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Part l 

This paper describes the architecture of a cellular processor capable of directly 
and efficiently executing reduction languages as defined by Backus. The 
processor consists of two interconnected networks of microprocessors, one 
of which is a linear array of identical cells, and the other a tree-structured 
network of identical cells. Both kinds of cells have modest processing and 
storage requirements. The processor directly interprets a high-level language, 
and its eff• operation is not restricted to any special class of problems. 
Memory space permitting, the processor accommodates the unbounded 
parallelism allowed by reduction languages in any single user program; 
it is also able to execute many user programs simultaneously. 

KEY WORDS: Reduction languages; functional programming languages; 
network of microprocessors; cellular computer; parallel processing; high- 
level language-processor architecture; language-directed computer ar- 
chitecture. 

1. I N T R O D U C T I O N  

Though  microelect ronics  is spectacular ly  successful in small-scale and simple 
appl ica t ions ,  so far  it has not  h a d  much  impac t  on the archi tecture  o f  
genera l -purpose  computers .  This technology  can be used to cons t ruc t  systems 
with large amount s  o f  ma in  m e m o r y  and  d is t r ibuted  process ing capabil i t ies ,  
bo th  o f  which resul t  in an increase in pe r fo rmance  o f  compute r  systems, and  
such app roaches  are  being pursued.  However ,  with regard  to  bui ld ing 
increased  amount s  o f  logic into a C P U  to ob ta in  a p ropo r t i ona t e  increase in 
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performance, all known methods, such as building special functions into the 
hardware, pipelining, or multiprocessing, yield rapidly diminishing returns. 

It has been recognized by many that the most promising avenue toward 
achieving high performance is exploiting the parallelism inherent in user 
programs. Many approaches have been proposed, the best known of which 
are associative and array processors. They have been discussed extensively 
in the literature, C17~ and a few machines have actually been built along 
these lines. On the basis of the experience accumulated with the use of such 
machilnes, there is now general agreement that they achieve high performance 
only in a narrow range of applications, usually at the expense of programma- 
bility. 

For a long time Dennis 16~ has argued that increasing performance by 
exploiting parallelism must go hand in hand with making the programming 
of such machines easier. To achieve this goal, his group at MIT developed 
a programming language, called a data flow language, ~7~ which is intended 
to express parallelism in a convenient manner. Several attempts have been 
made to construct machines that efficiently implement this language or 
similar languages. II,~,sl 

Although the aims of the work reported in this paper are similar to 
those of the data flow approach, our starting point here is the class of re- 
duction languages. Reduction languages, described recently by Backus, ~2,~ 
are a class of high-level programming languages with several unique and 
attractive properties. Among currently used programming languages, they 
can be likened to APL or LISP, but the property of greatest interest to us 
is that they are capable of expressing parallelism in a natural fashion, not 
requiring explicit instructions from the programmer to initiate and terminate 
execution paths. 

This paper outlines the architecture of a processor capable of directly 
executing reduction languages. After an overview of reduction languages 
in Sec. 2, Sec. 3 and 4 provide a description of the processor, and Sec. 5 
offers a brief evaluation of it. (In Sec. 3 and 4, the behavior of a two-di- 
mensional arrangement of processing elements is described along a third 
dimension, time. Because of the interdependencies among different parts of 
the description, frequent cross-references were unavoidable, and reading 
certain sections out of order may be advisable.) 

2. R E D U C T I O N  L A N G U A G E S  

In this section we give a brief and very informal introduction to reduction 
languages, to make the paper self-contained. However, one cannot fully 
appreciate these languages without reading Backus.(3) We use the terminology 



A Network of Microprocessors to Execute Reduction Languages, Part ! 351 

and notation of that paper, and deviate from it only when it is absolutely 
necessary. 

Any program written in a reduction language contains a few syntactic 
markers, and so-called atomic symbols. The latter may serve as data items, 
primitive operators, or names of defined functions. Only two kinds of 
composite expressions are allowed. A sequence of length n, n ~> 0, is denoted 
by (al, a2,..., an) if n >~ 1 and by ;~ otherwise, where ai (called the ith 
element of the sequence) is an arbitrary well-formed expression. An appli- 
cation is denoted by ~a, b), where a (called the operator) and b (called the 
operand) are again well-formed expressions. 

Of these two forms of composite expressions only applications specify 
computations. Since the program text at any time may contain many appli- 
cations, possibly nested, sequencing among them is specified (at least partially) 
by requiring that only innermost applications can be executed. There is no 
sequencing requirement among innermost applications--they can be executed 
in any order. The process of executing an innermost application is called 
a reduction, and so we often refer to an innermost application as a reducible 
application (RA). 

A reduction results in replacing an innermost application with the result 
expression, which may, in turn, contain further applications. The reduction 
rules relevant to innermost applications can be summarized as follows. If  
the operator is an atomic symbol, it might be a primitive operator (in which 
case its effect is specified by the language definition), or it might be the 
name of a defined function, i.e., of some well-formed expression containing 
no applications (in which case the atomic symbol is replaced by that ex- 
pression). I f  the operator is a sequence, it is interpreted as a composite 
operator, composed of the elements of the sequence (Backus describes two 
possible alternatives: regular and meta composition). The computation comes 
to a halt when there are no more reducible applications left, and the program 
text so produced is tile result of the computation, t f  the result of a reduction 
is undefined, the symbol _1_ is used to denote it, which is neither a syntactic 
marker nor an atomic symbol, but a special expression. 

The following example should illustrate most of these concepts. Assume 
that IP (inner product) is a defined operator, representing IP = (+ ,  (AA, 
*), TR), whereas AA (apply to all), TR (transpose), -ff (addition), and 
* (multiplication) are primitive operators of a reduction language. Suppose 
the initial program text is 

(IV, ((1, 2, 3, 4), (11, 12. 13, 14))) 

First IP is replaced by its definition, resulting in 

( ( + ,  (AA, *), TR), ((1, 2, 3, 4), (11, 12, 13, 14))) 



352 Mag6 

Since the operator now is a composite one, and the interpreter can recognize 
that it is a regular composition of three expressions, after a few reductions 
we get the following program text: 

<+ ,  ((AA, *), <TR, ((1, 2, 3, 4), (11, 12, 13, 14))))) 

Now TR is the operator of  the only reducible application, and applying TR 
to the two sequences of its operand leads to 

<+,  <(AA, *), ((1, 11), (2, 12), (3, 13), (4, 14)))) 

The only reducible application has a composite operator again, but this 
time it is a meta composition, resulting in 

(-1-, (<*, (1, 11)>, <*, (2, 12)), (*, (3, 13)), <*, (4, 14)))) 

Now we have four reducible applications, and they can be reduced in any 
order, but the addition operator cannot be applied until all multiplications 
are complete, so at some point we must have the program text 

<-k, (11, 24, 39, 56)) 

which finally reduces to the number 130. 

3. C O M P U T A T I O N A L  R E Q U I R E M E N T S  OF R E D U C T I O N S  

Before we describe how the processor operates, we should explain 
what it is supposed to do, That, however, can be done only after describing 
how the syntactic and semantic aspects of reduction languages are repre- 
sented in the processor, because this representation determines, to a large 
extent, the capabilities the processor must have to act as an interpreter 
for reduction languages. 

3.1. Representation of Syntactic Aspects 

Expressions are represented as linear strings of symbols, derived from 
the representation described in Sec. 2 as follows: since any well-formed 
expression of a reduction language is obtained by nesting sequences and 
applications in each other, we can associate a nesting level with each symbol 
of an expression; we store the nesting level with every symbol, and then 
eliminate all closing brackets--) and ) - - f rom the source text, for they have 
become superfluous. This representation corresponds to the symbol sequence 
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obtained by a preorder traversal of the natural tree representation of the 
original source text, in whicti the root of each nontrivial subtree is labeled 
with ( or (. 

The internal representation of the processor is finally obtained by placing 
pairs of symbols, each consisting of a program text symbol and its nesting 
level, into a linear array of identical hardware cells, one pair per cell, pre- 
serving the order of the program text symbols from left to right. As a result 
of placing at most one program text symbol into a cell, the need for explicit 
separators between symbols vanishes, because now the cell boundaries 
perform this function. We always assume that there is a sufficient number 
of cells available to hold our symbols; if there are more than the required 
number of cells, thensome of them will be left empty. From the point of 
view of the representation, the number and location of these empty cells 
relative to the symbols of the program text are of no consequence, and the 
result of a reduction is not influenced by the positions of the empty cells. 

