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Abstract. To compute the value of a function f(2) in the complex domain by means of a converging
sequence of rational approximants { f»(z)} of a continued fraction and/or Padé table, it is essential
to have sharp estimates of the truncation error | f(2) — fn(2)|. This paper is an expository survey of
constructive methods for obtaining such truncation error bounds. For most cases dealt with, { £, (2)}
is the sequence of approximants of a continued fractoin, and each f,(2) is a (1-point or 2-point)
Padé approximant. To provide a common framework that applies to rational approximant f,, (z) that
may or may not be successive approximants of a continued fraction, we introduce linear fractional
approximant sequences (LFASs}). Truncation error bounds are included for a large number of classes
of LFASs, most of which contain representations of important functions and constants used in math-
ematics, statistics, engineering and the physical sciences. An extensive bibliography is given at the
end of the paper.
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1. Introduction

Many important functions f(2) of mathematical physics, chemistry, engineering,
and statistics are represented by convergent sequences { f,(z) } of rational functions
that are entries of a (1-point or multipoint) Padé table for f(z). In most cases of
practical interest { f,(2)} is the sequence of approximants of a continued fraction
(see, e.g., [11, [37], [45] and references contained therein). One reason for the
importance of Padé tables and related continued fractions is that sequences of
their approximants may converge in larger regions of the complex plane C than
the power series expansion, which may not converge at all. Also the algorithmic
character of continued fractions and Padé approximants provides efficient methods
for the computation of special functions.

To compute the value f(2) = limy .0 frn(2) atapoint z € C (using { f.(2)}), it
is essential to have realistic upper bounds for the truncation error | f(2) — f,(2)| that
results from replacing the true value f(z) by an approximant f,(z). Following the
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advent of high-speed computers, an extensive literature on truncation error analysis
for Padé and continued fraction approximants has developed. This paper is a survey
of constructive methods for obtaining such truncation error bounds. References to
a large number of the original research publications on this subject are contained
in the bibliography.

Three types of truncation error estimates are considered. A posteriori bounds for
the truncation error | f(2) — f,(2)| are determined after calculating the approximants
fo(2), f1(2), ..., fn(2z) and related expressions. A priori bounds are expressed in
terms of z and parameters defining f,,(2); they can be used to appraise the truncation
error at the start of the computations. A third type of error estimation describes
asymptotically the speed of convergence of { f,,(2) }. This paper contains examples
of all three types of error bounds. However, emphasis is given to a posteriori bounds,
since they generally give the sharpest error estimates.

In some cases dealt with in this paper the approximant sequence {fn(z)} is
not the sequence of approximants of a continued fraction (cf., sections 3.2.3 and
3.2.4). In order to treat all of the approximant sequences { f(z)} with a uniform
framework, we introduce linear fractional approximant sequences (LFASS). An
LFAS F is an ordered pair

F = (({{a;, b5, ¢5,dj) }, {wi}), {fn}), (1.1a)

where the elements a;, b;, c;,d; and converging factors w; are complex numbers
(possibly functions of a complex variable z) satisfying

a;d; —bjc; 0, 7=0,1,2,.... (1.1b)
The nth approximant f, = v,(F) of F is given by

fn = 0(F) == To(Fy,ws), n=0,1,2,3,..., (1.1¢)
where {T;,(F,w)} and the generating sequence {t5 (w)} are defined by

tF(w) = % i=0,1,2,...,  (1.1d)
and

To(F,w) = t§ (w),

(1.1e)
To(F,w) = T 1(FytE (w)), n=1,2,3,....

An LFAS F is said fo converge to a value v(F) € C = C U [o0), if its sequence
of approximants {v,(F)} converges to v(F); ie., v(F) = lim, e vn(F). TO
indicate explicitly the association with F of its elements and converging factors we
write a;(F), b;(F), ¢;(F), d;(F) and w;(F). For convenience we sometimes use
the abbreviated notation

Ti(F) :=(a(F), bj(F),c;(F),d;(F)), j=0,1,2,.... (1.2)
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The LFAS algorithm A(F') is the mapping of the ordered pair ({T';(F)}, {w;(F)})
0 {fn} = {vn(F)}. If F depends on a complex variable z, we may write F(z),
v(F(2)) and v, (F(2)).

To obtain upper bounds for the truncation error |v(F') — v,(F)|, it is useful
to work with special families F of LFASs that contain F. For that purpose we
consider sequences of element regions Q = {Q;} and converging factors W =

{wj;} satisfying

p#£Q;eC j=0,1,2,..., (1.3a)
where

T'j = {(aj,bj,¢5,d;) € Q; implies a;d; — bje; # 0, (1.3b)
and

w; €C, j=0,1,2,.... (1.3¢)

For each such pair of sequences (2, W), we define the family of LFASs

F=FQW):= [LFASSF : Fj(F) € Qj and wj(F) = Wj,
) (1.4)

j =0

For brevity we write F instead of F(Q2, W) if the dependence of F on (€, W) is

clearly understood. We also use subfamilies of F defined, for each F' € F and

n=20,1,2,3,...,by

FalF) =G € F: T4G) =T4(F), j=0,1,2,...,n]. (1.5)

If G € Fo(F), we say that G is n-equivalent to F, and we call F,,(F) the n-th
equivalence class of F' in F. For each f € F and integer n > 0, we define the n-th
limit region L, (F,F) for Fo.,(F) by

Ln(F, F) = c(Lo(F, F)) (c(S) denotes closure of S), (1.6a)

where

b(F,F):=[A€C: A= lim vn,(G)
J—oo (1.6b)
for G € F(F') and subsequence {m;}].

If I converges to a finite value v(F'), then L, (F, F) is not empty, since v(F) €
€n(F,F) C Ln(F,F). The concept of limit region was first used in the context
of truncation error analysis by L. Lorentzen, M. Overholt, W. J. Thron and H.
Waadeland (see, e.g., [48]). Our definition (1.6) differs from their’s in that we allow
£ (F, F) to contain finite limits of subsequences { Im;(G)} with G € F,(F) even
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if {vr(G)} diverges. For a given family F = F(, W) and for a finitely convergent
F € F, we define the best bound (3, (F, F) of the truncation error [v(F) — v, (F)|
for v, (F) with respect to F by

Bn(F,F) =sup[|A —v,(F)| : X € L,(F,F)]. (1.7)

Cleatly |v(F) — v (F)| < Bn(F, F), since v(F) € L, (F, F). The term “best” for
Bn(F, F)isbased on the fact that the values \ € £,,(F, F) are all possible candidates
for v(F), if we assume that our knowledge about F is limited to the following: (a)
F ¢ F, (b) F is finitely convergent, and (c) the only known elements of F' are
I';(F), j =0,1,2,...,n. One can readily see that a given LFAS F' can belong to

many families (¥, o € A. If F'is finitely convergent and F' € F 1) C F@, then
Bu(F, FO) < B, (F, F®). (1.8)

Thus an LFAS F may have different “best” error bounds 3, (F, F(®) corresponding
to different families F(®). It is therefore advantageous to use the smallest family F
that is feasible.

For a given LFAS F, the linear fractional transformations T,,( F', w) defined by
(1.1) can be expressed in the form

Ap +wChp
B, +wD,’
where the A, = An(F), B, = Bn(F), C, = Cp(F) and D,, = Dy (F) are
defined by the difference equations

a) Ay :=ap, bo:=by, Cop:=cy, Do:=dp
b) An ‘= a'nCn—l + bnA ~1, Cn = chn—l + d'n.An——l,

To(F,w) = n=0,1,2,..., (1.9)

n=123,..., (1.10)
¢) B, :=apDp1+buBn1, Dp:i=cyDp_i +dnBni,
n=1273....

They satisfy the determinant formulas

AnDyp — B,Cp = (—1)”’ H(ajdj - bjCj) # 0, n=0,12,... (1.11)
Jj=0

(see, e.g., [37], Section 2.2).
An LFAS F in (1.1) reduces to a continued fraction (CF)

o0 aq ai az as
F=ao+ Ll=g+— —= = , 1.12a
’ 212{1 (bf) P bbb ( )
if the elements a;, b;, ¢;, d; in (1.12) and converging factors w; satisfy

aeC, bo=1 co=1 do=0, (1.12b)
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a; #0, bjeC, ¢;=0, d;=1, j=12,3,..., (1.12¢)
and
w; =0, j=0,1,2,.... (1.12d)

The nth approximant of a CF (1.12) is then

a; a2 Qp,

F) = F,0) = — = —. 1.13

Un( ) Tn( O) a0+b1+b2+"'+bn ( )

An LFAS F in (1.1) reduces to a modified continued fraction (MCF)
F=a¢+ f% (aj,bj;wj) (1-14)

=1

if the elements satisfy (1.12 b,c). The n-th approximant of a MCF (1.14) is given
by

a a Qn— Qn,
U (F) = To(F,wp) =1 a0 + 2 -

- . 1.15
by +by+-- -+ b1 +bn+wn ( )

For CFs (1.12) and MCFs (1.14), the difference equations (1.10) reduce to

Ay =1, Ap:=a0, B-1:=0, By:=1,
An :bnAn_l +aznAn—2, n = 1,2, gee ey (1.16)
Bn = ann..] + a:an_Z, n = 1,2, 3, IR

Here C, = A,_ and D, = B, _1, n > 1. Throughout this paper, when referring
to CFs and MCFs, we make use of the familiar notation in (1.12) and (1.14),
respectively.

Special classes of LFASs that are dealt with here (Section 3), which are neither
CFs nor MCFs, are those associated with normalized Carathéodory functions (C-
Sfunctions)

C:=|[f: f isanalyticandRe f(2) > Ofor|2]| < 1, f(0) > O] (1.17)
and rnormalized Schur functions (S-functions)
S:=|[f: fisanalyticand | f(2)| < 1for [z]| < 1,-1 < f(0) < 1]. (1.18)

Associated with C-functions are the LFASs F' = C[{é;}z] with generating se-
quences {t5'(w)} of the form

5]' +w
1—}—5]‘10’

1—w
1+ w

&' (w) := 6o , tf(w);: z j=1,2,3,... (1.19a)
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where

>0 and 8§ e€C, 0<|& <1, j=1,2,3,..., (1.19b)
and with converging factors

wj =0, 7=0,1,2,.... (1.19¢)

Associated with S-functions are LFASs F' = S[{v;}, 2] with generating sequences
of the form

v+ zw
— o € R, o] < 1,
T+ 7w ol (1.20a)

’Yjeca I’Yj|<17 j:1a2737-"a

tF(w) =

and converging factors
w; =0, 7=0,1,2,.... (1.200)

Sequences of value regions V = {V},} corresponding to sequences of element
regions = {Q;} and converging factors W = {w,} are discussed in Section 2.
Methods for obtaining truncation error bounds based on sequences of value regions
{Vn} are developed (Theorems 2.5 and 2.6). For many special families F(2, W)
of LFASs, we are able to determine best truncation error bounds (,(F,F) by
using best sequences of value regions. Applications of the method are described
in Sections 3 and 4. In Section 3 the method is applied to the following 7 special
families of LFASs:

FVO = [K(a;/1) :0# |aj| < p(1~p), a;€C forj>1],

1 (1.21)
0<p=<y5, (Worpitzky)
FSP®) = [K(1/b;) : |bj| = p+1/p, b; €C forj > 1], (122)
0<p<1, (Sleszyfiski—Pringsheim) '
FSU2 .= [K(ajz/1) 1a; >0 forj>1, (1.23)
0#£z€C, |argz| <7], (Steltjes) '
FI@ = [K(F;2/(1 +G;2)) 1 F;,G; >0, 0#£z€C, (1.24)

largz| <, (Thron)

FI& = [K(-2/(Bj+2): —af =1, BieR;
0#a;€R, B;jeR forj>2;, (1.25)
Imz # 0], (real J-fractions)
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FPPO® = [C[{8;},2] : {tF'(w)} and w; in (1.19), |2] < 1],

(Carathéodory) (120
FRE) = [S[{v;}, 2]« {tF(w)} and w;in (120), |2 < 1], (1.27)
(Schur) '

In Section 4 the value region method is applied to the following 4 special families
of LFASs that are limit k-periodic CFs or MCFs:

K(a;,1,21), a;j —>a€C—(—o0,—1/4], asj— oo, (1.28a)
K(a;/1), a; —0, asj— oo, (1.28b)
K(aj, 1,w;), aj — o0, asj— oo, (1.29)
K(1/b5), bj —»o00, asj— oo, (1.30)
K(1,bj,w;), bais; — B, j=1,2,3,4, asi— oo. (1.31)

Section 5 deals with asymptotically best truncation error bounds for limit peri-
odic LFASs (including limit periodic MCFs). Due to constraints of space and time
we have had to omit some topics and results on the subject of this paper. Among the
omissions is a formal discussion about simple sequences developed in [35]. Some
examples of simple sequences are given in (3.18), (3.35) and Section 3.3. We have
also omitted applications of truncation error bounds to particular special functions
and results from computational experiments. Examples of such applications and
experiments can be found in many of the papers given in the references. Before
continuing with Section 2 we summarize some additional definitions and notation
that are subsequently used.

