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1. Int roduct ion 

The study of 'integrable' or exactly solvable systems has a long history. Classical 
mathematicians such as Euler, Lagrange, Liouville, Riemann, Poincar6, Painlev6 
amongst many others, investigated nonlinear systems which could either be inte- 
grated more or less explicitly or possessed special analytic structures in the 
complex plane. Perhaps surprisingly, there is still no single adequate definition 
of 'integrability'. Certainly explicit integration of nonlinear systems in the real 
domain should be considered as integrable, as should cases where suitable trans- 
formations exist to allow an elementary solution, such as occurs in the Hamilto- 
nian case with action-angle variables (often called integrability in the Liouville 
sense). Less clear is the still developing notion of integrability in the complex 
plane. For example, if the general solution of an ODE has appropriate analyt- 
ic properties, such as (i) having poles as the only movable singular points (a 
movable singular point is one whose location depends on the initial conditions; a 
fixed singular point is fixed by the coefficients in the equation) or more generally 
(ii) being everywhere single-valued in its domain of existence, then we consider 
the equation to be integrable in the complex plane. Many examples of nonlinear 
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ODEs have shown that when (i) or (ii) are satisfied then the equation falls into 
a class in which the general solution can be either obtained by explicit integra- 
tion or can be linearized via an associated Riemann-Hilbert (RH) factorization 
problem. 

The investigation of integrable systems has been an interesting and active 
field in recent years due to the fact that numerous physically interesting infinite- 
dimensional systems have been linearized via the method of the Inverse Scattering 
Transform (IST) and large classes of explicit solutions, such as soliton solutions, 
have been obtained. The best known example is the Korteweg-de Vries (KdV) 
equation, 

ut + 6 u u z  + u~zz  = O, (1) 

which these proceedings have been named after. The KdV equation arises in 
many physical problems. It is the canonical equation describing weakly disper- 
sive and weakly nonlinear wave phenomena arising in shallow water waves (this 
was the original application of Korteweg and de Vries), internal waves in fluids, 
plasma waves, lattice dynamics, etc. 

The IST method yields the general solution to the Cauchy problem on the 
infinite line corresponding to rapidly decaying initial conditions (cf. [1-3]), a 
special case of this is the general N-soliton solution. The IST method uses direct 
and inverse scattering analysis to obtain a matrix RH factorization problem which 
leads to a Gel ' fand-Levitan-Marchenko integral equation as the linearization of 
KdV. The KdV equation has been investigated in a variety of contexts and we 
note that there is one other case in which the general initial-value solution is 
known. This is the periodic boundary-value problem where the solution of the 
KdV equation can be expressed in terms of Riemann theta functions of arbitrary 
genus (cf. [1, 2]). 

The IST is an effective tool to obtain linearizations and solutions to many 
other well known nonlinear wave equations in (1 + 1) dimensions, e.g., the 
nonlinear Schrrdinger equation (NLS), sine-Gordon equation, three wave inter- 
action (1 + 1) equations, etc. Moreover, it is significant that there are many 
(2 + 1)-dimensional equations which have solutions via the IST method. The 
best known are the Kadomtsev-Petviashvili (KP), Davey-Stewartson (DS) and 
three wave interaction (2 + 1) equations. We note that the IST method needs 
to be generalized appropriately in order to handle (2 § 1) problems; it was 
found that nonlocal RH problems and DBAR problems played essential roles 
(cf. [3]). 

In this paper, we shall discuss two issues related to integrability. In the first 
part, we shall focus on specific differential equations which have novel proper- 
ties. These equations are obtained from a well known integrable system in four 
dimensions, the so-called self-dual Yang-Mills (SDYM) system. The other topic 
we shall discuss involves the computation of integrable systems in the vicinity of 
what are called homoclinic manifolds. In these regions, the solutions of the non- 
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linear equation are very sensitive. This allows numerical approximations to the 
equations to induce a chaotic response. In fact we have observed computational 
chaos due to (i) truncation effects and (ii) very small errors even on the order of 
roundoff error. Our investigations and analysis also strongly suggest that analo- 
gous experimental investigations (e.g., in water waves and/or nonlinear optics) 
will be possible and that homoclinic manifolds and related chaotic phenomena 
will be observable experimentally. 

In higher dimensions the SDYM system is one of the few (perhaps the only(?)) 
known physically important four-dimensional system to which the IST method 
applies. Significantly, the SDYM system turns out to encompass many of the inte- 
grable systems we already know. The self-dual Yang-Mills equations (SDYM) 
arise in particle physics and relativity (see [3] for many references on SDYM). 

Specification of a self-dual system requires the specification of (i) the Lie 
algebra in which the field variables reside and (ii) the specification of which 
independent variables will be chosen to keep (or equivalently which variables to 
ignore). Reductions of the SDYM equations to the well-known soliton equations 
in (1 + 1) dimensions such as KdV, NLS, sine-Gordon, N-wave and respective 
hierarchies, etc., all follow by considering two independent variables with the 
field variables lying in a finite-dimensional Lie algebra (cf. [3]). However, the 
well-known soliton equations in (2 + 1) dimensions, such as KP, DS, N-wave 
and respective hierarchies follow from SDYM by assuming two independent 
variables with the field variables lying in a suitable infinite-dimensional algebra 
[4]. 

Important and interesting (0 + 1)-dimensional equations (ODEs) are also 
obtained as reductions of SDYM. By reducing to one independent variable with 
the field variables lying in a finite-dimensional Lie algebra, it can be shown that 
the free spinning Euler top, the 'heavy' Kovalevskya top [5], and the six irre- 
ducible Painlev6 transcendents [6] are special cases. Moreover, a novel system 
which we call the Darboux-Brioschi-Halphen (DBH) top [5, 7], and is related 
to self-dual Bianchi IX cosmologies, is also obtained from the SDYM equations 
with one independent variable, but in this case we take the field variables to lie 
in an infinite-dimensional algebra of volume preserving diffeomorphisms. The 
DBH system as the interesting analytic property that it is single-valued every- 
where in its domain of existence, but there is a natural boundary beyond which 
the solution cannot be analytically continued. 

The solution of the DBH top has been discussed earlier and there are important 
connections with modular functions (cf. [7]). However, we have only recently 
obtained the associated linear pair (by reduction of the associated SDYM linear 
pair) and now have obtained the solution by investigating the relevant mon- 
odromy problem [8]. In this paper, we shall show that the linear problem leads 
to a monodromy problem whose monodromy is no t  fixed ('nonisomonodromy') 
in time. Nevertheless, we can 'factorize' the problem into isomonodromy and 
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nonisomonodromy parts in such a way so as to be able to solve the DBH sys- 
tem. 

We have also been able to solve interesting generalizations of the DBH sys- 
tem, of fifth order (we call this the DBH-5 system), which relate to nondiagonal 
self-dual Bianchi IX cosmologies. Once again there is an associated linear pair 
which yields solutions. However, it turns out that in this case the solution is not 
always single-valued, and in fact depending on the initial values, sometimes the 
solution is densely branched. In the latter case, the equation is not of Painlev6 
type despite the fact that there is an associated linear pair and that the DBH- 
5 system is obtained by reduction (with an infinite-dimensional gauge algebra) 
from the SDYM equations. 

In our computational studies, we have been carrying out moderate to long- 
time numerical calculations associated with integrable nonlinear wave equations 
with periodic boundary conditions. It is well known that many of these equa- 
tions have solutions which are linearly unstable and have interesting associated 
mathematical and physical phenomena. These unstable solutions are in a sense 
close to homoclinic manifolds. This fact has serious consequences which are 
reflected in numerical calculations (and we believe physical experments). Proto- 
typical examples are the focusing nonlinear Schr6dinger, sine-Gordon and mod- 
ified KdV equations. (We note in passing that the (real-valued) KdV equation, 
the defocusing NLS and the sinh-Gordon equations are not amongst this class 
of equations.) We have observed that corresponding to certain initial/boundary 
conditions, these equations admit a special class of solutions which we refer to 
as homoclinic orbits. Alternatively, one can view these solutions geometrically 
as being part of an infinite-dimensional phase space consisting of an infinite- 
dimensional toms which has associated homoclinic manifolds ( 'pinched tori' 
[10]). In analogy with low-dimensional dynamics, due to perturbations, crossing 
of these homoclinic regions can drive a chaotic flow. In the numerical problem, 
the perturbations are due to either truncation or roundoff effects. 

