
Machine Learning, 9, 373-386 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Boolean Functions in an Infinite Attribute
Space

AVRIM BLUM ,~VR~ M @THEOR'f.CS.C MU. ~Dt~.
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

Editor: David Haussler

Abstract. This paper presents a theoretical model for learning Boolean functions in domains having a large,
potentially infinite number of attributes. The model allows an algorithm to employ a rich vocabulary to describe
the objects it encounters in the world without necessarily incurring time and space penalties so long as each
individual object is relatively simple. We show that many of the basic Boolean functions learnable in standard
theoretical models, such as conjunctions, disjunctions, K-CNF, and K-DNE are still learnable in the new model,
though by algorithms no longer quite so trivial as before. The new model forces algorithms for such classes to
act in a manner that appears more natural for many learning scenarios.

Keywords. Theoretical models, concept learning, irrelevant attributes, large attribute spaces.

1. I n t r o d u c t i o n

Suppose we planned to send a learning machine into a new, never-explored environment
to learn about the objects it encounters. Since we may not know a priori what such objects
would look like and what sort of features they might have, we would want to equip the

machine with a large vocabulary of descriptive terms or attributes to use to describe the
things it finds. We would like, however, not to be penalized for the large space of possible
attributes if it happens that relatively few of these pertain to the objects actually seen. In
addition, we would like to discourage the use of learning methods that involve creating
a list of all possible descriptive terms and then deleting the ones deemed unnecessary.

In the standard theoretical models for learning Boolean functions from examples (Valiant,

1984; Kearns, et al . , 1987; Littlestone, 1989), we imagine there are n attributes that our
algorithm is aware of and we are trying to learn some Boolean func t ion fo f these attributes.
An example is some x ~ {0, 1} n with the interpretation that the ith component of x is 1
i f x has the ith attribute. The learning algorithm gains information about f by seeing ex-
amples x and their labels f (x) . The standard models differ in how examples are chosen
and how successful learning is defined, but one feature they have in common is that the
learning algorithm is allowed time and space polynomial in n and the description length off.

A problem with this basic model is that representing each example as a bit vector is
wasteful when the total number of possible attributes is much larger than the number of
attributes any one example has. Suppose, for instance, we want to teach a machine what
a pencil is by presenting to it examples of pencils and non-pencils. We could hard-wire
into the machine only those attributes which appear in pencils, but then the machine would

have trouble if we later wished to teach it some other concept such as "cup" or "book."

374 A. BLUM

Instead, we would like to provide the machine a broad set of possible attributes, expecting
that few of these will occur in any individual object, though any one might potentially prove
useful. For example, we might choose the set of attributes to be all English verbs and ad-
jectives. A typical pencil might then have the attributes; orange, wooden, long, hexagonal,
writes, and erases. One could likely think of several more one-word attributes that apply,
but the total number of attributes the pencil does have is much smaller than the number
it does not have: not only obvious ones such as it is not green or blue or chartreuse, but
also the more absurd, such as that it does not fly or eat or breathe. One would rather not
have to explicitly state whether or not each verb or adjective applies in order to describe
a pencil, which is what one must do in the standard models. Another similar situation
would be learning about research papers based on keywords. Here, each paper might be
succintly described by a list of the keywords it has, but standard models would require
representing each paper as a bit vector over the space of all potential keywords.

In the model proposed in this paper, instead of representing each example as a bit vector,
we represent it as simply a list of the attributes the example has, leaving unmentioned all
attributes the example does not have. Since the learning machine no longer needs time
proportional to the size of its vocabulary just to read in each example, we are now free
to make the attribute space arbitrarily large and weaken the learning machine by allowing
it only time polynomial in the size of the longest example seen (and the size of the target
function) to do its learning. Thus, this model differs most from the standard ones in situa-
tions where each example has as attributes a very small fraction of the total attribute space.

What makes the model interesting is that even though the attribute space may be so large
that the learning machine does not have time even to look through all the words in its "dic-
tionary," we can still find algorithms to learn many of the basic learnable Boolean func-
tions such as conjunctions, disjunctions, K-CNE and K-DNE Also, because the model
no longer allows the learner to learn essentially by elimination, the algorithms are forced
to act in what seems to be a more realistic manner. In addition, we can combine these
techniques with the thresholding algorithms of Littlestone (1987), to learn especially quickly
when the number of attributes relevant to the target function is much less than the size
of the examples.