As an example, consider one of the intermediate expressions that 
appeared in the example given in Sect. 2: 

( §  ((AA, *), (TR, ((1, 2, 3, 4), (11, 12, 13, 14))))) 

The tree representation of this expression is shown in Fig. 1, which also 
shows the (nesting) level number of every symbol. Fig. 2 shows the internal 
representation of the same expression. 

A : appllcatlon 

Z Z 
t 2 13 ~ {1 E2 13 {,W 

Fig. 1. An expression in tree representation. 
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Fig. 2. An expression in internal representation. 

3.2. Representation of the Semantic Aspects of Reducible 
Applications 

The semantics of a reduction language is determined by a set of rules 
prescribing how all the possible reductions should be performed. These 
include rules specifying the effect of each primitive operator, and rules to 
decompose composite (regular and meta) operators. 

By examining what forms these rules take when using our chosen internal 
representation for expressions, we can see what kinds of computations the 
processor will have to be able to perform. 

3.2.1. Primitive Operators 

A reduction language may have a large number of primitives, but the 
computational requirements of all of them can be classified into three easily 
distinguishable categories. They will be explained with the help of the 
following three operatorsJ3J 

3.2.1.1. AL (Apply to Left Element). AL is a meta operator, and its 
effect is the following: 

~(AL, f),  (yl, y2,..., yn)) =)  

((j~ yl) ,  y2 ..... yn), 
�9 . ,  , �9 

and if the operand is not in the required forml the result is _[_. Here the 
italicized symbols are metalinguistic variables, and they stand for arbitrary 
constant expressions, i.e., expressions cordaining no applications. The arrow 
= )  is used to denote that reducing the expression on the left yields the 
expression on the right. 

Fig. 3 shows the effect of (AL, (HEAD, TAIL)) on a particular three- 
element sequence using tree representation. As the definition prescribes it, 
(HEAD, TAIL) is applied to the leftmost element of the sequence, and the 
rest of the sequence is left unchanged. 

Fig. 4 depicts the same reduction using the internal representation. 
Examination of the cells reveals that one of the following things has happened 
to each one of the symbol-nesting level pairs: the symbol only is rewritten 
(as in cell 2), the level number only is rewritten (as in cell 16), both symbol 
and level number are rewritten(as in cell 5), or no change (as in cells 1 and 14). 
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before 
redvct lon 

A 3 3 

HEAD T A I L  A B C D E F G 

after 
reduction 

HEAD TAIL A B G 

Fig. 3. A reduction involving AL. The program text is shown in tree 
representation first before, and then after the reduction. 

b e f o r e  r e 4 u c t i o n  

< ( AL 

O ] 2 

( HEAD TAIL 

2 3 3 

Ic---TTT; : c b E 

3 3 
 :l~ 

al ter  reductiorl 

{ < ( HEAg~ TA tL { A B C ( D E [ F G 

0 I 2 3 ] 3 2 3 3 3 1 2 2 I 2 2 

I 2 3 4 5 6 7 8 v I 0  [[ [2 13 I4 15 16 !7  IB 19 2 0  

Fig. 4. A reduction involving AL. The program text is shown in internal 
representation first before, and then after the reduction. 
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The processing requirements of this primitive are called Type A re- 
quirements, and they are characterized by the following: (1) the result 
expression can be produced in the cells that held the original reducible 
application, i.e., there is no need for additional cells; (2) the processing 
activities that are to be applied to any symbol of the original RA are known 
before execution begins, and if the prescription for these activities is placed 
into the cells before execution begins, they can be performed independently 
of each other, in any order (possibly simultaneously), and consequently 
there is no need for any communication between these cells during execution. 
(This conclusion is independent of the expressions that replace the meta- 
linguistic variables of the definition, because the expressions f and yl are 
left intact, and the only change to expressions y2 through yn is their being 
moved up the tree by one level.) 

3.2.1.2. AND. AND is a regular operator, and its effect is defined 
as follows: 

(AND, (x, y)> => z 

where x and y are expected to be atomic symbols, either T (true) or F (false). 
If both x and y have the value T, then the result z is T; if both of them 
have Boolean values, but at least one of them is F, then the result is F, and 
in every other case the result is the undefined expression (_1_). 

Fig. 5 shows an example of the application of AND to (T,/7) in internal 
representation. (Because of the simplicity of this example, we skip the tree 
representation.) Although the processing requirements of this primitive 
include some Type A processing (e.g., the symbol AND and its level number 
can be erased irrespective of the operand expression), there are some new 
elements also. They are included in the following, which we call Type B 
requirements: (1) the result expression can be produced in the cells that 

b e f o r e  reduction 

< 

o A ~ I T 
2 

F 
2 

af ter  reduction 

2 3 4 5 6 7 8 9 I0 

Fig. 5. A reduction involving AND in internal representation. 



A Network  of Microprocessors to Execute Reduction Languages, Part ! 357 

held the original reducible application, i.e., there is no need for additional 
cells; (2) at least some of the processing activities are data dependent, 
and as a consequence, there is a need for communication at least among 
some of the cells during execution, and also there are certain timing constraints. 
(In our example, the two components of the operand determine whether 
to produce F or T as the result, and this result cannot be produced in cell 
2 before bringing together the contents of cells 8 and 11.) 

3.2.1.3. AA (Apply to All Elements). AA is a meta operator, and its 
effect is the following: 

((AA, f), (yl, y2,..., yn)) =)  

((f, yl) ,  (f ,  y2),..., {f, yn )) 

and if the operand is not in the required form, the result is _I_. Fig. 6 shows 
the effect of (AA, *) on a particular four-element sequence using tree 

0 

before  

reduct ion I 

A 3 

I I1 2 12 3 !3  "4 14 

0 
a f t e r  

r e d u c t i o n  l 

I I i 2 ]2 3 13 

~3 
14 

Fig. 6. A reduction involving A A  in tree representation. 
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b e f o r e  r e d u c t i c ~  

[ :  
/ 

~fter" r e d u c t i o n  
1 r  

I 2 3 4 

/ 
Y 

~f 

2 

Fig. 7. 

2 I 
3 

/ / 

/ 

5 9 I0 

/ 
/ 

/ 

i 
13 [4 15 16 17 18 19 20  2[ 22 23 24 

A reduction involving AA in internal representation. 

representation. The same reduction is depicted in Fig. 7 using internal 
representation. 

The processing requirements of this primitive are called Type C re- 
quirements, and they are characterized by the following property: the result 
expression cannot be produced in the cells that held the original reducible 
application, hence there is a need for additional cells to hold the result. 

Since the number of insertions, and the length of the expressions to be 
inserted are not generally known before execution begins, a complex re- 
arrangement of the whole RA may be necessary, the details of which must 
be worked out at runtime. For  example, with AA the number of insertions 
is n -- 1, where n is the length of the operand. In Fig. 7 there are three 
insertions, each indicated by an arrow, and each insertion contains the 
symbols ( a n d *  

It should be apparent that Type A processing requirements are a special 
case of Type B requirements, which, in turn, are a special case of Type C 
processing requirements. 

3.2.2. Defined Operators 

Whenever an atomic symbol for which a definition exists gets into the 
operator position of a reducible application, it must be replaced by its 
definitionJ 3) Since a nontrivial definition contains more than one symbol, 
replacing a defined symbol by its definition has Type C processing re- 
quirements. It  should be noted that definitions must exist before execution 
begins and cannot be created at runtime. 

3.2.3. Composit e Ope!ators 

When the operator Of a reducible application is composite (i.e., a se- 
quence), the way in which the evaluation proceeds depends on whether the 
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first element of the sequence is regular or meta. I f  the first element of the 
sequence is an atomic symbol, then whether it is regular or meta is part 
of  its definition. If  the first element of the sequence is a sequence, then it 
is meta if its first element is ~b, and otherwise it is regular. 