Form =0,1,2,...,the m-th tail of an LFAS F (see (1.1))is the LFAS, denoted
by F(™), with elements ag-m), bg.m), cgm), dgm) and converging factors wj(»m) defined
by

I = (™, 6™, ™, d™) = (amg b s Cmi s dmag)  (1.320)
and

W™ = . (1.32b)
We note that F© = F,

" w) = (w), m=0,1,2,... and j=0,1,2,..., (1.33a)
and

Tl (F(m)a ’LU) = tf?,—f—l(w)a
To(F™, w) = T ((FO,tE (w)), m=0,1,2,...,

m+n

(1.33b)
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It follows that, form = 0,1,2,...andn = 1,2,3,. ..,

Tn(F(m)a w) = t'rl;—;,—}—l © t7i+2 ©--+0 tfﬂ-n(w), (1.34)
T Fy w) = Ty (F, To(F™, w), (1.35)
U (F™) = Tp(F™, (™) = Ty (F™ w10), (1.36)
tn(F) = Tingn( T+) ) (L37)
= Tn(F, Tn(F™ , wmin) = Tm(F, 'Un(F(m))s
and
v(F) := lim va(F) = T(F,o(F™)), m=0,1,2,.... (1.38)

A sequence {7}, where m, € C, is called a tail sequence of an LFAS F' if, for
some 7 € C,

Tm =T F,T), m=0,12,.... (1.39)
An example of a tail sequence of a LFAS F' is given by

T = 0(F™), m=0,1,2,..., (1.40)
provided, of course, that the tails F(™ are convergent. The sequence {v(F (™}
is called the right (i.e., correct) tail sequence of F' since the 7 in (1.39) is given
by 7 = v(F) (see (1.38)). Another important tail sequence, called the critical tail
sequence, is defined by

T = —hm(F) =T (F,00), m=0,1,2,.... (1.41)
It follows from (1.9) and (1.41) that

hm(F) = Bp(F)/Dm(F), m=0,1,2,.... (1.42)
2. Truncation Error Bounds from Value Regions

Let F = F(Q,W) denote a given non-empty family (1.4) of LFASs. Let
{Un(F)}2 _, be defined by

. F F F .
Un(F) = [tn-i—l Otp4p0- -0 tn+m<wn+m) .

(2.1)
FeF and m=1,2.3,..]

We begin with the following
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THEOREM 2.1. Let F = F (2, W) be a given non-empty family (1.4) of LFASs.
Then

(th(wn) : F e F] CUni(F), n=0,1,2,3,..., (2.2a)
and

tE(Un(F)): F e FI CUni(F), n=0,1,2,3,.... (2.2b)

Proof. Condition (2.2a) is an immediate consequence of (2.1). To prove (2.2b)

let '€ F,n €[0,1,2,...] and u € Up,(F) be given. Then by (2.1) there exists a
G € F,(F) and an integer rn > 1 such that

u=tS,  0tS,0 e 0tG o (Wngm)- (2.3)
It follows from this, (2.1) and t£ (w) = tS(w) that

tn () =15 0ty 0 0ty (Waym) € Una(F). (2.4)
Q.E.D.

A sequence {V,}5° _, of non-empty subsets of Cis called sequence of value
regions with respect to F = F(§, W) if the following conditions are satisfied:

tE(wn): FEFI C Va1, n=0,1,2,3,..., (2.5a)
tE(Vi): FeFIC Vo, n=01,2,3,. (2.5b)

The family of all sequences of value regions {V/, } with respect to F is denoted by
V(F). It is clear that

{Un(F)}nz1 € V(F). (2-6)

From our next result (Theorem 2.2) we see that {U,, ()} is the “smallest” sequence
in V(F). We therefore call {U, (F')} the best sequence of value regions with respect
toF.

THEOREM 2.2. Let F = F(Q, W) be a non-empty family of LEASs. If {V;,} €
V(F), then

Un(F)C Vo, n=-1,0,1,2,.... 2.7)
Proof. Let {V;} € V(F) and n € [-1,0,1,2,...] and u € U,(F) be given.
Then there exists a G € F and an mteger m > 1 such that u can be expressed
by (2. 3) Ifm = 1, then u = tn+1(wn+1) € V, by (2.5a). If m = 2, then
u=1S 1 0tS ,(Wnt2) € tS.1(Vat1) by (2.52) and hence u € ¢ G 1 (Vat1) S Vi,
by (2.5b). Continuing in this manner one can show (by induction) that all expressions
of the form (2.3) are in V;,. This proves (2.7). Q.E.D.

Some elementary but useful properties of value regions are summarized in our
next result (Theorem 2.3). A proof is an immediate consequence of the above
definitions and hence is omitted.
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THEOREM 2.3. Let F = F(2, W) be a non-empty family of LFASs. Then
(A)  If{Vp}oo | is a family of non-empty subsets of C such that

Wp €V, n=0,1,2,..., (2.8)

and (2.2b) holds, then {V,,} € V(F).

B) If{Va} € V(F), then {c(Vp)} € V(F), where ¢(Vy,) denotes the closure
of V.

© I {Vna)} € V(F) for all a in an index set A, then

{ N Vn(“)} € V(F). (2.9)

a€A

An approach for obtaining truncation error bounds by use of value regions is
based on the following:

THEOREM 24. Let F = F(Q, W) be a given non-empty family of LFASs. Let
F € F converge to a finite value v(F) = limv,(F). Let {V,,} € V(F) and let k
be a non-negative integer such that

wp €c(Vn), n=kk+1L,k+2,.... (2.10)
Then
[W(F) — v, (F)| < diam T, (F,e(Ve)), n=kk+1Lk+2,.... (2.11)

REMARKS (Remarks to Theorem 2.4). Determination of truncation error bounds
by use of Theorem 2.4 involves the following steps: (a) First we obtain a sequence
{Vn} € V(F) such that (2.10) holds for some k > 0. (b) Next we find a description
of the set T, (F, ¢(Vy,)) such that its diameter (diam 7, (F, ¢(V,,))) can be computed.
Many examples that illustrate these steps are described in Sections 3 and 4.

Proof of Theorem 2.4. By Theorem 2.3(B), {¢(V,,)} € V(F). Thus an applica-
tion of (2.5b) yields

Tn(F’ C(Vn)) = Tn—l(Fa t,lj:(C(Vn))) - Tn—l(Fv C(Vn—l))a (2 12)

n=123,.... )
Hence {T,,(F, ¢(V,)) } is a nested sequence of non-empty closed subsets of C.From
this, (1.1c¢) and (2.10) we obtain, foralln > k and m > 0,

Vngm(F) = Tnym(F, Wnym)

€ Tntm(Fyc(Vatm)) C Tu(F, e(Va)), (2.13)
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and hence
ntm(F) — v (F)| < diamT,(F,¢(V,)), m=0,1,2,.... (2.14)

Assertion (2.11) follows from (2.14). Q.E.D.

We note in passing that many important convergence theorems for LFASs have
been proved by first establishing (2.14) and then showing that lim, o
diam T,,(F, ¢(V,,)) = 0 (see, e.g., [37] and [45]). Every closed set that contains
the set

[Unim(G) : G € Fu(F), m>0) (2.15)

is called an nth inclusion region for F with respect to F. We denote the family of all
such regions by I,(F, F). Clearly T,,(F, ¢(Vp.)) € L,(F, F) forall {V,,} € V(F)
and F' € F. Since

Tn(F, c(Un(F))) = |vntm(G) : G € Fo(F), m 2> 0], (2.16)

Tn(F, c(Un(F))) is called the best nth inclusion region for F with respect to F.
Henrici and Pfluger [21] were the first to use inclusion regions in their develop-
ment of truncation error bounds for S-fractions (see (1.23) and Section 3). In our
next result (Theorem 2.5) we show that, subject to stated sufficient conditions,
the best truncation error bound 3, (F, F) (see (1.7)) can be expressed in terms of
To(F, c(Un(F))).

THEOREM 2.5. Let F = F(Q2, W) be a non-empty family of LFASs. Let F € F
be convergent to a finite value v(F') and let n be a non-negative integer such that
Tn(F, c(Un(F))) is bounded. Then

Bu(F, F) = sup[|A —vn(F)| 1 A € Tn(F, c(Un(F)))), (2.17)
provided that at least one of the following conditions holds:
Form>n+1, wpy € Un(F). (2.18)

Form>n+1, wny € c(Un(F)) (2.19a)

and for every k > 1, there exists a sequence {G;} of finitely converging LFASs
such that

G € Ful(F) forj21 and wp = lim w(G ), (2.19b)

Proof. In view of the definition of 3, (F, F) in (1.7) and of (2.17) it suffices to
show that, if the conditions of Theorem 2.5 hold, then

Ln(F, F) = Tn(F, c(Un(F))), (2.20)
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where the nth limit region L, (F, F) for F,,(F') is defined by (1.6).

First we suppose that condition (a) holds. Let A € T,(F,Upn(F)) be given.
Then by the definition of U, (F) in (2.1), there exists a G; € F,(F) and an integer
my > n + 1 such that

A =To(F, 1 017450 0tk (W) = vy (G1).

Since by (2.18) W, € Um, (F), there exists a G € Fp,,(G1) andan my > my +1
such that

G G G
Wm, = tm21+1 ° tm21+2 -0 tmi(wmz)
and hence A\ = Uy, (G2) and W, € Up, (F). Continuing in this manner, we obtain
a sequence {G,} of LFASs and a sequence of integers {m;} such that, for each

j=1

Gjt1 € Fmy(Gj)y mip1 2my+1,

c. G. G. (2.21a)
Wiy = m;_:l ° tm]j-i—:Z O+ 0 tmj]_:—ll (wmj+l)7
and hence
A=, (Gy) forj=1,2,3,.... (2.21b)

From the definition of 7 = F(, W) in (1.4) and from (2.21a) it follows that there
exists a G € F such that

G € Fmy(Gj) forj=1,2,3,..., and G € Fn(F). (2.22)
Therefore by (2.21) and (2.22), A = v, (G) for j > 1 so that

We have shown that T,,(F, U, (F)) C Ln(F,F) and since L, (F, F) is a closed set
we have

To(F, c(Un(F))) € Ln(F, F). (2.23)

To prove that the inclusion in (2.23) holds in the opposite direction, we let A €
£,(F,F) be given. Then by the definition of £,(F,F) in (1.6a), there exists a
G € F,(F) and a subsequence of natural numbers {m;} (with m; > n + 1) such
that

A= Jim v, (G). (2.24)
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Therefore, forall j > 1,

Uy (G) 1= Tin; (G, Wm;) = Tu(F, iy © -+~ 0 by, (m;)) € Ton(F, Un(F)).
Hence

A= ]lirgo Umn; (G) € Th(F, c(Un(F))),

which shows that £, (F, F) C T,,(F, c(Un(F))) and so
Ln(F, F) C Tn(F, c(Un(F))), (2.25)

since the right side of (2.25) is a closed set. The equation (2.20) follows from (2.23)
and (2.25).

Next we suppose that condition (b) holds. Let A € T,,(F, U, (F)) be given. Then
by the definition of U, (F) in (2.1) and of F,(F') in (1.5), there exists a G € Fp(F)
and a positive integer & such that

A =Tu(F, t1(3+1 © tg+2 ©---0 tg+k(wn+k))- (2.26)

By condition (b) there exists a sequence {G; } (depending upon n and k) such that
forallj =1,2,3,...,

Gj € Far(G) and wnyy = lim w(GHR), (2.27)

To verify the first relation in (2.27) we note that condition (b) of the hypothesis
places no restrictions on the elements C,,(G5) for n +1 < m < n + k. Hence we
can set C(G;) = Cm(G) forn+1 <m < n+ kand j > 1. Therefore by (2.26)
and (2.27)

A= Tn‘i'k(Ga wn+k) = 1imj—>oo Tn+k (G7 ’U(van_‘—k)))

= 1imjsoo T s#(G, 0(GSR)),  (since G5 € Fryr(G) C FulF))
= 1imj_,oo ’U(Gj), by (138)

It follows that
A= Jlirgo v(Gj) € Ln(F, F)
and hence
Tn(F,Un(F)) C Ln(F, F).
Since the right side of the last inclusion is a closed set, we obtain

Tu(F, c(Un(F))) € Ln(F, F). (2.28)
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Finally, we note that v(F) € £,(F,F) so that £,(F, F) is not empty. Let A €
£,(F, F) be given. Then by definition of £,(F, F) in (1.6a), there exists a G €
Fn(F) and a subsequence {m; } of the natural numbers such that

A= lim v, (G). (2.29)
j—o00

Without loss of generality we may assume that m; > n and let k; := m; —n,
4 > 1. From this and (2.29) it follows that

A= lim To(Fy 1y otdis 0 oty (wny) € Ta(F,c(Un(F)),
since t§,, 0+ 0 tff+kj (Wnik;) € Un(F) for all § > 1. Therefore £,(F, F) C
To(F, c(Un(F))) and, since the right side of this inclusion is a closed set, we obtain

Ln(F, F) C To(F, c(Un(F)))- (2.30)
The relations (2.28) and (2.30) imply (2.20) and this completes our proof. Q.E.D.

Our next result (Theorem 2.6) provides explicit and easily computable bounds
for the truncation error |v(F) — v,(F')| when one has value regions V,, that are
closed circular disks centered at the corresponding converging factors w,,. If in
addition the hypotheses of Theorem 2.5 hold, then V;, = ¢(U,(F)) and hence the
explicit error bound is the best bound 3, (F, F).

THEOREM 2.6. Let F = F(Q), W) be a non-empty family of LFASs. Let {Vy,} be
a sequence of value regions corresponding to F such that for some integer k > 0
and some sequence of positive numbers {pm}_,.,

Vi =weC: [u—wn|<pm], m=kk+1Lk+2,.... (2.31)

Let F € F have a finite value v(F') and let n be an integer such that n > k and
the nth inclusion region T,,(F, V) is a closed circular disk (and hence bounded).
Let Dy, (F) and hy,(F) be defined as in (1.10) and (1.41), respectively. Then:

(A)

[v(F) — va(F)| < sup[|]A —vn (V)] 1 A € Tn(F, V)]

(2.32)
pn TT5—0la; (F)d; (F) — b;(F)e; (F)]

" Da(F)P - Jwn + ha(F)|(lwn + ha(F)] = )’
B) If in addition
Vi, = c(Un(F)) (2.33)

and the hypotheses of Theorem 2.5 hold, then the expression on the right side of
(2.32) is the best truncation error bound B, (F, F) for F with respect to F.
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Proof. (A): By (1.41) T,,(F, —h,(F)) = oo. Therefore, since T,,(F, V,,) is a
bounded closed circular disk, we obtain

—hn(F) & Vn.

