
International Journal of Computer and Information Sciences, Vol. 8, No. 5, 1979

A Network
to Execute
Gyula A. Mag61

of Microprocessors
Reduction Languages,

Received June 1978," revised March 1979

Part l

This paper describes the architecture of a cellular processor capable of directly
and efficiently executing reduction languages as defined by Backus. The
processor consists of two interconnected networks of microprocessors, one
of which is a linear array of identical cells, and the other a tree-structured
network of identical cells. Both kinds of cells have modest processing and
storage requirements. The processor directly interprets a high-level language,
and its eff• operation is not restricted to any special class of problems.
Memory space permitting, the processor accommodates the unbounded
parallelism allowed by reduction languages in any single user program;
it is also able to execute many user programs simultaneously.

KEY WORDS: Reduction languages; functional programming languages;
network of microprocessors; cellular computer; parallel processing; high-
level language-processor architecture; language-directed computer ar-
chitecture.

1. I N T R O D U C T I O N

Though microelect ronics is spectacular ly successful in small-scale and simple
appl ica t ions , so far it has not h a d much impac t on the archi tecture o f
genera l -purpose computers . This technology can be used to cons t ruc t systems
with large amount s o f ma in m e m o r y and d is t r ibuted process ing capabil i t ies ,
bo th o f which resul t in an increase in pe r fo rmance o f compute r systems, and
such app roaches are being pursued. However , with regard to bui ld ing
increased amount s o f logic into a C P U to ob ta in a p ropo r t i ona t e increase in

1 Department of Computer Science, University of North Carolina, Chapel Hill, North
Carolina.

349
0091-7036]79[1000-0349503.00/0 �9 1979 Plenum Publishing Corporation

828/8/S-X

350 Mag6

performance, all known methods, such as building special functions into the
hardware, pipelining, or multiprocessing, yield rapidly diminishing returns.

It has been recognized by many that the most promising avenue toward
achieving high performance is exploiting the parallelism inherent in user
programs. Many approaches have been proposed, the best known of which
are associative and array processors. They have been discussed extensively
in the literature, C17~ and a few machines have actually been built along
these lines. On the basis of the experience accumulated with the use of such
machilnes, there is now general agreement that they achieve high performance
only in a narrow range of applications, usually at the expense of programma-
bility.

For a long time Dennis 16~ has argued that increasing performance by
exploiting parallelism must go hand in hand with making the programming
of such machines easier. To achieve this goal, his group at MIT developed
a programming language, called a data flow language, ~7~ which is intended
to express parallelism in a convenient manner. Several attempts have been
made to construct machines that efficiently implement this language or
similar languages. II,~,sl

Although the aims of the work reported in this paper are similar to
those of the data flow approach, our starting point here is the class of re-
duction languages. Reduction languages, described recently by Backus, ~2,~
are a class of high-level programming languages with several unique and
attractive properties. Among currently used programming languages, they
can be likened to APL or LISP, but the property of greatest interest to us
is that they are capable of expressing parallelism in a natural fashion, not
requiring explicit instructions from the programmer to initiate and terminate
execution paths.

This paper outlines the architecture of a processor capable of directly
executing reduction languages. After an overview of reduction languages
in Sec. 2, Sec. 3 and 4 provide a description of the processor, and Sec. 5
offers a brief evaluation of it. (In Sec. 3 and 4, the behavior of a two-di-
mensional arrangement of processing elements is described along a third
dimension, time. Because of the interdependencies among different parts of
the description, frequent cross-references were unavoidable, and reading
certain sections out of order may be advisable.)

2. R E D U C T I O N L A N G U A G E S

In this section we give a brief and very informal introduction to reduction
languages, to make the paper self-contained. However, one cannot fully
appreciate these languages without reading Backus.(3) We use the terminology

A Network of Microprocessors to Execute Reduction Languages, Part ! 351

and notation of that paper, and deviate from it only when it is absolutely
necessary.

Any program written in a reduction language contains a few syntactic
markers, and so-called atomic symbols. The latter may serve as data items,
primitive operators, or names of defined functions. Only two kinds of
composite expressions are allowed. A sequence of length n, n ~> 0, is denoted
by (al, a2,..., an) if n >~ 1 and by ;~ otherwise, where ai (called the ith
element of the sequence) is an arbitrary well-formed expression. An appli-
cation is denoted by ~a, b), where a (called the operator) and b (called the
operand) are again well-formed expressions.

Of these two forms of composite expressions only applications specify
computations. Since the program text at any time may contain many appli-
cations, possibly nested, sequencing among them is specified (at least partially)
by requiring that only innermost applications can be executed. There is no
sequencing requirement among innermost applications--they can be executed
in any order. The process of executing an innermost application is called
a reduction, and so we often refer to an innermost application as a reducible
application (RA).

A reduction results in replacing an innermost application with the result
expression, which may, in turn, contain further applications. The reduction
rules relevant to innermost applications can be summarized as follows. If
the operator is an atomic symbol, it might be a primitive operator (in which
case its effect is specified by the language definition), or it might be the
name of a defined function, i.e., of some well-formed expression containing
no applications (in which case the atomic symbol is replaced by that ex-
pression). I f the operator is a sequence, it is interpreted as a composite
operator, composed of the elements of the sequence (Backus describes two
possible alternatives: regular and meta composition). The computation comes
to a halt when there are no more reducible applications left, and the program
text so produced is tile result of the computation, t f the result of a reduction
is undefined, the symbol _1_ is used to denote it, which is neither a syntactic
marker nor an atomic symbol, but a special expression.

The following example should illustrate most of these concepts. Assume
that IP (inner product) is a defined operator, representing IP = (+ , (AA,
*), TR), whereas AA (apply to all), TR (transpose), -ff (addition), and
* (multiplication) are primitive operators of a reduction language. Suppose
the initial program text is

(IV, ((1, 2, 3, 4), (11, 12. 13, 14)))

First IP is replaced by its definition, resulting in

((+ , (AA, *), TR), ((1, 2, 3, 4), (11, 12, 13, 14)))

352 Mag6

Since the operator now is a composite one, and the interpreter can recognize
that it is a regular composition of three expressions, after a few reductions
we get the following program text:

<+ , ((AA, *), <TR, ((1, 2, 3, 4), (11, 12, 13, 14)))))

Now TR is the operator of the only reducible application, and applying TR
to the two sequences of its operand leads to

<+, <(AA, *), ((1, 11), (2, 12), (3, 13), (4, 14))))

The only reducible application has a composite operator again, but this
time it is a meta composition, resulting in

(-1-, (<*, (1, 11)>, <*, (2, 12)), (*, (3, 13)), <*, (4, 14))))

Now we have four reducible applications, and they can be reduced in any
order, but the addition operator cannot be applied until all multiplications
are complete, so at some point we must have the program text

<-k, (11, 24, 39, 56))

which finally reduces to the number 130.

3. C O M P U T A T I O N A L R E Q U I R E M E N T S OF R E D U C T I O N S

Before we describe how the processor operates, we should explain
what it is supposed to do, That, however, can be done only after describing
how the syntactic and semantic aspects of reduction languages are repre-
sented in the processor, because this representation determines, to a large
extent, the capabilities the processor must have to act as an interpreter
for reduction languages.

3.1. Representation of Syntactic Aspects

Expressions are represented as linear strings of symbols, derived from
the representation described in Sec. 2 as follows: since any well-formed
expression of a reduction language is obtained by nesting sequences and
applications in each other, we can associate a nesting level with each symbol
of an expression; we store the nesting level with every symbol, and then
eliminate all closing brackets--) and) - - f rom the source text, for they have
become superfluous. This representation corresponds to the symbol sequence

A N e t w o r k of M icroprocessors to Execute Reduct ion Languages, P a r t I 353

obtained by a preorder traversal of the natural tree representation of the
original source text, in whicti the root of each nontrivial subtree is labeled
with (or (.

The internal representation of the processor is finally obtained by placing
pairs of symbols, each consisting of a program text symbol and its nesting
level, into a linear array of identical hardware cells, one pair per cell, pre-
serving the order of the program text symbols from left to right. As a result
of placing at most one program text symbol into a cell, the need for explicit
separators between symbols vanishes, because now the cell boundaries
perform this function. We always assume that there is a sufficient number
of cells available to hold our symbols; if there are more than the required
number of cells, thensome of them will be left empty. From the point of
view of the representation, the number and location of these empty cells
relative to the symbols of the program text are of no consequence, and the
result of a reduction is not influenced by the positions of the empty cells.