2. The proposed model

The domain of examples is defined by an attribute space A ~_ E* whose elements are called
attributes. The attribute space might be infinite (eg. A = E*) or just large (eg. A -- {all
English verbs and adjectives}). For simplicity, we will name the attributes al, a2, a3
An example or instance x is a finite subset of A and we define the instance space X to
be the set of all possible examples: that is, the set of all finite subsets of A. An example
will be presented to the learner as a list of its attributes; this list will have finite length
since examples are finite sets. For x some finite subset of A, let the size ofx be the number
of attributes in x, and the length of x be the length of the string formed by concatenating
together the attributes of x.

A concept is a Boolean function on X that depends on only a finite number of attributes.
Formally, define a conceptfto be a function from X to {0, 1} such that for some minimal

LEARNING IN AN INFINITE ATTRIBUTE SPACE 375

finite set Rf ~_ A of relevant attributes, f (x) = f (x f) Rf) for all examples x. In other
words, the value of f is determined by only the relevant attributes in x. We call examples
on which f i s 1, positive examples of f and those on which f i s 0, negative examples of
f A concept class is simply a collection of concepts.

In the learning scenario, we are given a concept class C and there is some unknown
target concept fr ~ C that we are trying to learn. (Throughout this paper, we will use f r
to denote the target concept, f to denote a generic concept, and h the current hypothesis
of the learning algorithm when one exists.) Learning proceeds in a sequence of stages.
In each stage, we are given some example x, are asked to predict the valuefr(x) and then
are told whether our prediction was correct. In this paper we will use a mistake-bound
model to describe how examples are chosen and how to define successful learning.

In the mistake-bound model, for a given concept class C and unknown target concept
f r ~ C, an adversary chooses examples from X in any order it wishes to present during
the learning stages. Each time the learning algorithm makes an incorrect prediction, we
charge it one mistake. Let size(fr) be some natural measure of the description length of
fr , and let n and ~ be the maximum size and maximum length respectively of any exam-
ple seen so far. We say that we learn C if for allf~ ~ C we can guarantee to make a number
of mistakes at most some fixed polynomial in size(fr) and n, using time in each stage
polynomial in size(fr) and ft. (The use of ~ here is simply to allow the algorithm time
enough to read in the examples in case the attribute names happen to be long.) Note that
this definition differs from the standard model where n refers to the total number of at-
tributes in the attribute space and not just the size of the largest example seen.

For some of the learning algorithms, it will be convenient to assume that size(fr) and
n are known by the learner beforehand. These assumptions can be removed by standard
"doubling" techniques in which, for instance, the learner's hypothesized value of size(fr)
is doubled when a certain mistake bound is exceeded.

Note that by the definition of "relevant," attributes that are missing from an example
x can be considered philosophically as either actually missing from the object seen or else
as unknown but not relevant. For instance, if "purple" is not relevant to fr , and if x does
not contain the attribute purple, thenf r (x) = fT-(x U {purple}) so for the purposes of
learning it does not matter whether the "actual object seen" really might have been purple.

3. Learning algorithms

To illustrate the difference between the new model and the standard mistake-bound model,
let us first consider learning the class of monotone disjunctions: that is, functions of the
form al V a 2 V a 4 but not al V a2 v a-~. The typical algorithm for learning such concepts
proceeds as follows. We keep at all times a current hypothesis h which is used to make
predictions and begin by initializing h to the disjunction of all attributes in the space: al
V . . . V an. When we make a mistake on a negative example, we simply remove from
h all attributes present in that example. Since we only remove terms on negative examples,
we never remove any terms that are present in the target concept (that is, we never remove
any relevant attributes). Since we remove at least one term on every mistake, we can make
at most n mistakes.

376 A. BLUM

Clearly this simple procedure will no longer work in the new model. In an infinite at-
tribute space we will go on forever just using the negative examples to cross out the irrele-
vant attributes. Instead we will need to use both the positive and the negative examples
to control more carefully the part of the space under consideration. A procedure that works
for the new model is as follows.

LEARN-MONO'IONE- DISJUNCTION

1. Predict "negat ive" until we see our first positive example x. At this point, initialize
h to be the disjunction of all attributes that appear in x; h will be used to make all future
predictions.

2. I f we make a mistake on a positive example x, add onto h all attributes in x. Notice
that since x is a positive example, it must contain some attribute appearing in fT (the
target concept) and since we mistakenly predicted "negat ive ," it has no attributes in
h. So, we add to h at least 1 attribute f r o m f r and at most n - 1 attributes not from f t .