Let u, € C denote the point of intersection of the circular boundary 87, (F, V,,)
and the line segment [wy,, —h, (F)]. From the defining relations for value regions
(2.5) (see also the proof of Theorem 2.4) we see that {T:,,(F, Vi }}55_,, is a nested
sequence of closed circular disks and, form =0,1,2,...,

'U'n,—|—m(F) = Tn-}—m(F, wn+m) S Tn—{—m(F; Vn+m) g Tn(Fa Vn)
Hence

Let A € T,(F, Vy,) be given and let u € V,, be chosen so that A = T,,(F, u). Then
by (1.9) we obtain

A= va(F)| = |To(F,u) — To(F, wy)|

A+ Cou(FYu An(F) + Co(FYw,
" Bu(F) 4+ Do(F)u  Bn(F) + Dp(Fun,

. (wn — u)(An(F) Dp(F) — Bn(F)Ch(F))
 (Bo(F) + Do(F)u)(Bu(F) + Dn(F)wy)

Using this with the determinant formulas (1.11) and By, (F') = hp(F) Dy (F) from
(1.42) yields

|wn —ul TT}—o las(F)d;(F) — b;(F)e; (F)]
| Dn(F)? - |u A+ hn(EF)| - [wn + ha(F))|

A —vn(F)] = (2.34)

It is readily seen that

max [wp—u| = p, and min |uthn(F)| = [wathn(F)|=pn > 0,(2.35)
where the extremum in both cases is attained with 4 = u,,. An application of (2.35)
to (2.34) gives (2.32).

(B) follows immediately from part (A) proved above and Theorem 2.5. Q.E.D.

One can use Theorems 2.5 and 2.6 to obtain best truncation error bounds
Bn(F, F) by determining a simple explicit (geometrical or analytical) description
of ¢(Un(F)) and of its image T}, (F, ¢(Uy,(F))). Applications of that kind are given
in Sections 3 and 4 for a number of important special families F of LFASs (see
(1.21) to (1.31)). For some of these applications, ¢(U,(F)) can be determined by
direct elementary methods. For other families we have made use of the following:
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THEOREM 2.7. Let F = F(Q, W) be a given non-empty family of LFASs, such
that every F € F and its tails F™ converge to finite values v(F™), m > 0. Let
{Va} be a sequence of value regions with respect to F such that, for some integer
k>0,

tEWV): FEF) =Vp, n=k+1,k+2,..., (2.36)
and such that
lim < sup [diam T, (F™, Viy)] $ =0, m=k+1,k+2,.... (2.37)
n=00 | peF
Then

(Vo) =c(Un(F)), n=kk+1Lk+2,.... (2.38)
Proof. By Theorem 2.2, ¢(Un(F)) C ¢(Vy) for n > 0. Thus it suffices to show
that

e(Vp) Ce(Un(F)), n=kk+1,Ek+2,.... (2.39)

Let n > k and u, € V, be given. We show that u, € ¢(U,(F)). From (2.36)
there exists an Fy € F and a Un+1 € Vn41 such that u, = fkl(unﬂ). Again by
(2.36) there exists an F> € F and a tn42 € Vot such that un 1 = £, (Unta)-

Continuing in this manner we see that there exist sequences {u;} and {F;} such
that, for j =1,2,3,...,

F; € F, tntj-1 € Vapj-1, and Unigj-1 = tfg_'kj(un_;j). (2.40)
Let F € F be defined by I'p4;(F) 1= T'nq5(F;) for § > 1. From this and (2.40)
we have

Untj—1 = t5+j(un+j), ] = 1,2,3,...,
and hence by (1.34), forall m = 1,2,3,...,

Un = t7€+1 °© t5+2 ©-:-0 t5+m(un+m) = Ton(F™ i 4 m)- (2.41)
By (2.5) and (1.33)

Tm(F (m) ) Vn+m) = Tm—l(F ('n.), t1€z+n(vn+m))

2.42
g Tm—l(F(n)a Vn—i—m-l); ( )

and hence {T;,(F™, Vinin) 153, is a nested sequence of non-empty subsets of C.
Form > 1and j > 1, we obtain by (1.33) and (2.5)

'Um+j(F(n)) = Tm+j(F(n)awn+m+j)
= Tmyj-1(F (n)’ t5+m+j (Wntm+4)) (2.43)
€ Tm—l—j-—l(F(n)a Vn+m+j—1) .(; o g Tm(F(n)y V;H—m)
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Therefor

o(F®) i= Hm v i (F™) € To(F™, e(Vagm), .44a)

m=1,23,....

By (2.41) and the fact that tntm € Vaim for m > 0, we have

U = To(F™, ttnym) € Tn(F™  Vigm), m=1,2,3,.... (2.44b)
Thus we conclude from (2.43), (2.44) and the hypothesis (2.37) that

Uy = v(F™). (2.45)
We also have from the definition of U, (F) in (2.1) that

Vi (F™) 1= T (F™  wpym) € Un(F) (2.46)
so that

W(F™) = 1im_v,(F™) € ¢(Un(F)).- (2.47)

Combining (2.45) with (2.47) yields
Un, € (Un(F)).

We have shown that V,, C c(Uy(F)), from which (2.38) follows. Q.E.D.

3. Special Families of LFASs with Simple Value Regions

In Sections 3 and 4 we apply Theorem 2.5 to obtain best truncation error bounds
Br(F, F) for a number of important special families F of LFASs. Other truncation
error bounds are included which, though not best, are sharp enough to be useful
and are easy to compute. Sequences of value regions V' = {V;} with respect to
families (2, W) play an essential role in these two sections. The procedure used to
determine families (2, W) and associated value regions {V;} is a generalization
of an approach developed for continued fractions. It rests on the observation first
made in [44] that, starting in a “natural” way with element regions {€2;} and
converging factors {w; }, it may be very difficult to find corresponding value regions
{V;} (or {U;(F)} in (2.1)). A simpler approach is to start with sequences {V;} and
{w;} and determine a corresponding sequence {€2;}, which may lead to null sets
Q; =0, j > 1. One way of doing this for continued fractions (with w; = 0, § > 0)
was used in [49] and [52] for special cases, and then was formalized by Lane [42]
for circular disks V,, and arbitrary continued fractions K (ay /by, ). We refer to the
generalization of this procedure, described in Section 3.1, as the VW Q-method.
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3.1. THE VWQ-METHOD

Starting with a sequence V' = {V;} of non-empty subsets of C and a sequence of
complex numbers W = {w;} satisfying

w; €Vi, §=0,1,2..., (3.1)

we determine a sequence €2 = {Q;} of subsets of C* by

a;j +¢;V;
Q; = [ :=(a;,b;,¢5,d;) e C*: 2L Cv,_y,
3 [ 7 < VARG R ] .7> b]+dJV7 J 1] (32(1)
i=0,1,2,...,
with the restriction that
(J,jdj - bjCj 7é 0 forall I‘j = (CLj,bj,Cj,dj) € Qj (3.21))

We call this procedure the VW 2-method. It follows from (1.1) and (2.5) that {V;}
is a sequence of value regions with respect to the family F (2, W) of LFASs (1.4)
provided

QA0 j=01,2,.... (3.3)

In practice, conditions (3.2b) are ensured by imposing special conditions for the
generating sequence

F a; + c;w .
Fw) = 2 TGY i 01,2,.... 3.4

As an illustration of the above we start with
Vi=VW=ueC:0<|ul<1/2], w;:=0, j=-1,0,1,...,(3.50)

and generating functions of the form

a; ,
& (w) = w, tf(w)::ljw, a; #0, j=0,12,.... (3.5b)

Then (3.1) and (3.2b) are satisfied and (3.2a) reduces to
Qo == [To = (0,1,1,0) € C* (3.6a)
and
a;

Qj == |ir‘72<a_7,1,0,1>€c4 T_{_—%QV({I, j:1,2,3, (36b)
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It is readily shown from (3.5a) and (3.6b) that

Q; =0 = = (a;,1,0,1) € C*: 0< |a;| < 1/4],

(3.7
j=12,3,.... 3.7

In the example described above F = F(£2, W) is the family of all continued
fractions (CFs)

F= K (“—1’) suchthata; e E=[a e C: 0<|a;| <1/4.  (3.8)
j=1

In 1865 Julius Worpitzky [66] proved that all CFs (3.8) converge to finite values.
The set F is therefore called a simple convergence region for CFs of the form
K(a;/1) and this set E is the first known example of a convergence region for
CFs (see [28] for a discussion of Worpitzky’s contributions to CF theory and his
times). Best truncation error bounds (3, (F, F) for the family of CFs (3.8) are given
in Section 3.2.

In most (but not all) of the special families F(£2, W) of LFASs that have been
studied extensively, the determination of {€2;} defined by (3.2) is simplified (as
in the preceding example) by holding constant all but one of the components in
I'; = {a;,bj,¢j,d;) € ;. The determination of {€2;} in (3.2) can be (and usually
is) simplified further by choosing regions V; whose boundaries are circles or lines
in C, or else intersections of such regions. An additional simplification is attained
when{V;}, {w;} and {Q;} are all constant sequences; that is,

When this occurs we use the terms simple value region Vy and simple element region
2;. In the following Section 3.2 we consider families  with simple value regions
Vo such that ¢(Vp) is a closed circular disk and the corresponding €2; is a simple
element region.

3.2. FAMILIES OF LFASS WITH SIMPLE CIRCULAR DISK VALUE REGIONS

We begin this section with a result that is an immediate consequence of Theorem
2.6.

THEOREM 3.1. Let F = F(Q, W) be a family of LFAS continued fractions (CFs)

0o a; ay az a3
K (b_;):b_1+5+?£+..,, (¢ =0,d; =1,w; =0, (3.10)
j=1

see (1.12). Let {V;} be a sequence of value regions with respect to F such that for
some integer k > 0 and sequence of positive numbers {p; }32 . :

Vi=ueC: [u<psl, =kk+Lk+2,....
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Let F' € F have a finite value v( F') and let n be a given positive integer withn > k.
Let v, (F) and hy,(F) be defined by (1.15) and hy,(F) := Bn(F)/Bn_1(F). If the
nth inclusion region T,,(F, V,,) is a bounded circular disk, then:

(A)

[0(F) — vn(F)| < supy[|A —vn(F)| 2 A € To(F, V)]

_ pn [Ty las(F)|
= W P=p3 TBnTFY B ()] (3.11)
= Tt [vn(F) — vaa (F).
(B) If, in addition,
Vo = c(Un(F)) (3.12)

and the hypotheses of Theorem 2.5 hold, then the expressions on the right side of
(3.11) give the best truncation error bound (3, (F, F) for F with respect to F.

A number of special families 7 = F(£2, W) have best value regions {Up,(F)}
and converging factors {wpm, } satisfying

Un(F) =Uo(F), m=0,1,2,..., (3.13a)
and
wWm =0€c(Uo(F)) =ueC: |u/<p], p>0, m2>0. (3.13b)

We give results for four such families in this section.

3.2.1. Worpitzky Family FW(#)

For0 < p < 4, we call

FYO = | K (05/1): a5€C, 0<l|ag|<p(1—p), 21| (3.14)
j=1
the p-Worpitzky family of LFASs. Since 0 < p(1 — p) < 1/4, it follows from
Worpitzky's convergence region result (see (3.8)) that every F' € FV(®) has a
finite value v(F). The family 7" (#)(Q, W) has element regions

Qo :=(0,1,1,0) sothat tf(w)=w forall F e FV ), (3.154)
and
Qj = Ql = (Ea(p), 1,0, 1),

where F,(p) = [u € C: 0< |u| < p(1-p)], (3.15b)

and converging factors w; = 0, j > 0. Our results for (¥ are summarized by
the following:
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THEOREM 3.2 (FW (). Let p satisfying 0 < p < 1/2 be given. Then:
Ay FY0 pasa simple best value region

Um(]_-W(p)) — Uo(j:'W(P)) =ueC:0<ul <g,

3.16
m=-1,0,1,2,.... (3.16)

(B) Foreach F € FW ) and each positive integer n, the best truncation
error bound Bn(F, F¥P)) for v,((F) with respect to FW(P) is given by

pITG=1 la; (F)]
(1hn(F)| = p) - | Ba(F) Bp—1(F)] (3.17)

_ p _
= (lhn(F)l _p)I'Un(F) 'l)n~l(F)|‘

(C) I, inaddition, 0 < p < 1/2, then

Ba(F, P =

0(F) — vn(F)| < (1 _z_pzp) 0a(F) = a1 (F)], 1 =2,3,4,....(3.18)

REMARKS . It follows from (3.16) and the definition of Uy, (F W(P)) in (2.1) that,
if0 < p <1/2, then

lW(F)| < p forall F e FV ),
Proof of Theorem 3.2. (A): Let {V;(p)} be defined by
Vilp) =VW(p) =ueC: 0<ul<pl, j=-1,0,1,2,.... (3.19)
To prove (A) it suffices to show that
{Vi(p)} e V(FY®)) and  Vo(p) S Up(F)). (3.20)
We prove {V;(p)} € V(FW(P)) by verifying that conditions (2.5) hold. Condition
(2.5a) is an immediate consequence of (3.14), (3.19) and p(1 — p) < p. Condition
(2.5b) (with n > 1) is equivalent to

