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Abstract. This paper presents a theoretical model for learning Boolean functions in domains having a large, 
potentially infinite number of attributes. The model allows an algorithm to employ a rich vocabulary to describe 
the objects it encounters in the world without necessarily incurring time and space penalties so long as each 
individual object is relatively simple. We show that many of the basic Boolean functions learnable in standard 
theoretical models, such as conjunctions, disjunctions, K-CNF, and K-DNE are still learnable in the new model, 
though by algorithms no longer quite so trivial as before. The new model forces algorithms for such classes to 
act in a manner that appears more natural for many learning scenarios. 
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1. I n t r o d u c t i o n  

Suppose we planned to send a learning machine into a new, never-explored environment 
to learn about the objects it encounters. Since we may not know a priori  what such objects 
would look like and what sort of features they might have, we would want to equip the 

machine with a large vocabulary of descriptive terms or attributes to use to describe the 
things it finds. We would like, however, not to be penalized for the large space of possible 
attributes if  it happens that relatively few of  these pertain to the objects actually seen. In 
addition, we would like to discourage the use of  learning methods that involve creating 
a list of all possible descriptive terms and then deleting the ones deemed unnecessary. 

In the standard theoretical models for learning Boolean functions from examples (Valiant, 

1984; Kearns, et al . ,  1987; Littlestone, 1989), we imagine there are n attributes that our 
algorithm is aware of and we are trying to learn some Boolean func t ion fo f  these attributes. 
An example is some x ~ {0, 1} n with the interpretation that the ith component  of x is 1 
i f  x has the ith attribute. The learning algorithm gains information about f by seeing ex- 
amples x and their labels f (x ) .  The standard models  differ in how examples are chosen 
and how successful learning is defined, but one feature they have in common is that the 
learning algorithm is allowed time and space polynomial  in n and the description length off. 

A problem with this basic model  is that representing each example as a bit  vector is 
wasteful when the total number  of possible attributes is much larger than the number of 
attributes any one example has. Suppose, for instance, we want to teach a machine what 
a pencil  is by presenting to it examples of pencils and non-pencils. We could hard-wire 
into the machine only those attributes which appear in pencils, but  then the machine would 

have trouble if  we later wished to teach it some other concept such as "cup" or "book." 
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Instead, we would like to provide the machine a broad set of possible attributes, expecting 
that few of these will occur in any individual object, though any one might potentially prove 
useful. For example, we might choose the set of attributes to be all English verbs and ad- 
jectives. A typical pencil might then have the attributes; orange, wooden, long, hexagonal, 
writes, and erases. One could likely think of several more one-word attributes that apply, 
but the total number of attributes the pencil does have is much smaller than the number 
it does not have: not only obvious ones such as it is not green or blue or chartreuse, but 
also the more absurd, such as that it does not fly or eat or breathe. One would rather not 
have to explicitly state whether or not each verb or adjective applies in order to describe 
a pencil, which is what one must do in the standard models. Another similar situation 
would be learning about research papers based on keywords. Here, each paper might be 
succintly described by a list of the keywords it has, but standard models would require 
representing each paper as a bit vector over the space of all potential keywords. 

In the model proposed in this paper, instead of representing each example as a bit vector, 
we represent it as simply a list of the attributes the example has, leaving unmentioned all 
attributes the example does not have. Since the learning machine no longer needs time 
proportional to the size of its vocabulary just to read in each example, we are now free 
to make the attribute space arbitrarily large and weaken the learning machine by allowing 
it only time polynomial in the size of the longest example seen (and the size of the target 
function) to do its learning. Thus, this model differs most from the standard ones in situa- 
tions where each example has as attributes a very small fraction of the total attribute space. 

What makes the model interesting is that even though the attribute space may be so large 
that the learning machine does not have time even to look through all the words in its "dic- 
tionary," we can still find algorithms to learn many of the basic learnable Boolean func- 
tions such as conjunctions, disjunctions, K-CNE and K-DNE Also, because the model 
no longer allows the learner to learn essentially by elimination, the algorithms are forced 
to act in what seems to be a more realistic manner. In addition, we can combine these 
techniques with the thresholding algorithms of Littlestone (1987), to learn especially quickly 
when the number of attributes relevant to the target function is much less than the size 
of the examples. 