3. I f we make a mistake on a negative example x, remove from h all attributes in x. Since
we mistakenly predicted "posi t ive ," we are removing at least 1 attribute from h and
since x is negative, we are removing 0 attributes that appear in fT-

On monotone disjunctions of r attributes, the above procedure makes at most r mistakes
on positive examples and r(n - 1) mistakes on negative examples for a total of rn mistakes
maximum.

3.1. Monotone and non-monotone K-CNF

We now turn to the problem of learning monotone K-CNF formulas. For instance, for
K = 3, f r might be (al V a2 V as)(a2 V a 3 V a4). In the typical algorithm for this prob-
lem, we begin by setting h to be the conjunction of all clauses of size K over the attribute
space. Each time a positive example is seen, we keep only the clauses consistent with
that example and discard the rest. This algorithm makes no mistakes on negative examples.

In addition to the problem of initialization, the above algorithm will no longer work
in the infinite-attribute model because there may possibly be an infinite number of clauses
of size Ktha t are consistent with any given positive example. Instead, we wilt use a pro-
cedure that " g r o w s " each of the clauses out of "seeds" of size one and discards them

if they get too large.
Define a seed of a monotone clause to be a disjunction of a subset o f the attributes dis-

joined in the clause. So, for instance, al and al v a5 are both seeds of the clause al V
a2 V a 5. If an example satisfies the seed of a clause, then it satisfies the clause as well.

In addition, seeds have the following property:

I f c is a seed of clause cr, and example x satisfies cT but not c, then x has at least
one attribute in cr that is not in c. (*)

The procedure below learns monotone K-CNF functions in the infinite-attribute model.

LEARNING IN AN INFINITE ATTRIBUTE SPACE 377

LEARN-MONOIDNE-K-CNF

1. Predict "negative" until we see our first positive example x. At this point, initialize
h to the conjunction of all attributes appearing in x. So, h is now a 1-CNE Notice that
h contains at least one seed for each clause infr , since any positive example has at least
one attribute from every clause.

2. I f we make a mistake on a positive example x, consider each clause c in h not satisfied
by the example. If c contains K attributes, discard it. Otherwise (it contains fewer literals),
replace it with at most n new clauses: for each attribute in x, create a new clause con-
sisting of the disjunction of that attribute with the literals in c.

Thus, for example, if h were (a~)(a4) and we saw the positive example {a3, a4, as},

we would change h to equal (a~ v a3)(a I V a4)(a I V as)(a4). (Actually, we do not need
to include the clause (al v a4) since it is implied by the clause (a4)).

Theorem 1 LEARN-MONOTONE-K-CNF makes at most (n + 1) K mistakes on any

monotone K-CNF formula. (Recall that n is the size o f the largest example seen).

Proof: LEARN-MONOTONE-K-CNF maintains in step 2 the invariant that every clause
in f r has some seed in h. The reason is that if clause c is the only seed in h of some clause
c r in f r and is modified in step 2, then by property (*) of seeds, at least one of the new
clauses created in step 2 will also be a seed of cr. This invariant implies that LEARN-
MONOTONE-K-CNF never makes any mistakes on negative examples. (An exarnple that
satisfied h would satisfy a seed for each clause in f r and therefore would satisfy fr).

For each clause in h of m attributes place a "cost" of (n + 1) ~-m and let the total cost

of h be the sum of the costs of all its clauses. Thus, we begin with a total cost of at most
n(n + 1) ~;-1 < (n + 1) K. Each time we replace a clause by up to n clauses of size one
larger, we decrease the total cost by at least 1 since for m < K, we have (n + 1) ~-m _>
1 + n(n + 1) ~;-('~+~. Also, each time we throw out a clause we decrease the total cost
by 1. Thus, on each mistake, we decrease the cost by at least 1, and since the cost is never
negative, the algorithm makes less than (n + 1) ~ mistakes total.

The running time of this algorithm is clearly polynomial in size(fr) and the length of
the longest example seen. I~

So far, we have considered only monotone functions. It may be, however, that we wish
to learn a concept that depends on some attribute not being present--for instance, for the
concept "penguin," it may be important that the bird not fly. In the standard model, any
algorithm that learns a monotone function can be used to learn the non-monotone version
as well because a non-monotone function can be thought of as a monotone one over the
larger attribute space that has a i and ~//as two different attributes for each original attribute
a i. It will just so happen that ever 5, example seen will have as an attribute exactly one of
a i and ~i.