As an example, consider one of the intermediate expressions that
appeared in the example given in Sect. 2:

(§ ((AA, *), (TR, ((1, 2, 3, 4), (11, 12, 13, 14)))))

The tree representation of this expression is shown in Fig. 1, which also
shows the (nesting) level number of every symbol. Fig. 2 shows the internal
representation of the same expression.

A : appllcatlon

Z Z
t 2 13 ~ {1 E2 13 {,W

Fig. 1. An expression in tree representation.

354 IVlag6

Fig. 2. An expression in internal representation.

3.2. Representation of the Semantic Aspects of Reducible
Applications

The semantics of a reduction language is determined by a set of rules
prescribing how all the possible reductions should be performed. These
include rules specifying the effect of each primitive operator, and rules to
decompose composite (regular and meta) operators.

By examining what forms these rules take when using our chosen internal
representation for expressions, we can see what kinds of computations the
processor will have to be able to perform.

3.2.1. Primitive Operators

A reduction language may have a large number of primitives, but the
computational requirements of all of them can be classified into three easily
distinguishable categories. They will be explained with the help of the
following three operatorsJ3J

3.2.1.1. AL (Apply to Left Element). AL is a meta operator, and its
effect is the following:

~(AL, f), (yl, y2,..., yn)) =)

((j~ yl) , y2 yn),
�9 . , , �9

and if the operand is not in the required forml the result is _[_. Here the
italicized symbols are metalinguistic variables, and they stand for arbitrary
constant expressions, i.e., expressions cordaining no applications. The arrow
=) is used to denote that reducing the expression on the left yields the
expression on the right.

Fig. 3 shows the effect of (AL, (HEAD, TAIL)) on a particular three-
element sequence using tree representation. As the definition prescribes it,
(HEAD, TAIL) is applied to the leftmost element of the sequence, and the
rest of the sequence is left unchanged.

Fig. 4 depicts the same reduction using the internal representation.
Examination of the cells reveals that one of the following things has happened
to each one of the symbol-nesting level pairs: the symbol only is rewritten
(as in cell 2), the level number only is rewritten (as in cell 16), both symbol
and level number are rewritten(as in cell 5), or no change (as in cells 1 and 14).

A N e t w o r k of Microprocessors to Execute Reduction Languages, Part I 355

before
redvct lon

A 3 3

HEAD T A I L A B C D E F G

after
reduction

HEAD TAIL A B G

Fig. 3. A reduction involving AL. The program text is shown in tree
representation first before, and then after the reduction.

b e f o r e r e 4 u c t i o n

< (AL

O] 2

(HEAD TAIL

2 3 3

Ic---TTT; : c b E

3 3
 :l~

al ter reductiorl

{ < (HEAg~ TA tL { A B C (D E [F G

0 I 2 3] 3 2 3 3 3 1 2 2 I 2 2

I 2 3 4 5 6 7 8 v I 0 [[[2 13 I4 15 16 !7 IB 19 2 0

Fig. 4. A reduction involving AL. The program text is shown in internal
representation first before, and then after the reduction.

356 Mag6

The processing requirements of this primitive are called Type A re-
quirements, and they are characterized by the following: (1) the result
expression can be produced in the cells that held the original reducible
application, i.e., there is no need for additional cells; (2) the processing
activities that are to be applied to any symbol of the original RA are known
before execution begins, and if the prescription for these activities is placed
into the cells before execution begins, they can be performed independently
of each other, in any order (possibly simultaneously), and consequently
there is no need for any communication between these cells during execution.
(This conclusion is independent of the expressions that replace the meta-
linguistic variables of the definition, because the expressions f and yl are
left intact, and the only change to expressions y2 through yn is their being
moved up the tree by one level.)

3.2.1.2. AND. AND is a regular operator, and its effect is defined
as follows:

(AND, (x, y)> => z

where x and y are expected to be atomic symbols, either T (true) or F (false).
If both x and y have the value T, then the result z is T; if both of them
have Boolean values, but at least one of them is F, then the result is F, and
in every other case the result is the undefined expression (_1_).

Fig. 5 shows an example of the application of AND to (T,/7) in internal
representation. (Because of the simplicity of this example, we skip the tree
representation.) Although the processing requirements of this primitive
include some Type A processing (e.g., the symbol AND and its level number
can be erased irrespective of the operand expression), there are some new
elements also. They are included in the following, which we call Type B
requirements: (1) the result expression can be produced in the cells that

b e f o r e reduction

<

o A ~ I T
2

F
2

af ter reduction

2 3 4 5 6 7 8 9 I0

Fig. 5. A reduction involving AND in internal representation.

A Network of Microprocessors to Execute Reduction Languages, Part ! 357

held the original reducible application, i.e., there is no need for additional
cells; (2) at least some of the processing activities are data dependent,
and as a consequence, there is a need for communication at least among
some of the cells during execution, and also there are certain timing constraints.
(In our example, the two components of the operand determine whether
to produce F or T as the result, and this result cannot be produced in cell
2 before bringing together the contents of cells 8 and 11.)

3.2.1.3. AA (Apply to All Elements). AA is a meta operator, and its
effect is the following:

((AA, f), (yl, y2,..., yn)) =)

((f, yl) , (f , y2),..., {f, yn))

and if the operand is not in the required form, the result is _I_. Fig. 6 shows
the effect of (AA, *) on a particular four-element sequence using tree

0

before

reduct ion I

A 3

I I1 2 12 3 !3 "4 14

0
a f t e r

r e d u c t i o n l

I I i 2]2 3 13

~3
14

Fig. 6. A reduction involving A A in tree representation.

358 Mag6

b e f o r e r e d u c t i c ~

[:
/

~fter" r e d u c t i o n
1 r

I 2 3 4

/
Y

~f

2

Fig. 7.

2 I
3

/ /

/

5 9 I0

/
/

/

i
13 [4 15 16 17 18 19 20 2[22 23 24

A reduction involving AA in internal representation.

representation. The same reduction is depicted in Fig. 7 using internal
representation.

The processing requirements of this primitive are called Type C re-
quirements, and they are characterized by the following property: the result
expression cannot be produced in the cells that held the original reducible
application, hence there is a need for additional cells to hold the result.

Since the number of insertions, and the length of the expressions to be
inserted are not generally known before execution begins, a complex re-
arrangement of the whole RA may be necessary, the details of which must
be worked out at runtime. For example, with AA the number of insertions
is n -- 1, where n is the length of the operand. In Fig. 7 there are three
insertions, each indicated by an arrow, and each insertion contains the
symbols (a n d *

It should be apparent that Type A processing requirements are a special
case of Type B requirements, which, in turn, are a special case of Type C
processing requirements.

3.2.2. Defined Operators

Whenever an atomic symbol for which a definition exists gets into the
operator position of a reducible application, it must be replaced by its
definitionJ 3) Since a nontrivial definition contains more than one symbol,
replacing a defined symbol by its definition has Type C processing re-
quirements. It should be noted that definitions must exist before execution
begins and cannot be created at runtime.

3.2.3. Composit e Ope!ators

When the operator Of a reducible application is composite (i.e., a se-
quence), the way in which the evaluation proceeds depends on whether the

A Network of Microprocessors to Execute Reduction Languages, Part m 359

first element of the sequence is regular or meta. I f the first element of the
sequence is an atomic symbol, then whether it is regular or meta is part
of its definition. If the first element of the sequence is a sequence, then it
is meta if its first element is ~b, and otherwise it is regular.

3.2.3.1. Regular Composition. If the first element of a composite
operator is regular, we decompose it with the help of the following rule,
called regular composition(a):

((cl , c2 on), d) =) (c l , ((c2, c3,..., en), d))

This reduction rule reveals that the processing requirements of regular
composition can be characterized as Type C, since we have to create two
new symbols between cl and c2.

3.2.3.2. Meta Composition. If the first element of a composite operator
is meta, it is decomposed with the help of the following rule, called meta
composition(3):

((cl , c2,..., cn), d) =) (c l , ((cl, c2 cn), d))

Since cl (whatever expression it is) must be duplicated, the processing
requirements are to be classified as Type C. (In fact, if cl happens to be
a primitive meta operator, there is no need to go through this step: this is
demonstrated in Fig. 3 and 6 with the meta operators AL and AA.)

