Machine Learning, 9, 309-347 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netheriands.

A Bayesian Method for the Induction of
Probabilistic Networks from Data

GREGORY F. COOPER GFC@MED.PITT.EDU
Section of Medical Informatics, Department of Medicine, University of Pittsburgh, B504 Lothrop Hall,
Pittsburgh, PA 15261

EDWARD HERSKOVITS EHH@SUMEX-AIM.STANFORD.EDU
Noetic Systems, Incorporated, 2504 Maryland Avenue, Baltimore, MD 21218

Editor: Tom Dietterich

Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In par-
ticular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypoth-
esis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend
the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic
inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary
evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods
in this paper to previous work, and we discuss open problems.

Keywords. probabilistic networks, Bayesian belief networks, machine learning, induction

1. Introduction

In this paper, we present a Bayesian method for constructing a probabilistic network from
a database of records, which we call cases. Once constructed, such a network can provide
insight into probabilistic dependencies that exist among the variables in the database. One
application is the automated discovery of dependency relationships. The computer program
searches for a probabilistic-network structure that has a high posterior probability given
the database, and outputs the structure and its probability. A related task is computer-assisted
hypothesis testing: The user enters a hypothetical structure of the dependency relationships
among a set of variables, and the program calculates the probability of the structure given
a database of cases on the variables.

We can also construct a network and use it for computer-based diagnosis. For example,
suppose we have a database in which a case contains data about the behavior of some sys-
tem (i.e., findings). Suppose further that a case contains data about whether this particular
behavior follows from proper system operation, or alternatively, is caused by one of several
possible faults. Assume that the database contains many such cases from previous episodes
of proper and faulty behavior. The method that we present in this paper can be used to
construct from the database a probabilistic network that captures the probabilistic dependen-
cies among findings and faults. Such a network then can be applied to classify future cases
of system behavior by assigning a posterior probability to each of the possible faults and
to the event “proper system operation.” In this paper, we also shall discuss diagnostic infer-
ence that is based on combining the inferences of multiple alternative networks.



310 G.F. COOPER AND E. HERSKOVITS

Table 1. A database example. The term case in the first column
denotes a single training instance (record) in the database—
as for example, a patient case. For brevity, in the text we some-
times use O to denote absent and 1 to denote present.

Variable values for each case

Case Xy X, X3
1 present absent absent
2 present present present
3 absent absent present
4 present present present
5 absent absent absent
6 absent present present
7 present present present
8 absent absent absent
9 present present present
10 absent absent absent

Let us consider a simple example of the tasks just described. Suppose the fictitious data-
base of cases in table 1 is the training set. Suppose further that x; represents a fault in the
system, and that x, and x5 represent two findings. Given the database, what are the quali-
tative dependency relationships among the variables? For example, do x; and x; influence
each other directly, or do they do so only through x,? What is the probability that x; will
be present if x; is present? Clearly, there are no categorically correct answers to each of
these questions. The answers depend on a number of factors, such as the model that we
use to represent the data, and our prior knowledge about the data in the database and the
relationships among the variables.

In this paper, we do not attempt to consider all such factors in their full generality. Rather,
we specialize the general task by presenting one particular framework for constructing prob-
abilistic networks from databases (as, for example, the database in table 1) such that these
networks can be used for probabilistic inference (as, for example, the calculation of P(x; =
present|x; = present)). In particular, we focus on using a Bayesian belief network as a
model of probabilistic dependency. Our primary goal is to construct such a network (or
networks), given a database and a set of explicit assumptions about our prior probabilistic
knowledge of the domain.