We have shown [11, 12, 14] that in the true nonlinear wave equation, small 
perturbations around a particular solution, say of order epsilon, can translate into 
close proximity to the homoclinic manifolds with a 'distance' of any order of 
epsilon and possibly even BEYOND all orders in epsilon. The choice of these 
initial conditions is straightforward, depending only on (a) the number of unsta- 
ble modes that are contained in the initial data, and (b) the frequency of the 
initial perturbation. In order to demonstrate this situation mathematically, we 
have found that it is useful to employ the underlying IST formalism. In partic- 
ular, we have found that homoclinic orbits correspond to suitable double points 
in the spectra of the associated scattering problem. The 'distance' from these 
orbits (manifolds) correspond to the order of epsilon in the asymptotic expansion 
around the double points. We have also found that exhibiting the 'sides' of the 
homoclinic orbits is straightforward, depending on the choice of phase in the 
initial conditions. 



INTEGRABILITY, COMPUTATION AND APPLICATIONS 9 

With this information in hand, we can understand why numerical experiments 
exhibit chaotic dynamics either due to truncation or roundoff effects. Truncation 
effects become important when the distance to the homoclinic manifolds are less 
than the order of truncation. On the other hand, roundoff effects are critical when 
the distance to the homoclinic manifold is less than the order of roundoff. We 
have observed these effects in many numerical experiments. 

As mentioned earlier, we believe that observations of homoclinic orbits and 
associated chaotic dynamics should be possible in laboratory experiments. For 
example, the NLS model is well known to describe weakly nonlinear slow mod- 
ulations of a wave train in water waves or nonlinear optics. In the physical 
problem, homoclinic orbits should be 'seen' by observing different wave struc- 
tures on either 'side' of the orbit; since the homoclinic orbit is an unstable wave 
mode, one does not observe it directly. The different 'sides' depend on the phase 
of the perturbation of the initial conditions, or alternatively, how the double point 
in the eigenvalue spectrum, splits in the complex plane. We shall discuss this 
more concretely later in this paper. 

On the other hand, we know that the distance to the homoclinic manifold 
depends on the number of unstable modes in the initial conditions and the fre- 
quency of the perturbation to the true solution. With this information we can 
create data which is arbitrarily close to the homoclinic manifold. Physically this 
means that the magnitude of the higher-order terms in the perturbation expan- 
sion, from which we obtained the NLS equation at leading order, would be 
large enough so that these (small) terms are, in fact, larger than the distance to 
the homoclinic orbit. The perturbations should therefore be capable of driving 
a chaotic response via crossing of homoclinic manifolds. Naturally, the precise 
conditions for which chaos will be observed will depend on laboratory consid- 
erations; e.g., the size of the amplitude of the true periodic wave, the number of 
unstable modes that can be generated; and other small perturbations which we 
have omitted from our discussions, such as dissipation. Nevertheless, we believe 
that the ability to observe homoclinic structures in wave problems is fundamen- 
tal, and important. It is well understood theoretically and consequently we make 
the prediction that in the experiments such as we have sketched here they should 
be observed. 

2. Integrability, PDEs and ODEs 

2.1. REDUCTION OF SELF-DUAL YANG-MILLS EQUATIONS 

In this section we give a brief overview of the SDYM equations in a complex 
Euclidean space C 4, and outline the method of symmetry reductions to integrable 
systems in lower dimensions. We only outline the reduction procedure in general 
terms. By necessity, we leave out most of the technical details which can be 
found in the references cited in the text. 
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2.1.1. S D Y M  in d 

We introduce the complex coordinates, y, Y, z, 2 in C 4 and the differential oper- 
ators D1, A~, D2 and A2 defined by 

D~ =_ Oy + AO~, D2 - Oz - AO O, 

A1 = Au + AA~, A2 - Az  - AA  O, (2) 

where 0a -= 0 /0a ,  a E {y, Y, z, 2}, A E CP1 is a complex parameter. Aa = 
A,~(x) E g, x E C 4, where 9 is the Lie algebra corresponding to some fixed 
gauge group G. 

The A~'s are called the Yang-Mills gauge potentials and are defined up to 
the gauge freedom, 

Ao~ -. , A~  = f A , f f  -1 + O,~f f -1 

for f E G. Both As and A~ satisfy the SDYM equations which can be expressed 
as  

[D1 - A1, D2 - A2] = 0, (3) 

which are the compatibility conditions for the linear system 

(D1 - A 1 ) f  = (D2 - A2)@, (4) 

where ~(x ,  A) e G. Equation (3) is quadratic in A, so by setting each of its 
coefficients to zero, yields a system of three nonlinear PDEs in C 4 given by 

G z  = f 0 z  = G o  + = o (5) 

Here F - OaA 3 - O3Ac~ - [Ac,, A3] and [, ] denotes the Lie bracket associated 
with the Lie algebra g. The linear system (3) is the Lax pair for the SDYM 
equations given by (5). The above formulation of the SDYM equations has 
a natural geometric structure: Equation (2) is the zero curvature condition for 
a connection (with components A1, A2) associated with holomorphic sections 
~(x,  A) E G of the Yang-Mills vector bundle. The bundle is restricted to a 
family of two-planes, called the anti-self-dual (ASD) planes, passing through each 
x E C 4 and parametrized by A E CP1; the vector fields D1,D2  are tangent to 
each ASD plane. The connection is defined by the linear system (4) by requiring 
that the sections ~(x,  A) be covariantly constant on each ASD plane. The zero 
curvature condition (2) (equivalently, (5)) guarantees that (4) is integrable on the 
ASD surfaces and that it admits solutions defined globally over each ASD plane. 
The space of such solutions considered over the family of two-planes determine 
a holomorphic vector bundle. Therefore, this geometric construction establishes a 
one-to-one correspondence between holomorphic vector bundles and solutions of 
the SDYM equations in C 4. This geometric formulation was given by Ward [15]. 
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Conversely, given such a vector bundle, it is possible to obtain the solutions to (3) 
that are holomorphic in appropriate neighborhoods of A (e.g., A = 0 and A = ~ )  
via a Riemann-Hilbert factorization problem parametrized by z E d .  

2.1.2. The Reduction Scheme 

The main relationship between the SDYM equations and integrable systems aris- 
es from the fact that an enormous number of integrable equations can be obtained 
from the SDYM equations by imposing appropriate symmetry conditions. This 
is a very large program of study and a systematic analysis is still lacking. Never- 
theless, significant work during the past 15 years or so indicates that most of the 
well-known equations solvable by IST are embedded in the SDYM equations. 
The essential steps of the reduction procedure are outlined below: 
(i) Coordinate symmetries are imposed such that the SDYM equations are invari- 

ant under a subgroup of the conformal group (the full symmetry group of the 
SDYM equations). In a suitable gauge, the SDYM connection As is invariant 
on the orbits of the symmetry group. Introducing a new set of coordinates 
{xK',y K} on C 4, it is then possible to reduce the SDYM equations to a 
lower-dimensional system of PDEs which are expressed only in terms of the 
yK's. Here xK' ,K  ' = 1 ,2 , . . .  , 4 -  m, are the coordinates on each orbit, 
while yg ,  K = 1 , . . . ,  m, are the coordinates that label the orbits. For exam- 
ple, when the symmetry group consists of 4 - m translations, the SDYM 
potentials are simply given by Ac~(X) = Ac,(yK). Then in (5) all the deriva- 
tives involving the ignorable coordinates vanish so that the resulting SDYM 
equations are reduced to a system of PDEs in the independent variables yff, 
K =  1 , . . . , m .  

(ii) A choice of the gauge group G is necessary such that the gauge poten- 
tial As lie in the corresponding Lie algebra g. For a finite-dimensional 
gauge group, the elements of g (and hence the As's) can be represented by 
finite rank matrices. Most (1 + 1) integrable equations, e.g., the KdV, NLS 
and the N-wave equations and many ODEs including the Euler-Arnold and 
Kovalevskya 'tops', arise from such a choice of gauge group. On the other 
hand, interesting reductions are also obtained when the Ac~'s belong to spe- 
cific representations of infinite-dimensional Lie algebras. Examples include 
the self-dual Einstein equation, the KP, DS and the (2 + 1) N-wave equa- 
tions. A special ODE reduction of the self-dual Einstein equation, called the 
DBH system will be discussed in the next section. 