3.3. O r d e r of EvMuat ion

The definition of reduction languages allows the execution of reducible
applications to take place in any order, owing to the so-called Church-Rosser
property of these languages, m~ Since reducible applications are disjoint in
our chosen internal representation, this representation allows them to be
reduced simultaneously. This is because the outcome of the reduction is
determined solely by the operator and operand expressions, and nothing
from the rest of the program text can influence it.

3.4. Locat ing Reducible Appl icat ions

Before processing of reducible applications can take place, they must
be located in the program text. This process is somewhat complicated by
the fact that there is no bound on either the number of reducible applications
that may exist simultaneously in the program text, or the length of a reducible
application.

360 Mag6

An application symbol whose level number is i is the left end of a re-
ducible application if

1. it is the rightmost application symbol, or

2. the next application symbol to its right has a level number less than
or equal to i, or

3. there exists a symbol with level number less than or equal to i
between the application symbol and the next application symbol
to its right.

If an application symbol with level number i is known to be the left
end of a reducible application, then the entire application consists of the
application symbol itself and the sequence of contiguous symbols to its
right whose level numbers are greater than i.

4. D E S C R I P T I O N OF PROCESSOR

4.1. Interconnection Pattern of Cells

Fig. 8 shows that the processor is a cellular network containing two
kinds of cells interconnected in a highly regular manner. Cells of one kind
form a linear array (they are indicated by rectangles in the diagram), and
they normally hold the program text as described in Sec. 3. Cells of another
kind form a full binary tree (they are indicated by triangles in the diagram),
and they perform processing functions, act as a routing network, etc. The
linear array of cells is referred to as L, and the tree network as T. Throughout
this paper, the root cell of T is assumed to act as the I/O port of the processor
(see Sec. 4.7).

Since L holds the program text one symbol per cell, a network of
practical size comprises a large number of cells. Because of this, we note
here an important and very attractive property such networks have: the
total number of cells in the network is a linear function of the length of L.
More precisely, if n is the height of the tree of cells, then the length of L
is 2**n, and the number of cells in T is 2**n -- 1, so the total amount of
hardware is almost exactly 2 * * n (/ + t), where l and t represent the amounts
of hardware built into a single cell of L and 7", respectively. (Here we ignore
problems related to layout and interconnections; these issues will be
discussed elsewhere.)

4.2. The Partitioned Processor

In Sec. 3.3 we noted that our internal representation allows all RA's
to be reduced simultaneously. To guarantee that the execution of each RA

A Network of Microprocessors to Execute Reduction Languages, Part i 36t

7:

k_:

Fig. 8. The pattern of interconnecting cells in the processor.

can proceed independently, different RA's are processed in disjoint portions
of T.

We describe a way of partitioning the cells of T so that each RA "sees"
a binary tree of processing elements above it, which then processes the RA
as if the RA were alone in the processor.

A single cell of T may participate in the (concurrent) processing of
more than one RA. But we will show that at any time, any given cell of
T must be involved in the processing of at most four RA's, and consequently
an arbitrary cell of T must contain at most four processing elements, each
belonging to a different binary tree.

Thus each cell of T contains four separate processing elements. As-
signing these different processing elements of a cell of T to different RA's
is called the partitioning of that cell. The process and the result of parti-
tioning all the cells of T, and constructing a binary tree of processing elements
for each RA in the program text, is called a partitioning of the processor.
(Partitioning of the processor occurs repeatedly during the execution of a
program, in accordance with the changing program text in L.)

In this section we describe, with the help of a symbolic notation, what

362 Mag6

the partitioned processor is like. In Sec. 4.6.1 we present some of the details
of the process of partitioning.

At the core of the partitioning process is the execution of the algorithm
of Sec. 3.4, done simultaneously for all applications. There are two steps
in this process:

1. locating left ends of applications (as described in Sec. 3.4) and
subsequently dividing the processor into so-called areas;

2. locating right ends of innermost applications (as described in Sec.
3.4), and subsequently transforming some of the areas into so-called
active areas.

First we describe the processor as partitioned into areas. Assume that
we start out with a representation of the processor as shown in Fig. 8. We
modify it by erasing all connections shown in Fig. 8 (though we keep im-
plicitly the relation represented by the erased connections), and place symbols
of the reduction language program into cells of L. In this symbolic notation
an area is a binary tree whose leaves are in cells of L and whose nodes which
are not leaves are in cells of T. Each (symbol has associated with it a distinct
area. Moreover, the leftmost cell of L has a distinct area associated with it,
whether or not it contains an (symbol.

To give a precise definition for areas, the following terminology is used.
The index of a cell of L is an integer indicating its position in L from left
to right. Let i(1) = 1, and let i(2),..., i(q) be the indices of all the cells of L
(other than the leftmost one) holding the symbol < , with i(m) < i(n),
whenever m < n. (The (symbols in i(k -- 1) and i(k § 1) are sometimes
called the left and right neighbors of that in i(k) for 2 < k < q, or 1 < k < q
if i(1) does contain an (symbol .) We say that a binary tree B is embedded
in T and L if

1. every leaf of B is contained in a cell of L (at most one such node
being in any cell of L),

2. every node of B that is not a leaf is contained in a cell of T (at
most one such node being in any cell of T),

3. if bl and b2 are nodes of B, and bl is the father of b2, then if t l
(a cell of T) contains bl, and t2 (a cell of T or L) contains b2,
then t l is the father cell of t2.

Definition 1. Depending on the value of j, the jth area is a binary
tree embedded in T and L such that

for 1 < j < q (1) the leaves of the tree are in the cells of L indexed from
i(j) to i(j q- 1) -- 1,

A Network of Microprocessors to Execute Reduction Languages, Part I 363

(2) the top node (root) of the tree is in the lowest cell of T
which has both the L cells i(j) - - 1 and i(j § 1) as descen-
dants ;

for j = 1 (1) the leaves of the tree are in the cells of L indexed f rom
i(1) to i(2) - - 1,
(2) the top node (root) of the tree is i n the root of T;

for j = q (1) the leaves of the tree are in the cells of L with indices
greater than or equal to i(q),
(2) the top node (root) of the tree is in the root of T.

The following method is used to construct the •h area (1 < j < q):

1. place a single leaf node into every L cell f rom i(j) up to and including
i (j + 1) - - 1;

2. find the T cell that is the lowest common ancestor of the L cells
i(j) and i(j § 1) - - 1, and call it t l (it can be shown that t l is unique);

3. embed a binary tree in T and L consisting of a minimal set of edges
so that there is a path from t 1 to each of the L Cells between i(j)
and i(j~- 1) - - 1 inclusive;

4. find the T cell that is the lowest common ancestor of the L cells
i(j) - - 1 and i(j + 1), and call it t2 (t2 is unique, and it is an ancestor
of t l) ;

5. if t l @ t2, then add a path originating in t l and terminating in t2
to the tree embedded in T and L in step 3.

The resulting tree is the j th area. The construction for j = 1 and j = q
is similar, except that in step 4 t2 is defined to be the root cell of T.

With all the areas constructed in our symbolic notation, the following
propositions hold.

Proposition t . Every cell of T other than the root cell is connected
to its parent cell either by two branches of two different areas or by a single
branch of one area.

The proof of this proposition can be found in Appendix A.

Proposition 2. Each cell of T holds one, two, three, or four nodes,
each belonging to a different area.

Proof. Consider a cell t of T. Let t ' and t" be the left and right son
cells of t, respectively.. Proposition 1 states that there are one or two branches
between t ' and t, and also between t" and t. The right branch arriving f rom
the left son t ' , and the left branch arriving from the right son t" may belong

364 Mag6

Fig. 9. A cell of T may hold one, two, three, or four
nodes, each of a different area.

either to the same area or to two different areas. Fig. 9 shows all the possi-
bilities, completing the proof.

Figure 10 shows a partitioned processor containing six areas. These
areas are drawn superimposed on the T and L cells. (The latter can be
obtained by starting with a diagram like Fig. 8, and erasing all the con-
nections between cells.) For example, the second area from the left has its
leaves in cells 4 through 8 of L. The lowest common ancestor of cells 4
and 8 of L is cell 4 of T and, as Fig. 10 shows, the area contains paths
embedded in T and L starting in every L cell between 4 and 8, and ending
in cell 4 of T. In addition, since the lowest common ancestor of cells 3 and
9 of L is cell 2 of T, the area also contains the path starting in cell 4 of T
and ending in cell 2 of T.

