))  = co, the set 
Tko (F, V1r is a closed, bounded circular disk. Hence the nestedness of the sequence 

V~ {Tn(F, ~)}~ implies that Tn(F, V~) is a closed, bounded disk for all n _ ko. 
By Theorem 4.1, F converges to a finite value v(F) .  Assertion (4.21) is then an 
immediate consequence of Theorem 2.6(A). 

( B ) :  If  K ( a j / 1 )  converges to a finite value v ( K ( a j / 1 ) ) ,  it follows from Lemma 
4.2 that 

l im hn (F )  = - x 2  = X l  -~- 1. 
n - - - - > ~  

Thus if l imj_ ,~  pj = 0, there exists an integer k0 _> k such that (4.20) holds, and 
hence by (A), (4.21) holds for n _>/co + 1. 

(C): It was shown in [4], Theorem 3.1. that, subject to the additional conditions 
(4.22) and/or (4.23), 

- -  : - -  [u e c "  lul ___ n - -  k ,  k + 1, k q- 2, . . . .  (4.24) 

Now suppose a ~ O. Then a E E~ for all n > ko + 1 and so 
a 

- -  E Ur~(gr), for n = k0 + 1, ko + 2, k0 + 3, . . . .  (4.25) 
xl  - 1 § Xl 

Hence assertion (C) follows from Theorem 2.6(B) since (4.25) implies condition 
(a) of Theorem 2.5. On the other hand, i f  a = O, then assertion (C) follows from 
Theorem 2.6(B), since condition (b) of Theorem 2.5 holds. Q . E . D .  

REMARK.  If  Vn satisfies (4.24) for n _> k, then the V~ defined by (4.17), for 
0 ___ n < k - 1, also satisfies 

Vn -- e(Un(Jz)), 0 _< n _< k - 1. (4.26) 

We state as a corollary of Theorem 4.4 the result obtained when the parameter 
a -- 0 and the element sets Ej  are circular disks given by (4.16). 

THEOREM 4.5. Let 5 r = 9r(f2, W) = .T'(0, 1,k, {aj}kl, {p j}~)  be a family of  
O0 LFASs (4.15), with a = O. Let F = K(a j ,  1, O) E ~ be given. Let {PJ}j=k satisfy 

1 
O < pj < ~, j = k , k  + l , k  + 2, . . . .  (4.27) 
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Then: (A) If  there exists an integer ko >_ k such that 

[hko(F)l > p~,  (i.e. ,hko(F) r Vko), 

then F converges to a finite value v( F) E C and, for all n >_ 
truncation error bound for vn( F) with respect to .~ is given by 

= 
Pn I-Ijn--_l aj([?) 

IB,~_I(F)I21h~(F)[(Ih~(F)I- p~) 

P~ .Iv,~(F)_v,~_l(F)l. 
[h~(F)l - p~ 

(4.28) 

ko + 1, the best 

(4.29) 

(B) / f  K(aj /1)  converges to a finite value v (K(aj /1) )  = v(F) and if 
l i m j + ~  pj = 0, then there exists an integer ko >_ k such that (4.28) holds and 
hence (4.29) holds for all n > ko + 1. 

R E M A R K .  Corollary 4.1 is an improvement of  [3, Theorem 3.2]. 
Proof. It follows from a = xl = 0, x2 = - 1 and (4.27) that conditions (4.13b,c) 

and (4.23) hold. The corollary is therefore an immediate consequence of Theorem 
4.4. Q .E .D .  

4.1.2. CFs K(a j /1 )  and MCFs K(aj ,  1,wj)  with l i m j ~  aj = oo. 

We conclude this section by stating a result (Theorem 4.6) for CFs K ( a f f l )  and 
MCFs K(aj ,  1, wj) for which 

lim aj = oo. (4.30) 
j - - - ~  

A proof  of  this result can be found in [24] (see, also [23]). Use is made of the 
following terminology. 

1 ~ ~ ( 4 . 3 1 )  P~ := [u C C"  [u I - R e  (ue -i2a) <_ ~ cos 2 ol], for - g  < a < -~. 