2. The proposed model 

The domain of examples is defined by an attribute space A ~_ E* whose elements are called 
attributes. The attribute space might be infinite (eg. A = E*) or just large (eg. A -- {all 
English verbs and adjectives}). For simplicity, we will name the attributes al,  a2, a3 . . . . .  
An example or instance x is a finite subset of A and we define the instance space X to 
be the set of all possible examples: that is, the set of all finite subsets of A. An example 
will be presented to the learner as a list of its attributes; this list will have finite length 
since examples are finite sets. For x some finite subset of A, let the size ofx  be the number 
of attributes in x, and the length of x be the length of the string formed by concatenating 
together the attributes of x. 

A concept is a Boolean function on X that depends on only a finite number of attributes. 
Formally, define a conceptfto be a function from X to {0, 1} such that for some minimal 
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finite set Rf ~_ A of relevant attributes, f (x)  = f ( x  f) Rf) for all examples x. In other 
words, the value of f is determined by only the relevant attributes in x. We call examples 
on which f i s  1, positive examples of f and those on which f i s  0, negative examples of 
f A concept class is simply a collection of concepts. 

In the learning scenario, we are given a concept class C and there is some unknown 
target concept fr  ~ C that we are trying to learn. (Throughout this paper, we will use f r  
to denote the target concept, f to denote a generic concept, and h the current hypothesis 
of the learning algorithm when one exists.) Learning proceeds in a sequence of stages. 
In each stage, we are given some example x, are asked to predict the valuefr(x) and then 
are told whether our prediction was correct. In this paper we will use a mistake-bound 
model to describe how examples are chosen and how to define successful learning. 

In the mistake-bound model, for a given concept class C and unknown target concept 
f r  ~ C, an adversary chooses examples from X in any order it wishes to present during 
the learning stages. Each time the learning algorithm makes an incorrect prediction, we 
charge it one mistake. Let size(fr) be some natural measure of  the description length of 
fr ,  and let n and ~ be the maximum size and maximum length respectively of any exam- 
ple seen so far. We say that we learn C if for allf~ ~ C we can guarantee to make a number 
of mistakes at most some fixed polynomial in size(fr) and n, using time in each stage 
polynomial in size(fr) and ft. (The use of ~ here is simply to allow the algorithm time 
enough to read in the examples in case the attribute names happen to be long.) Note that 
this definition differs from the standard model where n refers to the total number of at- 
tributes in the attribute space and not just the size of the largest example seen. 

For some of the learning algorithms, it will be convenient to assume that size(fr) and 
n are known by the learner beforehand. These assumptions can be removed by standard 
"doubling" techniques in which, for instance, the learner's hypothesized value of size(fr) 
is doubled when a certain mistake bound is exceeded. 

Note that by the definition of "relevant," attributes that are missing from an example 
x can be considered philosophically as either actually missing from the object seen or else 
as unknown but not relevant. For instance, if "purple" is not relevant to fr ,  and if x does 
not contain the attribute purple, thenf r (x)  = fT-(x U {purple}) so for the purposes of 
learning it does not matter whether the "actual object seen" really might have been purple. 

3. Learning algorithms 

To illustrate the difference between the new model and the standard mistake-bound model, 
let us first consider learning the class of monotone disjunctions: that is, functions of the 
form al V a 2 V a 4 but not al V a2 v a-~. The typical algorithm for learning such concepts 
proceeds as follows. We keep at all times a current hypothesis h which is used to make 
predictions and begin by initializing h to the disjunction of all attributes in the space: al 
V . . .  V an. When we make a mistake on a negative example, we simply remove from 
h all attributes present in that example. Since we only remove terms on negative examples, 
we never remove any terms that are present in the target concept (that is, we never remove 
any relevant attributes). Since we remove at least one term on every mistake, we can make 
at most n mistakes. 
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Clearly this simple procedure will no longer work in the new model. In an infinite at- 
tribute space we will go on forever just using the negative examples to cross out the irrele- 
vant attributes. Instead we will need to use both the positive and the negative examples 
to control more carefully the part of the space under consideration. A procedure that works 
for the new model is as follows. 

LEARN-MONO'IONE-  DISJUNCTION 

1. Predict "negat ive"  until we see our first positive example x. At this point, initialize 
h to be the disjunction of  all attributes that appear in x; h will be used to make all future 
predictions. 