The example of Fig. 10 contains seven of the eight possible partitioning
patterns shown in Fig. 9. The elements of the symbolic notation we are
using can be interpreted as follows. All branches of areas correspond to
communication channels of identical capabilities, capable of carrying in-
formation both ways simultaneously. Whenever only one branch is shown
between two cells, we may assume that the second channel is idle. Each node
of an area corresponds to some fixed amount of processing hardware.
Whenever a node of an area has two downward branches, the corresponding
node hardware may perform processing that is immediately comprehensible

A Network ot Microprocessors to Execute Reduction Languages, Part I 365

I; 14 7~
27 29

3 3 4

RA RA RA F~A

Fig. i0. A processor partitioned into six areas. Cells of T are labeled
with integers for identification. The Iabels attached to branches (F, G, H,
and I) are explained in Sec. 4.6.!.

in terms of the reduction language program. (Note that a cell of T may
hold at most one node with two downward branches.) For example, in
Fig. 10, the node with two downward branches in cell 5 multiplies the
symbols 1 and 11 in the program text, 2 and 12 are multiplied in cell 24,
3 and 13 are multiplied in cell 27, and 4 and 14 are multiplied in cell 15.
Other functions of such nodes, and the role of nodes with one downward
branch are described later. The top of the area serves as its I /O port; the
I /O channels with which it connects are not considered here, but are dis-
cussed in Sec. 4.7.

Finally, we note that since the root of an area is in a celt of T which
has among its descendants the cell of L holding the next < symbol on the
right (if one exists), all the necessary information can be made available
at the root node of each area to determine whether or not the area contains
an RA.

Once the processor is divided into areas, the algorithm to locate RA's
is executed at the root of each area. Since the leaves of an area holding
an RA contain all cells of L up to the next < symbol or to the right end
of L, some of the rightmost leaves of this area may hold symbols of the re-
duction language text that are outside the RA. Locating such leaves, and
separating them from the area-- thereby transforming the area into an
active area--is the second part of the partitioning process. (The active area
is obtained by cutting off certain subtrees of the original area. As a result,

828/8/5-z

366 Mag6

the active area is a binary tree too.) In our example in Fig. 10, there are
four RA's, but none of them requires this process, so we postpone showing
an example of this until Sec. 4.6.1.

4.3. States, State Changes, and Overall Organization

In a global sense the operation of the processor is determined by the
reduction language program placed into L. The operation of each cell is
"data-driven," i.e., in response to information received from its neighbors.
The activities of cells are coordinated by endowing each cell of the processor
with copies of the same finite-state control, which determine how the cell
interprets information received f rom its neighbors. Whenever a cell of T
is partitioned, each independent part (there are at most four of them, each
corresponding to a distinct node of an area) must have its own finite-state
control. On the other hand, a cell of L needs only one such control, since
it is never partitioned.

The state of a node of an area changes whenever either its parent or
both its children change state. The actual pattern of state changes is the
following: the root cell of T initiates the process by the nodes contained
in it changing their states; as a result, its son cells in T change state, and
these changes, in turn, initiate similar changes on the next lower level of T.

state change i ~ j state change j~k

Fig. 11. Petri-net represention of the state changes in a processor, which
contains a single area, and eight cells in L.

A Network of Microprocessors to Execute Reduction Languages, Part | 367

When this wave of changes reaches L, the state changes in the cells of L
initiate changes in the bot tom level of T, which, in turn, cause changes in
the next higher level of T, and so on.

Figure 11 shows a Petri-net (9,13) representation of the state changes
for a processor in which L has eight cells and partitioning produced a single
area, hence all the cells go through the same state changes. All conditions
(represented by circles) have the following interpretation: "in the given cell
state change p --~ q is taking place." The distribution of tokens in the net
(showing the holding of certain conditions) illustrates that these state changes
can take place at their own pace, but they always get synchronized in the
process of approaching the root cell of T.

To simplify our presentation, we assume that the state changes take
place simultaneously on any level of T. This allows us to talk about upward
and downward cycles, indicating which way the state changes are propagating.
Figure 12 shows a fragment of a processor in the middle of a downward
cycle. The cells are partitioned, and four different states--3, 33, 4, and
34---can be found in the diagram. The figure illustrates the following point:
since the reason for having the finite-state control in the cells is to coordinate
related activities in the processor, all nodes of an area go through the same

\

Fig. 12.

33

\

l /i ! ii !ilil 33 ~ 33 23

Snapshot of a fragment of a processor during the downward cycle k § 3 -,-
k + 4. Labels 3, 4, 33, and 34 indicate states of the nodes of areas.

368 Hag6

state changes (e.g., in Fig. 12 all nodes of the active area on the left are

going through the change 3 --~ 4, whereas all nodes of the active area on

the right are going through 33 - * 34), and, as a result, in general no useful

purpose is served by talking about the state of the processor as a whole.

Figure 13 shows the state d iagram of the nodes of areas for the processor

we are describing. The details of this d iagram are explained at length in

the remainder of Sec. 4. Here only the following observations are made:

1. Al though different cells (or parts thereof) may be in different states
at any moment , we can always say (thanks to our simplifying assumption)

that all cells (or parts thereof) on the same level of T are in states that are

in the same co lumn of the state d iagram (for an example, see Fig. 12).

2. We use the expression k + i to denote all states in a co lumn of

the state diagram, where i is the smallest label in the co lumn and k may

partitioning prepare for storage storage
mondgement management

Fig. 13. The state diagram of a node of an area, or that of the contents of a cell
of L. (Meaning of certain state sequences: 1 14, area contains no RA, or it is
executing a Type A or B operation; 1 5 -- 16 24, area is executing a
Type B or C operation; 1 5 - 16 1 9 - 40 44, area is
executing a Type C operation, requested storage, and did not receive it; 51 64,
Type B or C operation, sending messages or moving data:)

A Network of Microprocessors to Execute Reduction Languages, Part I 369

assume values of 0, 10, 30, and 50, e.g., k + 4 where k = 0 ,
30, 50; k ~ 7 where k = 0, 10, 50; or k 4 - 12 where k = 0 , 10,
30, 50.

3. Odd-numbered states are entered in upward cycles, and even-
numbered states are entered in downward cycles.

4. The state diagram is cyclic: the successors to states k + I4 are
states k q- 1.

5. There are three (specially marked) states in the diagram--states 5,
19, and 61--with more than one successor state; in these states the successors
are always chosen deterministically, with the help of conditions that are not
visible on the level of the state diagram.

6. In cells of L, the state belongs to the contents of the cell, not to
the cell itself--hence the state information moves with the contents of the
cell during storage management (see Sec. 4.6.6.2.)

7. Since the state diagram describes the states of the nodes of areas,
during state transition k q-14---~k q-1, when partitioning takes place,
hence areas go out of and come into existence, some additional rules are
needed: in states k q- 14 each node of each area changes its state to the
undefined state, with the exception of the leftmost cell of L and the cells
of L holding an (symbol, and these cells of L, in the process of repartitioning
the processor, determine the states of the newly formed areas (the state
transitions to and from the undefined state are not shown in the state diagram
of Fig. 13.

8. When the program text is first placed into L, the state of each
symbol in it is 1.

The state diagram specifies the overall organization of the processor.
The organization, hence the state diagram, chosen for description in this
paper is just one of many possible alternatives: the main criteria in its
selection were that it be easy to describe, yet still able to illustrate well the
advantages of a processor of this kind.

Since it is the state of the node of an area which determines what
processing activities that node performs, and the states of the nodes of an
area are closely coordinated (all nodes of the area go through the same
state change in each upward and downward cycle), the processing activities
performed by an area in certain states (or in certain groups of states) can
be classified as fitting one of several global patterns. We choose to distinguish
three such patterns, and call them modes of operation.

In both Mode I and Mode II, information is sent along paths between
L and the root cell of T, usually inside areas, but possibly also across area
boundaries (examples of the latter are partitioning, preparation for storage

370 Mag6

management, and detecting the end of storage management). In Mode III,
information is sent only along L.