Pa is a region bounded by a parabola OP,~ with focus at the origin u = 0, axis of 
symmetry along the ray argu  = 2a,  and OP~ passes through u = - 1 / 4 .  For a 
sequence {e~} and p satisfying 

e~EC, le.~-l]<[l+e~l, O < p < l l + e ~ l ,  
for all n = 1,2, 3 , . . . ,  (4.32a) 

we define E,~({ej}, p), for n _> 1, by 

E~({ej}, p) := [u ~ C "lu(1 + ~)  - ca_l([1 + eml 2 - p2)l-t- 
Plu[ <_ p(ll  + en[ 2 - p2)]. (4.32b) 

The boundary OE,~({ej }, p) is a Cartesian oval (see remark following (4. t5)). 
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THEOREM 4.6. Let a, p and R satisfy 

77 71" 
--~ < a < -~ and 0 < R < p c o s a .  (4.33) 

Let G = K(a j /1)  be a CF whose elements aj satisfy the conditions (4.30), 

aj �9 Pa, j = 1 , 2 , 3 , . . . ,  (4.34) 

and the limit points of {aj+l - aj } all lie in the disk 

D(a, p, R) := [u �9 C : [u - 2pZei~[ <_ 2R]. (4.35) 

Then: (A) G = K(aj /1)  converges to a value 

v(G) = lim v~(G) �9 C, = C U [oo]. (4.36) 
n----~ o o  

(B) Let F = K(aj ,  1, wj) be the MCF whose converging factors wj are given 
by 

w j : =  + 1 + ~ - ~ ,  j = 1 , 2 , 3 , . . . ,  

If  v(G) E C, then 

v(G) - v,z(F) 
l i m  v(a)  v~(G) = 0  

and hence v(G) = v(F) = l i m n ~  vn(F) E C 
(C) I f  v(G) E C and 

amCEm({Wj} ,p )  and p < ] l + w , ~ l ,  

(Re ~ > 0). (4.37) 

f o r m  = 1 ,2 ,3 , . . . ,  

then 

lajl 
Iv(F) - v~(F)l <__ 2p 1--[ (11 + wj[- p)Z, 

j = l  

(4.38) 

4 . 2 .  L IMIT  ]g -PERIOD CFS K(1/bj) AND MCFS K(1,bj;wj). 

In this section we consider best truncation error bounds for continued fractions 

~ ( 1  / 1 1 1 (4.40) 
S \ ~ 9 /  - b l T b 2 + b 3 + . . .  
j = l  

and modified continued fractions K(1,  bj; wj) whose elements bj satisfy a limit 
4-periodic condition l i m ~ o o  b,~ = oo or lim,~__,or b4,,+i =/3i where 1 < i < 4. 
The results in this section are restricted to the case in which I b,~] _> 2 for all 
sufficiently large n. This condition ensures that F = K(1/bj)  converges to v(F) 
in the extended complex plane (Theorem 4.35 in [37]). 

n =  1,2,3, . . . .  (4.39) 
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4.2.1. K(1/bj), bj --* ~ .  

Let k > 0 be a given non-negative integer; let k _ {bj}j= 1 be a given sequence of 
complex numbers; and let {p,~ }~-k be a sequence of positive numbers such that 

1 
lim P n = O  and P n + - - > _ 2 ,  

n----,~ Pn- 1 
for n = k + 1, k + 2, . . . .  (4.41) 

Let W := {0} and let f2 = {flj} be defined by 

f2 j := (1 ,E j ,0 ,1} ,  j = 1 , 2 , 3 , . . . ,  (4.42) 

where 

E j : =  1 
u e C "  [u[ > & +  j > _ k + l .  

(4.43) 

We define a family 9 r of LFASs by 

y- := T(f2, W ) : =  F(1, oo, k, {bj}~, {pj}~) 

:= [ F =  ~ (1,bj,O)" b j e E j  for j_> 1].  
j = l  

(4.44) 

We recall that K j =  l(1/bj) = K j =  1 (1, bj, 0). A sequence of value regions {V,} 
with respect to 3r(f~, W) is given by 

[u" ]ul<p~], n=k ,k+l ,k+2 , . . .  
gn :~--- 1 -- ' (4.45) 

bn+l+Vn+l n = k -  l , k - 2 , . . . , 1 , O .  