2. I f  we make a mistake on a positive example x, add onto h all attributes in x. Notice 
that since x is a positive example, it must contain some attribute appearing in fT (the 
target concept) and since we mistakenly predicted "negat ive ,"  it has no attributes in 
h. So, we add to h at least 1 attribute f r o m f r  and at most n - 1 attributes not from f t .  

3. I f  we make a mistake on a negative example x, remove from h all attributes in x. Since 
we mistakenly predicted "posi t ive ,"  we are removing at least 1 attribute from h and 
since x is negative, we are removing 0 attributes that appear in fT- 

On monotone disjunctions of  r attributes, the above procedure makes at most r mistakes 
on positive examples and r(n - 1) mistakes on negative examples for a total of  rn mistakes 
maximum. 

3.1. Monotone and non-monotone K-CNF 

We now turn to the problem of  learning monotone K-CNF formulas. For  instance, for 
K = 3, f r  might be (al V a2 V as)(a2 V a 3 V a4). In the typical algorithm for this prob- 
lem, we begin by setting h to be the conjunction of  all clauses of  size K over the attribute 
space. Each time a positive example is seen, we keep only the clauses consistent with 
that example and discard the rest. This algorithm makes no mistakes on negative examples. 

In addition to the problem of initialization, the above algorithm will no longer work 
in the infinite-attribute model because there may possibly be an infinite number of  clauses 
of  size Ktha t  are consistent with any given positive example. Instead, we wilt use a pro- 
cedure that " g r o w s "  each of  the clauses out of  "seeds"  of  size one and discards them 

if they get too large. 
Define a seed of  a monotone clause to be a disjunction of  a subset o f  the attributes dis- 

joined in the clause. So, for instance, al and al v a5 are both seeds of  the clause al V 
a2 V a 5. If  an example satisfies the seed of  a clause, then it satisfies the clause as well. 

In addition, seeds have the following property: 

I f  c is a seed of  clause cr, and example x satisfies cT but not c, then x has at least 
one attribute in cr  that is not in c. (*) 

The procedure below learns monotone K-CNF functions in the infinite-attribute model. 
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LEARN-MONOIDNE-K-CNF 

1. Predict "negative" until we see our first positive example x. At this point, initialize 
h to the conjunction of all attributes appearing in x. So, h is now a 1-CNE Notice that 
h contains at least one seed for each clause infr ,  since any positive example has at least 
one attribute from every clause. 

2. I f  we make a mistake on a positive example x, consider each clause c in h not satisfied 
by the example. If c contains K attributes, discard it. Otherwise (it contains fewer literals), 
replace it with at most n new clauses: for each attribute in x, create a new clause con- 
sisting of the disjunction of that attribute with the literals in c. 

Thus, for example, if h were (a~)(a4) and we saw the positive example {a3, a4, as}, 

we would change h to equal (a~ v a3)(a I V a4)(a I V as)(a4). (Actually, we do not need 
to include the clause (al v a4) since it is implied by the clause (a4)). 

Theorem 1 LEARN-MONOTONE-K-CNF makes at most (n + 1) K mistakes on any 

monotone K-CNF formula. (Recall that n is the size o f  the largest example seen). 

Proof:  LEARN-MONOTONE-K-CNF maintains in step 2 the invariant that every clause 
in f r  has some seed in h. The reason is that if clause c is the only seed in h of some clause 
c r in f r  and is modified in step 2, then by property (*) of seeds, at least one of the new 
clauses created in step 2 will also be a seed of cr. This invariant implies that LEARN- 
MONOTONE-K-CNF never makes any mistakes on negative examples. (An exarnple that 
satisfied h would satisfy a seed for each clause in f r  and therefore would satisfy fr). 

For each clause in h of m attributes place a "cost" of (n + 1) ~-m and let the total cost 

of h be the sum of the costs of all its clauses. Thus, we begin with a total cost of at most 
n(n + 1) ~;-1 < (n + 1) K. Each time we replace a clause by up to n clauses of size one 
larger, we decrease the total cost by at least 1 since for m < K, we have (n + 1) ~-m _> 
1 + n(n + 1) ~;-('~+~. Also, each time we throw out a clause we decrease the total cost 
by 1. Thus, on each mistake, we decrease the cost by at least 1, and since the cost is never 
negative, the algorithm makes less than (n + 1) ~ mistakes total. 