In the new model this transformation no longer works. Making ~ / a new attribute for
all i would cause each example to have a possibly infinite size. We will see, however, that
by improving the algorithms, we can learn non-monotone K-CNF formulas--functions that
depend on an attribute not being present--even though the examples are presented to us

378 A. BLUM

as a list of their positive attributes only. As intuition, if the concept "penguin" depended
on the absence of the attribute "can fly," then even though this absence is never explicitly
mentioned in the examples, we might still infer its importance through the negative ex-
amples that seem as though they ought to be penguins except for the fact that they do fly.
In addition, we can use the algorithm that learns non-monotone K-CNF to learn non-
monotone disjunctions and K-DNF functions f a s well, by simply having it learn the K-
CNF that is the complement of f , since we no longer need worry about monotonicity.

The main idea for general (non-monotone) K-CNF is that we will use the first positive
example to give us the seeds for each monotone clause (as before), but then we will allow
the possibility of making mistakes on negative examples and will use them to provide the
seeds for the non-monotone clauses. The only additional complication is that we must modify
the definition of "seed" for non-monotone clauses so that seeds still satisfy property (*).
~Fhe "seed = subset" definition above will no longer work because, for instance, example
{a2} satisfies c T = (al v a 2 v a3) and not c = (a~ V ~) but does not have any attribute
in cv that is not in c. The new definition is as follows.

Definition 1 A seed of a clause is a disjunction o f all negated attributes o f the clause and
any subset o f the non-negated areas.

m m

For instance, any seed of the clause (a 1 V a2 V a3) must contain a 2 and a 3. The new defini-
tion of "seed" reduces to the old one when all clauses are monotone, and satisfies property
(*). The procedure below learns general (non-monotone) K-CNE

LEARN-K-CNF

1. Same as LEARN-MONOTONE-K-CNE Predict "negative" until we see our first positive
example x and then initialize h to the conjunction of all the attributes in x.

2. Same as LEARN-MONOTONE-K-CNE If we make a mistake on a positive example
for x, for each clause c in h not satisfied by the example, do the following. Discard
c, but if c contained fewer than K literals, then for each attribute in x, create a new
clause consisting of the disjunction of that attribute with the literals in c.

3. I f we make a mistake on a negative example x, then for each subset__ {ail~ , air } ~_ X
(r --< K) of at most K attributes of x, add to h the clause (ai~ V . . . V air).

l~heorem 2 The procedure LEARN-K-CNF makes at most (rK + 1)(n + 1) K mistakes on
any K-CNF formula o f r clauses.

Proof: Step 1 introduces to h a seed for each monotone clause inf , . In step 2, if a clause
c is the only seed in h of some cz in fT and is removed, then by property (*), one of the
new clauses created will be a seed of c~-. So, once a clause in fT has a seed in h, it will
continue to have one.

Step 3 adds to h a seed for some clause in fT" that previously had no seed in h. If we
predicted "positive" on a negative example x, then x must have satisfied all clauses in f~
for which some seed exists in h. Notice that this includes all monotone clauses off~-. Since
x is a negative example, it must not satisfy some other clause c~- in fT". Because cT is not

LEARNING IN AN INFINITE ATTRIBUTE SPACE 379

a monotone clause, x must have as attributes all those negated in c~ and so in step 3, a
seed for c~ will be put into h. For instance, the example might not satisfy the clause (al
V a 3 V a4) which would imply that the example must have the attributes a3 and a 4. Thus,
in step 3 we would add in to h a seed for that clause.

The algorithm makes at most r mistakes on negative examples since each one adds to
h the seed to a[least one new clause offr . In addition, each such mistake adds to h a total
of at most I ~nj clauses of m literals for each m _< K. As in the proof for the monotone
case, we put a cost of (n + 1) K-m on each clause in h of m literals. So, each such mistake
adds a total cost of at most

~ (n + 1) K-m < ~_a (n + 1) K _< K(n + 1) x.
m=l m=l

Step 1 starts h with a total cost of at most n(n + 1) ~-~ and step 2 decreases the total
cost by at least 1 and the cost is always at least r. So, the maximum number of mistakes
possible is

r + 1 + r[K(n + 1) K] + n(n + 1) K-1 - r <_ (rK + 1)(n + 1) ~;. •

4. Reducing the mistake bound

Littlestone (1987) presented remarkably efficient algorithms for learning the concept classes
discussed in the previous sections in the standard model in situations where the number
of relevant attributes r is much smaller than the total number of attributes in the space.
These algorithms use a linear-threshold representation of the concepts and a clever method
of performing weight updates, and yield mistake bounds on the order of r log n and time
and space n log n when examples are chosen from {0, 1} n.