THEOREM 4.7. (Theorem 2.2 in [7]). l f  the elements bj o f F  = K(1/bj)  satisfy 
l i m n ~  bj = cx~, then for the critical tail sequence {h~(F)} we have 

lim h~(F) = 0 i fv(F)  = cx~ (4.46) 
Y/.----~O~ 

and 

lim hn(F) = oo i fv(F)  ~ c~. (4.47) 

The following result is subsequently used. 

THEOREM 4.8. (Theorem 3.1 in [7]). Let ~" = f(~2, W) be a family of LFASs of 
the form (4.44) and let F = K(1/bj)  e jr be given. Then: 
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(A) Ifthereexistsanintegerko >>_ ksuchthat [hk0(F)l > Pko, then 

I/~(F)I > p~, n = ko, ko q- 1 , . . . ,  (4.48) 

and 

K(1/bj) converges to a finite value v(F).  (4.49) 

(B) I fF  = K(1/bj)  convergestoafinitevaluev(F), then thereexistsako > k 
such that [hko(F)[ > Pko, and hence the assertions of(A) hold and v(F) E C. 

The following truncation error bounds were obtained in Theorems 3.2 and 4.2 
in [7]. 

THEOREM 4.9. Let 5 r =  (~'(f~, W)) = 3r(1, oo, k, {bj}~, {pj}~) be a family of 
LFASs (4.44) and let F = K(1/bj)  E f be given. Then 

(A) If there exists an integer ko >>_ k such that 

Ihko(F)l > Pko, (4.50) 

then F converges to a finite value v( F) E Cand, for all n >>_ ko + 1 

I v ( F )  - v ,~(F) l  _< 
Pn 

IBn_I(F)I211~(F)I(Ih~(F)t - p~) 

p n l v n ( F ) - V n - l ( F ) ]  

( I h ~ ( F ) l  - p,~) 

(4.51) 

(B) If K(1/bj)  converges to a finite value v(F), then there exists a ko >_ k 
such that Ihko(F)[ > Pko and hence (4.51) holdsforn > ko + 1. 

(C) If(4.50)holdsforsomeintegerko > k, then, forn  > ko+l, thetruncation 
error bound in (4.51) is the best bound/3r,(F, :F) for vn(F) with respect to 5 r. 

4.2.2. K(1, bj, wj), b4j+i ~ ~i as j --~ oo and w4nq-i = 1/fli+l, i = 0, 1,2, 3, 
and m >_ O. 

We now consider CFs K(1/bj)  and MCFs K(1, bj, wj) for wNch the elements bj 
are complex numbers that satisfy limit 4-periodic properties. 

Let k > 0 be a given non-negative integer; let {/3j} 4 satisfy 

f12 =f14 =OO, fl l ,~3 E [ u E C "  [U I > 2 ] ;  (4.52) 

and let {pj }~ be a sequence of positive numbers satisfying 

lim pj = 0, (4.53) j---+~ 
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and 

P4j+i < , for i = 0, 2 and 4j  + i _> k, (4.54) 

IZ d I/3il2paj+i-1 

2 - I1 + 1/3i1[94j+i_1 ~ p4j+i <_ 1 + ]flilP4j+i-l' 

f o r / =  1,3 and4 j  + i  > k. 
Let {Ej } be a sequence of subsets of C defined by 

(4.55) 

Ej:=[bj], j = 1 , 2 , . . . , k ,  

E4j+i := [b e C " b + ~@+l >- P4j+i + - -  

i = 0,2, 4 j §  
P4j +i - 1 

Zi 
E4j+i := b E C" 1 - -  (I/3i~4j+i_l) 2 <- --P4j+iq- 

Ir ] 
1 - - - ~ 1 )  2 ' 

i = 1,3, 4 j + i > _ k + l .  

Then [2 = {f~j} is defined by 

(4.56) 

(4.57) 

(4.58) 

f~j :=  (1, Ej ,  0,1), j = 1 , 2 , 3 ,  . . . .  

It follows from (4.57) and (4.58) that if 

(4.59) 

bj E Ej, j = k + l ,k  + 2,k + 3, . . . ,  

then 

(4.60) 

lim b4j+l ----- i l l ,  lim b4j+3 = f13, j - . ~  j--.oc 

lim b 4 j + 2  = l i m  b 4 j + 4  = (x). 
(4.61) 

We define a sequence of converging factors W = {wj}, for j = 0, 1,2, . . . .  by 

:= lim 1 f 0, / =  1,3, 
W4m+i - -  - -  1 / / 3 1 ,  i = 4 ,  

j~c~ b4j+i+l ~ 1//33, i -- 2. 