The running time of  this algorithm is clearly polynomial in size(fr) and the length of 
the longest example seen. I~ 

So far, we have considered only monotone functions. It may be, however, that we wish 
to learn a concept that depends on some attribute not being present--for instance, for the 
concept "penguin," it may be important that the bird not fly. In the standard model, any 
algorithm that learns a monotone function can be used to learn the non-monotone version 
as well because a non-monotone function can be thought of as a monotone one over the 
larger attribute space that has a i and ~//as two different attributes for each original attribute 
a i. It will just so happen that ever 5, example seen will have as an attribute exactly one of 
a i and ~i. 

In the new model this transformation no longer works. Making ~ / a  new attribute for 
all i would cause each example to have a possibly infinite size. We will see, however, that 
by improving the algorithms, we can learn non-monotone K-CNF formulas--functions that 
depend on an attribute not being present--even though the examples are presented to us 
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as a list of their positive attributes only. As intuition, if the concept "penguin" depended 
on the absence of the attribute "can fly," then even though this absence is never explicitly 
mentioned in the examples, we might still infer its importance through the negative ex- 
amples that seem as though they ought to be penguins except for the fact that they do fly. 
In addition, we can use the algorithm that learns non-monotone K-CNF to learn non- 
monotone disjunctions and K-DNF functions f a s  well, by simply having it learn the K- 
CNF that is the complement of f ,  since we no longer need worry about monotonicity. 

The main idea for general (non-monotone) K-CNF is that we will use the first positive 
example to give us the seeds for each monotone clause (as before), but then we will allow 
the possibility of making mistakes on negative examples and will use them to provide the 
seeds for the non-monotone clauses. The only additional complication is that we must modify 
the definition of "seed" for non-monotone clauses so that seeds still satisfy property (*). 
~Fhe "seed = subset" definition above will no longer work because, for instance, example 
{a2} satisfies c T = (al v a 2 v a3) and not c = (a~ V ~ )  but does not have any attribute 
in cv that is not in c. The new definition is as follows. 

Definition 1 A seed of  a clause is a disjunction o f  all negated attributes o f  the clause and 
any subset o f  the non-negated areas. 

m m 

For instance, any seed of the clause (a 1 V a2 V a3) must contain a 2 and a 3. The new defini- 
tion of "seed" reduces to the old one when all clauses are monotone, and satisfies property 
(*). The procedure below learns general (non-monotone) K-CNE 

LEARN-K-CNF 

1. Same as LEARN-MONOTONE-K-CNE Predict "negative" until we see our first positive 
example x and then initialize h to the conjunction of all the attributes in x. 

2. Same as LEARN-MONOTONE-K-CNE If  we make a mistake on a positive example 
for x, for each clause c in h not satisfied by the example, do the following. Discard 
c, but if c contained fewer than K literals, then for each attribute in x, create a new 
clause consisting of the disjunction of that attribute with the literals in c. 

3. I f  we make a mistake on a negative example x, then for each subset__ {ail . . . .  .~ ,  air } ~_ X 
(r --< K) of  at most K attributes of x, add to h the clause (ai~ V . . .  V air ). 

l~heorem 2 The procedure LEARN-K-CNF makes at most (rK + 1)(n + 1) K mistakes on 
any K-CNF formula o f  r clauses. 

Proof: Step 1 introduces to h a seed for each monotone clause inf , .  In step 2, if a clause 
c is the only seed in h of  some cz in fT and is removed, then by property (*), one of the 
new clauses created will be a seed of  c~-. So, once a clause in fT has a seed in h, it will 
continue to have one. 

Step 3 adds to h a seed for some clause in fT" that previously had no seed in h. If  we 
predicted "positive" on a negative example x, then x must have satisfied all clauses in f~ 
for which some seed exists in h. Notice that this includes all monotone clauses off~-. Since 
x is a negative example, it must not satisfy some other clause c~- in fT". Because cT is not 
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a monotone clause, x must have as attributes all those negated in c~ and so in step 3, a 
seed for c~ will be put into h. For instance, the example might not satisfy the clause (al 
V a 3 V a4) which would imply that the example must  have the attributes a3 and a 4. Thus, 
in step 3 we would add in to h a seed for that clause. 