(iii) The SDYM equations reduced via steps (i) and (ii) can be further simplified 
by the residual gauge freedom and by imposing certain autonomy conditions 
on the dependent variables. After imposing the coordinate symmetries in 
step (i), the remaining freedom in the gauge transformation, As -+ A~ = 
fA,~f -1 + Oo~ff -1, f(x) C G, is essentially restricted to f(x) = f (yK) .  
Nevertheless, by making judicious choices for f (that takes some of the As's  
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into irreducible ( 'normal') forms), certain components of the reduced SDYM 
system can often be trivially solved. The autonomy condition is applied to 
certain arbitrary functions arising as 'constants' of integration in the reduction 
process. It requires that if a function is constant with respect to at least one 
of the independent variables, then it should be set to a constant. Thus this 
condition guarantees that the symmetry reduced SDYM equations will be an 
autonomous system. 

The following additional remarks are also relevant to the reduction scheme 
described above. 

Remarks. 1. Many equations which are symmetry reductions follow directly 
from the reduced system of SDYM equations obtained after applying steps (i)- 
(iii) and most importantly, without any further assumptions. It is a remarkable 
feature that a large class of integrable equations are naturally embedded in the 
SDYM equations in four-dimensions. However, sometimes it is necessary to 
make specific algebraic choices for the SDYM potentials in order to identify 
the reduced equations with a particular integrable system. The KdV equation 
is an example of a natural embedding, whereas the N-wave system is derived 
from the SDYM equations with additional assumptions on the A~'s (i.e. certain 
components are closen to be skew-symmetric matrices). 

2. Another ingredient is to impose an appropriate reality condition on the 
reduced system in order to derive the soliton-type integrable equations which are 
usually defined on the real domain. The equations derived from the reduction of 
SDYM in C 4 are complexified versions of these soliton-type equations. However, 
it is indeed possible to choose real slices of C 4 with a metric of appropriate 
signature, and impose suitable reality conditions on the connection components 
in order to obtain integrable equations defined on the real domain. We will not 
discuss the question of the reality condition in this article, since our (primary) 
objective here is to discuss issues related to integrability in the complex domain. 
Interested readers are referred to [3] for many references on SDYM. 

2.1.3. Reduction to KdV 

We illustrate the reduction scheme outlined in Subsection 2.1.2 with an example. 
Here we will derive the KdV equation as a symmetry reduction of the SDYM 
equations. We point out only the key features of the derivation, leaving aside 
the technical details which can be found in [4, 17]. We begin by imposing the 
translational symmetries (step (i)) that the A~'s be independent of the variables 
xK' = (Y - Y, z) E C 4. Then we redefine the remaining coordinates as y/f  = 
(Y - ~3 -~ x, z ~- t) such that each component of the gauge potential is now of 
the form Ac~ = As(x ,  t). Here it is convenient to work with the Lax pair, (4), 
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rather than the SDYM equations (5) themselves. Under these assumptions, we 
have D1 = 0x, 02  = Ot -/~Oz, and (4) becomes 

Oxr = (A v + AA~)r (Or - A0~)r = (Az - AA~)r 

Substituting the first equation into the second, we obtain a (1 + l) linear 
system for the reduced form of the Lax pair 

axe = (Ay + AAz)r 0 , r  = (Az - .k(A9 + Ay) +/~2A5)~. (6) 

Next we assume that the As ' s  are elements of the Lie algebra sl(2, C) (step (ii)) 
and represent them by the (2 • 2) trace-free matrices, Ay =- U, Ae =_ A, A f  =_ B, 
Az =- V. The integrability condition of (6) yields the following reduced SDYM 
equations, 

O~U - O~Y + [U, V] = 0, (7) 

Ox(U + B) = [U,/3] + [A, V], (8) 

OxA = [A,/3]. (9) 

These equations are simplified considerably by step (iii) of the reduction scheme. 
It can be shown [4] that there exists a gauge choice in which A, /3  satisfies 
[A,/3] = 0, so that from (9), OxA = 0. It follows immediately from the autonomy 
condition that A must be a constant sl(2, (2) matrix. The remaining gauge freedom 
allows A to be determined up to conjugation, A --+ f A f  -1 by a constant sl(2, C) 
matrix f .  This can be used to put A in either of the normal forms for the (2 • 2) 
trace-free matrices 

1 0 o r  0 ' 

(1 0) 
(ii) A =  0 - 1  " 

Cases (i) and (ii) lead to the KdV and NLS equations, respectively. We consider 
only case (i) here; the treatment of case (ii) is very similar. The residual gauge 
freedom (that preserves the normal form of A given above as well as leaves the 
condition [A,/3] = 0 invariant) is used to choose U to be off-diagonal. Therefore, 
we have the following matrices, 

A=(00) 
1 0  ' 

B= (00) v=(vl v2) 
1 0 ' v3 - V l  ' 
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which must satisfy the system given by (7), (8); (9) is identically satisfied in 
this gauge. From the (1,2) element of (8), it follows (after using the autonomy 
condition) that a must be a constant. We set a = 1, since the case a = 0 does 
not lead to any nontrivial equation. The remaining equations in (8) and (7) can 
now be solved systematically to determine/3 and the elements of V in terms of 
u and its x-derivatives 

fl = lU, V = 1 Oxzu- -  2u 2 --Oxu " 

Now it follows (from the (2,1) element of Equation (7)) that u(x ,  t) must satisfy 
the KdV equation 

40xu  = O~xxu - 6uOxu. 

2.2. THE DARBOUX-BRIOSCHI-HALPHEN (DBH) SYSTEM 

The symmetry reductions of the SDYM equations gives rise to ODEs in the 
case where the gauge potentials are restricted to depend on one independent 
variable. For example, the classical ODEs mentioned in the introduction arise in 
this way where the underlying gauge group is finite-dimensional. Here we will 
discuss an interesting system of three coupled ODEs arising from the SDYM 
equations but in this case the gauge field variables are associated with an infinite- 
dimensional Lie algebra of volume preserving diffeomorphisms on a 3-sphere, 
i.e., 9 = sdiff(S3) �9 This system possesses several remarkable properties which 
are dramatically different from the other classical ODEs. Although they have 
been found recently as a SDYM reduction [5], the origin of this system dates 
back to the last century! It was found by Darboux in his study of orthogonal 
systems of curvilinear coordinates in I~ N. Brioschi and Halphen solved this sys- 
tem in 1881 and we will call it the DBH system. It is interesting that it has 
appeared only recently in problems in mathematical physics. It was found as the 
self-dual Einstein equations [19] corresponding to an Euclidian Bianchi-type-IX 
metric in diagonal form and more recently, it was discovered by Dubrovin [18] 
as a special similarity solution of the Witten-Dijkgraaf-Verlinde equations in 
topological field theory. We begin with a brief outline of its derivation from the 
SDYM equations. 

Let the gauge potentials depend on only one coordinate y + ~ = t by imposing 
three translational symmetries on the SDYM equations. Then fix the gauge by 
setting A v + AV = 0 and introduce the variables 

A1 = (Az  + A~) /2 ,  A2 = i ( A z  - A ~ ) / 2  and A3 = i (Ay  - A~) /2 ,  

where Al = Al( t ) ,  1 = 1,2,3. In terms of these new variables, the SDYM 
equations (5) are expressed as 

dAl 
dt = [Aj, Ak], l 7s j 7s k and cyclic. (10) 
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where the [, ] is the Lie bracket associated with the left-invariant su(2)-generators 
Xl of the algebra sdiff(S 3) satisfying [Xl, Xj] = Xk,  l 7~ j r k, and cyclic. The 
vector fields Xt's  are the infinitesimal generators for the left SU(2) action on 
S 3 leaving the standard metric and the volume form on S 3 invariant. The gauge 
potentials are chosen as follows: Let O: SU(2) ~ SO(3) be a map defined by 
O(g) =~ Oij(g) E SO(3), i , j  = 1,2,3, 9ai9 -1 = 2 j  Oijaj, 9 E SU(2) and ai's 
are the standard Pauli matrices. Then the Ai's assume the special form 

A , ( t )  = O,jW) ,(t)xj. 
J 

Substituting this in (lO) and using the property 2iXk(g) = 9crk for the vector 
fields (which follows from the definition of left action), yields the DBH system 
for the coi's 

Otwi = wjwk - wi(wj + wk), i 7~ j • k, and cyclic. (11) 

The important features of the DBH system which distinguish it from the classical 
ODEs are as follows: 

(i) Its solutions are single-valued in their domain of existence in the complex 
plane; but they cannot be analytically continued beyond a dense set of essential 
singularities which form a natural boundary. In contrast, the solutions to classical 
ODEs which are integrable in the complex plane are single-valued meromorphic 
functions in the complex plane with simple poles as the only movable singular- 
ities. 