A family .~ of LFASs is then defined by 

j r  := jr(f2, W) :-- Jr( l ,  {/3jI4, k, {/3j}1 k, {pj}~)  

: - - [ F - - K ( 1 , b j , w j ) "  b j E E j  f o r j _ > l ] .  

(4.62) 

(4.63) 
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The generating sequence {rE(w)} for F E U is defined by 

1 
tFo(W) := w, t f (w)  : -  bj(F) + w '  j = 1,2,3, . . . .  (4.64) 

With {Tn(F, w)} defined by (1.1e) we have 

:= w,d, n = 1,2, 3 , . . .  (4.65) 

and 

v(F) := lim T~(F, w,~) = Tn(F, v(F(n))). (4.66) 

REMARKS. (1) Our choice of {wj } given by (4.62) is motivated by (1.38), (4.61) 
and 

lim v(F (4re+i)) lim 1 --: W 4 m T i ,  
m---*oo m---*oo b4m+i+l  (4.67) 

m>_0,  i = 0 , 1 , 2 , 3 .  

(2) Condition (4.54) ensures 0 ~ Vaj+i and hence Eaj+i+l r 0, for i = 0, 2 
and 4j  + i _> k. Condition (4.55) ensures that/3i E Eaj+i, for i = 1, 3, 4j  + i _> k, 
and that Ej  n [u C :  lul <2]  = ( ~ f o r j = k , k + l ,  .... 

(3) If K ( 1/b j) is a continued fraction satisfying (4.61) and I bj I ~ 2 for j _> k for 
some positive integer k, then there exists a sequence of positive numbers {pj }j~=o 
satisfying (4.53), (4.54) and (4.55) such that 

, b k K(1, bj, wj) e.F(1 {/3j}~,k,{ j} l ,{Pj}k ) 

where {Wj}?_ 1 is defined by (4.62). 

THEOREM 4.10 (Lemma 2.2 in [8]). If the elements bj o f F  = K(1/bj) satisfy 
(4.61), Ibjl > 2forj  >_ kforsomepositive integerk, andbj r Oforj = 1,2, 3, .... 
then the critical tail sequence {-hr , (F)}  satisfies 

0, i = 1,3 
lim h4n+i(F) = -1/133, i = 2 

,~---,oo -1//31, i = 4, 
i fv(F) = to (4.68) 

and 

lim h 4 n + i ( F )  ---- -~i ,  ifv(F) ~L cx). 
n......~ o o  

(4.69) 

We use the following result to obtain truncation error bounds. 
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THEOREM 4.11 (Theorem 3.2 in [81). Let jr = .~( f2, W) be a family of LFASs of 
the form (4.63) and let F = K(1,  bj; wj) E Y: be given. Then: 

(A) If there exists an integer ko > k such that 

hko(Y) + 
~ ( komod 4)+1 

> Pko (4.70) 

then 

h~(f) + 
8(nmod4)+l  

> pu fo rn  = ko, ko + 1 , . . . ,  (4.71) 

and K (1/bj ) and K(1,  bj, wj ) converge to the same finite value v( F) E C. 
(B) If  K (1/bj ) converges to a finite value f, then there exists a ko >_ k such 

that (4.70) holds. Hence f = v(F) E C. 

The following theorem was proven in Theorems 3.3 and 4.1 in [8]. 

b k oo THEOREM 4.12. Let.T" = (f'(f~, W)) = ~'(1, {/3/}4, k, { J}l, {PJ}k ) be a fam- 
ily of LFASs (4.63) and let F = K(1,  bj, wj) E ~ be given. Then: 

(A) If there exists an integer ko > k such that (4.70) holds, then K(1/bj) 
and F both converge to the same finite value v( F) ~ C and for n >_ ko 

Iv(F) - v,~(F) l Pn 
IB~-I(F)IZlw~ + h~(F)l(lw~ + h~(F)l - p=) 

p ~ l h ~ ( F ) l l v , , ( F )  - V n _ l ( F ) [  

Iw~ + h~(F)l(Iw~ + h~(F)l-  p~)" 

(4.72) 

(B) If K(1/bj)  converges to a finite value v(K(1/bj)), then there exists a 
ko >_ k such that (4.70) holds and hence (4.72) holds for n > ko. 