3.2.3.1. Regular Composition. If  the first element of a composite 
operator is regular, we decompose it with the help of the following rule, 
called regular composition(a): 

((cl ,  c2 ..... on), d)  = )  (c l ,  ((c2, c3,..., en), d)) 

This reduction rule reveals that the processing requirements of regular 
composition can be characterized as Type C, since we have to create two 
new symbols between cl and c2. 

3.2.3.2. Meta Composition. If  the first element of a composite operator 
is meta, it is decomposed with the help of the following rule, called meta 
composition(3): 

((cl ,  c2,..., cn), d)  = )  (c l ,  ((cl, c2 ..... cn), d)) 

Since cl (whatever expression it is) must be duplicated, the processing 
requirements are to be classified as Type C. (In fact, if cl happens to be 
a primitive meta operator, there is no need to go through this step: this is 
demonstrated in Fig. 3 and 6 with the meta operators AL and AA.) 

3.3. O r d e r  of EvMuat ion  

The definition of reduction languages allows the execution of reducible 
applications to take place in any order, owing to the so-called Church-Rosser 
property of these languages, m~ Since reducible applications are disjoint in 
our chosen internal representation, this representation allows them to be 
reduced simultaneously. This is because the outcome of the reduction is 
determined solely by the operator and operand expressions, and nothing 
from the rest of the program text can influence it. 

3.4. Locat ing Reducible Appl icat ions  

Before processing of reducible applications can take place, they must 
be located in the program text. This process is somewhat complicated by 
the fact that there is no bound on either the number of reducible applications 
that may exist simultaneously in the program text, or the length of  a reducible 
application. 
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An application symbol whose level number is i is the left end of a re- 
ducible application if 

1. it is the rightmost application symbol, or 

2. the next application symbol to its right has a level number less than 
or equal to i, or 

3. there exists a symbol with level number less than or equal to i 
between the application symbol and the next application symbol 
to its right. 

If  an application symbol with level number i is known to be the left 
end of a reducible application, then the entire application consists of the 
application symbol itself and the sequence of  contiguous symbols to its 
right whose level numbers are greater than i. 

4. D E S C R I P T I O N  OF PROCESSOR 

4.1. Interconnection Pattern of Cells 

Fig. 8 shows that the processor is a cellular network containing two 
kinds of cells interconnected in a highly regular manner. Cells of one kind 
form a linear array (they are indicated by rectangles in the diagram), and 
they normally hold the program text as described in Sec. 3. Cells of another 
kind form a full binary tree (they are indicated by triangles in the diagram), 
and they perform processing functions, act as a routing network, etc. The 
linear array of cells is referred to as L, and the tree network as T. Throughout 
this paper, the root cell of T is assumed to act as the I/O port of the processor 
(see Sec. 4.7). 

Since L holds the program text one symbol per cell, a network of 
practical size comprises a large number of cells. Because of this, we note 
here an important and very attractive property such networks have: the 
total number of cells in the network is a linear function of  the length of L. 
More precisely, if n is the height of  the tree of cells, then the length of  L 
is 2**n, and the number of cells in T is 2**n -- 1, so the total amount of 
hardware is almost exactly 2 * * n ( / +  t), where l and t represent the amounts 
of hardware built into a single cell of L and 7", respectively. (Here we ignore 
problems related to layout and interconnections; these issues will be 
discussed elsewhere.) 

4.2. The Partitioned Processor 

In Sec. 3.3 we noted that our internal representation allows all RA's 
to be reduced simultaneously. To guarantee that the execution of each RA 
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7: 

k_: 

Fig. 8. The pattern of interconnecting cells in the processor. 

can proceed independently, different RA's are processed in disjoint portions 
of  T. 

We describe a way of partitioning the cells of  T so that each RA "sees" 
a binary tree of processing elements above it, which then processes the RA 
as if the RA were alone in the processor. 

A single cell of T may participate in the (concurrent) processing of  
more than one RA. But we will show that at any time, any given cell of 
T must be involved in the processing of  at most four RA's, and consequently 
an arbitrary cell of T must contain at most four processing elements, each 
belonging to a different binary tree. 

Thus each cell of T contains four separate processing elements. As- 
signing these different processing elements of a cell of T to different RA's 
is called the partitioning of  that cell. The process and the result of parti- 
tioning all the cells of T, and constructing a binary tree of processing elements 
for each RA in the program text, is called a partitioning of the processor. 
(Partitioning of  the processor occurs repeatedly during the execution of a 
program, in accordance with the changing program text in L.) 

In this section we describe, with the help of a symbolic notation, what 
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the partitioned processor is like. In  Sec. 4.6.1 we present some of the details 
of  the process of  partitioning. 

At the core of the partitioning process is the execution of the algorithm 
of Sec. 3.4, done simultaneously for all applications. There are two steps 
in this process: 

1. locating left ends of applications (as described in Sec. 3.4) and 
subsequently dividing the processor into so-called areas; 

2. locating right ends of innermost applications (as described in Sec. 
3.4), and subsequently transforming some of the areas into so-called 
active areas. 

First we describe the processor as partitioned into areas. Assume that 
we start out with a representation of the processor as shown in Fig. 8. We 
modify it by erasing all connections shown in Fig. 8 (though we keep im- 
plicitly the relation represented by the erased connections), and place symbols 
of the reduction language program into cells of L. In this symbolic notation 
an area is a binary tree whose leaves are in cells of L and whose nodes which 
are not leaves are in cells of T. Each ( symbol has associated with it a distinct 
area. Moreover, the leftmost cell of L has a distinct area associated with it, 
whether or not it contains an ( symbol. 

To give a precise definition for areas, the following terminology is used. 
The index of a cell of L is an integer indicating its position in L from left 
to right. Let i(1) = 1, and let i(2),..., i(q) be the indices of all the cells of L 
(other than the leftmost one) holding the symbol < ,  with i(m) < i(n), 
whenever m < n. (The ( symbols in i(k -- 1) and i(k § 1) are sometimes 
called the left and right neighbors of that in i(k) for 2 < k < q, or 1 < k < q 
if i(1) does contain an (symbol . )  We say that a binary tree B is embedded 
in T and L if 

1. every leaf of B is contained in a cell of L (at most one such node 
being in any cell of L), 

2. every node of B that is not a leaf is contained in a cell of T (at 
most one such node being in any cell of T), 

3. if bl and b2 are nodes of B, and bl is the father of b2, then if t l  
(a cell of T) contains bl, and t2 (a cell of T or L) contains b2, 
then t l  is the father cell of  t2. 

Definition 1. Depending on the value of j, the jth area is a binary 
tree embedded in T and L such that 

for 1 < j  < q (1) the leaves of  the tree are in the cells of  L indexed from 
i(j) to i( j  q- 1) -- 1, 
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(2) the  top node (root) of the tree is in the lowest cell of  T 
which has both the L cells i(j) - -  1 and i(j § 1) as descen- 
dants ;  

for j = 1 (1) the leaves of  the tree are in the cells of  L indexed f rom 
i(1) to i(2) - -  1, 
(2) the top node (root) of the tree is i n  the root of  T; 

for j = q (1) the leaves of  the tree are in the cells of  L with indices 
greater than or equal to i(q), 
(2) the top node (root) of  the tree is in the root of  T. 

The following method is used to construct the •h area (1 < j  < q): 

1. place a single leaf node into every L cell f rom i(j) up to and including 
i ( j +  1) - -  1; 

2. find the T cell that is the lowest common ancestor of  the L cells 
i(j) and i(j  § 1) - -  1, and call it t l  (it can be shown that t l  is unique); 

3. embed a binary tree in T and L consisting of a minimal set of  edges 
so that there is a path from t 1 to each of the L Cells between i(j) 
and i(j~- 1) - -  1 inclusive; 

4. find the T cell that is the lowest common ancestor of  the L cells 
i(j) - -  1 and i(j  + 1), and call it t2 (t2 is unique, and it is an ancestor 
of  t l) ;  

5. if t l  @ t2, then add a path originating in t l  and terminating in t2 
to the tree embedded in T and L in step 3. 

The resulting tree is the j th  area. The construction for j = 1 and j = q 
is similar, except that in step 4 t2 is defined to be the root cell of  T. 

With all the areas constructed in our symbolic notation, the following 
propositions hold. 

Proposition t .  Every cell of  T other than the root cell is connected 
to its parent cell either by two branches of  two different areas or by a single 
branch of  one area. 