(ii) The DBH system can be explicitly integrated in terms of the Schwartz 
triangle function S(0, 0, 0; t) which is the unique inverse of a conformal map 
from the upper half S-plane to an interior region F in the t-plane bounded by 
3 circular arcs intersecting at 0 angles. This fundamental triangle F 'tiles' the 
interior of a circle C orthogonal to (each side of) F uniformly by a fractional 
linear transformation t --~ 7(t), 3' E F; F being a discrete subgroup of the 
modular group PSL(2, g). This uniformization (or 'tiling') is restricted only to 
the interior of C and cannot be continued beyond. The Schwartz function is 
invariant under the transformation 7(t): S(7(t)) -- S(t) and is the fundamental 
modular function for the subgroup 1-'. S(t) is single-valued within all of C but 
has no analytic continuation beyond C which forms its natural boundary. The 
solution to (11) is given by 

wi = - �89 log Ei, (12) 

where the Ei's are defined by 

ots ors ors 
E1 - -  S ' E2 - S -  1' E3 - -  S ( S -  1 ) '  (13)  

are the (regular) modular forms of weight 2 associated with F. The wi's also 
inherit the same natural boundary C whose center and radius can be prescribed 
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in terms of their initial values. Using (12), (13) the following transformation 
property can be obtained for the w~'s: If ~i(t)  is a solution of (11), then 

- (ct + a)2 + +------d' 

is also a solution, where 

= e S L ( 2 , C ) ,  - c t +  a 

This can be also verified directly from (11) which is invariant under this trans- 
formation. Equation (11) reduces to a single third-order ODE studied by Chazy 
in 1909 [20], 

Outy = 20tyOtty - 3(Oty) 2, (14) 

in terms of the variable y(t) = -2 (wl  + co 2 -t- 033). Its solution can be obtained 
by introducing a new variable s such that t(s) = Zz/Zl, y(t(s)) = 60t log Zl, 
where Zl and z2 are two linearly independent solutions of certain hypergeometric 
equations. The inverse function s(t) is a different Schwartz triangle function 
corresponding to the fundamental domain F with angles 0, 7r/2, and re/3. In 
this case, the transformation group is the full modular group PSL(2, Z) and the 
solution y(t) can be expressed as 

[. (__Otg) 6 - ] = l Ot log A = TriE2. y(t) = 10t log [s4(s_  1) 3 

Here A is the unique modular 'cusp' form of weight 12, and E2 is the normalized 
Eisenstein series of weight 2 associated with the modular group PSL(2, Z). It 
should be clear from above that the solutions of DBH system are quite different 
from the classical ODEs whose solutions are (a) singly or doubly periodic in the 
complex plane and are given in terms of the Jacobi elliptic functions (for, e.g., 
classical 'tops'), (b) expressible in terms of Riemann theta functions of finite 
genus (associated with periodic solutions of the soliton-type equations), or (c) 
one of the Painlev6 equations. 

(iii) Unlike the classical ODEs, the DBH system does not possess any polyno- 
mial or rational first integrals, so that it is not algebraically integrable. However, 
it does admit two transcendental first integrals A and /3 [21] which can be 
expressed in terms of complete elliptic integrals. We do not include here the 
rather complicated formulas for A and t3 but note that (11) can be expressed in 
terms of A and/3  by the (vector product) formula 

Otwi = M(coi)(VA x V/3)i, 

where ( V f ) i  -- Of/&oi and the integrating factor M(wi) = (col - a~2)(co2 - 
w3)(w3 - col). The equation given above is an example of a Nambu-Hamilton 
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equation of motion [22]. Such systems are natural generalizations of the canonical 
Hamiltonian dynamical systems with 2N degrees of freedom to those with 3N 
degrees of freedom. The above formula indicates that the phase space (excluding 
the planes ~i - coj = 0, i ~ j ,  of the DBH system) admits a nondegenerate 
Nambu-bracket structure in analogy to the Poisson-bracket structure of the usual 
Hamiltonian dynamics. 

2.2.1. Lax Pair for the DBH System 

We consider now the Lax pair of the DBH system and discuss how to recover 
its solution from the linear problem. It will be shown that the Lax pair actually 
leads to a monodromy problem associated with a special case of the Painlev6 
VI equations whose solutions are hypergeometric functions. It is then possible to 
express the solutions of the DBH system in terms of these special P-VI solutions. 
In this sense, the Lax pair provides an effective 'linearization' of the DBH system. 
Starting from the linear system (4) for the SDYM equations, it is possible to show 
that the DBH system (11) is obtained (after a trivial rescaling of the independent 
variable t) as the integrability conditions for the following pair of ODEs, 

L r  + g  r 1 6 2  

Me=- ( d +  gl + f l d )  r  ur (15) 

for r t) C C 2 provided the function u satisfies the auxiliary condition 

du A 
dA - P/~' (16) 

# being a complex constant. P, g, gl, fl and A are defined below in Equations 
(18)-(20). Alternatively, (11) also follows from the commutator relation 

[L, M] = A(,k, t)L (17) 

in terms of the linear differential operators L and M. The relevant quantities in 
(15), (16) (and (17)) are given as follows: First consider the sl(2, C) matrices, 

X = w 1 X  1 - 032X2, Y = o31Xl Jr- a3222,  Z = 033X3, 

where 

X1 =g~l, X2=iG2 ,  X3 = ~3, 

~i'S being the standard Paulimatrices, and ~i = ~ i ( t )  are theDBHvariables.  
Then, we define 

g = A 2 X - t - 2 & Z +  Y, gl = Z +  AX. (18) 
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Next we have the polynomials (in A) with the coefficients depending on the 
0 3 i ' S ,  

P = a(A 4 + 2rA 2 + 1), f l  = c~A 3 -t-/3A, 

A = (wl + ag2 -'1- 2w3) - -  oz/~ 2 , (19) 

where 

OL = 03 1 - -  032,  f l  = CO1 + 032 - -  2033, 
r = r = (s + 1)/(s  - 1), s ~--- (031 - -  0 3 3 ) / ( 0 3 2  - -  033). (20) 

It is a remarkable fact that the original infinite-dimensional Lax pair (recall that 
the SDYM potentials Ai E sdiff(S 3) can indeed be reduced to a pair of complex 
vector-valued ODEs. However, the derivation of (15), (16) from (4) is nontrivial 
and involves technicalities that are outside the scope of the present article. There- 
fore, they will be presented elsewhere. Equation (15) can be simplified further 
by eliminating the variables # and u via a simple rescaling r = f~b ~ for some 
scalar function f(A, t). Then ~b' satisfies 

d e '  
= ~ b ' ,  (21a) 

d), / - -  

. d e '  dCr + glib' + J l - ~  = 0, 
dt 

(21b) 

with the additional equations for f :  Oxf = I~f / P  and Off = v f  - flO;~f. 
The compatibility condition for the existence of such a function f given by 
O;~tf = Ot;~f requires that 

OtP + f lOxP  - PO),fl + A P  = O. (22) 

Equations (21), (22) provide an equivalent formulation of the DBH Lax pair 
(15); the DBH system is obtained from the compatibility condition of (21a) and 
(21b) together with the additional condition given by (22). Note that since P 
is a polynomial in A with distinct roots, (21a) is a Fuchsian ODE with regular 
singular points {Ai} and whose fundamental solution Cr is a multivalued function, 
analytic in A E CP1 - {Ai}. 