(C) If there exists an integer ko >_ k such that (4.70) holds, then the truncation 
error bound in (4.72) is the best bound fin(F, .T) for vn(F) with respect to .T for 
n>_ko. 

5. Asymptotically Best Truncation Error Bounds for LFASs 

An approach to truncation error estimates for limit periodic LFT algorithms, differ- 
ing from the one treated in detail in this article, was explored by one of the authors 
[59]. Earlier work pointing in the direction can be found in [63], [57] and [60]. An 
LFT algorithm is the special case of an LFAS (see (1. la)) where wj = 0, j > 1. 

One starts with formulas based on the invariance of the cross ratio under g.f.t. 
(see [56]), that is, 

( s ( ~ )  - s ( ~ )  "~ s ( ~ )  - S ( z ) ' ~  ~, - ~ ~ - z 
(5 .1 )  
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In (5.1) we replace S by Tn and set 

- -Z  : h n  : :  - T n l ( ~ ) .  (5.2) 

This leads to the simplification 

T ~ ( u ~ )  - T ~ ( w ~ )  \ u s  - w ~  

Making suitable substitutions for u,~, v~, w,~ one arrives at 

(5.3) 

(5.4) 

and 

Tk+l(O) - Tk(O) a l e + l ( a k - - c k h k )  (5 .5 )  

Tk(O) -- T k - l ( 0 )  - -  ak ak--+ll T bk+lhk " 

Here {Tn} is defined in terms of {t~(w)} as in (1.1b, c, d) except that we have 

dropped the F superscript. T (~') is defined as 

T(n)(w) = tn+l O . . .  o tn+m(W). 

Combining (5.4) and (5.5) one obtains 

T(n)(O)(an+l + bn+lhn)(aobl - boa1) 
Tn+m(O) -- Tn(O) : (T(n)(O) + hn)bobl 

k=l ak+l q- bk+lhk] " 

• 

(5.6) 

This formula is valid for general {Tn} provided the denominator of the right side 
of (5.6) does not vanish. 

The formula (5.6) becomes particularly useful for limit periodic LFT algorithms. 
From now on we shall restrict ourselves to such sequences {T,~}. 

Set 

a + cw (5.7) 
lira t,~(w) --: t (w) :-: b + dw'  

where we shall assume that 

a : =  lim a,~, b : =  lim b,~, c : =  lim c~, d : =  lim dn, (5.8) 

a, b, c, d E C. We exclude the cases where t(w) is the identity or parabolic or 
elliptic. Then, if t(w) is not singular, it has exactly two distinct fixed points xl and 
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xz.  If t (w)  is singular, we shall denote by x 2 its fixed point and by x 1 the point 
- a / b  for which t (w)  is not defined. We also shall assume that both xl and x2 are 
finite. Next, we introduce 

dxa +b 
r .-- dxz  + b (5.9) 

and choose the subscripts so that It[ < 1. This can be done since t (w)  is assumed 
not to be elliptic. 

It can be shown (the proof is quite intricate) that 

lim h~ = - x l ,  (5.10) 

provided tn(x2) r xz  for all n > no. It further is true that 

ak - ckhk 
lim = - r ,  (5.11) 

k~o .  ak+l + bk+lhk 

and that there exists a constant M such that 

Ts 
T(n)(O) + hn < M ,  (5.12) 

for all m > 0 and all n > no. 
In general we only know that such an M exists. However if  more information 

is available about the sequence {t~}, then an explicit bound on (5.12) may be 
obtainable. This is illustrated by our discussion of K(a,~/1) later in this section. 
The remaining quantifies in (5.6) can be easily calculated on the basis of  the available 
information. 