In the new model, the logarithm of the number of attributes may still be large or infinite.
However, we can combine the ideas in Littlestone's algorithms with the learning algorithms
described above to produce procedures that have mistake bounds on the order of r log n
where n is the size of the largest example seen instead of the size of the attribute space.
Thus, these new algorithms work well when we have a three-stage hierarchy: a small number
of relevant attributes, a larger number of attributes that appear in each example, and an
enormous number of possible attributes in the universe.

Littlestone's threshold algorithm "Winnowl" for learning monotone disjunctions works
as follows. 1 Associate a weight w i to each attribute and initialize it to 1; let ~ be the vec-
tor of weights. On example ~ = (vl vn) E {0, 1} n, predict "positive" if P'- ~ > n;
otherwise predict "negative." If a mistake is made on a positive example ~, then double
weights wi for which vi = 1. If a mistake is made on a negative example ~, then for all
v i = 1, set w i to 0. Littlestone proves that this algorithm makes at most r log n mistakes
in the standard mistake-bound model (Littlestone, 1987). The algorithm can also be used
for non-monotone disjunctions or K-DNF by using the standard transformations of these
problems to monotone disjunctions.

380 A. BLUM

Since the mistake bound of Winnowl grows so slowly with n, we can actually use a "brute-
force" conversion to apply it to the infinite attribute case. The basic idea is as follows.
We begin with a small set of attributes S, say those in the first positive example, and run
Winnow1 ignoring all attributes seen not in this set. If we modify Winnowl to handle the
concepts "true" and "false," then if we make more than r log]S[mistakes, we know that
some example on which a mistake is made has some relevant attribute that we ignored.
(Otherwise all such examples would be consistent with some monotone disjunction of just
attributes in S or "true" or "false"). So, we can include all the at most nr log IS1 attributes
we ignored that appeared in those examples and restart Winnowl on the larger attribute
set and so on. We will make at most O(r 2 log(m)) mistakes total since each new iteration
adds at least 1 relevant attribute and at most nr log(poly(r, n)) irrelevant ones.

We can also, however, learn disjunctions and K-DNF using a more direct approach, merg-
ing the idea of Winnow1 with the algorithms described in the previous section, that yields
better bounds. For this approach, we must limit the number of attributes under considera-
tion and deal directly with the asymmetry between negated and non-negated attributes.
To illustrate ideas for both these problems, let us consider learning general (non-monotone)
disjunctions in the new model.

In the following algorithm, S will be the set of literals currently under consideration.
For convenience, we make the following definition.

Definition 2 Given an example x and a set o f terms S, let x(S) be the set o f those terms

in S satisfied by x.

For instance, if S = {al, a2, ~33} and x = {a 1, an}, then x(S) = {al, ~ } . In addition~
we will make the simplifying assumption in this section that all examples seen have the
same number of attributes n. In general, this may not be the case and one can modify
the algorithm to work correctly when the example sizes vary.

Theorem 3 E F F I C I E N T - L E A R N - D I S J U N C T I O N below makes at most O(r log n) mistakes

on any disjunction o f r literals.

EFFICIENT-LEARN-DISJUNCTION

1. Predict "positive" until we see our first negative exampte x. Initialize S to the set of
all ~ for which a i ~ x, and for each term t ~ S initialize a weight w t to 1. Notice that
since x is a negative example, we must have a i ~. 7~ for every ~//disjoined in fr , so S
now contains every negated attribute in fT.

2. Given an example x, if Z wt > n, then predict "positive"; otherwise predict
tex(S)

"negative."
3. If we make a mistake on a posi t ive example x, then:

* For each t ~ x(S), let wt "-- 2w~.

* For each a i fi x such that a i • S, put a i into S and initialize Wai to 1.
4. I f we make a mistake on a negative example x, then:

* For each t e x(S), let wt ~ O.

LEARNING IN AN INFINITE ATTRIBUTE SPACE 381

Proof of theorem: L e t l be some literal disjoined in f t . We know that w~ will never be
set to zero in step 4 since no negative example can satisfy 1. In addition, if w~ ever reaches
a value greater than n, we will never again make a mistake on a (positive) example satisfy-
ing l since for any such example x, we will have P'tex(S) w~ > n.