2.2.2. The Monodromy Problem Associated with the DBH System 

In 1857, Riemann formulated the classical problem (the so-called Riemann prob- 
lem) of constructing a fundamental set of solutions with regular singularities from 
a prescribed monodromy data. He also studied the deformation of the solution 
with respect to the singular points when the monodromy remains invariant. The 
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Riemann problem was subsequently studied extensively by others. Plemelj [23] 
proved the existence of solutions (under certain assumptions) corresponding to 
an nth order Fuchsian equation with m regular singular points (for arbitrary m 
and n), by reducing the Riemann problem to Fredholm-type integral equations. 
This was also investigated independently by Birkhoff [24] who also generalized 
the problem to the case of irregular singular points. The monodromy preserving 
deformation (isomonodromy) problem of such ODEs (with regular as well as 
irregular singularities) was investigated by Schlesinger, Fuchs, Gamier and more 
recently by Jimbo et al. [25]. For a class of second-order ODEs or (2 x 2) matrix 
Fuchsian equations, it was found that the integrability conditions for the asso- 
ciated deformation equations led to the six classical Painlev6 transcendents. We 
show that (21a) belongs to this class of ODEs, namely, the compatibility con- 
ditions for (21a) and (21b) is precisely the isomonodromy conditions associated 
with the Fuchsian ODE (21a) and leads to a Painlev6 VI equation with special 
parameter values. We rewrite (21a) as 

d~b'_~() gi 
(23) 

Here the singular points A =/~i,  i = 1 , . . . ,  4, are the distinct roots of 

P '  = P/ol  = ~4 q_ 2rA2 + 1 = O, 

gi = Res(1/P)lx=;~ E sl(2, C), ~ g i  = 0 

(since ~ = oo is a regular point for (23)). 
The isomonodromy condition for (23) is given by the Schlesinger equa- 

tions, 

dei =  [gi, gj] •y)+ [d99-1,gi], 

where 9(t) = •'(,k = ee, t). It follows from the asymptotic expansion of (21b) 
near ~ = oc that 9(t) satisfies d99  -1 = Z d t .  

It can be verified from the definitions in (18)-(20) that the elements of gi 
are given only by the ratios ~i - coi/c~ and that the )~i's are parametrized by 
the variable s, i.e., hi = Ai(s(t)) .  Substituting the expressions for the gi's in the 
Schlessinger equations (isomonodromy equations) yields 

-- 2c~2~3 + (1 -- r )~ l ,  
ds 

d~2 
- -  2Wl&3 - -  (1 + r ) ~ 2 ,  

ds 
d'~3 

-- 2w1~2 - 2rD3, 
ds 

(24) 
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together with 

1 ds 
O~ = 021 - -  022 - -  4s dr" (25) 

It can also be verified in a straightforward manner that the compatibility of 
Equations (21a) and 21b) give rise to the same set of equations as in (24), (25). 
Furthermore, the Schlessinger equations corresponding to equations of the form 
(23) with four regular singular points is shown in [25] to yield the Painlev6 VI 
(P-VI) equations, parametrized by the eigenvalues of the gi's. Therefore, (24) 
corresponds to a Painlev6 VI equation with special values of parameters (the 
eigenvalues of the s in (23) are +�88 in the independent variables s. Note that 
there is, in fact, only one independent equation in (24) because of the algebraic 
relations among the ~i's, namely, ~ 1 - - ~ 2  = 1, ~ 1 q - ~ 2 - - 2 ~ 3  = r = ( s + l ) / ( s - 1 ) .  
This is a Riccatti equation for one of the dependent variables, e.g., 

d~l &2 ~ 1  1 
d ~  - 2s s -  1 + 2 s ( s -  1)' (26) 

which is equivalent to a second-order linear ODE. The solution of (26) leads 
to hypergeometric functions. It is well known that hypergeometric functions are 
special solutions of P-VI. Equation (26) plays a crucial role in the 'linearization' 
procedure of the DBH system which is now described. 

From (25) and the solutions of (26), it is possible to express the residual 
variables coi's in terms of s and ds/dt .  But in order to obtain the wi's explicitly, 
one still needs to know s = s(t). Also, (24), (25) constitutes only that part of 
the DBH system, which corresponds to an isomonodromy deformation problem. 
To obtain the full DBH system, we also need to consider the auxiliary Equation 
(22) which yields the following equation, 

d 
- -  In o~ = - 4 0 2 3  (27) 
dt 

in addition to (25). Note that (27) with (24) and (25) are equivalent to the full 
DBH system (11). From the definition of s in (20) and Equations (25), (27) one 
can express the coi's in terms of s and its time derivatives as follows, 

1 din( 1 ds) 
4 dt 4 s ( s -  1)d-t ' 

0 2 1 - -  

1 d i n  ( 1 ds )  
co2- 4 d r  4 - ( s - 1 ) ~  ' 

l d ( l d s ~  
- -  - -  In . (28) 023= 4d~ \ 4 s d t ]  

Note that these are the expressions for the a~i's which are in terms of the modular 
function S, given earlier (12), (13), where s(t) is related to S by a Mrbius 
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transformation (and recalling the rescaling of time). Using (27) and (25) and 
interchanging roles of the independent variables t and s one can solve for the 
quantity ~3 as, 

8 t  tt 

w3 = 1 +  t ~ , 

where ~ means d/ds. Substituting this, using the relationship for O1, ~2, and 
~3, into the Riccatti equation (26), one obtains the Schwartzian equation for 
~ = t ( 8 ) ,  

1 ( t " )  2 1 1 [ 1  
t'j -~\~Tj =~ ~+(~-1)2 

1 

s(s - 1)] 

which can be solved by transforming 

t (8) = --,Z2 (29) 
Zl 

where Zl and z2 are two linearly independent solutions of the second-order linear 
equation 

1 1 ]  
z " +  v(8)z = o, v(s) = ~ 7 + (8 - 1)2 s ( ~ -  1) �9 (30) 

Finally, inverting (29) to obtain s(t), one can express the solution of the DBH 
system coi(s(t)) via (28). 

2.2.3. Remarks 

There are three remarks to be made which are important when considering the 
monodromy problem and the associated linearization of the DBH system. 

1. The compatibility of the Lax pair (15) introduced earlier with # r 0, u r 0 
is not an isomorphic deformation problem. This can be seen by expressing the 
L-equation in (15) as 

i=1 

and noting that here the residue matrices satisfy Tr(Ri) = Res(2/z/P)l;~=;~ ~. 
When # r 0, the eigenvalues of Ri and hence the monodromy is not constant 
in time. Nevertheless, we have shown that it is possible to 'factorize' this non- 
isomonodromic problem into two separate parts - the isomonodromic part is 
given by Equations (21a) and (21b), whereas (22) reflects the departure from 
isomonodromy. A careful analysis of the direct problem [9] shows that the time 
evolution equations for the eigenvalues of Ri are equivalent to (22) which leads 
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to the transformation s = s(t) between the deformation parameter s of the 
isomonodromy problem and the original independent variable t. 

2. In more general terms, the inverse function s(t) obtained from (29), cor- 
responding to more general potentials v(s), may not be single-valued in the 
complex t-plane. Although the Schwartzian equation can always be solved for 
t(s) via (29) for arbitrary potentials v(s), the resulting function s = s(t) can 
be densely branched. Single valuedness in this sense, i.e. integrability in the 
complex t-plane, is achieved only if v(s) has the form [27] 

1 1 - c~12 1 - c ~  
- -  - t -  - -  

$ 2 ( S -  1)  2 
2 2  221 1 + c~ 3 - c~ 1 - o~ 

7 ( ; =  ' 

where c~i = 1/ni, ni E Z +, or o~i = 0, i = 1, 2, 3. The latter case (i.e. ozi =- 
0) corresponds to (30), hence the corresponding function s(t) is single-valued. 
Consequently, the solutions wi(s(t)) to the DBH system are also single-valued 
functions. An example where the solutions are not always single-valued (even 
though the underlying system is 'linearizable' in the same way as the DBH 
system) is illustrated by the next remark. 