The proof  of  this proposition can be found in Appendix A. 

Proposition 2. Each cell of  T holds one, two, three, or four nodes, 
each belonging to a different area. 

Proof. Consider a cell t of  T. Let t '  and t" be the left and right son 
cells of  t, respectively.. Proposition 1 states that there are one or two branches 
between t '  and t, and also between t" and t. The right branch arriving f rom 
the left son t ' ,  and the left branch arriving from the right son t" may belong 
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Fig. 9. A cell of T may hold one, two, three, or four 
nodes, each of a different area. 

either to the same area or to two different areas. Fig. 9 shows all the possi- 
bilities, completing the proof. 

Figure 10 shows a partitioned processor containing six areas. These 
areas are drawn superimposed on the T and L cells. (The latter can be 
obtained by starting with a diagram like Fig. 8, and erasing all the con- 
nections between cells.) For example, the second area from the left has its 
leaves in cells 4 through 8 of L. The lowest common ancestor of  cells 4 
and 8 of  L is cell 4 of  T and, as Fig. 10 shows, the area contains paths 
embedded in T and L starting in every L cell between 4 and 8, and ending 
in cell 4 of  T. In addition, since the lowest common ancestor of  cells 3 and 
9 of  L is cell 2 of  T, the area also contains the path starting in cell 4 of  T 
and ending in cell 2 of  T. 

The example of  Fig. 10 contains seven of  the eight possible partitioning 
patterns shown in Fig. 9. The elements of  the symbolic notation we are 
using can be interpreted as follows. All branches of  areas correspond to 
communication channels of  identical capabilities, capable of carrying in- 
formation both ways simultaneously. Whenever only one branch is shown 
between two cells, we may assume that the second channel is idle. Each node 
of an area corresponds to some fixed amount  of  processing hardware. 
Whenever a node of an area has two downward branches, the corresponding 
node hardware may perform processing that is immediately comprehensible 
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I; 14 7~ 
27 29 

3 3 4 

RA RA RA F~A 

Fig. i0. A processor partitioned into six areas. Cells of T are labeled 
with integers for identification. The Iabels attached to branches (F, G, H, 
and I) are explained in Sec. 4.6.!. 

in terms of the reduction language program. (Note that a cell of T may 
hold at most one node with two downward branches.) For example, in 
Fig. 10, the node with two downward branches in cell 5 multiplies the 
symbols 1 and 11 in the program text, 2 and 12 are multiplied in cell 24, 
3 and 13 are multiplied in cell 27, and 4 and 14 are multiplied in cell 15. 
Other functions of  such nodes, and the role of  nodes with one downward 
branch are described later. The top of the area serves as its I /O port; the 
I /O channels with which it connects are not considered here, but are dis- 
cussed in Sec. 4.7. 

Finally, we note that since the root  of  an area is in a celt of  T which 
has among its descendants the cell of  L holding the next < symbol on the 
right (if one exists), all the necessary information can be made available 
at the root node of each area to determine whether or not the area contains 
an RA. 

Once the processor is divided into areas, the algorithm to locate RA's  
is executed at the root of  each area. Since the leaves of  an area holding 
an RA contain all cells of  L up to the next < symbol or to the right end 
of  L, some of the rightmost leaves of  this area may hold symbols of  the re- 
duction language text that are outside the RA. Locating such leaves, and 
separating them from the area-- thereby transforming the area into an 
active area--is the second part  of  the partitioning process. (The active area 
is obtained by cutting off certain subtrees of  the original area. As a result, 

828/8/5-z 
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the active area is a binary tree too.) In our example in Fig. 10, there are 
four RA's,  but none of them requires this process, so we postpone showing 
an example of  this until Sec. 4.6.1. 

4.3. States, State Changes, and Overall Organization 

In a global sense the operation of the processor is determined by the 
reduction language program placed into L. The operation of each cell is 
"data-driven," i.e., in response to information received from its neighbors. 
The activities of  cells are coordinated by endowing each cell of  the processor 
with copies of  the same finite-state control, which determine how the cell 
interprets information received f rom its neighbors. Whenever a cell of  T 
is partitioned, each independent part  (there are at most four of  them, each 
corresponding to a distinct node of an area) must have its own finite-state 
control. On the other hand, a cell of  L needs only one such control, since 
it is never partitioned. 

The state of  a node of an area changes whenever either its parent or 
both its children change state. The actual pattern of  state changes is the 
following: the root cell of  T initiates the process by the nodes contained 
in it changing their states; as a result, its son cells in T change state, and 
these changes, in turn, initiate similar changes on the next lower level of T. 

state change i ~ j state change j~k 

Fig. 11. Petri-net represention of the state changes in a processor, which 
contains a single area, and eight cells in L. 
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When this wave of changes reaches L, the state changes in the cells of  L 
initiate changes in the bot tom level of  T, which, in turn, cause changes in 
the next higher level of  T, and so on. 

Figure 11 shows a Petri-net (9,13) representation of the state changes 
for a processor in which L has eight cells and partitioning produced a single 
area, hence all the cells go through the same state changes. All conditions 
(represented by circles) have the following interpretation: "in the given cell 
state change p --~ q is taking place." The distribution of tokens in the net 
(showing the holding of certain conditions) illustrates that these state changes 
can take place at their own pace, but they always get synchronized in the 
process of  approaching the root cell of  T. 

To simplify our presentation, we assume that the state changes take 
place simultaneously on any level of  T. This allows us to talk about upward 
and downward cycles, indicating which way the state changes are propagating. 
Figure 12 shows a fragment of  a processor in the middle of  a downward 
cycle. The cells are partitioned, and four different states--3, 33, 4, and 
34---can be found in the diagram. The figure illustrates the following point: 
since the reason for having the finite-state control in the cells is to coordinate 
related activities in the processor, all nodes of  an area go through the same 

\ 

Fig. 12. 

33 

\ 

l /i ! ii !ilil 33 ~ 33 23 

Snapshot of a fragment of a processor during the downward cycle k § 3 -,- 
k + 4. Labels 3, 4, 33, and 34 indicate states of the nodes of areas. 
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state changes (e.g., in  Fig. 12 all nodes of the active area on  the left are 

going through the change 3 --~ 4, whereas all nodes of the active area on 

the right are going through 33 - *  34), and,  as a result, in general no useful 

purpose  is served by talking about  the state of the processor as a whole. 

Figure 13 shows the state d iagram of the nodes of areas for the processor 

we are describing. The details of  this d iagram are explained at length in 

the remainder  of Sec. 4. Here only the following observations are made:  

1. Al though different cells (or parts thereof) may be in different states 
at any moment ,  we can always say ( thanks to our  simplifying assumption)  

that  all cells (or parts thereof) on the same level of  T are in states that  are 

in the same co lumn of the state d iagram (for an  example, see Fig. 12). 

2. We use the expression k + i to denote all states in a co lumn of 

the state diagram, where i is the smallest label in the co lumn and k may 

partitioning prepare for storage storage 
mondgement management 

Fig. 13. The state diagram of a node of an area, or that of the contents of a cell 
of L. (Meaning of certain state sequences: 1 . . . . .  14, area contains no RA, or it is 
executing a Type A or B operation; 1 . . . . .  5 -- 16 . . . . .  24, area is executing a 
Type B or C operation; 1 . . . . .  5 -  16 . . . . .  1 9 -  40 . . . . .  44, area is 
executing a Type C operation, requested storage, and did not receive it; 51 . . . . .  64, 
Type B or C operation, sending messages or moving data:) 
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assume values of 0, 10, 30, and 50, e.g., k + 4  where k = 0 ,  
30, 50; k ~ 7 where k = 0, 10, 50; or k 4 -  12 where k = 0 ,  10, 
30, 50. 

3. Odd-numbered states are entered in upward cycles, and even- 
numbered states are entered in downward cycles. 

4. The state diagram is cyclic: the successors to states k + I4 are 
states k q- 1. 

5. There are three (specially marked) states in the diagram--states 5, 
19, and 61--with more than one successor state; in these states the successors 
are always chosen deterministically, with the help of conditions that are not 
visible on the level of the state diagram. 

6. In cells of L, the state belongs to the contents of the cell, not to 
the cell itself--hence the state information moves with the contents of the 
cell during storage management (see Sec. 4.6.6.2.) 