1+ Volp) ~
a = Volp)

foralla € Eq(p) :=[z€ E: 0 <z < p(1 - p)],

which can be readily proven. To show that Vy(p) C Up(FW (#)) we let u denote an
arbitrary point in V. For each n > 0, let g,, denote the nth approximant of the CF

—p(1=p)\ _, p(1=p) —p(1-p) —p(1-0p)
1JFK(I)’l"1+1+1+-

321
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so that
go:=1 and g, ::1-3(1—“—@, forn =1,2,3,.... (3.22)
Gn—1
We now prove (by induction) that
1
5§1—p<gn<gn_1§1, n=12,3,.... (3.23)

Since go := 1and g; = 1 — p(1 — p), one can see that (3.23) holds for n = 1. As
our induction hypothesis we assume that

l—p<gr<gr-1<l, k=23,...,n—-1, (3.24)
for some positive integer n. Then 1 — p < g,_; implies

pl—p) ,_pPd=p)

=1l-—"">1 . 3.25
In = - p (3.25)
Furthermore,
1—
gn—1 —0n = Gn—1 — (1 - 'p(g*llz}‘)
n- 3.26
_ P =p) =gn-1(1 —gn-1) _ (320)
gn—1
iff
gn—l(l - gn—l) < p(l - P)- (3'27)

This inequality holds since 1 < (1 = p) < gn—y < 1 and f(z) := 2(1 — z) is
decreasing on the interval % < z < 1. We have established (3.23). Worpitzky’s
theorem ensures that the CF (3.21) converges to a finite value g = lim,_,o gn.-
Therefore from the recurrence relations (3.22) we see that g satisfies the quadratic
equation

zl_M
g H

whose roots are p and (1 — p). From this and (3.23) we conclude that {g,}°
decreases monotonically to the limit g, with

<g=1-p<]l. (3.28)
Lete := p—|ul, en 1= gn — (1 — p), n > 0, and let np > 1 be chosen so that

€ny < -E(p—l_“—g—pl. (3.29)
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We then define a by

la| ;== (p—¢)[(1 — p) +€n,] and arga :=argu. (3.30)
It follows from (3.30) that

lal
g'l’lo
and hence by (2.1)

=lu| and |a| =p(1—p) —I[e(1—=p) —enlp—e)] < p(1 —p),

w= -2 e U(FV.
ny

This completes the proof of (A).
(B): It follows from conditions (2.2), that {T,(F, Uo(FW(®)))} is a nested se-
quence of subsets of Cif F' € F W(p) Therefore since for n > 1,

Tu(F, c(Uo(FVP))) C - C Ti(F, c(Uo(F¥P))) C e(Uo(F¥ ),

we see that T, (F, c(Uo(FW(#)))) is a bounded, closed circular disk. We wish to
apply Theorem 3.1(B). For that purpose it suffices to verify that condition (b) of
Theorem 2.5 holds. Let n > 1 and k& > 1 be given. Then for each j > 1, we define
a CF G; € FW () as follows:

am(Gj) = am(F) form=1,2,...,n+k,

1
Untit+1(Gy) = 7 and am(Gj)=—-p(1—p) form>n+k+2.

Condition (b) of Theorem 2.5 follows from the fact that the CF (3.21) has value
1 — p, and

. (n+k)y _ 1: 1/ J 0
jlingov(Gj )= J11)1101<> (———1 = p) =0 =: Wpik-
Assertion (B) follows then from Theorem 3.1(B).
(C) follows immediately from (B) and the fact that T,,(F, —h,(F)) = oo, so that
—hn(F) ¢ c(Vo(1/4)) = e(Uo(FW¥(1/4))) and hence |h,(F)| > 1/2. Q.E.D.
3.2.2. Pringsheim—Sleszyriski Family F* 5(p)

For 0 < p €1, we call

FPs) . [ fz (%) cbjeC, p+ % < bl < oojl (3.31)

=t \J
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the p—Pﬂngsheim—élegzyﬁski family of LFASs. Since p + (1/p) > 2, it follows
from the Pringsheim—Sleszyfiski criterion (see, e.g., [37], Theorem 4.35 and [59])
that every F € FPS() has a finite value v(F). The family F75() has element
regions

Qo :=(0,1,1,0) sothat tJ(w)=w forall F € FF5®) (3.32a)
and, forj > 1,
Qj = = <17Eb(p)a0a 1>,

1 3.32b
where Ejp(p) == [ueC:p+;§|u|<oo], ( )

and converging factors w; = 0, j > 0. Our results for F PS(p) are summarized in
the following:

THEOREM 3.3 (FF5)). Let p satisfying 0 < p < 1 be given. Then:
A)  FP5) nas a simple best value region Uo(F P5()Y satisfying

(Uo(FF5P)) =jueC: 0< |u| < p). (3.33)

(B) For each F € FF5®) and each positive integer n, the best truncation
error bound B, (F, FE5(#)) for v, (F) with respect to F PS(p) is given by

p

Bn(F, FESP)) = (|hn(F)| = p) - | Ba(F)Bn-1(F)|

5 . (3.34)
e P () = v 1 (F).
Tt = ) — e ()
(C) If, in addition, 0 < p < 1, then
w(F) — va(F)| < 1fpwn(F)—1;,1~1(F)|, n=2,3,4,.... (3.35)

REMARK . It follows from (3.33) and the definition of Up(FF5(P)) in (2.1) that,
if0 < p<1,then

lw(F)| <p for F e FPse). (3.36)
Proof. (A): Let {V;(p)} be defined by

Vi(p) = Vo(p) ==[ueC: 0< | <pl, j=-1,0,1,2,.... (337)
To prove (A) it suffices to show that

{(Vi(p)} € V(FPS®) and  Vo(p) = c(Uo(FF5)). (3.38)
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We prove {V;(p)} € V(FP5P) by verifying conditions (2.5). Condition (2.5a) fol-
lows directly from (3.31), (3.37) and p+ (1/p) > p. Condition (2.5b) is equivalent
to

b+Volp) € s 7 ( 0] (339)

for all b € Ep(p) := [u eC: p—l——;l; <yl < oo],
which can be readily shown. To prove that
Vo(p) = o(Uo(FPSP)) (3.40)
we make use of Theorem 2.7. First we show that
[t (Vo(p)) : F € FF5P) = Vo). (3.41)
In view of (2.5b) it suffices to verify
Vo(p) C [tn (Vo(p)) : F € FP5U)] (3.42)

or, equivalently, Vo(p) C 1/(Ew(p) + Vo(p)); that is,

AN C Ey(p) + Vo(p)- (3.43)

Let v € 1/Vo(p) be given and let ¢ := argwv, so that 1/p < |v] < oo and
0L p < 2m.
Let b and u be defined by

6] == |v] +p, argb:=yp, u:=—pe*.
It follows from this that
bt+u=(lv]+pe” —pe =v, beEyp) and u e Vo(p).
This proves (3.43) and hence also (3.41). Condition (2.37) can be written
Jim_ { o [diam T, (F™), Vo(P))]} =0. (3.44)

This is an immediate consequence of a theorem due to Hillam (see, e.g., [12],
Theorem 2.7; [22]). Thus (A) follows from Theorem 2.7.

(B): We apply Theorem 3.1(B). For that purpose we note that T,,(F, Vo(p)) is a
bounded circular disk, since by (2.2) {T,,(F, Vo(p)) } is a nested sequence of closed
disks and T;,(F, Vo(p)) C Tr—1(F, Vo(p)) C --- C Vo(p). It suffices to verify that
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condition (b) of Theorem 2.5 is satisfied. Letn > 1 and & > 1 be given. Then for
eachj > 1, wedefineaCF G, € F, PS(‘O )(F) as follows:

b (Gj) =bn(F), m=12,...,n+k,
bntkt1(Gy) := ],
b(Gj)==p+1/p, m=n+k+2, n+k+3,....
Then
1

lim v(G("+k ) = lim =0 =: Wy ir,
j—00 j—o0 j +’U(G§~n+k+1))

since v(ngJrkH)) is the value of the periodic CF K (1 /(p+ %)) and hence, by

(3.36), [o(G D) < p,
Therefore (B) follows from Theorem 3.1(B).
(C) follows from Theorem 3.1(A) and the fact that T, (F, —h,(F)) = o0, 80

that —hn(F) ¢ Vo(4) = [u € C: 0< |u| < 1] hence |hn(F)| > 1. Q.E.D.

3.2.3. Positive Perron—Carathéodory Family FF'P C),
Let
zeD:=ueC:0< |y <1] (3.45)

be given. We define the family FFPC() of LFASs F' = C[{6;}, |, called positive
Perron—Carathéodory approximant sequences, as follows:

a; + c;w

PPC(z) .__ L . 4F —
F = |LEass P ) = P

§=0,1,2,...1, (3.46a)

where the generating sequences {tf (w)}720 have the form

1 —w 8 +w .
F F . j
= : =g =1,2,3,..., 3.46b
tO(w) 601“*’11)’ tg (’UJ) Z1+6jw’ J 12,3 ( )
where

6% >0 and 6;€D, j=12,3,..., (3.46¢)

and the converging factors w; = 0, for j > 0. To emphasize the dependence of
the §; on F' we may write §;(F). Each F' € FFPPC) is related to the positive
Perron—Carathéodory CF (PPC-fraction)

260 1 (A-]6P)z 1 (1-|6P)z

T A S

(3.47)



PADE AND CONTINUED FRACTION APPROXIMANTS 237

in the following way: We define sequences {sZ (w)} and {S,(F,w)} by

1
5(w) = Hw) = < i =1,2,3,... 3.48
So (’LU) 60 + w, 32] (’LU) 6_7’2 n 'LU, J 3 ( a’)
26 (1-16;z .
F 0 . —
51 (’U)) = m: 82j+1(w) - *—5;_'—_1_1;——’ i=123,..., (348b)
. JF N F
SO(Fv wl) '2_350 (’w)’ Sn(F’ w) =5 —1(Fa Sn (w))7 (3.486)
n=1L4>5...,

and we let P,(F, 2) and Qn(F, z) denote the nth numerator and denominator,
respectively, of the CF (3.47). It follows that

Po(F, z) + wP,_1(F, 2)

Sp(F,w) = , n=1,2,3..., 3.49
Fv) = BoFo2) ¥ 0@ (7 2) (349)
tg(w) = Sgosf(w—l)’ tF(w) [823 082j+l(w )]_17
(3.50a)
i=1,2,3,...,
_ Pop1(F, 2)w + Py (F, 2)
To(F,w) = Son1(Fyw™!) = ,
(Fw) = Sona(Bw™) = 5 F 2w T Ol 2) (3.508)
n=0,12,....
Therefore, forn =0,1,2,...,
Pzn(F, Z)
(@) 1= Th(F,0) = >~ 3.51
(G) (F,0) Om(Fo2) (3.51)

and

Ap(F) = Py(F,2), Bp(F) = Qan(F,2), Cun(F)= Py 1(F,2),
Dn(F) = QZ’rH—l(F, Z),

where Ay, By, Cn, Dy, are defined by the difference equations (1.10).
The class C of normalized Carathéodory functions is defined by

=[f: f isanalyticandRe f(2) > Ofor 2| <1, f(0)>0]. (3.52)

It can be seen that all functions of the form
J + 2z
f(z) = Z /\

/\j>0 for1<j<n—n<bh<bh<---<Op=m

(3.53)

are in C. We consider the subclass C. of C defined by
Co:=[feC: f isnotofthe form(3.53) and f is not constant].  (3.54)
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For each F € FPPCQ) we let v(F(2)) denote the value of F' considered as a
function of z. In [33], Theorem 10.2, it was shown that,

F(z) € FPPCR) = f(2) == v(F(2)) € C.,

and, conversely, f(z) € C.implies that there exists a unique F\(z) € FFPC(#) such
that f(z) = v(F(z)). The following result (Theorem 3.4) gives best truncation
error bounds for v, (F(2)).

THEOREM 3.4 (FPPC®), Let 2 € C, satisfying 0 < |z| < 1 be given. Then:
(A)  The family of LFASs FFP C(2) has a sequence of best value regions given
by

U__l(]_-PPC(z)) _ U A(S), (3.55a)
80>0
where
A@) i=[ueC: u—T(E)| < R, T =l o
R(b) := 282,
and
Un(FPPC@Y .= [ue C: 0< |u| < |2]], m=0,1,2,.... (3.55¢)

(B) Foreach F € FPPC®) gnd each integer n > 1, the best truncation error
bound for vn(F) with respect to FFPPC) s given by

260 [T5=1 (1 = [6;%) 2"+

, (F, FPPO()) = , 3.56
B ) = G F D@ o) — @i (B ) 00
where Qyn, and Qa1 are defined by (3.49) and (3.52).
(C) Foreach F € FFPFC@ gng integer n > 1
4 n+1
[0(F) — ()| < 2002 (357)

1—|z2°

REMARKS . (1) We have omitted the point z = 0 in Theorem 3.4, since, if z = 0,
v (F(0)) = To(F(0),0) = & for all n > 0, and hence v(F(0)) = &. (2)
6o € A(&o), since 6y > (50(1 — [zl) = P(éo) - R(50) > 0.