3. We now describe a novel fifth-order system which is a generalization of 
the DBH system (4). It also arises as an ODE reduction of the self-dual Einstein 
equations associated with a (nondiagonal) Euclidean metric and can be derived 
as a SDYM reduction in the same manner as the DBH equations via (10). The 
connection components are given by 

3 

Ai(t) = ~ O,i,j(g)Tj, 
j = l  

where the Tj's are the sdiff(S 3) vector fields defined as 

r 1 = 031Xl -}- Ox2, T2 = ~ X l  qt_ c02x2, T3 = co3x3, 

where coi, 0, and r are functions of t. Substituting these in (10) yields a system 
of five ODEs for a~i(t), O(t), and r (see [71), 

dco 1 
_ 022023 _ COl(a32 q_ a33) jr_ q~2 

dt 
dco2 
dt = WlCO3 - o.)2(o31 -I- ~ 3 )  q- 02,  

dco3 
- -  0310'32 - -  033(&1 -}- &2)  - -  q~O, 

dt 

= ( 0  - - ( o  + 
dt 
dO 

- ( o  - - ( o  + 
dt 

( 3 1 )  
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When 0 = q5 = 0, (31) reduces to the DBH system. This system can also be 
solved (in terms of linear equations) in the same way as the DBH system and 
it is possible to express the dependent variables in terms of a function s(t) and 
its time derivatives. However, it turns out that s(t) is not single-valued in this 
case. 

We outline the key features of the linearization procedure, space considerations 
require that we omit most of the details. The Lax pair for (31), also given by (15), 
(16) (but with different choices for the sl(2, C) matrices and polynomials) can be 
separated into isomonodromic and nonisomonodromic parts. The isomonodromic 
deformation problem yields four equations (the Schlessinger equations) involving 
the ratios of the dependent variables. They also admit two first integrals arising 
from the (constant) eigenvalues of the corresponding residue matrices gi. Using 
the first integrals, it is possible to reduce these equations by quadrature to a 
single Riccatti equation with respect to the deformation parameter s(t) which in 
this case is defined by s(t) = (co + R)/(co - R), where co = col = co2 - -  2co3, and 
R 2 = (col + co2) 2 + (r + 0) 2. The rest of the system in (31) is recovered from the 
nonisomonodromic part which, together with the Riccatti equation, provides a 
Schwartzian equation for t(s). Finally, we arrive at a system where the dependent 
variables can be expressed in terms of s and its time derivatives in the following 
form: 

CO = c o l  + c o 2 - - 2 c o 3  = g ~ -  S(S-- 1 ' 

~ l n  ~ssd-t- ' 

1 ds exp(+if~), (wl - co2) -4- i(q5 + 0) -- 4s dt 

( i a d s ~ (  1 ) 
o -  r = \ T S i /  - 1) ' 

where the constants a and [2o are related to the eigenvalues of gi, as mentioned 
above. In addition, t(s) satisfies 

( t "~ '  1 ( t " ~  2 1 [1  1 - a  2 1 - a 2  7 
t ' J  - ~ \ ~ T j  = 1  7 + (~ -i)-) 2 s ( s - 1 ) j  = 2 v ( s ) '  

which can be solved in the same way as in (29). As mentioned above, here the 
parameter a is a first integral given explicitly by 

~Z 2 = ( 0  - -  qS) 2 

( 0  -t- r  q_ CO 1 __ 0O2)2 __ (C01 _+_ CO 2 __ 2CO3)2 ' 
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and is prescribed by the initial values of wi, 0, and r Therefore, a in gen- 
eral, is not zero or the reciprocal of a positive integer which is necessary for 
the inverse function s(t) to be single-valued, as we mentioned in Remark 2. 
Consequently, solutions of (31) are in general not single-valued functions in the 
complex t-plane, although they can essentially be described by a linear second- 
order equation similar to (30). The system (31) provides a concrete example 
where linearization does not imply integrability in the sense of single-valuedness 
in the complex plane! Note that 0 = r implies a = 0, and in this case the 
solutions to the resulting fourth-order system are single-valued. (In fact, by suit- 
able transformations of the dependent variables this fourth-order system can be 
transformed to the DBH system.) But when a r 0 the solution to (31) is densely 
branched in the complex domain whenever the initial conditions are such that the 
value of a differs from being a reciprocal of an integer. Conversely, when a is 
suitably 'quantized', a = I/n, n C Z, then the solution of the generalized DBH 
system is single-valued, and we consider it 'integrable in the complex plane'. 

3. Homoclinic Manifolds and Water Waves 

Although Stokes published his famous work On the Theory of Oscillatory Waves 
in 1847 [30], it was only during the 1960s that Benjamin [29] realized that the 
periodic Stokes wave on deep water is, in fact, unstable (see also Whitham [31]). 
About the same time, Zabusky and Kruskal studied the Korteweg-de Vries (KdV) 
equation [32], a pioneering investigation that paved the way for the development 
of soliton theory. In a suitable asymptotic limit, the KdV equation also describes 
weakly nonlinear water waves but in shallow water. Periodic waves of the KdV 
equation are stable and, in fact, Benjamin's instabilities are not observed in the 
KdV equation. Actually, the asymptotic equation governing the one-dimensional 
slow modulation of periodic wave-trains (such as the Stokes wave) in deep water 
is the nonlinear SchrSdinger (NLS) equation. It is the NLS equation where one 
indeed encounters instabilities similar to those discovered by Benjamin. 

Benjamin observed the instability through a linearized analysis of the Euler 
equations, accordingly the analysis is only valid for the short period of time while 
the linearized assumption remains valid. The linearized stability analysis does not 
give qualitative information about the long time evolution of the instabilities. It is 
perhaps reasonable to conjecture that the end-state is one of complete breakdown 
with energy equally distributed between all Fourier modes, i.e. thermalization 
(see, e.g., [35]). However, the remarkable laboratory experiments by Lake et 
al. [34] indicated that thermalization may not occur. They found that the initial 
instabilities saturate and that the initial state is approximately recovered at some 
stage of the evolution. These experiments dealt with a small number of unstable 
modes and relatively short time observations. Since the nonlinear Schr/3dinger 
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equation is a useful model for water waves on deep water, they also turned to 
numerical studies of the (focusing) NLS equation 

iut 4- u ~  -I- 21u12u = O, (32) 

with periodic boundary conditions, u(x+L,  t) = u(x, ~). Using up to five unstable 
modes, their numerical experiments did not indicate any thermalization - the 
energy remained confined to a relatively small number of Fourier modes. They 
concluded that the initial-wave profile should be recovered after a sufficiently 
long time. 

From a mathematical point of view it is now known that the instabilities of the 
periodic waves in the NLS analogous to those of Benjamin and Feir, are closely 
related to the so-called homoclinic manifolds associated with the NLS equation. 
We next proceed to explain how this may shed new light on the Benjamin-Feir 
instabilities and the subsequent time evolution of these instabilities. 

3.1. BENJAMIN-FEIR-TYPE INSTABILITIES IN THE N L S  EQUATION 

Our goal is to develop a deeper understanding of the stability of the Stokes water 
wave. In the NLS model of water waves it is represented in its simplest form by 
the solution 

~2(m, t) = aexp(2ilal2t), (33) 

where a is any complex constant. In order to investigate its stability, we follow 
a well-known procedure and add small 'side-bands' to the Stokes wave 

= + (34) 

where ]~l << 1 and 

S ( x , t )  : g_n(t) exp(--ilznx ) + gn(t) exp(itZnX ) (35) 

and #n = 27rn/L. Substituting (34) into (32) and keeping linear terms in E 
yield, 

~ = i x ~  + 2ilal2(c + ~*). 

Making use of (35), it follows that the growth rate O-n of the nth mode, g n ( t )  = 
g,~(0) exp(crnt), is given by 

o-~• -- • V/4lal = - #~ .  (36) 

Hence, the side bands are unstable provided that 

0 < / z  2 < 41al 2. (37) 
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The number of unstable modes (which also determines the complexity of the 
homoclinic structure) is given by the largest integer N,  satisfying 

0 < N < [alL/Tr. 

This instability is the analogue (for the NLS model) of the Benjamin-Feir insta- 
bility of the Stokes water wave described above. 