Mode I and Mode II are distinguished because information items
moving upward are treated differently. In a Mode I operation, (1) whenever
a node of an area (or a cell of T) receives two information items from below,
it produces one information item to be sent up to its parent node; (2) the
output item is produced by performing some kind of operation on the two
input items, such as adding two numbers (see combining messages, Sec.
4.5.2), taking the leftmost three of six arriving items (see partitioning, See.
4.6.1), or the considerably more complex operation of preparing the directory
(see Sec. 4.6.2); (3) since each subtree of the area (or of T) produces a single
value, this value can be stored in the root node of that subtree, and can
be used to influence a later phase of processing; (4) if the data paths are
wide enough, the node of the area (or the cell of T) is able to receive both
its inputs in one step, hence is able to produce its output in one step (we
make this simplifying assumption throughout this paper).

In a Mode II operation, (1) whenever a node of an area receives two
information items from below, it produces two information items to be sent
up to its parent node; (2) the two output items are the same as the two input
items, and the order in which they appear on the output may or may not
be of consequence; (3) the higher up a node is in the area, the larger the
number of information items that pass through it, and as a result, the time
required for a Mode II operation is data dependent. Because of this queueing
phenomenon, and because the size of information items may also vary
considerably, the natural way to control a Mode II operation is with the
help of asynchronous control structures, ~5,12) via ready and acknowledge
signals. The Mode II operations are: (1) bringing in microprograms (in
state 3, see Sec. 4.6.2), (2) sending messages, data movement, and I/0 (in
states 52 through 61, see Secs. 4.6.4, 4.6.5, and 4.7), and (3) preparation
for storage management (in states k + 9 and k + 10, see Sec. 4.6.6.1).

Modes I and II also differ in the ways they treat information items
moving downward, but these differences are consequences of the primary
distinction between them. In a Mode I operation, (1) the node of the area
(or the cell of T) produces both a left and a right output item in response
to the one input item, and they may be different, depending on what was
left in the node (or cell) in question by the previous upward cycle (an example
of this is the process of marking expressions--see Sec. 4.6.3); (2) since during
the previous upward cycle the top of the area produced a single item, during
the next downward cycle only a single item (not necessarily the same) arrives
at each cell of L in the area; (3) the processes of moving information up
and down in the area do not overlap in time.

In a Mode II operation, (1) the node of the area produces two output

A N e t w o r k of M ic roprocessors to Execute Reduction Languages, Par t I 371

items in response to the one input item, and they are always identical (the
item is being broadcast to each cell of L in the area); (2) every item that
passes through the top node of the area is broadcast separately to cells in L,
and the latter are free to accept or reject any of the items arriving at them;
(3) the processes of moving information up and down in the area overlap
in time, hence each branch of the area must be able to carry information
items in both directions simultaneously.

In summary, Mode I and Mode II can be compared and contrasted
as follows. In a Mode I operation, by propagating information upward
in the tree simultaneously from all cells of L, the global situation in L is
evaluated, and the partial results of this evaluation are stored into the nodes
of the area (or the cells of T). Next, by propagating information downward
in the tree and by using the partial results stored in the nodes, each cell
of L can be influenced separately and differently. In a Mode II operation,
on the other hand, the area functions as a routing, or interconnection,
network, and typically delivers information items from L back to L, by
passing them through the root node of the area.

Mode III is characterized by the fact that only cells of L participate
in the processing, and adjacent cells of L communicate with each other
directly. The only Mode III operation is storage management (see Sec.
4.6.6.2).

4.4. Outline of Ceil Organization

In this section we outline the processing and storage capabilities that
a typical cell of L and T must have. When describing certain components
of these cells, we often refer to details that are explained only in subsequent
parts of Sec. 4. Thus this section can be fully understood only after reading
the rest of Sec. 4.

4.4.1. Cell of L

Figure 14 shows a cell of L. The names of registers appearing in the
figure are used in the rest of Sec. 4 to explain how the processor operates.

The component labeled state has the ability to store the current state,
and compute the next state corresponding to the state diagram of Fig. 13;
this state information belongs to the contents of the cell, not to the celt itself.

CPU has the ability to execute segments of microprograms, and perform
processing related to storage management (see Sec. 4.6.6.2), which is not
explicitly specified in microprograms.

Microprogram store is capable of storing a certain number of micro-
instructions. This is necessary because certain microinstructions cannot be

372 Mag6

L

/_

State

Condition registers

CPU

Microprogr~m store

Local S
storagc: ALN

RLN
E'

F~LN"

MARKERI
NI
LI
MARKER2
POS~
LENGTH
N2
L2
L/R

MI
M2
M3
M4

BL
BR

Fig. 14. Schematic representation of a cell of L.

I

L

executed immediately on receipt, since some of their operands are not yet
available.

Condition registers store status information concerning the contents of
the cell, e.g., whether the cell is full or empty, and whether the contents of
the cell are to move during data movement.

Local storage contains the following registers: S holds a single symbol
of the reduction language text. S' holds another symbol of the reduction
language, with which S is to be rewritten at the end of processing the RA.

ALN holds the absolute level number of the symbol of the program
text; this is obtained by considering the contents of L as a single expression
of the reduction language and assigning to ALN the nesting level of the
symbol in question. RLN is the relative level number of a symbol in an RA.
This is obtained by assigning to RLN the nesting level of the symbol with
respect to the RA. RLN' is the value with which RLN is to be rewritten
at the end of processing the RA.

MARKER1 and MARKER2 are set by the microprogram and used
to mark all symbols of an expression. Whenever a microinstruction " M A R K
WITH x" is executed in a cell of L, MARKER1 receives the value "x ,"
and if RLN has a certain value, MARKER2 receives "x ," too. Symbols
of the marked expression are indexed, beginning with one, and these index
values are placed in N1. The largest index value, which is the total number
of symbols in the expression, is placed in L1. When a symbol occurs in a

A Network of Microprocessors to Execute Reduction Languages, Part I 373

marked expression, the value of POS# (mnemonic for position number)
for each symbol is set as follows: the marked expression is considered a
sequence, and all symbols of the expression that is the ith element of this
sequence receive the value i in their POS# register. The largest value of
POS#, which is the length of this sequence, is placed in register LENGTH
of each symbol. Also, each expression that is an element of the sequence
is indexed separately, the index values are placed in N2, and the total number
of symbols in the element expression are placed in L2. (N2 and L2 play the
same role for the element expressions as N1 and L1 do for the whole marked
expression.) The L/R register holds the value "left" (or "right") if the
symbol contained in S is the leftmost (or rightmost) symbol of one of the
elements of a marked sequence.

M1, M2, M3, and M4 are called message registers: SEND statements
generate messages that may have one, two, three, or four components, and
on arrival at the cell of L, they are placed in M1, M2, M3, and M4, respec-
tively.

BL and BR contain nonnegative integers, and are used during storage
management: the cell of L in question is entered on the left by the contents
of BL cells of L, and on the right by the contents of BR cells of L.

Of these registers, BL, BR, and those controlling the state of the cell
are used in every cell of L; S and ALN are used in every occupied cell of L;
and all the others are used only by occupied ceils internal to an RA, or by
ceils reserved during storage management.

The S register must be large enough to hold any symbol that might
occur in the source text, including numbers. The ALN and RLN registers
must be able to hold any nesting level value that might arise. (If L has
2**n cells, the maximum nesting level of any expression in it is 2**n -- 1,
hence n-bit registers will suffice.) Finally, the number of cells in L is a bound
on the values that BL, BR, N1, L1, POS#, LENGTH, N2, and L2 may
have to hold.

4.4.2. Cell of T

A cell of T is shown schematically in Fig. 15. The components of this
diagram can be explained as follows:

1. R1 through R6 stand for identical groups of registers. In this paper
we do not commit ourselves to details, such as how many registers they
contain and what the size of each register is, because the choice of such
details does not affect the essential nature of the processor. These registers
serve two functions, as input and output ports in the process of communi-
cating with other cells of T and L, and as local storage for P1 through P4.

374 Mag6

P l P2

Fig. 15. Schematic representation of a cell of T.

2. P1, P2, P3, and P4 are the processing components of the cell; each
one may belong to a different area of the processor. All have identical pro-
cessing capabilities, the same amount of local storage, and identical state
control units (similar to the component labeled state in Fig. 14). They must
be able to perform the processing required by the internal mechanisms,
described at length in Sec. 4.6.