7. Since the state diagram describes the states of the nodes of  areas, 
during state transition k q-14---~k q-1,  when partitioning takes place, 
hence areas go out of and come into existence, some additional rules are 
needed: in states k q- 14 each node of each area changes its state to the 
undefined state, with the exception of the leftmost cell of  L and the cells 
of  L holding an ( symbol, and these cells of L, in the process of repartitioning 
the processor, determine the states of the newly formed areas (the state 
transitions to and from the undefined state are not shown in the state diagram 
of  Fig. 13. 

8. When the program text is first placed into L, the state of each 
symbol in it is 1. 

The state diagram specifies the overall organization of the processor. 
The organization, hence the state diagram, chosen for description in this 
paper is just one of many possible alternatives: the main criteria in its 
selection were that it be easy to describe, yet still able to illustrate well the 
advantages of a processor of this kind. 

Since it is the state of  the node of  an area which determines what 
processing activities that node performs, and the states of the nodes of an 
area are closely coordinated (all nodes of the area go through the same 
state change in each upward and downward cycle), the processing activities 
performed by an area in certain states (or in certain groups of states) can 
be classified as fitting one of  several global patterns. We choose to distinguish 
three such patterns, and call them modes of operation. 

In both Mode I and Mode II, information is sent along paths between 
L and the root cell of  T, usually inside areas, but possibly also across area 
boundaries (examples of  the latter are partitioning, preparation for storage 
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management, and detecting the end of storage management). In Mode III, 
information is sent only along L. 

Mode I and Mode II are distinguished because information items 
moving upward are treated differently. In a Mode I operation, (1) whenever 
a node of an area (or a cell of T) receives two information items from below, 
it produces one information item to be sent up to its parent node; (2) the 
output item is produced by performing some kind of operation on the two 
input items, such as adding two numbers (see combining messages, Sec. 
4.5.2), taking the leftmost three of six arriving items (see partitioning, See. 
4.6.1), or the considerably more complex operation of preparing the directory 
(see Sec. 4.6.2); (3) since each subtree of the area (or of T) produces a single 
value, this value can be stored in the root node of that subtree, and can 
be used to influence a later phase of processing; (4) if the data paths are 
wide enough, the node of the area (or the cell of T) is able to receive both 
its inputs in one step, hence is able to produce its output in one step (we 
make this simplifying assumption throughout this paper). 

In a Mode II operation, (1) whenever a node of an area receives two 
information items from below, it produces two information items to be sent 
up to its parent node; (2) the two output items are the same as the two input 
items, and the order in which they appear on the output may or may not 
be of consequence; (3) the higher up a node is in the area, the larger the 
number of information items that pass through it, and as a result, the time 
required for a Mode II operation is data dependent. Because of this queueing 
phenomenon, and because the size of information items may also vary 
considerably, the natural way to control a Mode II operation is with the 
help of asynchronous control structures, ~5,12) via ready and acknowledge 
signals. The Mode II operations are: (1) bringing in microprograms (in 
state 3, see Sec. 4.6.2), (2) sending messages, data movement, and I/0 (in 
states 52 through 61, see Secs. 4.6.4, 4.6.5, and 4.7), and (3) preparation 
for storage management (in states k + 9 and k + 10, see Sec. 4.6.6.1). 

Modes I and II also differ in the ways they treat information items 
moving downward, but these differences are consequences of the primary 
distinction between them. In a Mode I operation, (1) the node of the area 
(or the cell of T) produces both a left and a right output item in response 
to the one input item, and they may be different, depending on what was 
left in the node (or cell) in question by the previous upward cycle (an example 
of this is the process of marking expressions--see Sec. 4.6.3); (2) since during 
the previous upward cycle the top of the area produced a single item, during 
the next downward cycle only a single item (not necessarily the same) arrives 
at each cell of L in the area; (3) the processes of moving information up 
and down in the area do not overlap in time. 

In a Mode II operation, (1) the node of the area produces two output 
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items in response to the one input item, and they are always identical (the 
item is being broadcast to each cell of L in the area); (2) every item that 
passes through the top node of the area is broadcast separately to cells in L, 
and the latter are free to accept or reject any of the items arriving at them; 
(3) the processes of moving information up and down in the area overlap 
in time, hence each branch of the area must be able to carry information 
items in both directions simultaneously. 

In summary, Mode I and Mode II can be compared and contrasted 
as follows. In a Mode I operation, by propagating information upward 
in the tree simultaneously from all cells of L, the global situation in L is 
evaluated, and the partial results of this evaluation are stored into the nodes 
of the area (or the cells of T). Next, by propagating information downward 
in the tree and by using the partial results stored in the nodes, each cell 
of L can be influenced separately and differently. In a Mode II operation, 
on the other hand, the area functions as a routing, or interconnection, 
network, and typically delivers information items from L back to L, by 
passing them through the root node of the area. 

Mode III  is characterized by the fact that only cells of L participate 
in the processing, and adjacent cells of L communicate with each other 
directly. The only Mode III operation is storage management (see Sec. 
4.6.6.2). 

4.4. Outline of Ceil Organization 

In this section we outline the processing and storage capabilities that 
a typical cell of L and T must have. When describing certain components 
of these cells, we often refer to details that are explained only in subsequent 
parts of Sec. 4. Thus this section can be fully understood only after reading 
the rest of Sec. 4. 

4.4.1. Cell of L 

Figure 14 shows a cell of L. The names of registers appearing in the 
figure are used in the rest of Sec. 4 to explain how the processor operates. 

The component labeled state has the ability to store the current state, 
and compute the next state corresponding to the state diagram of Fig. 13; 
this state information belongs to the contents of the cell, not to the celt itself. 

CPU has the ability to execute segments of microprograms, and perform 
processing related to storage management (see Sec. 4.6.6.2), which is not 
explicitly specified in microprograms. 

Microprogram store is capable of storing a certain number of micro- 
instructions. This is necessary because certain microinstructions cannot be 
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Fig. 14. Schematic representation of a cell of L. 

I 

L 

executed immediately on receipt, since some of their operands are not yet 
available. 

Condition registers store status information concerning the contents of  
the cell, e.g., whether the cell is full or empty, and whether the contents of 
the cell are to move during data movement. 

Local storage contains the following registers: S holds a single symbol 
of  the reduction language text. S' holds another symbol of the reduction 
language, with which S is to be rewritten at the end of processing the RA. 

ALN holds the absolute level number of the symbol of the program 
text; this is obtained by considering the contents of L as a single expression 
of the reduction language and assigning to ALN the nesting level of the 
symbol in question. RLN is the relative level number of a symbol in an RA. 
This is obtained by assigning to RLN the nesting level of the symbol with 
respect to the RA. RLN'  is the value with which RLN is to be rewritten 
at the end of processing the RA. 

MARKER1 and MARKER2 are set by the microprogram and used 
to mark all symbols of an expression. Whenever a microinstruction " M A R K  
WITH x"  is executed in a cell of L, MARKER1 receives the value "x ,"  
and if RLN has a certain value, MARKER2 receives "x ,"  too. Symbols 
of the marked expression are indexed, beginning with one, and these index 
values are placed in N1. The largest index value, which is the total number 
of symbols in the expression, is placed in L1. When a symbol occurs in a 
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marked expression, the value of POS# (mnemonic for position number) 
for each symbol is set as follows: the marked expression is considered a 
sequence, and all symbols of the expression that is the ith element of this 
sequence receive the value i in their POS# register. The largest value of 
POS#, which is the length of this sequence, is placed in register LENGTH 
of each symbol. Also, each expression that is an element of the sequence 
is indexed separately, the index values are placed in N2, and the total number 
of symbols in the element expression are placed in L2. (N2 and L2 play the 
same role for the element expressions as N1 and L1 do for the whole marked 
expression.) The L/R register holds the value "left" (or "right") if the 
symbol contained in S is the leftmost (or rightmost) symbol of one of the 
elements of a marked sequence. 

M1, M2, M3, and M4 are called message registers: SEND statements 
generate messages that may have one, two, three, or four components, and 
on arrival at the cell of L, they are placed in M1, M2, M3, and M4, respec- 
tively. 