Proof. (A): Let {V;} be defined by

Vo= |J A(&), A(8) defined by (3.55b), (3.58a)
80>0

Vi=lueC: 0<|jul <|zl], 7=012,.... (3.58h)
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By (3.55) and (3.58)

t5'(0) = 6o(F) € A(8o) = t& (Vo) C V_1, forall § > 0. (3.59a)
Therefore (2.5) holds forn = 0. Forallnn > 1,

tF(0) = 6, (F)z € Ve forall 0 < |8,(F)| < 1, (3.60a)
and

tF(Vu) =[u€C: [u—Ty| < Ry CVpy forall F € FPPOE) (3.60p)

since
Tnl+ Rp < |2] < 1 (3.60c)
where
5 — 12 201 _ 2
we B e HGEE om
(see, e.g., [39], Lemma 3.2, for more details on proof of (3.60c)).
It follows from (3.60) that (2.5) holds for all n > 1. Therefore
{V;} e V(FFPFPCQ), (3.61)

We now show that

V; CU;(FFPOR), j=-1,0,1,2,.... (3.62)
In fact, for j > 0,

Vi=Vo:=ueC:0<|ul < |z =[h1z: 0<|&] < 1]

= [t{ (0) : F € FPPO@] C yo(FFPO@),

and, since t§ (Vo) = A(6o(F)), we have

Voi:=[A(8(F)) : F e FPPC@) = (¢ (vy) 1 F e FPPOG)

C U_I(fPPC(Z)).

This proves (3.62) and hence (A).
(B): Since the conditions of Theorem 2.6(B) hold (with condition (a) of Theorem
2.5), we have forn > 1

|2l 150 la; (F)d; (F) — b; (F)e; (F)|

R A TR 5 TR TR Py

26017 (1 — [85%) |z
- iB”l(F)Kan(F)I — 2Dy (F)))
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which gives (3.56), using (3.52) and

a,()(F) = 5(), bo(F) = 1, Co(F) = —50, do(F) = 1,

aj(F):5jz, bj(F):l, Cj(F)ZZ, dj(F):(Sj, j:1,2,3,....

This proves (B).

(C): Our proof of (3.57) makes use of Theorem 2.4. In [39], Lemma 3.3, we
obtain

460 [T7-1 (1 — 18;1%) |2
|Q2n(F, 2)[* — |2Q2n+1(F, 2)|*’ (3.63)

diam T, (F, V) =
n=1273,....
Using Christoffel-Darboux formulas derived in [40, Section 2], we obtain the in-

equality

Q2 (F, 2)* = |2Qun1(F, 2)|* 2 (1= |21*) [T (1 = 18;1%),
j=1

(3.64)
n=12,3....
Combining (3.63) and (3.64) with Theorem 2.4 yields
460 [T%1(1 = |6;%)| 2"+
[v(F) — v (F)] < oIli=1(1 — 155 (3.65)

|Q2n (F) 2)? — |2Qan11(F, 2)[?
and hence (3.57). Q.E.D.

REMARK . One can readily show that 3,(F, FFFC(2) is at least as small as the
bound given by (3.65). In fact, that statement holds iff

|Q2n (F Z)lz — [2Q2n+1(F, z)|2
< 2|Q2n(Fa z)l(lQZn(F, z)’ - |ZQ27L—H(F7 Z)l)

Dividing both sides of (3.66) by | @2, (F, 2)|? and rearranging terms, we obtain the
following inequality that is equivalent to (3.66):

_ |, @i (F, 2)
(1 z QZTL(F7 Z)

(3.66)

)2 > 0. (3.67)

3.2.4. Positive Schur Family F5hz),
Let

zeD:=ueC:0<|ul<1] (3.68)
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be given. We define the family F5*(2) of LEASs F = S[{v;}, 2], called positive
Schur approximant sequences, as follows:

Shz) . |LFASs F : tF(w) = 2% 5 _01.2.... (3.69
F Ss t] (w) 1+,—szw7 J Oa Pg ] H \3 a‘)
where
Y% € R, |’}/0| <1 and ~v; €C, |’)’j| <1, j7=1,2,3,..., (3.69b)

and converging factors w; := 0, j = 0,1,2,.... To emphasize dependence of ;
on F' we may write v;(F). Each F € F5»(2) is related to the positive Schur CF

Yo + (1 — |’)’0|2)Z i (1 - 171[2)‘2 __1_ (3 70)
Yoz +m+ Tz +y 4 '

in the following way: We define sequences {s (w)} and {S,(F,w)} by

F F .
= ) ; = , =1,2,3,..., 371
() =0t sfiw) = —— g (3.71a)
F _Q=1yPe
32]+1(w) o= _&—WJZ + w s ] e O, 1, 2, ey (3.71b)
So(F,w) := 5§ (w),  Sn(Fyw) 1= Sp—1(F, s5 (w)),
ne123 (3.71¢)

and let P, (F) z) and Qy,(F, z) denote the nth numerator and denominator, respec-
tively, of the CF (3.70). It follows that

Po(F,2z) + wP,_(F,2)

Sl w) = B F o) FwOna(F, )’

n=0,1,2,..., (3.72)

15 (w) = sk sT (w™),

tF(w) [323 osZ]—i—l(w 1)]—17 ] = 1’2,33'--7

P2n+1 (F, z)w + Pzn(F, Z)
Q2n+l(Fa Z)w + QZm(Fa z) ’ (373())

(3.73a)

(F w) Szn_H(F w"l) =

n=0,1,2,....
Therefore, forn =0,1,2,...,

Pzn(F, Z)

’Un(F) = Tn(F, 0) = 52n+1(F, OO) = m,

(3.74)
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and
An(F) = P2n(Fa Z), Bn(F) - QZn(Fa z),
Cn(F) = P2n+l(Fa Z), Dn(F) = Q2n+1(F7 Z'),

where A, By, Cpn, D, are defined by the difference equations (1.10). The class S
of normalized Schur functions is defined by

(3.75)

S:=|[f: fisanalyticand|f(z)| <1for|z| <1,

3.76
—-1< f(0) <1]. (3.76)
It can be seen that all functions of the form
oy 2w '
f(Z)_ggl+Q]Z [wJI<1a
(3.77)

T
i=12...,m lg=1 eJJwjeR
7=1

are members of S. We consider the subclass S; of S defined by
S.:=[fe€8: f isnotofthe form (3.77) and f is not constant].  (3.78)

Foreach F' € F5M%), welet v( F(z)) denote the value of F' considered as a function
of z. In [50] and [32] it is shown that

F e F@) = y(F(2)) € S,

and, conversely, f(z) € S, implies that there exists a unique F' € F5™) such that
f(z) = v(F(z)). The following result (Theorem 3.5) gives best truncation error
bounds for v, (F(2)) with respect to F5m2),

THEOREM 3.5 (FSM2)), Let z € D := [u € C: 0 < |u| < 1] be given. Then
(A) The family of LFASs F Sh2) has a sequence of best value regions given
by

U_y(F)y = | (D)

—1<yp<1
= U [ueC: |Ju—c(y)| <r(v)] (3.79a)
—l<y<l
cD
where
(o) 1= M (o) = U;Y@Ei (3.79)

1— g2 1=l
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and
Un(FM) =D, m=0,1,2,.... (3.79¢)

(B) Foreach F € F Sh(2) and each integer n > 0, the best truncation error
bound for vn(F) with respect to FS*?) is given by

2™ T30 (1 = 1%l
|Q2n(F, 2)] - (|Q2n(F, 2)| = |Q2ns1(F, 2)])

Bo(F, FEM2) = (3.80)

Proof. (A): A proof of (3.79¢) can be found in [31], Lemma 7. The first equality
in (3.79a) follows from the definition of U/_; in (2.1) and from (3.79¢). The second
equality in (3.79a) follows from elementary conformal mapping of D by the linear
fractional transformation t£ (w).

(B) follows immediately from Theorem 2.6(B), since wy, = 0 € Uy, (F5H2)),
a;(F) = 7. b;(F) = 1, ¢;(F) = z, dj(F) = %z, ha(F) = Ba(F)/Du(F),
B, (F) = QZn(F z) and D, (F) = anH(F 2). Q.E.D.

REMARK . A proof of Theorem 3.5 was given in [31], Theorem 10, using essen-
tially the same methods as employed in Theorem 2.6(B).

3.3. FAMILIES OF LFASS WITH OTHER SIMPLE VALUE REGIONS

In this section we obtain best truncation error bounds for Real J-Fractions, Stieltjes
Fractions, Modified Stieltjes Fractions, and Positive T-Fractions. For each of these
families of LFASs (CFs), the best value regions are simple and they are half-planes
or intersections of half-planes with part or none of the boundaries included. We
make use of the following:

THEOREM 3.6. Let F = F(2,{0}) be a family of LFASs of continued fractions
(CFs). Let {U;(F)} denote the best sequence of value regions corresponding to

F.Let F = K;il(aj/bj) € F be convergent to a finite value v(F), let n be a
positive integer such that T,,(F, c(Un(F))) is bounded and let condition (a) or (b)
of Theorem 2.5 hold. Then

ivn(F) — Un—1(F)]

| (F)inf | |-y — & ¢ w € cUn(F))]
Proof. From Theorem 2.5,

Ou(F, F) =

(3.81)

Bn(F, F) = sup[|Tn(F,u) — v (F)| : u € c(Un(F))]. (3.82)
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From (1.1c), (1.9) and (1.11) we have
|Tn(Fyu) — vo(F)| = |Tn(F,u) — Ta(F,0)|

_ An
B + uBy_ _E— (3.83)
|vn(F) -~ ’Un—l(F)l

lhn|| e zl
From (3.82) and (3.83) we obtain (3.81). Q.E.D.

To apply Theorem 3.6 to a CF K (a;/b;), we make use of specific information
on the location of h,(F'). From (1.42) and (1.10c), we have

an, Qn an—1 a2
Fy=b,+ —————=bp + —
(F) hn—1(F) b1+ bapo2+---+ bl (3.84)

n=123....

For each of the following special families of LFASs (CFs), we use information
about the value regions to obtain information about the location of {h,(F")}, and
then we apply geometric arguments to determine

-1

m—% UEC(Un(.:F)) .

inf [

3.3.1. Real J-Fractions F72).
Let z € C — R be given. The family F7(?) of real J-fractions is defined by

FI@ = F(Q,W)

2
:[F:F:

1 —OC% —Qh
Br+z+Btz+B+zt+--
0#0; €R, B €Rj>1],

(3.85)

where = {Q;} and W = {w;} = {0},
Q= (L[B+2: /1 €R]0,1) (3.86a)
Q;:=(-a*:0£acR][B+z: B€R],0,1), j=2,34,....(3.86b)
The generating sequence {t' (w)} for F € F7#) is given by

1
to(w) =w, #@W):=——
+z4+w’
, A (3.87)
F a] 1 .
tF(w) = —2L2—, j=2,3,4,....

,Bj+z‘|"w



PADE AND CONTINUED FRACTION APPROXIMANTS 245

THEOREM 3.7. Let z € C — R be given and let F’ ®) denote the family of real
J-fractions (3.85). Then:
(A)  The best sequence of value regions {U,(F” )}, with respect to F7(%)
is given by
i
2Im 2

Uo(FI#)) = [u eC: |u+

1
< .
A

+ o ) . ¥
J(2)y — _[HY =[ueC:Imu>0],ifze HT,
Un(F7) = V(z) '_{H_ =ueC:Imu<0],ifz€ H™, (3.88)
n=12,3,....

B) IfF = F(2) € F'@ converges to a finite value vg Yand if nis a
positive integer, then the best truncation error bound S, (F, F’ (= ) for v, (F') with
respect to F7(?) is given by

ul, 72 = e E O (P(2) = s (PR (3:89)

Proof. (A) follows directly from the definition of {U,,(F7(*))} in (2.1) (see also
Theorem 9 in [37]).

(B): We show that condition (b) of Theorem 2.5 holds and then apply Theorem
3.6. From (3.88) it is clear that

Wm =0 € c(Um(}'J(z)), form=20,1,2,....
Let k be a given positive integer. We then define {G;}, for j > 1, by

Giime L —ai(F) ~%k-1(F)

T B(F)t 2+ B(F) + 2+ Pogk(F) + 2+
-1 -1 -1 -1
jtz+ 2z + 2+ 2 -0

The periodic CF
-1 -1 -1
z+ 2z + 2z +---
converges to a finite value v(H) satisfying

1
v(H) - = 2Imz|’

(3.90)

ZIm z

It follows that each GG converges toa value v(G;) € Cand |z+v(H)| > |Im 2| > 0.
Hence
— < ! < !
Jrz+v(H)| T j—lz+v(H)| T j—|Imz|’
for sufficiently large j.

{U(G§n+k)‘ - !



246 CATHLEEN CRAVIOTTO, WILLIAM B. JONES AND W, J. THRON

Therefore lim;_, v(Gg-n"Lk)) = 0 = wy, for all m > 1, and so condition (b)

of Theorem 2.5 holds. Next we show that T,(F, U, (F?®))) = T,,(F,V(z2)) is
bounded. By (2.2)

Ta(F,V(2)) = T (F 15 (V(2))) € Tt (F,V(2)) € -+
C Ti(F, V(2)) C Up(FI®),

From (3.88a), Up(F7(?)) is a bounded set. By (3.84) and (2.56) we obtain

1 1
Tha(F) € =B —2—V(2)
and hence
1 ) 1
—hn_(ﬁje [Oyéwec. ’w—ZImz SZIIsz'

It follows from this and (3.81) that (3.89) holds. Q.E.D.