The algorithm makes at most r mistakes on negative examples since each one adds to 
h the seed to a[ least one new clause offr .  In addition, each such mistake adds to h a total 
of  at most I ~nj clauses of  m literals for each m _< K. As in the proof for the monotone 
case, we put a cost of (n + 1) K-m on each clause in h of m literals. So, each such mistake 
adds a total cost of  at most 

~ (n + 1) K-m < ~_a (n + 1) K _< K(n + 1) x. 
m=l m=l 

Step 1 starts h with a total cost of  at most n(n + 1) ~-~ and step 2 decreases the total 
cost by at least 1 and the cost is always at least r. So, the maximum number of  mistakes 
possible is 

r + 1 + r[K(n + 1) K] + n(n + 1) K-1 - r <_ (rK + 1)(n + 1) ~;. • 

4. Reducing the mistake bound 

Littlestone (1987) presented remarkably efficient algorithms for learning the concept classes 
discussed in the previous sections in the standard model in situations where the number 
of relevant attributes r is much smaller than the total number of attributes in the space. 
These algorithms use a linear-threshold representation of the concepts and a clever method 
of performing weight updates, and yield mistake bounds on the order of r log n and time 
and space n log n when examples are chosen from {0, 1} n. 

In the new model, the logarithm of the number of attributes may still be large or infinite. 
However, we can combine the ideas in Littlestone's algorithms with the learning algorithms 
described above to produce procedures that have mistake bounds on the order of r log n 
where n is the size of the largest example seen instead of the size of the attribute space. 
Thus, these new algorithms work well when we have a three-stage hierarchy: a small number 
of relevant attributes, a larger number of attributes that appear in each example, and an 
enormous number of possible attributes in the universe. 

Littlestone's threshold algorithm "Winnowl" for learning monotone disjunctions works 
as follows. 1 Associate a weight w i to each attribute and initialize it to 1; let ~ be the vec- 
tor of weights. On example ~ = (vl . . . . .  vn) E {0, 1} n, predict "positive" if P'- ~ > n; 
otherwise predict "negative." If  a mistake is made on a positive example ~, then double 
weights wi for which vi = 1. If  a mistake is made on a negative example ~, then for all 
v i = 1, set w i to 0. Littlestone proves that this algorithm makes at most r log n mistakes 
in the standard mistake-bound model (Littlestone, 1987). The algorithm can also be used 
for non-monotone disjunctions or K-DNF by using the standard transformations of these 
problems to monotone disjunctions. 
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Since the mistake bound of Winnowl grows so slowly with n, we can actually use a "brute- 
force" conversion to apply it to the infinite attribute case. The basic idea is as follows. 
We begin with a small set of attributes S, say those in the first positive example, and run 
Winnow1 ignoring all attributes seen not in this set. If  we modify Winnowl to handle the 
concepts "true" and "false," then if we make more than r log ]S[ mistakes, we know that 
some example on which a mistake is made has some relevant attribute that we ignored. 
(Otherwise all such examples would be consistent with some monotone disjunction of just 
attributes in S or "true" or "false"). So, we can include all the at most nr  log IS1 attributes 
we ignored that appeared in those examples and restart Winnowl on the larger attribute 
set and so on. We will make at most O(r 2 log(m)) mistakes total since each new iteration 
adds at least 1 relevant attribute and at most nr  log(poly(r, n)) irrelevant ones. 

We can also, however, learn disjunctions and K-DNF using a more direct approach, merg- 
ing the idea of  Winnow1 with the algorithms described in the previous section, that yields 
better bounds. For this approach, we must limit the number of  attributes under considera- 
tion and deal directly with the asymmetry between negated and non-negated attributes. 
To illustrate ideas for both these problems, let us consider learning general (non-monotone) 
disjunctions in the new model. 

In the following algorithm, S will be the set of  literals currently under consideration. 
For convenience, we make the following definition. 

Definition 2 Given an example x and a set o f  terms S, let x(S) be the set  o f  those terms 

in S satisfied by x.  

For instance, if S = {al, a2, ~33} and x = {a 1, an}, then x(S) = {al, ~ } .  In addition~ 
we will make the simplifying assumption in this section that all examples seen have the 
same number of attributes n. In general, this may not be the case and one can modify 
the algorithm to work correctly when the example sizes vary. 