BL and BR contain nonnegative integers, and are used during storage 
management: the cell of L in question is entered on the left by the contents 
of BL cells of L, and on the right by the contents of BR cells of L. 

Of these registers, BL, BR, and those controlling the state of the cell 
are used in every cell of L; S and ALN are used in every occupied cell of L; 
and all the others are used only by occupied ceils internal to an RA, or by 
ceils reserved during storage management. 

The S register must be large enough to hold any symbol that might 
occur in the source text, including numbers. The ALN and RLN registers 
must be able to hold any nesting level value that might arise. (If L has 
2**n cells, the maximum nesting level of any expression in it is 2**n -- 1, 
hence n-bit registers will suffice.) Finally, the number of cells in L is a bound 
on the values that BL, BR, N1, L1, POS#, LENGTH, N2, and L2 may 
have to hold. 

4.4.2. Cell of T 

A cell of T is shown schematically in Fig. 15. The components of this 
diagram can be explained as follows: 

1. R1 through R6 stand for identical groups of registers. In this paper 
we do not commit ourselves to details, such as how many registers they 
contain and what the size of each register is, because the choice of such 
details does not affect the essential nature of the processor. These registers 
serve two functions, as input and output ports in the process of communi- 
cating with other cells of T and L, and as local storage for P1 through P4. 
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P l P2 

Fig. 15. Schematic representation of a cell of T. 

2. P1, P2, P3, and P4 are the processing components of the cell; each 
one may belong to a different area of the processor. All have identical pro- 
cessing capabilities, the same amount of local storage, and identical state 
control units (similar to the component labeled state in Fig. 14). They must 
be able to perform the processing required by the internal mechanisms, 
described at length in Sec. 4.6. 

3. The lines connecting the register groups and the processing com- 
ponents represent communication channels of identical capabilities, capable 
of carrying information both ways simultaneously. (Again, we do not specify 
details, such as channel widths.) Not all channels are used all the time: 
Fig. 22 specifies the eight possible partitioning patterns of the cell. The 
component in Fig. 15 labeled partitioning determines which partitioning 
configuration is assumed by the cell. 

4. The pairs of lines originating in R1 and R2, in R3 and R4, and 
in R5 and R6 lead to the parent cell, left son cell, and right son cell, respec- 
tively. Each line represents a communication channel capable of carrying 
information both ways simultaneously. (The need for two separate lines 
leading to each of the parent, left son, and right son is explained by Pro- 
position 1 of Sec. 4.2.) 

In Sec. 4.6 the processing activities performed by cells of T are described 
with the help of temporaries. Again, we do not show an explicit mapping 
between these temporaries and the components of T, because many different 
mappings are possible. 
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4.5. Specification of P rocess ing - -M ic roprogramming  Language 

In this section we describe a simple language capable of specifying all 
the computational requirements outlined in Sec. 3. Since it is closer in style 
to a conventional microprogramming language than to a machine language, 
we refer to it as a microprogramming language. 

Type A processing, which we described in Sec. 3, can be performed in 
cells of L alone, and we choose to implemem it by executing suitable micro- 
programs in cells of L. Type B and C processing requirements are more 
complex, and we implement them by executing suitable microprograms 
in cells of L, which, in turn, may initiate processing activities in cells 
of T. 

Figure 16 is useful in introducing some terminology. It shows the 
RA already discussed in the context of Fig. 4, and indicates (in plain English) 
the processing activities that must be performed to bring about the effect 
of the reduction rule in question. 

The totality of processing activities required by an RA, and expressed 
in the microprogramming language, will be called a microprogram. A micro- 
program is made up of segments specifying processing required by single 
symbols (atomic symbols or syntactic markers) or well-formed expressions 
of the RA. A segment comprises a sequence of microinstructions. 

Microprograms specifying the effects of operator expressions reside 
outside the processor. When a reducible application is located, the appro- 
priate microprogram is sent in via the root cell of 7'. Section 4.7 describes 
how it gets from the top of T to the top of the active area in question. In 
Sec. 4.6.2 it is shown how components of the microprogram find their way 
from the top of the active area to cells of L holding the reduction language 
program text. I f  the RA is well-formed, every symbol of it receives a segment 
of a microprogram, and only such cells receive microinstructions. 

< C AL ( HEA1TAIL C 

0 I 2 2 3 3 1 

2:s/ 
( A B C ( D E C 2 F 

2 3 3 ~ 3 . 3 

I~LN by I 

3 

b/  I 

Fig. 16. Processing to be performed in cells of L to execute the reduction shown in Fig. 3 
and 4. 
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4.5.1. Three Microprograms 

We now introduce some of the details of the microprogramming language 
by means of three examples. 

For ease of understanding and to avoid the need to specify low-level 
details of the internal representation that are irrelevant here, we have chosen 
an ALGOL-like representation for the microinstructions. 

Since segments of microinstructions apply to constituents of the operator 
and operand, and these constituents form blocks of a partition of the RA 
in L, we arrange the segments of the microprogram in a linear sequence 
so that the order of the segments matches the order of the corresponding 
constituents in L. Because of this simple positional correspondence, the 
only information that has to be attached to any segment of microinstructions 
is the description of the constituent to which it applies (e.g., a single symbol 
with a given level number), and we call such a description a destination 
expression. 

Our first example, shown in Fig. 17, is a microprogram for the primitive 
meta operator AL (see also Sec. 3.2.1.1). 

The destination expressions of this example show the ways the micro- 
programming language deals with those aspects of the RA that become known 
only at runtime: 

�9 Constituent of 
source text 

40  

(/1 

AL/2 

f_/2 

Destination 
expression 

(s/o): 

(s / l ) :  

(s/2): 

(E/2): 

(E/i): 

Segment of 
microprogram 

4: S :="("~ 

4: if S ="(" 

then S :="4' 

e l s e  S :="•  

ERASE~ 

do nothing; 

HARK WITH x; 

~,: i f  (aLN=i) & (5~"(")  

then S ::"• 

8: if (Nl=l) then ERASE; 

B: if POSIt = 1 

then do nothing 

e l s e  RLN:=RLN-1; 

Fig. 17. A microprogram for AL. 
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1. The microprogram is written with the assumption that the level 
number of the ( symbol is 0 (whenever an RA is located, these so-called 
relative level numbers - -RLN for short--are  computed for each symbol 
by subtracting the true, or absolute, level n u m b e r - - A L N - - o f  the ( symbol 
from the ALN of the symbol in question). 

2. The destination expression (E/i) indicates that the same segment 
of  microprogram is to be sent to all symbols of  a well-formed expression 
whose leftmost symbol has RLN = i. (The size of this expression is generally 
unknown prior to execution. Section 4.6.2 describes how symbols of this 
expression are located.) The destination expression (S/i)indicates that the 
segment is to be sent to a single symbol with RLN = i. 

In the microinstructions, S, RLN, and P O S #  refer to registers of the 
cell of L executing the microinstruction in question (see Sec. 4.4.1). 

The numeric labels in front of  statements indicate the state of the cell 
of  L in which the statement in question should be executed. Statements 
with the same label are executed in their order of occurrence. Some state- 
ments, such as ERASE, need no label, because their time of execution is 
determined in some other way (ERASE is executed at the end of executing 
the RA). 

The phrase " M A R K  WITH x"  activates the only available mechanism 
to analyze a sequence into its components. As a result of executing this 
statement, the whole marked expression is considered a sequence, and 
symbols of its component expressions receive a number in their P O S #  
register indicating their position in the sequence, and their L E N G T H  
registers receive a number indicating the number of elements of this sequence. 
(The full effect of the M A R K  statement is explained in Sec. 4.5.2, whereas 
the process of marking an expression, which begins in state 5 and ends in 
state 8, is described in Sec. 4.6.3.) 

With these comments the microprogram for AL should now be readable. 
It says: the leftmost symbol of the RA should have RLN = 0, and this 
symbol should be changed to (. We need not verify that this symbol is (, 
since the RA was located on the basis of its being a (. The next symbol 
from left to right must be ( with RLN = 1; if it is, it should be changed 
to ~; alternatively we signal an error. The next symbol--whatever it i s - -  
should have RLN = 2, and it should be erased. (Again, we know it is AL, 
since the microprogram was brought in on that basis.) The next expression, 
which is the parameter of  the AL operator, should be left alone (its leftmost 
symbol must have RLN = 2). Following that is the operand expression, 
whose leftmost symbol must have RLN = 1. We erase this leftmost symbol 
if it is (, otherwise signal an error. In addition, all component expressions 
of  the operand with the exception of the first have their RLN reduced by one. 
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Constituent of 

source t e x t  

</o 

AND/Z 

(11 

Fig. 18. 