3.3.2. Stieltjes Fractions F542),
Letz € Sy := [u € C: 0 < |argu| < 7] be given. We define the family F5H2) of
Stieltjes Fractions by

FSU2) .= F(Q,W) = {F(z) : F(z)=K (g;_z) ;

(3.93a)
a; >0, j=> 1] ;
where
Q={}720, W ={w;};2, = {0}, (3.93b)
QO = (07 1) 1a 0)7 (393@)

Q; = (lajz: a; >0],1,0,1), j=1,2,3,....
The generating sequence {tf’ (w)} for F = F(2) = K(ajz/1) € F5%) is given
by

ai(F)z .
thw) =w, tiw):= _1](7'1)}7 i=1,2,3,.... (3.94)

THEOREM 3.8. Let F542) pe the family of Stieltjes fractions (3.93) for a given
z € Syx. Then:
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(A)  The best sequence of value regions {U,(F542)}_ with respect to
FSK2) 5 given, form > 0, by

([ueC: 0<argu < arg 2],
fOo<argz <m,

[ueC: aigz <argu < 0],
if —m < argz < 0,

[ueC: argu =0,

| fargz =0.

Un(F5HD) = U(2) = ¢ (3.95)

(B) LetF = F(2) := K(ajz/1) € F5) converge to a finite value v(F) and

let n be a given positive integer. Then the best truncation error bound (B, (F, F o t(z))
for v, (F) with respect to F542) is given by

Bu(F, FSU2)) = K (F(2))ua(F(2)) = vn_1(F(2))], (3.964)

where Kn(F(2)) is defined as follows:
Case(a) (0<|argz| <7/2)

Ka(F(2)) =1, if0< |argz| <7T. (3.960)
Case (b) Suppose thar /2 < |argz| < .
(1)
KulF(2) = oo, 0 < Jare (52k)| < £ (3960)
(b2)
Ko(F(2) =1, if% <|arg (~5tm)| < F - larzal. (3.96d)
(b3)
Ka(F(2) = |esc ) it —|age] < Jarg (~pfpy)| <7 (396¢)
where
5:=m ~ g2l ~ g~ )| (3.96)

Proof. (A): Suppose 0 < argz < 7. Let {V;} be defined by (see (3.95))
Vi=Vi=V(e)=ueC: 0<agu<argz|, j=0,1,2,....
Let

Hy=ueC:Imu>0], Hy:=uecC: agz—r <argu < argz|,
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so that V = H{ N H,. It follows that
t$(H1) C Hy and t5(Hz) C Hy
forall G € FSH2), j=1,2,3,...,
t§(V) =t§(H)Nt§(H) CHINH, =V, §=0,1,3,...,
and

t§(0) =a;(G)z eV, j=12,3,....

We have shown that {V;}52, is a sequence of value regions with respect to FSH),
By an elementary geometrical argument one can show that

aiz
V= [1 i 0, a> 0] =[t§ 0 t§ 015 (0) : G € FP).
Therefore V = V; = Uj(j:St(Z)), j = 0,1,2,.... A similar argument holds for
—7 < arg z < 0 and for arg z = 0. This proves (A).

(B) To apply Theorem 3.6, we verify that condition (b) of Theorem 2.5 holds.
Let k be a given positive integer. Let {G;}72, be defined by

_a(F)z a(F)2 antk(F)z  (1/4)2
1+ 1 4+ 1+ 1+

z z z
Gj: - - = .
7 1+1+14--

It follows that
G € Fpi(F) forj>1 and wnpyp =0= lim ,U(Gg'n+k)).
J—0

Moreover, since Wy, = 0 € ¢(Un(F54#)) for m > n + 1, condition (b) of
Theorem 2.5 holds. We also note that T,,(F, U(z)) is a bounded set, since

To(F,U(2)) C Tt (F,U(2)) C -+ CTY(F,U(2)) =t} (U(2)),

and the set tI" (U (2)) is the intersection of a circular disk and a half-plane, provided
0<|argz| <.
If arg z = 0, then 2 > O and

a1z

HWE) = |

u:0<u<oo}:[meR+:0<m<a1z]

is bounded. Therefore by Theorem 3.6, B, (F, F54#)) is given by (3.81). It remains
to find estimates for

inf (5 ) # €U
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By (3.84)

an2z QAp-12 azz
=142 .
fulF) =143 + 1 -t 1

It follows from this and tjG(U(z)) CU(z)forj>1and G € F5) that
-1 c -1
ha(F) ~ 14+ U(2)
We consider cases for which 0 < arg z < =. (Similar arguments hold for —7 <
arg z < 0 and arg z = 0 and hence they are omitted.) One can readily show that

ho(F)e 1+ U(z) andso

1
— = : < 0
0 ueC: argz < argu < 0]
and that —1/(1 + U(z)) is a region in C bounded by the interval —1 < u < 0 and
by the circular arc passing through —1 and 0, tangent at 4 = —1 to the line with
angle of inclination equal to arg 2.
Case (a) If 0 < arg z < /2, then

. -1 1. 1
(6 7))l veve) - 03]
and hence (3.96b) follows from (3.81).

Case (b) Suppose that /2 < arg z < .
(b If0 < |arg (—1/hyp(F))| < /2, then

: _1 1 « —
o (s5) -3 w0 <
Hence (3.96¢) follows from (3.81).
() If /2 < |arg (—1/hn(F))| < (37/2) — arg 2, then

—1 1 1
inf ||{ ——= | — —|: = e
it | (77p) ~ ] - < V) [ (F)T
and so (3.96d) follows from (3.81).
(03) If (37/2) —argz < arg (= —1/h,(F)) < 7, then

e[| (i) - 4] we )] - s [or e Gl

and hence (3.96¢) follows from (3.81). For the computations used to obtain b, and
b3, we have used the fact that the ray argu = (37/2) — arg z is perpendicular to
the line passing through the ray argu = —arg 2. Q.E.D.

L) - lmbutr)
halF) )|~ Tl B

We state without proof the following useful result originally given by Henrici
and Pfluger [21] (see also Theorem 4.4 in [39]).
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THEOREM 3.9. ([21]; [39, Theorem 4.4]) If F(2) = K(a;2/1),a; > 0,7 > lis
an S-fraction converging to a finite value v(F(z)), then, forn > 2,
[vn(F(2)) — vn—1(F(2))I,
if [arg 2| < /2,
csc(| arg 2))|vn(F(2)) — vn-1(F(2))],
ifrn/2 < |argz| <.

[v(F(2)) — vn(F(2))] <

3.3.3. Adjusted Stieltjes Fractions FASH2),
Let z € C be given with |Arg 2| < 7/2. We define

FASU) .= (Q, {0122), (3.97)
where
Q={Q}pe; ={(l,juecC: argu =argz],0,1)}>2,. (3.98)
Then
FASHz) __ l:fz (%) by > 0} (3.99)
j=1 \%

is called the family of Adjusted Stieltjes fractions.

THEOREM 3.10. Let FASY2) be the family of LFASs defined by (3.97)—(3.99).
Then
(A)  The best sequence of value regions {U;(FASH2))12 . with respect to

FASU2) satisfies

c(Uj(fASt(z))) — C(U(}-ASt(z)))
=V :i=[ueC: 0<|Argu| <|Argz|],

i=0,1,2,....

(B) IfF = F(z) € FA542 converges to a finite value v(F(z)) € C and if n
is a positive integer, then the best truncation error bound for v,,(F(z)) with respect
to FASHZ) s given by

Ba(F, FASHE)) = K (F(2))|on(F) — vn_1(F)], (3.101a)

where

(3.100)

1, iflarg 2| < |arg (53y)| - 5
: (3.101b)

Kn(F(2) = { esc (farg (5 )| — lare2
if |arg (W_%T)l — I < |argzl.

A proof of this theorem can be given that is very similar to that of Theorem 3.8
and hence it is omitted.
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3.3.4. Positive T-Fractions: FT ),
Letz € Sy :=[u e C: 0<|argz| < | be given. We define

FI@ = F(Q, {0}2,), (3.102)
where

Q={Q}2,, Q:={(Fuz: F,>0|[1+Gnz: Gn>0],0,1,)(3.103)
forn=1,2,3,.... Then

Flz Fzz
14+ Giz+1+Gaz +---

FpGp>0, n= 1,2,3,...]

Fre = [F: F=
(3.104)

is called the family of Positive T-fractions.

THEOREM 3.11. Let FT® be the family of LEASs defined by (3.102)~(3.104).
Then:

(A)  Thebest sequence of value regions {Up,(FT @) }52_, with respect to FF'(#)
satisfies

[u: 0<argu <arg 2| ifargz > 0,
Up(FT@Y = U(FT@) :={ [u: argz < argu < 0] ifarg z < 0, (3.105)
[u: argu =0, ifargz = 0.

B) IfF(2) € FT® converges to a finite value v(F(z)) € Cand ifn is a
positive integer, then the best truncation error bound for v, (F(2)) with respect to

FT@ is given by
Bn(F, FT®Y = K, (F(2))|vn(F) = va_r(F)], (3.1064)

where K,{F(z)) is defined as follows:
Case(a) (0<|argz| <7/2)

Case (b) Suppose that /2 < |arg z| < 7.
(b1)
) __lha(2)] . _ x
Kn(F(2)) = YRGS larg (hn(;))] <z (3.106¢)
(b2)

Ko (F(2)) =1, ifI< Iarg (hn-(},,))‘ < 3T arg 2. (3.1064)
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(b3)
Kn(F(z)) = |cscBl, if3F —|argz| < iarg (Ej—(lﬁ)l, (3.106¢)

where
g:=2r—|argz| — ‘arg (Fn%)l (3.1067)

Proof. (A): Suppose 0 < arg z < 7. Let {V,,} denote the (constant) sequence
of sets

Vo=V i=[u:0<argu<argz], n=0,12,....
Suppose F(z) € FT%), Then

F.z
1+Giz+V

tF@ ) =
for some F,, > 0. Let

H =[u:Imu>0 and Hp:=|u: argz — 7 < argu < arg 2.
One can show that

tF@H) C Hy and £@)(H,) C Hs.
It follows that

tn (V) = t5 O (H N Hy) = T (H) N T (H) C Hy N Hy = V.
Furthermore, every point in V' can be expressed as Fyz/(1 + Gyz) for some
Fi,Gq > 0. Therefore V C c(Un(FT?)) and by (2.4) U, (FT#) C V. A similar

argument holds when —7 < argz < 0.
(B) Let k > 1 be given. Define {G;}52, by

G e Fiz Pz Frixz z
J '——1+G1z+1+G22+"'+1+Gn+kz+(1/j)+z+
A r4 2

l+2+1+z+14+24--

An argument analogous to one in the proof of Theorem 3.7 shows {G;}72 satisfies
the hypothesis of Theorem 2.5. By (3.84)

14+Gpo12+- -+ 14+ G2’

ha(F(2)) = 1+ Gnz + =2,3,4,....
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By (2.5b), (Fy2)/(14Gp_12 +U(FT#)) C U(FT#), whenever F,,, Gn—1 >0
and thus h,(F(2)) € 1 + Gpz + U(FT()) and hence

—1 1
Tn(F(2) © —1 = Gz — D(FI@)

The remainder of our proof is similar to that given for Theorem 3.8(B) and hence
is omitted. Q.E.D.

We conclude this section by stating the following result. Jefferson [30] gave this
result for the special case with G, = 1, n > 1. The general form given here was
proved by Gragg [18].

THEOREM 3.12. If a positive T-fraction

e 0 ( Foz )ﬁ Fiz Fhz Bz
- K 14+ Grz —‘1+G1Z+1+G22+1‘|—G3Z+"'7

n=1

E,,G,>0

converges to a finite value v(F), then forn > 2,
[v(F) — va(F)| < Kn(F(2))|vp(F) — vn-1(F)|,
where

1, if0<|argz| <m/2,
|csc(arg2)|, ifm/2 < |argz| <.

KalP(2) = {

4. Best Truncation Error Bounds for Limit k-Periodic MCFs

Many modified continued fraction (MCF) expansions of special functions have the
form

K (a5(2),b3(2), wi(2)),

Jj=1

where the elements a;(2), b;(2) and converging factors w;(2) are complex-valued
functions of a complex variable z. The MCF is called periodic with period k if
Arktm(2) = am(2), brk4m(2) = d(2), Wrkem(z) = wm(2z) for m > 1 and
r > 0. The MCF is called limit k-periodic if, form = 1,2,3,.. .,

,}LHOIO Aritm(2) = am(2), rli)fgo brk+m(2) = Bm(2)

and

JM Wk ym(2) = wm(2).
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An MCF is called limit periodic if it is limit 1-periodic. Section 4.1 deals with limit
periodic MCFs

fz (a;(2),1,w;(2)), where jlin;oaj(z) = afz), ]lingo w;i(z) = w(z),
j=1

where a(z) € C — (—oo0, —1/4] in Section 4.1.1 and a(2) = oo in Section 4.1.2.
Section 4.2 deals with MCFs

K (1,b;(2),w;(2)),

=1

where lim;_,o b;(2) = oo in Section 4.2.1 and where the MCF is limit 4-periodic
in Section 4.2.2.