3. The lines connecting the register groups and the processing com-
ponents represent communication channels of identical capabilities, capable
of carrying information both ways simultaneously. (Again, we do not specify
details, such as channel widths.) Not all channels are used all the time:
Fig. 22 specifies the eight possible partitioning patterns of the cell. The
component in Fig. 15 labeled partitioning determines which partitioning
configuration is assumed by the cell.

4. The pairs of lines originating in R1 and R2, in R3 and R4, and
in R5 and R6 lead to the parent cell, left son cell, and right son cell, respec-
tively. Each line represents a communication channel capable of carrying
information both ways simultaneously. (The need for two separate lines
leading to each of the parent, left son, and right son is explained by Pro-
position 1 of Sec. 4.2.)

In Sec. 4.6 the processing activities performed by cells of T are described
with the help of temporaries. Again, we do not show an explicit mapping
between these temporaries and the components of T, because many different
mappings are possible.

A Network of Microprocessors to Execute Reduction Languages, Part 1 375

4.5. Specification of P rocess ing - -M ic roprogramming Language

In this section we describe a simple language capable of specifying all
the computational requirements outlined in Sec. 3. Since it is closer in style
to a conventional microprogramming language than to a machine language,
we refer to it as a microprogramming language.

Type A processing, which we described in Sec. 3, can be performed in
cells of L alone, and we choose to implemem it by executing suitable micro-
programs in cells of L. Type B and C processing requirements are more
complex, and we implement them by executing suitable microprograms
in cells of L, which, in turn, may initiate processing activities in cells
of T.

Figure 16 is useful in introducing some terminology. It shows the
RA already discussed in the context of Fig. 4, and indicates (in plain English)
the processing activities that must be performed to bring about the effect
of the reduction rule in question.

The totality of processing activities required by an RA, and expressed
in the microprogramming language, will be called a microprogram. A micro-
program is made up of segments specifying processing required by single
symbols (atomic symbols or syntactic markers) or well-formed expressions
of the RA. A segment comprises a sequence of microinstructions.

Microprograms specifying the effects of operator expressions reside
outside the processor. When a reducible application is located, the appro-
priate microprogram is sent in via the root cell of 7'. Section 4.7 describes
how it gets from the top of T to the top of the active area in question. In
Sec. 4.6.2 it is shown how components of the microprogram find their way
from the top of the active area to cells of L holding the reduction language
program text. I f the RA is well-formed, every symbol of it receives a segment
of a microprogram, and only such cells receive microinstructions.

< C AL (HEA1TAIL C

0 I 2 2 3 3 1

2:s/
(A B C (D E C 2 F

2 3 3 ~ 3 . 3

I~LN by I

3

b/ I

Fig. 16. Processing to be performed in cells of L to execute the reduction shown in Fig. 3
and 4.

376 Mag6

4.5.1. Three Microprograms

We now introduce some of the details of the microprogramming language
by means of three examples.

For ease of understanding and to avoid the need to specify low-level
details of the internal representation that are irrelevant here, we have chosen
an ALGOL-like representation for the microinstructions.

Since segments of microinstructions apply to constituents of the operator
and operand, and these constituents form blocks of a partition of the RA
in L, we arrange the segments of the microprogram in a linear sequence
so that the order of the segments matches the order of the corresponding
constituents in L. Because of this simple positional correspondence, the
only information that has to be attached to any segment of microinstructions
is the description of the constituent to which it applies (e.g., a single symbol
with a given level number), and we call such a description a destination
expression.

Our first example, shown in Fig. 17, is a microprogram for the primitive
meta operator AL (see also Sec. 3.2.1.1).

The destination expressions of this example show the ways the micro-
programming language deals with those aspects of the RA that become known
only at runtime:

�9 Constituent of
source text

40

(/1

AL/2

f_/2

Destination
expression

(s/o):

(s / l) :

(s/2):

(E/2):

(E/i):

Segment of
microprogram

4: S :="("~

4: if S ="("

then S :="4'

e l s e S :="•

ERASE~

do nothing;

HARK WITH x;

~,: i f (aLN=i) & (5~"(")

then S ::"•

8: if (Nl=l) then ERASE;

B: if POSIt = 1

then do nothing

e l s e RLN:=RLN-1;

Fig. 17. A microprogram for AL.

A N e t w o r k of Microprocessors to Execute Reduction Languages, Part I 377

1. The microprogram is written with the assumption that the level
number of the (symbol is 0 (whenever an RA is located, these so-called
relative level numbers - -RLN for short--are computed for each symbol
by subtracting the true, or absolute, level n u m b e r - - A L N - - o f the (symbol
from the ALN of the symbol in question).

2. The destination expression (E/i) indicates that the same segment
of microprogram is to be sent to all symbols of a well-formed expression
whose leftmost symbol has RLN = i. (The size of this expression is generally
unknown prior to execution. Section 4.6.2 describes how symbols of this
expression are located.) The destination expression (S/i)indicates that the
segment is to be sent to a single symbol with RLN = i.

In the microinstructions, S, RLN, and P O S # refer to registers of the
cell of L executing the microinstruction in question (see Sec. 4.4.1).

The numeric labels in front of statements indicate the state of the cell
of L in which the statement in question should be executed. Statements
with the same label are executed in their order of occurrence. Some state-
ments, such as ERASE, need no label, because their time of execution is
determined in some other way (ERASE is executed at the end of executing
the RA).

The phrase " M A R K WITH x" activates the only available mechanism
to analyze a sequence into its components. As a result of executing this
statement, the whole marked expression is considered a sequence, and
symbols of its component expressions receive a number in their P O S #
register indicating their position in the sequence, and their L E N G T H
registers receive a number indicating the number of elements of this sequence.
(The full effect of the M A R K statement is explained in Sec. 4.5.2, whereas
the process of marking an expression, which begins in state 5 and ends in
state 8, is described in Sec. 4.6.3.)

With these comments the microprogram for AL should now be readable.
It says: the leftmost symbol of the RA should have RLN = 0, and this
symbol should be changed to (. We need not verify that this symbol is (,
since the RA was located on the basis of its being a (. The next symbol
from left to right must be (with RLN = 1; if it is, it should be changed
to ~; alternatively we signal an error. The next symbol--whatever it i s - -
should have RLN = 2, and it should be erased. (Again, we know it is AL,
since the microprogram was brought in on that basis.) The next expression,
which is the parameter of the AL operator, should be left alone (its leftmost
symbol must have RLN = 2). Following that is the operand expression,
whose leftmost symbol must have RLN = 1. We erase this leftmost symbol
if it is (, otherwise signal an error. In addition, all component expressions
of the operand with the exception of the first have their RLN reduced by one.

378 Mag6

Constituent of

source t e x t

</o

AND/Z

(11

Fig. 18.

Destination

expression

Segment of

microprogram

(S/0): S := M2(1);

(S/Z) : ERASE

(E / l) : 4: i f (RLN=I) & (S~"C")

then S :="-L'~

4: i f (RLN = 2)

then SENDIC(AND,S) ~

4: i f (RLN > 2)

then S := " [" ;

ERASE;

A microprogram for AND.

We introduce some further details of the microprogramming language
by showing a microprogram for the primitive regular operator AND in
Fig. 18 (see also Sec. 3.2.1.2).

This example introduces what can be called the message mechanism,
providing a means of communication among cells of L during execution,
which is the chief requirement of Type B processing. A variety of SEND
commands exists for the purpose of broadcasting information in active areas.
For example, a message sent by a SEND1C statement moves up the area
simultaneously with the state change 4 --~ 5. The command in our example
has the form "SEND1C (binary operator, operand)," which causes the
operands to be combined according to the binary operator as they move
up in T. Only one message (containing the result) reaches the top of the
active area; that message, again in the form (binary operator, operand),
is broadcast down to every cell of L in the active area. Any cell can pick
up the result in its M2 register, but in our example only one cell is pro-
grammed to do so, by means of the statement S: = 3/2(1).

A microprogram for the primitive meta operator AA, shown in Fig. 19,
illustrates how Type C processing is specified (see also Sec. 3.2.1.3).

This microprogram implements AA as shown in Fig. 7: the originally
existing copy of f is left in place, and becomes the operator o f y l , and n -- 1
additional copies of </1 and f/2 are created in front of y2 through yn.