- -

I f I = a i for some ai, then l is placed in S and w~ set to 1 in step 1. Otherwise, l will
be put into S and w~ set to 1 the first time a mistake is made on a (positive) example satis-
fying l. Each subsequent mistake on a positive example satisfying l doubles the value of
w~. So, the maximum number of mistakes we can make on positive examples satisfying
I is 1 + (log n + 1) = 2 + log n; after this number of mistakes, we are guaranteed that
w~ > n. Since there are r literals disjoined in f r , the total number of mistakes possible
on positive examples is r(2 + log n).

Let s be the sum of all weights wt for t fi S. After step 1, s is at most n. Each mistake
made on a positive example increases s by at most 2n: at most n for the weights doubled
in step 3 and at most n for the weights of the new terms added to S. Each mistake made
on a negative example decreases s by at l eas t n. Also, all weights are non-negative. Thus,
the total number of mistakes possible on negative examples is

n + r(2 + log n)(2n)
= 1 + 2r(2 + log n).

So, the maximum number of mistakes made by this algorithm is 1 + 3r(2 + log n). •

One can extend the above technique to learn K-DNF formulas by combining the ideas
of the above algorithm with those of LEARN-K-CNE Recently, however, Blum, Heller-
stein, and Littlestone (Blum, et al., 1991) have found a method that uses a different ap-
proach and achieves similar bounds but with much simpler analysis. Therefore, we shall
not present the more complicated method here, and instead refer the reader to that paper
for details.

5. Allowing membership queries

One natural way to increase the power of a learner, studied by Angluin (1986; 1988), Valiant
(1984) and others (Angluin, et al., 1989), is to provide the learner with the ability to make
membership queries. In a membership query, the learner selects an example and is then
told its proper classification. One may incorporate membership queries into the mistake
bound model as follows. We allow the learner at each stage to choose whether to receive
an example from the adversary and make a prediction as before, or else to make a member-
ship query. We now require for successful learning that both the number of mistakes and
the number of membership queries be polynomial in n and the size of the target concept.

We show that any algorithm that learns a concept class in the standard mistake bound
model with membership queries can be transformed into one that learns it in the infinite
attribute model with membership queries, with only a small additional mistake and time
penalty. To make this statement more precise, we first need a method to relate concept

3 8 2 A. BLUM

classes over {0, 1} m with those in the infinite attribute model. There are several ways one
might do this and we choose one here. For most "natural" classes C, this method is the
same as simply restricting A to the first m attributes.

Definition 3 Given a set S = {aq aim } ~_ A, (il <- iz <- . . • <- i,~) and a vector
9 ~= (Vl, . . . , Vm) E {0, 1} m, let rs(~") = {aij I vj = 1}.

So, ~'s maps a bit vector into its indicated subset of S, and for x ~_ S, ~-~(x) is the in-
dicator vector of x in S. Thus, i f f is a concept in the infinite attribute model, then f o
~s is a function from {0, 1} Isl to {0, 1}. We can now define the concept class C(m) over
{0, 1} m associated to the concept class C.

Definition 4 For concept class C, let C(m) = { f o r s I f ~ C, S ~_ A, and ISI = m}.

That is, C(m) contains every function from {0, 1} '~ to {0, 1} that for some set S of m at-
tributes and some concept f in C, treats its input as an indicator vector for a subset of S
and applies f t o that subset. So, for instance, if C is the class of monotone disjunctions,
then C(m) is all monotone disjunctions over {0, 1} m, including the concept "false." If C
is a bizarre class like { f [if a37 ~ Rf, t hen f i s a disjunction, e l s e f i s a conjunction}, then
C(m) is the class of all conjunctions and disjunctions over {0, 1} m. For most "natural"
concept classes (sometimes called "naming invariant" classes (Kearns, 1989)) where the
actual attribute names are not important to the definition of the class, the definition of C(m)
is the same as if the set S used were fixed to {al, • . . , am}.

Theorem 4 I f for all m, C(m) is learnable in the standard mistake-bound model with member-
ship queries using at most M m mistakes ÷ queries (and let us assume MI <- Mm for l <_
m), then any f r ~ C can be learned in the infinite-attribute mistake-bound model with
membership queries using at most 2rMnr mistakes + queries, where r = I RTv [.