4.1. LIMIT PERIODIC CFS K(a;/1) AND MCFS K(a;j,1,w;)

QOur interest in this section is in best truncation error bounds for continued fractions
(CFs)

o0 a; ai ady Qa3
2y = 2 =2 4.1
5(1) T4 141 4 &

and modified continued fractions (MCFs) K(a;, 1, w;) whose elements a; satisfy
a limit-periodic condition of the form

lim aj:aeé:CU[oo]. (4.2)

J—oo
Most of the results in this section apply to the case in which

lim a; =a € C — (—o0,—1/4]. 4.3)
J-e0
By using the parabola theorem of [53] one can readily prove:

THEOREM 4.1. If the elements a; of a CF F = K(a;/1) satisfy (4.3), then F'
converges to a value

v(F) = lim v,(F) € C = CU[oo]. (4.4)
If a number a satisfies (4.3), then the fixed points z; and x, of the transformation
a
are given by

1 1 1 1
x1:1/a+z—§, wz——\/aJrZ—E, (Re,/— >0), (4.6a)
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and they satisfy
lz1] < l|z2|, x2=—(214+1), a=-2122. (4.6D)

The periodic CF K (a/1) converges to the attractive fixed point

a a a a
= 2= 2 2 4.
x1 = v(K(a/1)), where K<1> T T T (4.7)

(see, e.g., [37], Theorem 3.2). If F = K(a;/1) is a limit-periodic CF satisfying
(4.3), then for the nth tail F™ of F, we have

lim o(F™) = v(K(a/1)) = v(F) = 21. (4.8)

(see, e.g., [37], pp. 113-114). With F = K(a;/1) and {T,(F,w)} defined by
(1.1e) and with generating sequence {t5 (w)} given by

(47 .
' (w) == w, tf(w)::ljw, i=1,2,3,..., (4.9)

we obtain (see (1.38))
v(F) = T (Fo(F™)), n=1,273,.... (4.10)

Equations (4.8) and (4.10) provide motivation for considering MCFs K (a;, 1, w;)
with converging factors

w; =21 =v(K(a/l)), j=1,2,3,.... (4.11)

THEOREM 4.2. (Lemma 2.1 in [5]). If the elements a; of F = K(a;/1) satisfy
(4.3), then the critical tail sequence {—hy,(F)} (see (1.42)) satisfies

Tim (~ha(F)) =21 if0(F) = oo (4.120)
and
n,li—>nolo<_hn(F)) =2, =—(x1+1), ifv(F)eC. (4.12b)

We now consider families 7 = F(£2, W) of LFASs defined in the following:

4.1.1. K(aj,1,21), a; — a € C — (—o0,~1/4].
Let a, k, {a;}5_, and {p;}32,, satisfy

acC—(—00,-1/4], 0<kelZ,

3
0£a;€C, j=1,2,... k (4.13a)
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0<p; <l|aa, forj=kk+1,k+2,... (4.13b)
and
pipj—1 < pj—tl®2| — pjlanl, forj=k+1,k+2,k+3,...,  (413¢)

where x; and z, are defined by (4.6a). Let Q = {Q;} and W = {w;} be defined
by

Qo :=[(0,1,1,0)], (4.14q)
Q; = (F;,1,0,1) and w; =21, j=12,3,..., (4.14b)
where

lajl, j=1,2,...,k
Ei:={ [ueC: |ull+&)—zi(|lz2f* — p2)] + pjlul (4.14¢)
< pi-i1(lel? —p)], F=k+1.

We define a family F := F(Q, W) of LFASs by

F ==F( QW) = Fla, 1,k,{a;}}, {0;})
= [F = K(aj,1,21) : {a;} satisfies (4.3) and (4.15)
0#a;€E; j21]
Condition (4.13c) implies that

a
1+x

a € E; andhence z; = eU(F) forj>k+1.

If a # 0, the element set E;, for j > k + 1, in (4.14¢) is a closed, bounded,
convex subset of C with an axis of symmetry given by the line passing through the
ray argu = arg a. The boundary OF; of E; (for j > k + 1) is called a Cartesian
oval.

Ifa =0,thenz; =0,z = —1 and Ej; (for j > k + 1) in (4.14c) reduces to
the circular region

Bj=lueC: jul <pja(l-py)l, j2k+1 (4.16)

A sequence of value regions {V}, } with respect to F (€2, W) is given by

ant] n—k-1k-2,...,1,0. (4.17)

v ._{ weC: lu—z1|<pn|, n=kk+1,k+2,...,
" TasED

For nn > k, the value-region-defining conditions (2.5) can be verified by using the
VW Q-method described in Section 3.1. For 0 < n < k—1, conditions (2.5) follow
directly from (4.17). The following result was proven in [5], Theorems 2.2 and 2.4,
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THEOREM 4.3. Let F = F(Q, W) be a family of LFASs of the form (4.15) and
let F = K(aj,1,21) € F be given. Then: ~
(A) F =K(ay,1,21) and K(a;/1) converge to the same value v(F) € C =
C U [o0].
(B) If there exists an integer ko > k such that

o (F) + 21| > pros (4.18)
then
|hn(F)—i—£L‘1l>pn, n=ko+1,ko+2,ko+3,..., (4.19)

and F' = K(aj,1,2,) and K(a;/1) converge to the same finite value v(F') € C.
(C) Iflimj_ pj = 0and K(a;/1) converges to a finite value f, then there
exists an integer ko > k such that (4.18) holds. Hence f = v(F) € C.

The results in our next theorem were proven in [5], Theorems 3.1 and 4.1.
THEOREM 44. Let F = F(O, W) = F(a, 1,k, {a;}¥, {p;}3°) be a family of

LFASs (4.15) and let F' = K(a;, 1,21) € F be given. Then:
(A) Ifthere exists an integer ko > k such that

|h’ko(F) +5E1| > Py (i-a ’_h’ko(F) ¢ Vko)a (4'20)
then F converges to a finite value v(F') € C and, foralln > ko + 1,
[(F) — va(F)]

< pn IT5=1 la;(F)]
= | Bn=1(F) |2 hn(F) + 21|(|ha(F) + 21| — pn) (4.21)

_ Pr) i (F)|
|7 (F) + 21 |[(| A (F) + 21| — pn)

(B) IfK(a;/1) convergesto afinite value v(K (a;/1)) and iflim;_. p; = 0,
then there exists an integer ko > k such that (4.20) holds and hence (4.21) holds
Jorn > ko+1:

(C) Let {p;} satisfy the following additional conditions forall j > k + 1:

@ IfaeC—(—00,0]and o := arga, then

N (F) = vn1(F)].

pimiles] = pilan < \/lal cos(a/2), (4:220)

1 , )
Pj—1 < 5 Cos (%) + Re (z17%/?) = Re (g/a, + -}e"a/z) . (4.22b)

and
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(b) If—% <a<O0, then

1 / 1 1
(pj—1 + |z )(|22| = ps) < 7 and  pj-1 < \/a tp=atbs. (423)
If there exists an integer ko > k such that (4.20) holds, then the truncation error
bound in (4.21) is the best bound Bn(F, F) for v, (F') with respect to F for n >
ko + 1.

Proof. (A). We make use of Theorem 2.6 with w,, = z;. Condition (4.20)
implies that —hg(F) ¢ Vi,. Therefore since Ty, (F, —hg,(F)) = oo, the set
Ty, (F, Vi,) is aclosed, bounded circular disk. Hence the nestedness of the sequence
{Tn(F, V) }go implies that T5,(F, V) is a closed, bounded disk for all n > ko.
By Theorem 4.1, F' converges to a finite value v(F'). Assertion (4.21) is then an
immediate consequence of Theorem 2.6(A).

(B): If K (a;/1) converges to a finite value v(K (a;/1)), it follows from Lemma
4.2 that

lim hn(F) = —z2 =21 + L.

n—o0

Thus if im;_, p; = O, there exists an integer ko > k such that (4.20) holds, and
hence by (A), (4.21) holds for n > ko + 1.

(C): It was shown in [4], Theorem 3.1. that, subject to the additional conditions
(4.22) and/or (4.23),

Un(F)=Vap=uelC: [u/<p), n=kk+1L,k+2,.... (424)
Now suppose a. # 0. Then a € E, for alln > ko + 1 and so
Bl = —2 e Up(F), forn=ko+1,ko+2ko+3,.... (4.25)
1+

Hence assertion (C) follows from Theorem 2.6(B) since (4.25) implies condition
(a) of Theorem 2.5. On the other hand, if a = 0, then assertion (C) follows from
Theorem 2.6(B), since condition (b) of Theorem 2.5 holds. Q.E.D.

REMARK . If V,, satisfies (4.24) for n > k, then the V;, defined by (4.17), for
0 <n <k —1, also satisfies

Vi = c(Un(F)), 0<n<k-—L. (4.26)

We state as a corollary of Theorem 4.4 the result obtained when the parameter
a = 0 and the element sets E; are circular disks given by (4.16).

THEOREM 4.5. Let F = F(Q, W) = F(0,1,k,{a;}%, {p;}5°) be a family of
LFASs (4.15), with a = 0. Let F = K(a;,1,0) € F be given. Let {p;}32y, satisfy

1
0<pi=s3, j=kk+1LEk+2,.... (4.27)
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Then: (A) If there exists an integer ko > k such that

oo (F)] > Py (i s higo(F) € Vi), (4.28)

then F converges to a finite value v(F) € C and, for all n > ko + 1, the best
truncation error bound for vy, (F') with respect to F is given by

B PP (PP = ) 429)
—_—n Y —uv. .

(B) If K(a;/1) converges to a finite value v(K(a;/1)) = v(F) and if
lim;_, p; = O, then there exists an integer ko > k such that (4.28) holds and
hence (4.29) holds for alln > ko + 1.

/Bn(F,]:) =

REMARK . Corollary 4.1 is an improvement of [3, Theorem 3.2].

Proof. Itfollows froma = x; = 0,2 = —1 and (4.27) that conditions (4.13b,c)
and (4.23) hold. The corollary is therefore an immediate consequence of Theorem
44. Q.E.D.

4.12. CFs K(aj/1) and MCFs K (a;,1,w;) with lim;_,, a; = oo.

We conclude this section by stating a result (Theorem 4.6) for CFs K (a;/1) and
MCFs K(aj;, 1, w;) for which

lim a; = 00. (430)

j—)OO

A proof of this result can be found in [24] (see, also [23]). Use is made of the
following terminology.

: 1
P,:=[ueC: |ul —Re(ue™) < —2-(:032 al, for-% <a<3. (431)
P, is a region bounded by a parabola 8P, with focus at the origin u = 0, axis of
symmetry along the ray argu = 2q, and 9P, passes through v = —1/4. For a
sequence {cy, } and p satisfying

Cn€C7 lan—llsu‘l‘cnl, O<p<|1+Cn|,

forallm =1,2,3,..., (4.32a)
we define Ey,({c;}, p), forn > 1, by
E.({cityp) = [u e C:ju(l + ér) — en—1(|1 2_p
(e =W Cilull +em) ~cont(lt P =Dt

plul < p(11+ eal? — P,
The boundary 0F,({c;}, p) is a Cartesian oval (see remark following (4.15)).
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THEOREM 4.6. Let «, p and R satisfy

—g <a<g and 0 < R < pcosa. (4.33)
Let G = K (a;/1) be a CF whose elements a; satisfy the conditions (4.30),
a; € Po, i=1273,..., (434)

and the limit points of {a;+1 — a;} all lie in the disk

D(e, p,R) == [u € C: |u—2p%e?* <2R]. (4.35)
Then: (A) G = K (a;/1) converges to a value

v(G) = lim v(G) € C =CuU[x)] (4.36)

(B) Let F = K(aj, 1,w;) be the MCF whose converging factors w; are given

by
/ 1 1
Wy = aj+1—|—z—§, j=12,3,..., (Re,/ >0). (4.37)

Ifv(G) € C, then

. |v(G) —vn(F)| _
AL 56 Zo @) | =

and hence v(G) = v(F) = limp_,00 1p(F) € C
©) Ifv(G) e Cand

am € Ep,({w;},p) and p<|l4+wp|, form=1,273,..,

0 (4.38)

then

& |ajl
v F) —v,(F)| £2 ”———————, n=1273.... 4.39

4.2. LIMIT k-PERIOD CFS K(1/b;) AND MCFS K (1,b;;wj).

In this section we consider best truncation error bounds for continued fractions

o (1 1 1 1
}:{1 (bj) by +bt+bst--- (4:40)
and modified continued fractions K (1, b;; w;) whose elements b; satisfy a limit
4-periodic condition lim,, o, b, = 00 Of liMy—o0 banti = B; where 1 < 4 < 4,
The results in this section are restricted to the case in which |b,| > 2 for all
sufficiently large n. This condition ensures that F' = K (1/b;) converges to v(F)
in the extended complex plane (Theorem 4.35 in [37]).
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4.2.1. K(1/b;), b; — oo,

Let &£ > 0 be a given non-negative integer; let {b; }5?:1 be a given sequence of
complex numbers; and let {p, }5° ;. be a sequence of positive numbers such that

nlLIIolopn:O and p, + >2, forn=k+1,k+2,.... (441

Pn—1
Let W := {0} and let 2 = {Q;} be defined by

Q;:=(1,E;,0,1), j=123,..., (4.42)

bil, 7=12,....k

Ej = 1 (443)
[ueC: |u|2pj+———], jzk+1.
Pi-1
We define a family F of LFASs by
F o= ]:(Q’ W) = ]:(17 00, k, {b]}llc’ {PJ}?)
(4.44)

= [F: K (1,;,0) : b; € E; foerl].
j=1

We recall that K22, (1/b;) = K32, (1, b5,0). A sequence of value regions {V;,}
with respect to F (€2, W) is given by
w: lul<pn), n=kk+1,k+2,...,
Vi, = ) B (4.45
n { iy n=k—1Lk—2,...,1,0, )
THEOREM 4.7. (Theorem 2.2 in [7]). If the elements b; of ' = K(1/b;) satisfy
limy, .0 bj = 00, then for the critical tail sequence {h,(F)} we have

Tim hn(F) =0 ifo(F) = oo (4.46)
and
Jim ho(F) =00 ifv(F) # 0. (4.47)

The following result is subsequently used.