For any r ~ such that 

Irl < l / l  < 1 

and n > n2 > max(no, n l ) ,  the formula (5.6) can be recast into the inequality 

- T (O)I < K( r ' ) l r ' l  

In general limr,__.~ K ( r  ~) = oc; but if 

n = l  

where 

(5.13) 

/xn := max(la - a,,], [b - b,~l, te - e~l, Id - dn]), (5.14) 
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then the stronger statement 

[T~+m(O)-Tn(O)l < K ( r ) l r l  ~ (5.15) 

is valid. Here K(r)  < co. 
P 

For pure periodic sequences {T,~} the truncation error is known to be 

P Wl)  [ T,~ (0) - w21 = r'~ W2 (~n (0) - . (5.16) 
Wl 

It follows that the estimates (5.13) and (5.15) can be said to be asymptotically best. 
The formula 

f - T~(x2) f(~) - x2 h~ 
- -  ( 5 . 1 7 )  

f - Tn(O) f(n) hn ~- x2 

is an easy consequence of (5.3). Here we have set 

f := lim Tn(0), f ( n ) : =  mfimT(n+)m(O)" 
n - - . - ~ o o  

(5.17) was initially proved for K(an/1)  in [61]. Since f(n) _ x2 -~ O, it follows 
from (5.17) that {Tn(x2)} converges to f much faster than {Tn(0)} does. 

Further analysis shows that K ( r  I) depends on the behavior of {A,~}, while, 
clearly, r is completely determined by a, b, c, w in t(w). It can also be shown (the 
argument is delicate) that f(n) _ x2 is roughly proportional to An. 

If t(w) is singular, then r = 0 and it follows that the convergence of  {Tn(0)} 
is extremely fast. For K(an/1) ,  with an --~ 0, this was first observed in [3]. For 
Schur algorithms with % ~ e i~ see [57]. 

For the special case K(an/1) ,  which was analyzed in [63], (5.6) becomes 

S(n)(O)(an+t + hn) ( -a l )  ~-i ( ak ) . (5.18) 
Sn+ra(O) --  S n ( 0 )  = S (~ ) (0 )  ~- hn  k=l  ak+l + hk 

For r we obtain 

X l + l  
r - -  - -  - -  

x 2 +  1 

Using the fact that 

hk - 1 ak 

--X2 X2 

--Xl Xl 

ak-1 
hk ak-1 ak A- hk-1 

we can show that (5.18) is equivalent to (3.3) in [63]. 
If we assume that for all n > 1 and some 0, 0 < 0 < 1 

c P(c , o) -- [w" Iwl - Re we -i2a <_ (cos c~)2(1 - 02)/2] 

(5.19) 

(5.20) 
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where 2a  = arg(lim a,~), then we can conclude that 

Re (e-i~S(mn)(0)) _> ( c o s a ) ( 1 - 0 ) / 2 .  

269 

(5.21) 

Hence an explicit estimate for M in (5.12) can be obtained, since b~ can be com- 
puted from the given data. 

Using a mixture of  methods, which are brought together in [65 ], one can establish 
the following explicit results for K(an/1) :  

(A) If [am[ ~_ min(1/6, an-P) ,  a > O, p > O, m >_ n >_ nl,  then there exist 
constants K1 > 0, M1 > 0 such that for n > nl ,  k > 0 

[fn+k - fnl <- K1 

(B) I f l i m a n  = a c C - ( - 0 %  -1 /4 ] ,  then for every q satisfying 

- 1 +  14i--4-  

+1 + lv/'f--~-~ 
< q < l  

there exists a K2 : / ( 2 ( q ,  n2) > 0 such that for n _> n2, k > 0 

[fn+~'~ - fn[ < Kzq ~. 

(C) I fan  e P(a ,  O) (see (5.20)) for some 0 < 0 <__ 1 and an = O(n ~) for some 
/3, 0 < /3  _< 1, then there exist K3 > 0, M3 > 0, E3 > 0 and L 3 > 1 such that for 
n>_n3, k >O 

/;3 
a ~E-;-, 

- < 

M3 
Ln~-~ , 

f o r / 3 =  1, 

fo r0  < /3  < 1. 

(D) For the S-fraction K ( a n z / 1 )  with an > 0, ]arg z[ < 7r, let a,~ = O(n'~), 
0 < a _< 2. Then there exist constants K4 > 0, M4 > 0, E4 > 0 and L4 > 1 such 
that for n > n4, k > 0 

K4 f o r a  = 2 
nE4v'7 

If~+k(Z) -- In(z)[ < 
M4 (~:= 2 - - a  

L~ ~' 2 x / ~ '  
fo r0  < o~ < 2. 
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