Theorem 3 E F F I C I E N T - L E A R N - D I S J U N C T I O N  below makes  at  most  O(r log n) mistakes 

on any disjunction o f  r literals. 

EFFICIENT-LEARN-DISJUNCTION 

1. Predict "positive" until we see our first negative exampte x. Initialize S to the set of 
all ~ for which a i ~ x, and for each term t ~ S initialize a weight w t to 1. Notice that 
since x is a negative example, we must have a i ~. 7~ for every ~//disjoined in fr ,  so S 
now contains every negated attribute in fT. 

2. Given an example x, if Z wt > n, then predict "positive"; otherwise predict 
tex(S) 

"negative." 
3. If  we make a mistake on a posi t ive  example x, then: 

* For each t ~ x(S), let wt "-- 2w~. 

* For each a i fi x such that a i • S, put a i into S and initialize Wai to 1. 
4. I f  we make a mistake on a negative example x, then: 

* For each t e x(S), let wt ~ O. 
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Proof of theorem: L e t  l be some literal disjoined in f t .  We know that w~ will never be 
set to zero in step 4 since no negative example can satisfy 1. In addition, if w~ ever reaches 
a value greater than n, we will never again make a mistake on a (positive) example satisfy- 
ing l since for any such example x, we will have P'tex(S) w~ > n. 

- -  

I f  I = a i for some ai, then l is placed in S and w~ set to 1 in step 1. Otherwise, l will 
be put into S and w~ set to 1 the first time a mistake is made on a (positive) example satis- 
fying l. Each subsequent mistake on a positive example satisfying l doubles the value of 
w~. So, the maximum number of mistakes we can make on positive examples satisfying 
I is 1 + (log n + 1) = 2 + log n; after this number of mistakes, we are guaranteed that 
w~ > n. Since there are r literals disjoined in f r ,  the total number of mistakes possible 
on positive examples is r(2 + log n). 

Let s be the sum of all weights wt for t fi S. After step 1, s is at most n. Each mistake 
made on a positive example increases s by at most 2n: at most n for the weights doubled 
in step 3 and at most n for the weights of  the new terms added to S. Each mistake made 
on a negative example decreases s by at l eas t  n. Also, all weights are non-negative. Thus, 
the total number of mistakes possible on negative examples is 

n + r(2 + log n)(2n) 
= 1 + 2r(2 + log n). 

So, the maximum number of mistakes made by this algorithm is 1 + 3r(2 + log n). • 

One can extend the above technique to learn K-DNF formulas by combining the ideas 
of the above algorithm with those of LEARN-K-CNE Recently, however, Blum, Heller- 
stein, and Littlestone (Blum, et al., 1991) have found a method that uses a different ap- 
proach and achieves similar bounds but with much simpler analysis. Therefore, we shall 
not present the more complicated method here, and instead refer the reader to that paper 
for details. 

5. Allowing membership queries 

One natural way to increase the power of a learner, studied by Angluin (1986; 1988), Valiant 
(1984) and others (Angluin, et al., 1989), is to provide the learner with the ability to make 
membership queries. In a membership query, the learner selects an example and is then 
told its proper classification. One may incorporate membership queries into the mistake 
bound model as follows. We allow the learner at each stage to choose whether to receive 
an example from the adversary and make a prediction as before, or else to make a member- 
ship query. We now require for successful learning that both the number of mistakes and 
the number of membership queries be polynomial in n and the size of the target concept. 

We show that any algorithm that learns a concept class in the standard mistake bound 
model with membership queries can be transformed into one that learns it in the infinite 
attribute model with membership queries, with only a small additional mistake and time 
penalty. To make this statement more precise, we first need a method to relate concept 
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classes over {0, 1} m with those in the infinite attribute model. There are several ways one 
might do this and we choose one here. For most "natural" classes C, this method is the 
same as simply restricting A to the first m attributes. 

Definition 3 Given a set S = {aq . . . . .  aim } ~_ A, (il <- iz <- . .  • <- i,~) and a vector 
9 ~= (Vl, . . . ,  Vm) E {0, 1} m, let rs(~" ) = {aij I vj = 1}. 

So, ~'s maps a bit vector into its indicated subset of S, and for x ~_ S, ~-~(x) is the in- 
dicator vector of x in S. Thus, i f f  is a concept in the infinite attribute model, then f o 
~s is a function from {0, 1} Isl to {0, 1}. We can now define the concept class C(m) over 
{0, 1} m associated to the concept class C. 