Destination 

expression 

Segment of 

microprogram 

(S/0): S := M2(1); 

(S/Z) : ERASE 

(E / l ) :  4: i f  (RLN=I) & (S~"C") 

then S :="-L'~ 

4: i f  (RLN = 2) 

then SENDIC(AND,S) ~ 

4: i f  (RLN > 2) 

then S := " [ " ;  

ERASE; 

A microprogram for AND. 

We introduce some further details of the microprogramming language 
by showing a microprogram for the primitive regular operator AND in 
Fig. 18 (see also Sec. 3.2.1.2). 

This example introduces what can be called the message mechanism, 
providing a means of communication among cells of L during execution, 
which is the chief requirement of Type B processing. A variety of SEND 
commands exists for the purpose of broadcasting information in active areas. 
For example, a message sent by a SEND1C statement moves up the area 
simultaneously with the state change 4 --~ 5. The command in our example 
has the form "SEND1C (binary operator, operand)," which causes the 
operands to be combined according to the binary operator as they move 
up in T. Only one message (containing the result) reaches the top of the 
active area; that message, again in the form (binary operator, operand), 
is broadcast down to every cell of L in the active area. Any cell can pick 
up the result in its M2 register, but in our example only one cell is pro- 
grammed to do so, by means of the statement S: = 3/2(1). 

A microprogram for the primitive meta operator AA, shown in Fig. 19, 
illustrates how Type C processing is specified (see also Sec. 3.2.1.3). 

This microprogram implements AA as shown in Fig. 7: the originally 
existing copy of f is left in place, and becomes the operator o f y l ,  and n -- 1 
additional copies of </1 and f/2 are created in front of y2 through yn. 

The operand expression is marked with y; this causes the elements 
of the operand sequence to be indexed by setting the values of the POS# 
registers. Thus, if a symbol appears in the ith element of the operand 
sequence, the POS# register of the cell which holds the symbol is assigned 
the value i. We insert the symbol </1 on the right ofyi (1 ~< i < n) by writing 
"INSERTS(right, <, 1)," and insert the expression f/2 on the left of y2 
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Corlsgi bceri[ of" 
source tex t  

</0 

(/1 

AA/2 

f/'Z 

(/~ 

F i g .  19. 

DesL/i~akion 
expression 

Segment of 

microprogram 

(S/0): 4: S :="("; 

( s / i ) :  4: iF 5 ="(" 

Lherl S :="<" 

else S :="• 

( S/2 ) : ERASE ; 

(E/2): MARK WITH x; 

(E/I): HARK WITH ),~ 

4: i r  (RLN=I) ~ ( s l ' ( ' )  

then S ::"• 

8: if (NI:I) then ERASE; 

]8: if POS~'~ < LENGTH 

then 

INSERTS(right ~ % I) ~ 

!8: if POS# > i 
J 

then 

INSERTE(IefL~x~+O] 

A microprogram for AA. 

through yn by writing "INSERTE(left, x, -~0)." In the latter case x is the 
symbol with which we marked every symbol of the expression f, and since 
the information we are inserting comes from the source text and not from 
the microprogram, we give an increment (+0) to the original RLN instead 
of a new value for RLN. 

The INSERT commands result in insertions adjacent only to the leftmost 
or rightmost cell of the expression to which they apply. Information to 
control where the insertion is to be made is in the L/R registers of an ex- 
pression, placed there in the process of marking the expression. Consider, 
for example, the statement "if POS# < LENGTH then INSERTS(right, 
(, 1)." This is received by every symbol of the operand. The condition holds 
only in cells containing symbols of yi (1 ~ i < n). Moreover, we do not 
want to perform insertions next to each symbol of these expressions, only 
at the right end of their rightmost symbols. The command "~ 
{, 1)" is executed only in cells whose L/R register contains the value "right." 

A microprogram offers a way td specify the result of a reduction in 
terms of the operator and operand expressions of the original RA. Part II 
of this paper describes what is involved in executing microprograms, and 
Appendix B in Part II shows what happens in the processor when the 
microprograms for AL, AND, and AA are executed. 
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4.5.2. Description of Microprogramming Language 

The microprogramming language described here is capable of ex- 
pressing the computational requirements of a large number of primitives. 
It  has been used to write microprograms for many primitives, including 
most of those considered by Backus (3) and Pozefsky. (14) The only primitive 
considered by Backus that cannot be programmed in this language is 
TRANSpose; it must be defined in terms of other primitives. (Microprograms 
cannot be composed: since each RA must be executed in its own area, 
composing two microprograms, i.e., executing one after the other in the 
same area, would be of very limited utility, hence not explicitly included 
in the design.) Although the microprogramming language has an ALGOL-like 
appearance, the simplicity of the constructs allows a very concise encoding 
into an internal representation. 

A segment of a microprogram is composed of a destination expression, 
followed by a sequence of labeled or unlabeled statements. The permissible 
destination expressions are S/i and E/i with 0 ~< i ~< 3, because beyond 
relative level number three we cannot distribute different microinstructions 
to different expressions (the reasons for this restriction are explained in 
Sec. 4.6.2). 

Every statement should be preceded by a numeric label, unless (1) it 
is a MARK,  ERASE, or no-op statement, (2) it is one of the arms of a 
conditional, (3) it is a SEND statement other than SEND1 or SEND1C, 
or (4) it uses some of the message registers (M1 through M4). Any integer 
used to designate a state in the state diagram (Fig. 13) can appear as a label 
of a statement. 

The conditional has the following form: if (predicate) then (statement) 
else (statement). Neither arm of a conditional may be another conditional, 
or a M A R K  statement. The predicate is formed from relational expressions 
with the help of Boolean operators, assuming certain reasonable length 
restrictions. In a relational expression the usual relational operators ( = ,  
v~, < ,  ~<, > ,  >~) may compare constants, contents of any of the registers 
of the cell of L, or values of arithmetic expressions formed thereof (again 
assuming certain length restrictions). 

In an assignment statement on the lefthand side one can write only 
S or RLN (all other registers of cells of L are set only in specific contexts, 
for example, by some of the other statements), whereas on the righthand 
side one can write a constant, the name of any register of the cell of L, or 
an arithmetic expression formed thereof assuming that certain length re- 
strictions apply. When all quantities are available, the righthand side of the 
assignment statement is evaluated and stored in a temporary register (S' 
or RLN');  the time of evaluation should be indicated in the statement label, 
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if possible. The assignment itself, however, is executed only at the final stage 
of  the processing of the RA. 

The E R A S E  statement clears all registers of  the cell of  L at the end 
of the processing of the RA. 

The SEND statement is used to send messages to the top of the area, 
from which they are broadcast to all cells of L that are contained in the area. 
Sending and processing of different messages can be overlapped in time if 
the relative order is immaterial. Sequencing is made possible by indexing 
the messages; a message with index i + 1 is sent only after all messages 
with index i have arrived at their destinations. Indexing is done by using 
SEND statements of the form SEND/, where i = 1, 2, 3 ..... The parameters 
of the SEND statements shown above are the messages to be sent. The 
number of parameters varies, but should not exceed some specified value. 
(Four parameters allow a large set of primitives to be implemented, so we 
choose the maximum to be four.) The messages sent by SEND1, SEND2, 
etc., will not interact with any other message in T. On arrival back at L 
the parameters of these SEND statements are placed into registers M1, M2, 
M3, and M4 of each cell of L in the area, ready to be used by the micropro- 
gram. Since registers M1 through M4 accept every message arriving at the 
cell of L in question, whenever their names appear in an expression in 
the microprogram, that expression is evaluated for every message accepted. 
(M1 through M4 are used most frequently in conditionals, since usually 
some part of a particular message is sought depending on some condition.) 
We can refer to components of a message produced by S E N D / b y  writing 
MI(i), M2(i), and so on. 