The operand expression is marked with y; this causes the elements
of the operand sequence to be indexed by setting the values of the POS#
registers. Thus, if a symbol appears in the ith element of the operand
sequence, the POS# register of the cell which holds the symbol is assigned
the value i. We insert the symbol </1 on the right ofyi (1 ~< i < n) by writing
"INSERTS(right, <, 1)," and insert the expression f/2 on the left of y2

A N e t w o r k of Microprocessors to Execute Reduction Languages, Part I 319

Corlsgi bceri[of"
source tex t

</0

(/1

AA/2

f/'Z

(/~

F i g . 19.

DesL/i~akion
expression

Segment of

microprogram

(S/0): 4: S :="(";

(s / i) : 4: iF 5 ="("

Lherl S :="<"

else S :="•

(S/2) : ERASE ;

(E/2): MARK WITH x;

(E/I): HARK WITH),~

4: i r (RLN=I) ~ (s l ' (')

then S ::"•

8: if (NI:I) then ERASE;

]8: if POS~'~ < LENGTH

then

INSERTS(right ~ % I) ~

!8: if POS# > i
J

then

INSERTE(IefL~x~+O]

A microprogram for AA.

through yn by writing "INSERTE(left, x, -~0)." In the latter case x is the
symbol with which we marked every symbol of the expression f, and since
the information we are inserting comes from the source text and not from
the microprogram, we give an increment (+0) to the original RLN instead
of a new value for RLN.

The INSERT commands result in insertions adjacent only to the leftmost
or rightmost cell of the expression to which they apply. Information to
control where the insertion is to be made is in the L/R registers of an ex-
pression, placed there in the process of marking the expression. Consider,
for example, the statement "if POS# < LENGTH then INSERTS(right,
(, 1)." This is received by every symbol of the operand. The condition holds
only in cells containing symbols of yi (1 ~ i < n). Moreover, we do not
want to perform insertions next to each symbol of these expressions, only
at the right end of their rightmost symbols. The command "~
{, 1)" is executed only in cells whose L/R register contains the value "right."

A microprogram offers a way td specify the result of a reduction in
terms of the operator and operand expressions of the original RA. Part II
of this paper describes what is involved in executing microprograms, and
Appendix B in Part II shows what happens in the processor when the
microprograms for AL, AND, and AA are executed.

380 Mag6

4.5.2. Description of Microprogramming Language

The microprogramming language described here is capable of ex-
pressing the computational requirements of a large number of primitives.
It has been used to write microprograms for many primitives, including
most of those considered by Backus (3) and Pozefsky. (14) The only primitive
considered by Backus that cannot be programmed in this language is
TRANSpose; it must be defined in terms of other primitives. (Microprograms
cannot be composed: since each RA must be executed in its own area,
composing two microprograms, i.e., executing one after the other in the
same area, would be of very limited utility, hence not explicitly included
in the design.) Although the microprogramming language has an ALGOL-like
appearance, the simplicity of the constructs allows a very concise encoding
into an internal representation.

A segment of a microprogram is composed of a destination expression,
followed by a sequence of labeled or unlabeled statements. The permissible
destination expressions are S/i and E/i with 0 ~< i ~< 3, because beyond
relative level number three we cannot distribute different microinstructions
to different expressions (the reasons for this restriction are explained in
Sec. 4.6.2).

Every statement should be preceded by a numeric label, unless (1) it
is a MARK, ERASE, or no-op statement, (2) it is one of the arms of a
conditional, (3) it is a SEND statement other than SEND1 or SEND1C,
or (4) it uses some of the message registers (M1 through M4). Any integer
used to designate a state in the state diagram (Fig. 13) can appear as a label
of a statement.

The conditional has the following form: if (predicate) then (statement)
else (statement). Neither arm of a conditional may be another conditional,
or a M A R K statement. The predicate is formed from relational expressions
with the help of Boolean operators, assuming certain reasonable length
restrictions. In a relational expression the usual relational operators (= ,
v~, < , ~<, > , >~) may compare constants, contents of any of the registers
of the cell of L, or values of arithmetic expressions formed thereof (again
assuming certain length restrictions).

In an assignment statement on the lefthand side one can write only
S or RLN (all other registers of cells of L are set only in specific contexts,
for example, by some of the other statements), whereas on the righthand
side one can write a constant, the name of any register of the cell of L, or
an arithmetic expression formed thereof assuming that certain length re-
strictions apply. When all quantities are available, the righthand side of the
assignment statement is evaluated and stored in a temporary register (S'
or RLN'); the time of evaluation should be indicated in the statement label,

A Network of Microprocessors to Execute Reduction Languages, Part I 381

if possible. The assignment itself, however, is executed only at the final stage
of the processing of the RA.

The E R A S E statement clears all registers of the cell of L at the end
of the processing of the RA.

The SEND statement is used to send messages to the top of the area,
from which they are broadcast to all cells of L that are contained in the area.
Sending and processing of different messages can be overlapped in time if
the relative order is immaterial. Sequencing is made possible by indexing
the messages; a message with index i + 1 is sent only after all messages
with index i have arrived at their destinations. Indexing is done by using
SEND statements of the form SEND/, where i = 1, 2, 3 The parameters
of the SEND statements shown above are the messages to be sent. The
number of parameters varies, but should not exceed some specified value.
(Four parameters allow a large set of primitives to be implemented, so we
choose the maximum to be four.) The messages sent by SEND1, SEND2,
etc., will not interact with any other message in T. On arrival back at L
the parameters of these SEND statements are placed into registers M1, M2,
M3, and M4 of each cell of L in the area, ready to be used by the micropro-
gram. Since registers M1 through M4 accept every message arriving at the
cell of L in question, whenever their names appear in an expression in
the microprogram, that expression is evaluated for every message accepted.
(M1 through M4 are used most frequently in conditionals, since usually
some part of a particular message is sought depending on some condition.)
We can refer to components of a message produced by S E N D / b y writing
MI(i), M2(i), and so on.

As an alternative, we may want the messages to be combined whenever
they meet in some node of the area, such as adding them up, or selecting
the larger one (see also the microprogram for AND in the preceding section).
Such SEND statements are written as SEND1C, SEND2C, etc. (Statements
of the forms SEND/ and SENDjC must have i @j.) The first parameter
of a SENDiC statement is the operator specifying the rule of combination.
The second, third, and fourth parameters are to be combined separately
according to the operator specified by the first parameter. When two messages
produced by SENDiC statements meet in a node of the active area, the
output produced has the same format as the inputs. The final result produced
on the top of the area is broadcast down to L, and the components of the
final result end up in the registers M2, M3, and M4 of every L cell of the
area in question. (For any value of i, only one operator can be used in
statements of the form SENDiC.)

All the statements of the form SEND1 or SEND1C should be labeled,
each with the same label, chiefly to indicate whether the results of the
M A R K statement are needed to generate these messages. Other SEND

8281815-3

382 Mag6

statements, i.e., SEND/ and SEND/C, where i ~ 1, should never be
labeled.

M A R K statements are used to identify expressions that are to be inserted
somewhere else in the program text, and also to identify elements of such
marked sequences. Any segment can contain only one M A R K statement,
and such a statement cannot be either arm of a conditional. As a result,
every cell of L receiving the M A R K statement will be marked, and further-
more only constituents of the source text that have their own destination
expressions can be marked. The full effect of the M A R K statement is ex-
plained with the help of Fig. 20. Registers N1 and L1 make it possible,
for example, to write microprograms to compare two arbitrary expressions
for equality, or to insert the whole marked expression somewhere else in
the program. Registers P O S # (position number) and L E N G T H allow us to
write microprograms to do different things to different elements of the marked
sequence, and they, combined with registers N2 and L2, allow us to insert
the component expressions of this sequence at different places in the program.
Finally, register L/R is used to locate the left or right end of any of the
component expressions, in order to be able to make an insertion there.
(The process of assigning values to these registers is described in Sec. 4.6.3.)

The I N S E R T statement has three variants. INSERTS is used whenever
a single symbol is to be inserted from the microprogram. Its form is INSERTS
(left/right, symbol, RLN). The first parameter specifies whether the symbol
is to be inserted on the left or on the right end of the expression holding
the INSERT statement in question. The second and third parameters are
the symbol to be inserted and its RLN.