It is possible to associate a specific initial value with the unstable case, namely 
(see [ l i d  

u(x ,  O) = a + eo exp(ir cos(#nX + (), (38) 

where 0 < [e0] << 1, tan(C) = o- 2 n+/IZn and ~ is an arbitrary real constant. Since 
the NLS equation admits the symmetry (x, t, u) ~ (x + ~, t, u), it is sufficient 
to consider the initial condition 

u(x ,  O) = a + Eo exp(ir cos(/ZnX). (39) 

The significance of the phase r will become clear in a moment. 
In order to explain how these instabilities are related to homoclinic manifolds, 

we recall (see, e.g., [11]) the following exact (homoclinic) solution of the NLS 
equation, 

u ( x , t )  = aexp(2 ia2 t )x  

1 -k 2 cos(px) exp(f~t + 2ir  + 3') + A12 exp(2f~t + 4ir  + 2@ 
x , ( 4 0 )  

1 + 2 cos(px) exp(~2t + 7) + A12 exp(2f~t + 23') 

where 

~2 = i p i 4 a 2  - p2  

1 
p = 2 a s i n r  and A l a =  cos2r 

The periodic boundary conditions are satisfied by imposing p = 27rn/L. 
Thus, for any p satisfying the condition (which is identical to (37)) 

0 < p2 < 4a 2, (41) 

the solution (40) represents an orbit homoclinic to the Stokes wave, Up(X, t) = 
a exp(2ia2@ More specifically, assuming f~ > 0 it is easily verified that u 
Up(X,t) as t --~ - c ~  and u -+ Up(X,t)exp(4ir as t --~ c~. Alternatively, it 
follows that [u(x, t)l ~ [a I as t --+ +c~. In an attempt to follow the homoclinic 
orbit numerically, we choose L -- 2v~Tr, a = 0.5, and "7 large negative. Making 
use of the spatial translational invariance of the NLS equation, an approximate 
(e.g., for -y large negative) initial value for a homoclinic orbit is obtained from 
(40), 

u(x,O) = �89 + ~0 exp(ir cos(#x)), (42) 
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where e0 is small, # = 27r/L, and sin ~b = #, i.e. q5 = 7r/4. (Again note that 
the initial value for the homoclinic orbit (42) is identical to the initial value (38) 
obtained from the linearized stability analysis.) A typical numerical solution using 
e0 = 10 -5 is shown in Figure 1. Note that the numerical solution stays close to, 
but it is not on the homoclinic orbit - instead of returning to a constant modulus, 
the solution displays quasi-periodic behavior. This is not unexpected since the 
initial value (42) ignores second-order terms in e0 and almost any small perturba- 
tion moves the solution away from the homoclinic obit. This also means that one 
does not expect to observe homoclinic orbits directly in laboratory experiments. 
However, it is possible to observe homoclinic orbits indirectly numerically by 
adjusting the phase in the initial value (42). More specifically, Figures 2(a) and 
(b) show the result for r = 7r/4 4- 0.01, respectively, and with e0 = 0.1. These 
figures show that the homoclinic orbit forms a separatrix between two different 
wave patterns - we believe that the different sides of  the homoclinic orbit should 
be observable in laboratory experiments. We remind the reader that similar sit- 
uations occurs in classical mechanics, for example the pendulum problem. One 
does not 'observe' the separatrix (homoclinic) solution when the pendulum is in 
the pure inverted position. Rather, the two 'sides' of the separatrix are observed 
as the 'oscillating' or 'rotating' states. 

The homoclinic orbit (40) is the simplest homoclinic structure (we call this a 
homoclinic manifold of order one) associated with the focusing NLS equation. 
More complicated structures (e.g., homoclinic manifolds of order N) can also be 

Fig. 1. The homoclinic orbit. 
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Fig. 2. (a) Outside and (b) inside the homoclinic orbit. 

obtained, see, for  example,  [11]. We now turn our attention to some of  the con- 
sequences of  the presence of  homoclinic structures on numerical solutions of  the 
NLS equation. We are particularly interested in the performance of  nonintegrable 
vs integrable discretizations. 
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3.2. NUMERICAL SCHEMES 

In order to compare the behavior of integrable and nonintegrable discretizations 
of the NLS equation in the vicinity of homoclinic orbits, we consider two finite 
difference schemes. The first one is the nonintegrable, standard second-order 
scheme, 

guy + ( U j - i  - 2 g j  + Uj+l)/h 2 + 2[Ual2Uj = O, (43) 

where h = L / N  is the grid spacing; periodic boundary conditions are used, 
Uj+N = Uj. This scheme is not integrable and the solution may become highly 
irregular. For example, consider the initial values 

o) = a(1 + cos( x)), (44) 

with a = �89 L = 4v~rr and/z = 2rr/L, i.e. a comparison with the instability con- 
dition (37) reveals two unstable side bands. A more detailed investigation shows 
that this initial value is close, but not on a homoclinic orbit (see, for example, 
[ 11 ]). For the time integration the Runge-Kutta-Merson routine, D02BBF, in the 
NAG library is used with the relative error specified as 10 -10. The results using 
N = 32 are shown in Figure 3. One observes the quick and complete break- 
down of the solution which has been related to homoclinic crossings (see [33]). 
This breakdown in the spatial structure may be viewed as thermalization. How- 
ever, here it is the result of an inadequate spatial resolution and the instability 
disappears as the mesh is further refined. 

The following numerical scheme was carefully designed to be an integrable 
discretization of the NLS equation (see [28]), 

i(?j + (Uj-1 - 2Uj + Uj+l) /h 2 + Igjl2(gj_l -t- Uj+l) = 0. (45) 

Note that it is also of second-order accuracy and that the differences with the 
standard finite difference scheme (43) appear at fourth order in h and only in 
the nonlinear term. However, despite these apparently superficial differences, 
the two schemes behave very differently. Using the same initial values (44), 
the Runge-Kutta-Merson scheme and N = 32 as before, the solution is shown 
in Figure 4. There is no indication of any instability and the spatial structure 
remains smooth, i.e. all the energy are confined to a small number of low modes. 
The (quasi) periodicity is analogous to the recurrence observed experimentally 
by Lake et al. [34]. 

Figure 4 shows that the integrable discretization approximates the solutions of 
the continuous problem at moderate levels of discretization - in the limit as the 
mesh is further refined, the integrable discretization captures all the features of 
the continuous problem. However, if the complexity of the homoclinic structure 
is increased by increasing the number of unstable modes allowed by (37), the 
integrable discretization may also break down, as we discuss next. 
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Fig. 3. The finite difference solution. 

Fig. 4. The integrable discretization. 
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3.3. MORE UNSTABLE MODES 

If we increase the number of unstable modes, we find that the solution may 
become sensitively dependent on small perturbations. In order to illustrate the 
sensitivity, we return to the initial value (44) and increase the number of unsta- 
ble modes to 7 by choosing a = -52 and L = 2x/27r. Consider the integrable 
discretization (45) as well as the mathematically equivalent one, 

iUj ~- (Uj_I - 2Uj -q- Uj+I)/h2 q- IUjI2Uj_l q- IUj[2Uj+I : O. (46) 

The results integrating over 100 time units are shown in Figure 5. In this 
figure lighter shades of gray indicate larger values of the modulus. This figure, 
shows that despite their mathematical equivalence, completely different numerical 
solutions are obtained after a sufficiently long time (about 50 time units)! Calling 

the two solutions ut41)(t)" and ut2)(t)," respectively, Figure 6 shows a plot of 
log10 e(t) vs t, where e(t) given by 

j - - -  

N 

j = 0  

is the normalized difference between the two solutions as a function of t. Note 
that the difference becomes O(1) after about 50 time units. 

The two schemes are mathematically equivalent - the only difference com- 
putationally is roundoff error (the calculations were done in double precision). 
Thus, tiny differences due to roundoff error are rapidly amplified to the extent 
that they have a marked effect on the solution. This sensitive behavior on small 
perturbations is an indication of an unpredictable, even chaotic, time evolution. 
However, it should be observed that the spatial structure does not break down 
completely. Figure 7 shows the Fourier decomposition of the spatial structure 
(only the lowest 64 modes are shown to facilitate comparison with Figure 8(b)); 
the energy remains confined to approximately the first 20 modes. 

Next we solve the same problem as before (i.e. seven unstable modes), using 
the Fourier pseudospectral method with N = 128 modes and a fourth-order 
symplectic time integrator (fourth-order split-step) with a time step of 0.001. 
Since we are dealing with only seven unstable modes in the problem, one may 
expect the N = 128 Fourier modes of the spectral scheme to be large enough 
to resolve the spatial structure. The solution is shown in Figure 8(a). Note that 
the solution breaks down reasonably quickly and bears little resemblance to the 
solutions of Figure 5 after a short period of time - about 10 time units. Its Fourier 
decomposition is shown in Figure 8(b). As in the case of Figure 7, apart from a 
few brief excursions to higher modes, the energy is limited to a relatively small 
number of Fourier modes. 