Definition 4 For concept class C, let C(m) = { f  o r s  I f ~ C, S ~_ A, and ISI = m}. 

That is, C(m) contains every function from {0, 1} '~ to {0, 1} that for some set S of m at- 
tributes and some concept f in C, treats its input as an indicator vector for a subset of S 
and applies f t o  that subset. So, for instance, if C is the class of monotone disjunctions, 
then C(m) is all monotone disjunctions over {0, 1} m, including the concept "false." If  C 
is a bizarre class like { f [  if a37 ~ Rf, t hen f i s  a disjunction, e l s e f i s  a conjunction}, then 
C(m) is the class of all conjunctions and disjunctions over {0, 1} m. For most "natural" 
concept classes (sometimes called "naming invariant" classes (Kearns, 1989)) where the 
actual attribute names are not important to the definition of the class, the definition of C(m) 
is the same as if the set S used were fixed to {al, • . . ,  am}.  

Theorem 4 I f  for all m, C(m) is learnable in the standard mistake-bound model with member- 
ship queries using at most M m mistakes ÷ queries (and let us assume MI <- Mm for l <_ 
m), then any f r  ~ C can be learned in the infinite-attribute mistake-bound model with 
membership queries using at most 2rMnr mistakes + queries, where r = I RTv [. 

Proof;  We will keep a set S of attributes under consideration and initialize S to { }. Let 
m denote the size of S and label the elements of S as ai~ , . . . ,  ai~no Let Pm be an algorithm 
to learn C(m) in the standard model that makes at most M m mistakes + queries. We may 
assume that Pm is a conservative algorithm; that is, it only modifies its state after a mistake 
or mem'bership query (Angluin, 1988; Littlestone, 19~/). 

1. Initialize algorithm Pm" 
2. Run one step of  algorithm Pm" 

(a) If  Pm makes a membership query on example 9, ~ then make a membership query 
on ~'s(9) and return the result to Pm. 

(b) If  Pm asks to receive an example from the adversary, then 
i. Get some example x from the adversary and feed to Pm the example r - l (x  f~ S); 

that is, (v~ . . . . .  Vm) where v) = 1 iff ai. ~ x. 
./ . 

ii. Return the prediction of Pm as our prediction. 
iii. I f  our prediction was correct, then give the response f~(x) to Pm and go back 

to 2. Note that f~(x) may not equal f~(x (~ S), but we do no harm since P~ is 
conservative. 
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iv. If  our prediction was incorrect, then make a membership query on example x 
f-I S. i ffr(x CI 53 = fr(x) ,  then givefT(x) to Pm and go back to 2. Otherwise, 
we know there exists some relevant attribute in x - S, so let S ' -  S U x, let 
m = [SI, and go back to 1. 

We know any given Pm will cause us to make at most M,~ mistakes and Mm queries before 
S gets updated, since by definition of  C(m) there exists some fm ~ C(m) that is consistent 
with the target function f r  over attribute space S. Each time we update S, we add at least 
1 relevant attribute and at most n total attributes to S, so the largest number of attribues 
ever considered is nr, where r = ]Rut I . Since there are at most r different P,~ used, this 
procedure makes at most 2rMnr mistakes + queries total. 

6. The halving a lgor i thm 

We now consider learning when computational constraints are ignored. Littlestone (1987) 
defines opt(C) to be the best possible worst-case mistake bound achievable by any (not 
necessarily polynomial-time) algorithm for learning class C. If  Cm is a concept class over 
{0, 1} m, then we have opt(Cm) <- log 2 ]Cm[. This can be seen by using the standard "Halv- 
ing Algorithm" which works as follows. Let H = Cm. On input 9"7, take a majority vote 
of a l l f~  H and predict accordingly. If  a mistake is made throw out a l l f~  H that predicted 
incorrectly. Thus, each mistake reduces H by at least a factor of 2, so at most log 2 [Cm[ 
mistakes total are made. 

In the infinite-attribute model, the size of a concept class C may be infinite and the ques- 
tion arises: might it be that, opt(C(m)) is polynomial in m, but that even ignoring computa- 
tional constraints, the class C cannot be learned with a number of mistakes polynomial 
in n and the size of the target concept? The answer to this question is "no" in the following 
sense. 