THEOREM 4.8. (Theorem 3.1 in [7]). Let F = F(Q, W) be a family of LFASs of
the form (4.44) and let F = K (1/b;) € F be given. Then:
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(A)  If there exists an integer ko > k such that |hg,(F)| > pr,, then
[ (F)| > pn, m=koko+1,..., (4.48)
and
K(1/bj) converges to a finite value v(F). (4.49)

(B) IfF = K(1/b;) convergestoafinite value v(F'), then there existsako > k
such that |hg,(F)| > pr,, and hence the assertions of (A) hold and v(F') € C.

The following truncation error bounds were obtained in Theorems 3.2 and 4.2
in [7].

THEOREM 4.9. Let F = (F(Q,W)) = F(1, 00, k, {b;}%, {p;}5°) be a family of
LFASs (4.44) and let F = K(1/b;) € F be given. Then
(A) If there exists an integer ko > k such that

| ko (F} > Pk, (4.50)

then F converges to a finite value v(F) € C and, foralln > ko + 1

— pn
() =l P) < T B (T = )

_ Palta(F) — vn s (F)|
(hnlFY = )

(B) If K(1/b;) converges to a finite value v(F'), then there exists a ko > k
such that |hg,(F')| > pk, and hence (4.51) holds for n > ko + 1.

(C) If(4.50) holds for some integer ko > k, then, forn > ko+1, the truncation
error bound in (4.51) is the best bound (3, (F, F) for v,(F) with respect to F.

(4.51)

4.2.2. K(l,bj,’w]'), b4j_|_i — ﬂ, asy — 00 and Wonti = 1/@;_;_1, 1= 0, 1,2,3,
and m > 0.

We now consider CFs K (1/b;) and MCFs K (1, b;, w;) for which the elements b;
are complex numbers that satisfy limit 4-periodic properties.
Let k& > 0 be a given non-negative integer; let {3;}} satisfy

ﬂ2:ﬁ4200, 51)/63 G[UEC: IU| >2]; (452)
and let {p; }3° be a sequence of positive numbers satisfying

lim p; =0, (4.53)

j-—)OO
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Pajri < , fori=0,2 and 4j+1i>k,

Bit1
and
. 120,
_ Iﬁz! < Pajyi < |ﬁz| Pajiti—1 ’
11+ |Bil pajti—1 1+ |Bilpagi-1
fort=1,3and 45 +i > k.
Let {E;} be a sequence of subsets of C defined by

EjZ:[bj], j:1,2,...,k,

b+

E4j+i = beC:

1
f 2 Pajyi+ ] ;
Paj+i-1

i1
i=0,2, 4 +ik+1
[ B;

1 —(|8:|paj4i-1)?

13512 pajti1
1 — (|8ilpaji-1)? |’
1=1,3 4j+i>k+1.
Then Q = {Q;} is defined by

< —pajgit

E4j+i:: beC: '

Q; = (1,E;,0,1), j=1,23,....
It follows from (4.57) and (4.58) that if
bjGEj, i=k+1L,k+2,k+3,...,
then
Hm bgjir =B, lim byjys = s,
j—oo j—o0
lim b4jy2 = lim bgjq = oo.
j—00 j—o0
We define a sequence of converging factors W = {w;}, for j = 0,1,2
0, i=13,
= l/ﬂla 1= 43
=2
A family 7 of LFASs is then defined by

F =FQW) = F(1, {8}k {6}, {0, 12°)

= [F = K(1,bj,w;) : bj € E; forj >1].

Wam+4 -= lim
300 bagyip

3o .

263

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

.- by

(4.62)

(4.63)
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The generating sequence {t}fP (w)} for F' € F is defined by

1 ,

With {7, (F,w)} defined by (1.1e) we have

Un(F) = To(F,wy), n=12,3,... (4.65)
and
o(F) := lim To(F,wn) = To(F, v(F™)). (4.66)

REMARKS . (1) Our choice of {w; } given by (4.62) is motivated by (1.38), (4.61)
and

lim v(FU™t9) = lim

mM—00 m—oo b4m+i+1

m>0, i=0,1,2,3.

= Wam+ti,
i (4.67)

(2) Condition (4.54) ensures O ¢ Vi;4; and hence Eyjii41 # @, fori =0,2
and 45 + i > k. Condition (4.55) ensures that 3; € Eyjy, fori=1,3,4j +i >k,
andthat E;NueC: |u| <2)=0forj=kk+1,...

(3)If K(1/b;) is a continued fraction satisfying (4.61) and |b;| > 2for j > k for
some positive integer k, then there exists a sequence of positive numbers { pj};-_i_o
satisfying (4.53), (4.54) and (4.55) such that

K(la bjawj) € -F(la {ﬁ]}‘lt’ k, {bJ}]lca {pJ lé:.o)
where {w;}32, is defined by (4.62).
THEOREM 4.10 (Lemma 2.2 in [8]). If the elements b; of F = K(1/b;) satisfy

(4.61), |bj| > 2 for j > k for some positive integer k, and b; # Oforj = 1,2,3,.. .,
then the critical tail sequence {—hy,(F)} satisfies

0, i=13
lim hgnyi(F) = { -1/35, =2 ifv(F) = o0 (4.68)
e _l/ﬁla = 47
and
S hanii(F) = —Bi, if o(F) # oo. (4.69)

We use the following result to obtain truncation error bounds.
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THEOREM 4.11 (Theorem 3.2 in [8]). Let F = F(2, W) be a family of LFASs of
the form (4.63) and let F = K (1,b;;w;) € F be given. Then:
(A) If there exists an integer ko > k such that

i (F) + > P (4.70)

Bkomod 4)+1

then

ho(F) + > pn forn=koko+1,..., (4.71)

ﬂ(n mod4)+1

and K(1/b;) and K(1,b;,w;) converge to the same finite value v(F) € C.
(B) If K(1/b;) converges to a finite value f, then there exists a ko > k such
that (4.70) holds. Hence f = v(F) € C.

The following theorem was proven in Theorems 3.3 and 4.1 in [8].

THEOREM 4.12. Let F = (F(Q, W) = F(L {B:}}, k, {b;}¥, {p; %) be a fam-
ily of LFASs (4.63) and let F = K(1,bj,w;) € F be given. Then.

(A)  If there exists an integer ko > k such that (4.70) holds, then K (1/b;)
and F' both converge to the same finite value v(F) € C and for n > kg

Pn
[(F) —un(F)] <4 B 1(F)Plwn + ha(F)|(lwn + Ba(F)] = pa)

4.72)
_ PalPn(F)||on(F) — va_1(F)]
[, + he(F)|(Jwn + B (F)| = pr)”

(B) If K(1/b;) converges to a finite value v(K(1/b;)), then there exists a
ko > k such that (4.70) holds and hence (4.72) holds for n > k.

(C)  Ifthere exists an integer ko > k such that (4.70) holds, then the truncation
error bound in (4.72) is the best bound B3,(F, F) for v, (F) with respect to F for
n > ko.

5. Asymptotically Best Truncation Error Bounds for LFASs

An approach to truncation error estimates for limit periodic LFT algorithms, differ-
ing from the one treated in detail in this article, was explored by one of the authors
[59]. Earlier work pointing in the direction can be found in [63], 571 and [60]. An
LFT algorithm is the special case of an LFAS (see (1.1a)) where wj =0,j>1.

One starts with formulas based on the invariance of the cross ratio under £.fit.
(see [56]), that is,

(—sw) o) - (=0) (2=5). o
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In (5.1) we replace S by T;, and set
—2 = hy 1= =T 1(0). (5.2)

This leads to the simplification

Tn(un) — Tn('Un) _ fUn —Up Wy, + by
= . (5.3)

Tn(un) - Tn('wn) Up — Wn Un + Iy,

Making suitable substitutions for u,, v,, wy, One arrives at
Tn(0) ~ Tugm(0) _ T (0) (—anmhn) 5.4)
Tu(0) = Tn-1(0)  —an \T®(0) + by

and
Tk+1(0) — Tx(0) _ k41 ( ar — Crhp ) (5.5)
Tr(0) = To—1(0) ~ ar \ak41 +betr1he/ '

Here {7} is defined in terms of {t,(w)} as in (1.1b,¢,d) except that we have
dropped the F' superscript. T,gf ) is defined as

T (@) = tpy1 0+ © toym(W).
Combining (5.4) and (5.5) one obtains

T (0)(@n+1 + bnti1hn)(aobs — boai) o
(TS(0) + P boby

ﬁ( ax — crhk )

iy \Gkt1 + bet1he

Tn+m(0) - Tn(o) =
(5.6)

This formula is valid for general {7}, } provided the denominator of the right side
of (5.6) does not vanish.

The formula (5.6) becomes particularly useful for limit periodic LFT algorithms.
From now on we shall restrict ourselves to such sequences {77, }.

Set

a+ cw

Jir&tn(w) =:t(w) =: DT dn’ (5.7
where we shall assume that
a:= lim a,, b:= lim b,, c:= lim ¢,, d:= lim d,, (5.8)
n—oo N—o0 1n— 00 —r00

a,b,c,d € C. We exclude the cases where t(w) is the identity or parabolic or
elliptic. Then, if ¢(w) is not singular, it has exactly two distinct fixed points x; and
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x,. If t(w) is singular, we shall denote by z; its fixed point and by z; the point
—a/b for which t(w) is not defined. We also shall assume that both z; and z, are
finite. Next, we introduce

P d.’E]‘i—b
Tdx,+b

(5.9)

and choose the subscripts so that |r| < 1. This can be done since ¢(w) is assumed
not to be elliptic.
It can be shown (the proof is quite intricate) that

lim hy, = —21, (5.10)

n—>o
provided t,,(x2) # x5 for all n > ny. It further is true that

Gk okhe (5.11)
k—oo Qg1 + bpg1he

and that there exists a constant M such that

(n)
l I (0) (5.12)

T (0) + by

for all m > O and all n > ny.

In general we only know that such an M exists. However if more information
is available about the sequence {t,}, then an explicit bound on (5.12) may be
obtainable. This is illustrated by our discussion of K(a, /1) later in this section.
The remaining quantities in (5.6) can be easily calculated on the basis of the available
information.

For any 7’ such that

Il <] <1
and n > n, > max(no,n,), the formula (5.6) can be recast into the inequality
[T +m(0) — TH(0)] < K(r)|7'|™. (5.13)

In general lim,_,,. K (') = co; but if

o0
Z A, < 00,
n=1

where

A, :=max(la — an|, [0 — bpl, lc — ¢, |d — dn)), (5.14)
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then the stronger statement
[ Tntm(0) — Tn(0)] < K(r)|r|" (5.15)
is valid. Here K(r) < oo.

P
For pure periodic sequences {7, } the truncation error is known to be
14 Wy P
| T (0) — wa| = r"w—?(Tn (0) — wy)|. (5.16)

It follows that the estimates (5.13) and (5.15) can be said to be asymptotically best.
The formula

f—Talza) [~ ha
—T.(00  f® hn + 22

is an easy consequence of (5.3). Here we have set

(5.17)

fi=lim T,(0), f™:= lim T{7.(0).

(5.17) was initially proved for K (a,/1) in [61]. Since f™ — x, — 0, it follows
from (5.17) that {T,,(z2)} converges to f much faster than {77,(0)} does.

Further analysis shows that K (') depends on the behavior of {A,}, while,
clearly, r is completely determined by a, b, ¢, w in ¢(w). It can also be shown (the
argument is delicate) that f(™) — x, is roughly proportional to A,,.

If t(w) is singular, then r = O and it follows that the convergence of {7,,(0)}
is extremely fast. For K(a,/1), with a, — O, this was first observed in [3]. For
Schur algorithms with ~y,, — e, see [57].

For the special case K (an /1), which was analyzed in [63], (5.6) becomes

0)(ani1 + hn)(—a
Spam(0) — Sn(0) = e )((n)“ )(=a1) 1 11 ( - ) (5.18)
Sm”(0) + hn, k=1 “k+1+ k
For r we obtain
T ) _ %
ek 5.19
o+l - oz ( )
Using the fact that
b —1 o apy
hi ak—1 0k + hx—1

we can show that (5.18) is equivalent to (3.3) in [63].
If we assume that foralln > 1 and some 8,0 < 8 < 1

an € P(a,8) = [w: |w| —Rewe™2* < (cos a)*(1 — 6%)/2] (5.20)
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where 2a = arg(lim a,,), then we can conclude that
Re (e75(™(0)) > (cosa)(1 — 6)/2. (5.21)

Hence an explicit estimate for M in (5.12) can be obtained, since £, can be com-
puted from the given data.

Using a mixture of methods, which are brought together in [65], one can establish
the following explicit results for K(a,/1):

(A) If |am,| < min(1/6,an~?), a > 0, p > 0, m > n > ny, then there exist
constants K; > 0, My > Osuch that forn > n;, k>0

M\ Pt3)
ik — ful < K (—‘) .

n
(B) If limay, = a € C — (—o00, —1/4], then for every q satisfying

~14++v1+4a
t1+vI+4a

<g<l1

there exists a Ky = K»(q,n2) > Osuch that forn > nz, k > 0
|fn—H’c - fn' < Kaq™.

(C)Ifan, € P(a, ) (see (5.20)) for some 0 < 4 < 1 and a,, = O(n®) for some
8,0 < 8 < 1, then there exist K3 > 0, M3 > 0, E5 > 0 and Lz > 1 such that for
n>n3, k>0

K
a-ﬁ@%, for B = 1,
Ifn+k "fnl <
LTIEF’ forO0< g < 1.

(D) For the S-fraction K(a,2/1) with a,, > 0, |arg 2| < =, let a,, = O(n%),
0 < a £ 2. Then there exist constants K3 > 0, My > 0, E4 > 0Oand Ly > 1 such
thatforn > ng, k>0

|fatk(2) — fa(2)] <

6 =——, forO0<a<?2.
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