As an alternative, we may want the messages to be combined whenever 
they meet in some node of  the area, such as adding them up, or selecting 
the larger one (see also the microprogram for AND in the preceding section). 
Such SEND statements are written as SEND1C, SEND2C, etc. (Statements 
of the forms SEND/ and SENDjC must have i @j.) The first parameter 
of a SENDiC statement is the operator specifying the rule of combination. 
The second, third, and fourth parameters are to be combined separately 
according to the operator specified by the first parameter. When two messages 
produced by SENDiC statements meet in a node of the active area, the 
output produced has the same format as the inputs. The final result produced 
on the top of the area is broadcast down to L, and the components of the 
final result end up in the registers M2, M3, and M4 of every L cell of the 
area in question. (For any value of  i, only one operator can be used in 
statements of the form SENDiC.) 

All the statements of  the form SEND1 or SEND1C should be labeled, 
each with the same label, chiefly to indicate whether the results of the 
M A R K  statement are needed to generate these messages. Other SEND 

8281815-3 
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statements, i.e., SEND/ and SEND/C, where i ~ 1, should never be 
labeled. 

M A R K  statements are used to identify expressions that are to be inserted 
somewhere else in the program text, and also to identify elements of  such 
marked sequences. Any segment can contain only one M A R K  statement, 
and such a statement cannot be either arm of a conditional. As a result, 
every cell of L receiving the M A R K  statement will be marked, and further- 
more only constituents of the source text that have their own destination 
expressions can be marked. The full effect of  the M A R K  statement is ex- 
plained with the  help of Fig. 20. Registers N1 and L1 make it possible, 
for example, to write microprograms to compare two arbitrary expressions 
for equality, or to insert the whole marked expression somewhere else in 
the program. Registers P O S #  (position number) and L E N G T H  allow us to 
write microprograms to do different things to different elements of the marked 
sequence, and they, combined with registers N2 and L2, allow us to insert 
the component expressions of this sequence at different places in the program. 
Finally, register L/R is used to locate the left or right end of any of the 
component expressions, in order to  be able to make an insertion there. 
(The process of assigning values to these registers is described in Sec. 4.6.3.) 

The I N S E R T  statement has three variants. INSERTS is used whenever 
a single symbol is to be inserted from the microprogram. Its form is INSERTS 
(left/right, symbol, RLN). The first parameter specifies whether the symbol 
is to be inserted on the left or on the right end of the expression holding 
the INSERT statement in question. The second and third parameters are 
the symbol to be inserted and its RLN. 

S < OP ( ( A B C D ( E F G (. H [ ( K 

R / N  0 1 I 2 3 3 3 3 2 3 3 3 2 3 3 2 3 

MARKER 1 X X X X X X X X X X X X X X X 

NI I 2 3 4 5 6 7 8 9 I O  I I  12 13 14 15 

hi  15 15 15 15 15 T5 15 I5 15 15 15 15 [5 15 15 

MARKER 2 X X X X 

POS ~/=# I I I I I 2 2 2 2 3 3 3 4 4 

LENGTH 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

N2  I 2 3 4 5 I 2 3 4 I 2 3 [ 2 

/ 2  5 5 5 5 5 4 4 4 4 3 3 3 2 2 

L / R  L R L R L IR L R 

Fig. 20. The cells of L shown hold an RA. The operand expression has 
received the microinstruction "(E/l) :  M A R K  WITH x." The contents of all 
the registers set by this microinstruction are shown. 
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INSERTE is used whenever an expression (possibly a single symbol) 
is to be inserted from the program text. Its form is INSERTE(left/right, 
marker, increment to RLN). The first parameter is the same as in the case 
of INSERTS. The second parameter identifies the symbol or expression 
to be inserted, which must have been marked. The third parameter specifies 
how to adjust RLN of the symbol or expression to be inserted. 

INSERTC is used whenever a component of a marked sequence is 
to be inserted. Its form is INSERTC(left/right, marker, position number, 
increment to RLN). The third parameter specifies which component of the 
marked sequence is to be inserted. 

Although the microprogramming language described here has some 
powerful features (especially the SEND, MARK, and INSERT statements), 
it is basically a low-level language. It can be used to full advantage only 
if one understands the operation of the processor to a sufficient degree. 

This language often allows several different microprograms to be 
written for the same primitive. The easiest examples to illustrate this involve 
some rearrangement of the operand. Consider a primitive EXCHANGE,  
whose effect is 

(EXCHANGE,  (x, y) )  = )  (y, x) 

It  is possible to write a microprogram that leaves the expression x in place, 
inserts y on its left, and erases the original copy of y from the program text. 
As an alternative, it is possible to write another microprogram that leaves 
y in place, inserts a copy of x on its right, and erases the original copy of  
x from the program text. Since for a short while two copies o fy  (or two copies 
of  x) must exist in L, it would be desirable to move the shorter one of x 
and y. Since the lengths of x and y become known only at runtime, a third 
version of  the same microprogram could test the lengths of x and y, and 
move the shorter one of the two. 

One more issue that should be briefly mentioned is testing the syntactic 
correctness of the whole RA. Since the RA may be an arbitrarily long 
expression, with arbitrarily deep nesting, its syntactic correctness cannot 
always be fully tested by the processor. However, the following tools are 
available: 

1. The segments of the microprogram must match the corresponding 
constituents of the program text, otherwise an error message is generated 
(when the microprogram is distributed, the only thing the processor has 
to do is to observe whether there are any segments of the microprogram 
that find no destination with the specified description or whether there are 
any occupied cells of  L in the active area that received no microinstructions). 

2. The microprogram can do some further checking of syntactic 
correctness with the help of the M A R K  statement and conditionals. 
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In fact, experience has convinced us that this kind of syntactic Checking, 
in which syntax errors are discovered only when they prevent further pro- 
cessing, is extremely helpful. 

A P P E N D I X  A:  P R O O F  O F  P R O P O S I T I O N  t 

Let t be a cell of T other than the root cell, and let t '  be its parent cell. 
First we show that there is always at least one branch of an area between 
t and t'. We refer to a cell of  L which is a descendant of t as a leaf under t. 

Cose 1. No ~ symbol lies in any leaf under t. In this case, every leaf 
under t belongs to the same area, namely thejth one, wherej is the largest inte- 
ger for which the cell indexed by i(j) is not to the right of  the leaves under t. 

Since the root node of the j th  area is either in the root cell of  T or 
in a cell of T which, by definition, has both the i(j) --  1 and i(j + 1) cells 
of  L as descendants, t must be a proper descendant of that cell, and thus 
a branch from t to t '  must be part of the j th  area. (In fact, in this case there 
is no need for more than one branch between t and t'.) 

Case 2. At least one ( symbol lies in a leaf under t. Assume i(p) 
is the index of the rightmost occurrence of ( under t. I f  p =- 1 or p = q, 
where q is the total number of areas, then the root of  the pth area is in the 
root cell of T, so we need a branch for this area between t and t'. If, on 
the other hand, 1 < p < q, then the root of  the pth area must have the 
i(p -k 1) cell of L as a descendant, which is not a descendant of t. Hence 
t is a proper descendant of  the root of the pth area, and therefore there is 
a branch between t and t'. 

Finally, we show that there can never be more than two branches 
between t and t', by showing that if there were more than two, all but the 
rightmost and leftmost ones would be in violation of  the definition of an 
area. Assume there are three or more branches between t and t'. Consider 
a branch other than the leftmost or rightmost one, corresponding to, say, 
the ruth area, and assume further that the leftmost and rightmost branches 
correspond to the kth and nth areas, respectively. By definition, the top of 
the ruth area is in the lowest cell of T which has both the i ( m ) -  1 and 
i(m -k 1) cells of L as descendants. 

The presence of  the leftmost branch indicates that t has among its 
descendants i(k -k 1) --  l, and the presence of the rightmost branch indicates 
that t has among its descendants i(n). From k < m < n it follows that 
i(k-k 1) --  1 ~<i(m) --  1, and i(m + 1) ~ i (n) .  Since both i(m) --  1 and 
i(rn -k 1) are descendants of t, it follows that either t, or one of its descendants, 
holds the top of the ruth area, and the branch between t and t '  assumed to 
belong to i(m) is in violation of  the defifdtion of  an area. 
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