Theorem 5 If C is a concept class in the infinite-attribute model, then there exists a (non 
polynomial-time) algorithm for C that makes at most O(r 2 log(m[ C(r)])) mistakes where 
r is the number of relevant attributes of the target concept and n is the size of the largest 
example seen. 

We will prove this by using a modified version of the Halving Algorithm called "Se- 
quential Halving" or "SH"  below. Let us first make the following defintions. 

Definition 5 For f ~ C, let f Is(X) = f ( x  CI S). We will say that f Is is f restricted to S. 

Definition6 Given a set S ~_ A, let C(r, S) = {f[s : f E C, IR~ <<- r}. 

So, the size of C(r, S) is the number of functions in C on at most r relevant attributes that 
differ over examples whose attributes come from the set S. 

We now describe the algorithm SH. For simplicity, we will assume that in addition to 
the concept class C, the number of relevant attributes r is given to the algorithm at the 
beginning. 



384 A. BLUM 

SH(C, r) 

1. To start, let S *- { }. 
2. Let H = C(r, S) and T = { }. Note that even if S is empty. H will have at least one 

except in it (assuming C is non-empty) at this stage. 
3. On example x, predict according to a majority vote of the functions in H. I f  the predic- 

tion was wrong remove from H all functions that predicted incorrectly and let T ~- TUx. 
Continue with this step until H is empty. 

4. I f  H is empty, let S +-- S U T and go back to step 2. 

P roof  of  t heo rem 5: L e t f b e  the target function. In algorithm SH, each time step 4 is 
reached, a new attribute of Rf is added to S. The reason is that for all examples x with 
no relevant attributes outside of S, we havefls(X) = f (x )  by definition of Rf. So, if all 
examples on which a mistake is made have no attributes in Rf - S, then f l s  will never 
be removed from H in step 3. So, each time step 4 is reached, we add at least one relevant 
attribute and at most n log2 ]c(r, S)I attributes total. 

I f  IS[ = r, then by definjtipns 4 and 6 we have [C(r, S)[ _< IC(r)[. So, for IsI  = m 
> r, we have I C(r, S)[ _< Lm~ [C(r)[ since every function in C(r, S) is also an element of 
C(r, S ') for some S '  _c S of size r. Thus, each time step 4 is reached, the number of 
attributes we add to S is at most 

n log I C(r, S) I _< n l o g  I ( ] r S ] ~  ,C(r),l 

<<_ nr log(ISI IC(r)l). 

Since we reach step 4 at most r times, if m,,a~ is the size of  the largest set S used, then 
mmax is at most  nr 2 1og(mmax ]C(r)[). Solving for mma x gives 

mma x = O(nF 2 log(nr lC(r) l ) ) .  

Thus, if Sm~ is the largest set S used, the number of mistakes made is at most 

r log I C(r, &aAI 

-< r l o g  I I m ~ a x ~  ]C(r)] 1 

= O(r ~ log[mm~lC(r)[]) 

= O(r  ~ log [nre[C(r)llog(nrlC(r)[)]). 

= O(r  2 log(nrlC(r)l)) .  

Note that we can get rid of  the assumption that r is known beforehand by using a stan- 
dard "doubling t r ick ."  
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7. Conclusions 

This paper presents a model for learning Boolean functions in a large or infinite attribute 
space when the size of each individual example is smali. The model attempts to capture 
the notion that often the description of any individual object is much smaller than the size 
of one's total vocabulary. By allowing the attribute space to be infinite, the model no longer 
allows the standard methods for learning K-CNF and K-DNF which essentially list all the 
attributes in the space and cross them off as they are seen. We show that these concept 
classes remain learnable however, by new, and in some sense more "realistic" algorithms. 

Some concept classes that are easy to learn in the standard model seem hard to learn 
in the proposed one. In particular, the class of decision lists (Rivest, 1987) is learnable 
in the standard model, but it is an open problem whether it can be learned in the infinite- 
attribute model. Note that by the results of section 6, decision lists c a n  be learned in the 
infinite-attribute model if computational issues are ignored, so any attempt to show' deci- 
sion lists are n o t  learnable would likely require some sort of complexity assumption. 
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Notes 

1. Littlestone actually allows for a variety of thresholds and multipliers, Only the simplest form of his algorithm 
is described here. 
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