Proof; We will keep a set S of attributes under consideration and initialize S to { }. Let
m denote the size of S and label the elements of S as ai~ , . . . , ai~no Let Pm be an algorithm
to learn C(m) in the standard model that makes at most M m mistakes + queries. We may
assume that Pm is a conservative algorithm; that is, it only modifies its state after a mistake
or mem'bership query (Angluin, 1988; Littlestone, 19~/).

1. Initialize algorithm Pm"
2. Run one step of algorithm Pm"

(a) If Pm makes a membership query on example 9, ~ then make a membership query
on ~'s(9) and return the result to Pm.

(b) If Pm asks to receive an example from the adversary, then
i. Get some example x from the adversary and feed to Pm the example r - l (x f~ S);

that is, (v~ Vm) where v) = 1 iff ai. ~ x.
./ .

ii. Return the prediction of Pm as our prediction.
iii. I f our prediction was correct, then give the response f~(x) to Pm and go back

to 2. Note that f~(x) may not equal f~(x (~ S), but we do no harm since P~ is
conservative.

LEARNING IN AN INFINITE ATTRIBUTE SPACE 383

iv. If our prediction was incorrect, then make a membership query on example x
f-I S. i ffr(x CI 53 = fr(x) , then givefT(x) to Pm and go back to 2. Otherwise,
we know there exists some relevant attribute in x - S, so let S ' - S U x, let
m = [SI, and go back to 1.

We know any given Pm will cause us to make at most M,~ mistakes and Mm queries before
S gets updated, since by definition of C(m) there exists some fm ~ C(m) that is consistent
with the target function f r over attribute space S. Each time we update S, we add at least
1 relevant attribute and at most n total attributes to S, so the largest number of attribues
ever considered is nr, where r =]Rut I . Since there are at most r different P,~ used, this
procedure makes at most 2rMnr mistakes + queries total.

6. The halving a lgor i thm

We now consider learning when computational constraints are ignored. Littlestone (1987)
defines opt(C) to be the best possible worst-case mistake bound achievable by any (not
necessarily polynomial-time) algorithm for learning class C. If Cm is a concept class over
{0, 1} m, then we have opt(Cm) <- log 2]Cm[. This can be seen by using the standard "Halv-
ing Algorithm" which works as follows. Let H = Cm. On input 9"7, take a majority vote
of a l l f~ H and predict accordingly. If a mistake is made throw out a l l f~ H that predicted
incorrectly. Thus, each mistake reduces H by at least a factor of 2, so at most log 2 [Cm[
mistakes total are made.

In the infinite-attribute model, the size of a concept class C may be infinite and the ques-
tion arises: might it be that, opt(C(m)) is polynomial in m, but that even ignoring computa-
tional constraints, the class C cannot be learned with a number of mistakes polynomial
in n and the size of the target concept? The answer to this question is "no" in the following
sense.

Theorem 5 If C is a concept class in the infinite-attribute model, then there exists a (non
polynomial-time) algorithm for C that makes at most O(r 2 log(m[C(r)])) mistakes where
r is the number of relevant attributes of the target concept and n is the size of the largest
example seen.

We will prove this by using a modified version of the Halving Algorithm called "Se-
quential Halving" or "SH" below. Let us first make the following defintions.

Definition 5 For f ~ C, let f Is(X) = f (x CI S). We will say that f Is is f restricted to S.

Definition6 Given a set S ~_ A, let C(r, S) = {f[s : f E C, IR~ <<- r}.

So, the size of C(r, S) is the number of functions in C on at most r relevant attributes that
differ over examples whose attributes come from the set S.

We now describe the algorithm SH. For simplicity, we will assume that in addition to
the concept class C, the number of relevant attributes r is given to the algorithm at the
beginning.

384 A. BLUM

SH(C, r)

1. To start, let S *- { }.
2. Let H = C(r, S) and T = { }. Note that even if S is empty. H will have at least one

except in it (assuming C is non-empty) at this stage.
3. On example x, predict according to a majority vote of the functions in H. I f the predic-

tion was wrong remove from H all functions that predicted incorrectly and let T ~- TUx.
Continue with this step until H is empty.

4. I f H is empty, let S +-- S U T and go back to step 2.

P roof of t heo rem 5: L e t f b e the target function. In algorithm SH, each time step 4 is
reached, a new attribute of Rf is added to S. The reason is that for all examples x with
no relevant attributes outside of S, we havefls(X) = f (x) by definition of Rf. So, if all
examples on which a mistake is made have no attributes in Rf - S, then f l s will never
be removed from H in step 3. So, each time step 4 is reached, we add at least one relevant
attribute and at most n log2]c(r, S)I attributes total.