The sensitivity observed in the calculations shown in Figures 5-8 can be 
explained in terms of the underlying homoclinic manifold (see [12]). The homo- 
clinic manifold is represented by double eigenvalues of the associated linear 
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Fig. 5. Two mathematically equivalent forms of the integrable discretization. 
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Fig. 8. (a) The Fourier spectral solution and (b) its Fourier decomposition. 
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spectral problem; each unstable mode represents one double point. If one moves 
away from the homoclinic manifold, the double eigenvalues are split into gaps 
and the distance from the homoclinic manifold is given by the 'size' (distance 
between the eigenvalues) of the gaps. If initial values are chosen on the homoclin- 
ic manifold, one expects that small perturbations will cause frequent homoclinic 
crossings, i.e. the solution will be very sensitive to small perturbations. How- 
ever, the initial values used in the numerical experiments above (see [12, 14] 
for a more complete description), are not on the homoclinic manifold. In fact, a 
perturbation analysis (see [12]) shows that the first double point (unstable mode) 
is split O(e0), the second one O(e2), etc., with the last unstable mode being split 
O(e~) (assuming n unstable modes). Thus, when the numerical errors (includ- 
ing roundoff error) are of O(e~), one expects homoclinic crossings and sensitive 
dependence on the perturbations. 

Finally, we turn to a brief discussion of the potential significance of the results 
obtained from the NLS model for the long-time behavior of the Stokes wave in 
deep water. 

3.4. CONCLUSIONS 

Our numerical experiments with the NLS equation indicate that the long-time 
behavior of the Stokes wave depends critically on the number of unstable modes, 
i.e. the amplitude of the Stokes wave. For a small number of unstable modes 
(with a perturbation that has the fundamental frequency; this is the most stable 
situation) our calculations show that the instability saturates and the initial wave 
is eventually (approximately) recovered. Moreover, our numerical and analytical 
calculations demonstrate that this situation is fairly robust with respect to small 
perturbations, i.e. the distance from the homoclinic manifold is larger than the 
numerical perturbations. However, if the number of unstable modes is increased, 
the homoclinic manifold becomes more complex, 
space and the distance from it may become of the 
the numerical perturbations. In this case, the time 
and no recurrence is observed. 

Thermalization and a complete break-down of 
observed if the spatial resolution of the numerical 
the numerical perturbations are large enough. 

fills a larger part of phase 
same order of magnitude as 
evolution becomes irregular 

the spatial structure is only 
scheme is inadequate, i.e. if 

It is well known that the NLS equation is a good, although idealized model of 
the actual physical water waves in deep water. However, laboratory experiments 
of water waves may be interpreted as introducing small perturbations to the NLS 
equation. For a small number of unstable modes, the NLS equation has been 
shown to be robust to the small, conservative perturbations introduced by the 
numerical schemes. One might therefore expect (but it is no less remarkable) to 
observe the recurrence associated with the NLS equation, also in the laboratory, 
as did Lake et  al. [34]. Moreover, for one unstable mode the homoclinic orbit, 
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more specifically, the two sides of the homoclinic should be observable. If the 
number of  unstable modes are increased, the sensitivity of the NLS solutions 
prevents any recurrence in numerical simulations - likewise we do n o t  expect 
to observe recurrence in laboratory experiments for a large number of unstable 
modes. Based on the above arguments, we expect to see a more or less random 
'sea of humps' as in Figure 8(a). In the future we will return to the NLS equation 
and investigate the effect of higher order corrections to the NLS equation on the 
solutions described above. 

Acknowledgements 

This work was partially supported by AFOSR grant F49620-94-0120, ONR 
grant N00014-94-0194 and NSF grants DMS-9024528, DMS-9404265. 

References 

1. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadel- 
phia, 1981. 

2. Novikov, S. P., Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E.: Theory of  Solitons. The 
Inverse Scattering Method, Plenum, New York, 1984. 

3. Ablowitz, M. J. and Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse 
Scattering, Cambridge University Press, Cambridge, 1991. 

4. Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A.: Comm. Math. Phys. 158 (1993), 289- 
314. 

5. Chakravarty, S., Ablowitz, M. J., and Clarkson, P. A.: Phys. Rev. Lett. 65 (1990), 1085-1087. 
6. Mason, L. J. and Woodhouse, N. M. J.: Nonlinearity 6 (1993), 569-581. 
7. Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A.: Integrable systems, self-dual Yang- 

Mills equations and connections with modular forms, in S. Xiao (ed.), Proc. of  Nonlinear 
Problems in Engineering and Science, Science Press, Beijing, China, 1992. 

8. Takhtajan, L. A.: Modular forms as T-functions for certain integrable reductions of the Yang- 
Mills equations, in O. Babelon et al. (eds.), Proc. Verdier Memorial Conference on Integrable 
Systems', Birkhanser, Berlin, 1993. 

9. Chakravarty, S. and Ablowitz, M. J.: to be published, 1995. 
10. Ercolani, N., Forest, M. G., and McLaughlin, D. W.: Physica D43 (1990), 349-384. 
11. Ablowitz, M. J. and Herbst, B. M.: SIAMJ. Appl. Math. 50 (1990), 339-251. 
12. Ablowitz, M. J., Schober, C. M., and Herbst, B. M.: Phys. Rev. Lett. 71 (1993), 2683-2686. 
13. Ablowitz, M. J., Herbst, B. M., and Schober, C. M.: On the numerical solution of the sine- 

Gordon equation, I. Integrable discretizations and homoclinic manifolds, PAM Report 214, 
University of Colorado, Boulder, 1994. 

14. Ablowitz, M. J. and Schober, C. M.: Contemp. Math. 172 (1994), 253-268. 
15. Ward, R.S.: Phys. Lett. A 61 (1977), 81-82. 

See also, R. S. Ward and R. O. Wells: Twistor Geometry and Field Theory, Cambridge Uni- 
versity Press, Cambridge, 1990. 

16. Chakravarty, S. and Ablowitz, M. J.: On reductions of self-dual Yang-Mills equations, in 
E Winternitz and D. Levi (eds.), Proc. NATO Advanced Research Workshop, Plenum Press, 
New York, 1990. 

17. Mason, D. and Sparling, G. A. J.: J. Geom. Phys. 8 (1991), 263-271. 
18. Dubrovin, B.: Private communication. 
19. Gibbons, G. W. and Pope, C. N.: Commun. Math. Phys. 66 (1979), 267-290. 
20. Chazy, J.: C.R. Acad. Sci. Paris 149 (1909), 563-565. 
21. Chakravarty, S.: To be published. 
22. Takhtajan, L. A.: Commun. Math. Phys. 160 (1994), 295-315. 



INTEGRABILITY, COMPUTATION AND APPLICATIONS 37 

23. Plemelj, J.: Problems in the Sense of  Riemann and Klein, Interscience Publishers, New York, 
1964. 

24. Birkhoff, G. D.: Collected Mathematical Papers, Vol. 1, Dover, New York, 1968. 
25. Jimbo, M., Miwa, T., and Ueno, K.: Physica D2 (1981), 306-352 and the references therein. 
26. Jimbo, M. and Miwa, T.: Physica D2 (1981), 407--448. 
27. Nehari, Z.: Conformal Mapping, McGraw-Hill, New York, 1952; (Reprinted by Dover, New 

York, 1975). 
28. Ablowitz, M. J. and Ladik, J. E: Stud. Appl. Math. 55 (1976), 213-229. 
29. Benjamin, T. B.: Proc. Roy. Soc. A 299 (1967), 59-75. 
30. Stokes, G. G.: Camb. Trans. 8 (1847), 441-473. 
31. Whitham, G. B.: Linear and Nonlinear Waves, Wiley, New York, 1974. 
32. Zabusky, N. J. and Kruskal, M. D.: Phys. Rev. Lett. 15 (1965), 240-243. 
33. Schober, C. M. and McLaughlin, D. W.: Physica D57 (1992), 447-465. 
34. Lake, B. M., Yuen, H. C., Rungaldier, H., and Ferguson, W. E.: J. Fluid. Mech. 83 (1977), 

49-74. 
35. Hasselmann, K.: Discussion, Proc. Royal Soc. London (A), 299 (1967), 67. 