S < OP ((A B C D (E F G (. H [(K

R / N 0 1 I 2 3 3 3 3 2 3 3 3 2 3 3 2 3

MARKER 1 X X X X X X X X X X X X X X X

NI I 2 3 4 5 6 7 8 9 I O I I 12 13 14 15

hi 15 15 15 15 15 T5 15 I5 15 15 15 15 [5 15 15

MARKER 2 X X X X

POS ~/=# I I I I I 2 2 2 2 3 3 3 4 4

LENGTH 4 4 4 4 4 4 4 4 4 4 4 4 4 4

N2 I 2 3 4 5 I 2 3 4 I 2 3 [2

/ 2 5 5 5 5 5 4 4 4 4 3 3 3 2 2

L / R L R L R L IR L R

Fig. 20. The cells of L shown hold an RA. The operand expression has
received the microinstruction "(E/l) : M A R K WITH x." The contents of all
the registers set by this microinstruction are shown.

A Network of Microprocessors to Execute Reduction Languages, Part I 383

INSERTE is used whenever an expression (possibly a single symbol)
is to be inserted from the program text. Its form is INSERTE(left/right,
marker, increment to RLN). The first parameter is the same as in the case
of INSERTS. The second parameter identifies the symbol or expression
to be inserted, which must have been marked. The third parameter specifies
how to adjust RLN of the symbol or expression to be inserted.

INSERTC is used whenever a component of a marked sequence is
to be inserted. Its form is INSERTC(left/right, marker, position number,
increment to RLN). The third parameter specifies which component of the
marked sequence is to be inserted.

Although the microprogramming language described here has some
powerful features (especially the SEND, MARK, and INSERT statements),
it is basically a low-level language. It can be used to full advantage only
if one understands the operation of the processor to a sufficient degree.

This language often allows several different microprograms to be
written for the same primitive. The easiest examples to illustrate this involve
some rearrangement of the operand. Consider a primitive EXCHANGE,
whose effect is

(EXCHANGE, (x, y)) =) (y, x)

It is possible to write a microprogram that leaves the expression x in place,
inserts y on its left, and erases the original copy of y from the program text.
As an alternative, it is possible to write another microprogram that leaves
y in place, inserts a copy of x on its right, and erases the original copy of
x from the program text. Since for a short while two copies o fy (or two copies
of x) must exist in L, it would be desirable to move the shorter one of x
and y. Since the lengths of x and y become known only at runtime, a third
version of the same microprogram could test the lengths of x and y, and
move the shorter one of the two.

One more issue that should be briefly mentioned is testing the syntactic
correctness of the whole RA. Since the RA may be an arbitrarily long
expression, with arbitrarily deep nesting, its syntactic correctness cannot
always be fully tested by the processor. However, the following tools are
available:

1. The segments of the microprogram must match the corresponding
constituents of the program text, otherwise an error message is generated
(when the microprogram is distributed, the only thing the processor has
to do is to observe whether there are any segments of the microprogram
that find no destination with the specified description or whether there are
any occupied cells of L in the active area that received no microinstructions).

2. The microprogram can do some further checking of syntactic
correctness with the help of the M A R K statement and conditionals.

384 Mag6

In fact, experience has convinced us that this kind of syntactic Checking,
in which syntax errors are discovered only when they prevent further pro-
cessing, is extremely helpful.

A P P E N D I X A: P R O O F O F P R O P O S I T I O N t

Let t be a cell of T other than the root cell, and let t ' be its parent cell.
First we show that there is always at least one branch of an area between
t and t'. We refer to a cell of L which is a descendant of t as a leaf under t.

Cose 1. No ~ symbol lies in any leaf under t. In this case, every leaf
under t belongs to the same area, namely thejth one, wherej is the largest inte-
ger for which the cell indexed by i(j) is not to the right of the leaves under t.

Since the root node of the j th area is either in the root cell of T or
in a cell of T which, by definition, has both the i(j) -- 1 and i(j + 1) cells
of L as descendants, t must be a proper descendant of that cell, and thus
a branch from t to t ' must be part of the j th area. (In fact, in this case there
is no need for more than one branch between t and t'.)

Case 2. At least one (symbol lies in a leaf under t. Assume i(p)
is the index of the rightmost occurrence of (under t. I f p =- 1 or p = q,
where q is the total number of areas, then the root of the pth area is in the
root cell of T, so we need a branch for this area between t and t'. If, on
the other hand, 1 < p < q, then the root of the pth area must have the
i(p -k 1) cell of L as a descendant, which is not a descendant of t. Hence
t is a proper descendant of the root of the pth area, and therefore there is
a branch between t and t'.

Finally, we show that there can never be more than two branches
between t and t', by showing that if there were more than two, all but the
rightmost and leftmost ones would be in violation of the definition of an
area. Assume there are three or more branches between t and t'. Consider
a branch other than the leftmost or rightmost one, corresponding to, say,
the ruth area, and assume further that the leftmost and rightmost branches
correspond to the kth and nth areas, respectively. By definition, the top of
the ruth area is in the lowest cell of T which has both the i (m) - 1 and
i(m -k 1) cells of L as descendants.

The presence of the leftmost branch indicates that t has among its
descendants i(k -k 1) -- l, and the presence of the rightmost branch indicates
that t has among its descendants i(n). From k < m < n it follows that
i(k-k 1) -- 1 ~<i(m) -- 1, and i(m + 1) ~ i (n) . Since both i(m) -- 1 and
i(rn -k 1) are descendants of t, it follows that either t, or one of its descendants,
holds the top of the ruth area, and the branch between t and t ' assumed to
belong to i(m) is in violation of the defifdtion of an area.

A Network of Microprocessors to Execute Reduction Languages, Part I 385

R E F E R E N C E S

t. Arvind and K. P. Gostelow, "A Computer Capable of Exchanging Processors for
Time," Information Processing 77 (North-Holland Publishing Co., 1977), pp. 849-853.

2. J. W. Backus, "Reduction Languages and Variable-Free Pro~amming," IBM Research
Report RJ1010, Yorktown Heights, New York (April 1972).

3. J. W. Backus, "Programming Language Semantics and Closed Applicative Languages,"
IBM Research Report RJ1245, Yorktown Heights, New York (July 1973).

4. A. L. "Davis, "The Architecture of DDMI: A Recursively Structured Data Driven
Machine," Technical Report UUCS-77-113, Department of Computer science,
University of Utah, Salt Lake City, Utah (October 1977).

5. J. B. Dennis, "Computation Structures," COSINE Committee Lectures', Princeton
University, Department of Electrical Engineering, Princeton, New Jersey (July 1968).

6. J. B. Dennis, "Programming Generality, Parallelism and Computer Architecture,"
Information Processing 68 (North-Holland Publishing Co., 1969), pp. 484-492.

7. J. B. Dennis, "First Version of a Data Flow Procedure Language," Lecture Notes in
Computer Science, Vol. 19 (Springer-Verlag, New York, 1974), pp. 362-376.

8. J. B. Dennis and D. P. Misunas, "A Preliminary Architecture for a Basic Data-Flow
Processor," Proceedings of the Second Annual Symposium on Computer Architecture
(IEEE, New York, 1975), pp. t26-132.

9. A. W. Holt and F. Commoner, "Events and Conditions," Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation (ACM, New York, 1970),
pp. 3-52. ""

10. A. Koster, "Execution Time and Storage Requirements of Reduction Language
Programs on a Reduction Machine," Ph.D. thesis, Department of Computer Science,
University of North Carolina at Chapel Hill (March 197'7).

11. P. McJones, "A Church-Rosser Property of Closed Applicative Languages," IBM
Research Report RJ1589, Yorktown Heights, New York (May 1975).

12. S. S. Patil and J. B. Dennis, "The description and realization of digital systems,"
Rev. Fr. Aurora. Inf Rech. Oper. 55-69 (February 1973).

13. C. A. Petri, Kommunikation mit Automaten, No. 2. (Schriften des Rheinisch-West-
f~lischen Institutes fi.ir Instrumentelle Mathematik an der Universit~tt Bonn, Bonn,
1962).

14. M. Pozefsky, "Programming in Reduction Languages," Ph.D. thesis, Department of
Computer Science, University of North Carolina at Chapel Hill (October 1977).

15. D. F. Stanat and G. A. Mag6, "Minimizing maximum flows in linear graphs," to
appear in Networks.

16. D. F. Stanat and G. A. Mag6, "A parallel algorithm for minimizing maximum flows
in linear graphs," in preparation.

17. K. J. Thurber, Large Scale Computer Architecture--Parallel and Assoeiative Processors
(Hayden Book Co., Rochelle Park, New Jersey, 1976).