I f IS[= r, then by definjtipns 4 and 6 we have [C(r, S)[_< IC(r)[. So, for IsI = m
> r, we have I C(r, S)[_< Lm~ [C(r)[since every function in C(r, S) is also an element of
C(r, S ') for some S ' _c S of size r. Thus, each time step 4 is reached, the number of
attributes we add to S is at most

n log I C(r, S) I _< n l o g I (] r S] ~ ,C(r),l

<<_ nr log(ISI IC(r)l).

Since we reach step 4 at most r times, if m,,a~ is the size of the largest set S used, then
mmax is at most nr 2 1og(mmax]C(r)[). Solving for mma x gives

mma x = O(nF 2 log(nr lC(r) l)) .

Thus, if Sm~ is the largest set S used, the number of mistakes made is at most

r log I C(r, &aAI

-< r l o g I I m ~ a x ~]C(r)] 1

= O(r ~ log[mm~lC(r)[])

= O(r ~ log [nre[C(r)llog(nrlC(r)[)]).

= O(r 2 log(nrlC(r)l)) .

Note that we can get rid of the assumption that r is known beforehand by using a stan-
dard "doubling t r ick ."

LEARNING tN AN INFINITE ATTRIBUTE SPACE 385

7. Conclusions

This paper presents a model for learning Boolean functions in a large or infinite attribute
space when the size of each individual example is smali. The model attempts to capture
the notion that often the description of any individual object is much smaller than the size
of one's total vocabulary. By allowing the attribute space to be infinite, the model no longer
allows the standard methods for learning K-CNF and K-DNF which essentially list all the
attributes in the space and cross them off as they are seen. We show that these concept
classes remain learnable however, by new, and in some sense more "realistic" algorithms.

Some concept classes that are easy to learn in the standard model seem hard to learn
in the proposed one. In particular, the class of decision lists (Rivest, 1987) is learnable
in the standard model, but it is an open problem whether it can be learned in the infinite-
attribute model. Note that by the results of section 6, decision lists c a n be learned in the
infinite-attribute model if computational issues are ignored, so any attempt to show' deci-
sion lists are n o t learnable would likely require some sort of complexity assumption.

Acknowledgments

I would like to thank Lisa Hellerstein, Michael Kearns, Nick Littlestone, Ron Rivest, and
Rob Schapire for many helpful discussions and suggestions. The research presented here
was conducted primarily while the author was at MIT and supported by an NSF Graduate
Fellowship, NSF grant CCR-8914428 and the Siemens Corporation. Currently supported
by an NSF Postdoctoral Fellowship. A preliminary version of this paper appears in (Blum,
1990).

Notes

1. Littlestone actually allows for a variety of thresholds and multipliers, Only the simplest form of his algorithm
is described here.

References

Angluin, D. (1986). Learning regular sets from queries and counter-examples (Technical Report
YALEU/DCS/TR-464). New Haven, CT: Yale University, Department of Computer Science.

Anglnin, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.
Angluin, D., Hellerstein, L., & Karpinski, M. (1989). Learning read-oncefomzulas with queries (Technical Report

UCB/CSD 89/528). Berkeley, CA: University of California, Berkeley, Computer Science Division.
Blum, A. (1990). Learning boolean functions in an infinite attribute space. Proceedings of the Twen~-Second

Annual ACM Symposium on Theory of Computing (pp. 64-72). Baltimore, MD.
Blum, A., Hellerstein, L., & Littlestone, N. (t991). Learning in the presence of finitely or infinitely many irrele-

vant attributes. Proceedings of the Fourth Annual Workshop on Computational Learning Theory. Santa Cruz,
CA: Morgan Kaufmann.

3 8 6 A. BLUM

Kearns, M. (1989). The computational complexity of machine learning. PhD thesis, Harvard University Center
for Research in Computing Technology. (Technical Report TR-13-89). Also published by MIT Press as an ACM
Distinguished Dissertation.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). Recent results on boolean concept learning. Proceedings
of the Fourth International Workshop on Machine Learning pp. 337-352). Irvine, CA: University of California,
Irvine.

Littlestone, N. (1987). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine
Learning, 2, 285-318.

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshoM learning algorithms. PhD thesis, University
of California, Santa Cruz.

Rivest, R.L. (1987). Learning decision lists. Machine Learning, 2, 229-246.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.