A Bayesian belief-network structure By is a directed acyclic graph in which nodes repre-
sent domain variables and arcs between nodes represent probabilistic dependencies (Cooper,
1989; Horvitz, Breese, & Henrion, 1988; Lauritzen & Spiegelhalter, 1988; Neapolitan,
1990; Pearl, 1986; Pearl, 1988; Shachter, 1988). A variable in a Bayesian belief-network
structure may be continuous (Shachter & Kenley, 1989) or discrete. In this paper, we shall
focus our discussion on discrete variables. Figure 1 shows an example of a belief-network
structure containing three variables. In this figure, we have drawn an arc from x; to x,
to indicate that these two variables are probabilistically dependent. Similarly, the arc from
X, to x5 indicates a probabilistic dependency between these two variables. The absence of
an arc from x, to x; implies that there is no direct probabilistic dependency between x;
and x;. In particular, the probability of each value of x; is conditionally independent of



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 311

Figure 1. An example of a belief-network structure, which we shall denote as Bg.

the value of x, given that the value of x, is known. The representation of conditional de-
pendencies and independencies is the essential function of belief networks. For a detailed
discussion of the semantics of Bayesian belief networks, see (Pearl, 1988).

A Bayesian belief-network structure, By, is augmented by conditional probabilities, Bp,
to form a Bayesian belief network B. Thus, B = (Bg, Bp). For brevity, we call B a belief
network. For each node! in a belief-network structure, there is a conditional-probability
function that relates this node to its immediate predecessors (parents). We shall use =; to
denote the parent nodes of variable x;. If a node has no parents, then a prior-probability
function, P(x;), is specified. A set of probabilities is shown in table 2 for the belief-network
structure in figure 1. We used the probabilities in table 2 to generate the cases in table 1
by applying Monte Carlo simulation.

We shall use the term conditional probability to refer to a probability statement, such
as P(x, = present|x; = present). We use the term conditional-probability assignment to
denote a numerical assignment to a conditional probability, as, for example, the assign-
ment P(x, = present|x; = present) = 0.8. The network structure By, in figure 1 and the
probabilities Bp, in table 2 together define a belief network which we denote as Bj.

Belief networks are capable of representing the probabilities over any discrete sample
space: The probability of any sample point in that space can be computed from the proba-
bilities in the belief network. The key feature of belief networks is their explicit represen-
tation of the conditional independence and dependence among events. In particular, investi-
gators have shown (Kiiveri, Speed, & Carlin, 1984; Pearl, 1988; Shachter, 1986) that the
joint probability of any particular instantiation? of all » variables in a belief network can
be calculated as follows:

PXy, ..., X)) =[] P& | m), (1)
i=1

where X; represents the instantiation of variable x; and 7; represents the instantiation of
the parents of x;.

Therefore, the joint probability of any instantiation of all the variables in a belief network
can be computed as the product of only 7 probabilities. In principle, we can recover the

Table 2. The probability assignments associated with the belief-network structure Bg;
in figure 1. We shall denote these probability assignments as Bp .

P(x, = present) = 0.6 P(x, = absent) =04
P(x, = present|x, = present) = 0.8 P(x, = absent|x, = present) = 0.2
P(x, = present|x, = absent) = 0.3 P(x, = absent|x, = absent) = 0.7
P(x; = present |x, = present) = 0.9 P(x, = absent|x, = present) = 0.1

|

P(x, = present|x, = absent) = 0.15 P(x, = absent|x, = absent) = 0.85




312 G.F. COOPER AND E. HERSKOVITS

complete joint-probability space from the belief-network representation by calculating the
joint probabilities that result from every possible instantiation of the » variables in the net-
work. Thus, we can determine any probability of the form P(W | V), where W and V are
sets of variables with known values (instantiated variables). For example, for our sample
three-node belief network By, P(x; = present|x; = present) = 0.75.

In the last few years, researchers have made significant progress in formalizing the theory
of belief networks (Neapolitan, 1990; Pearl, 1988), and in developing more efficient
algorithms for probabilistic inference on belief networks (Henrion, 1990); for some com-
plex networks, however, additional efficiency is still needed. The feasibility of using belief
networks in constructing diagnostic systems has been demonstrated in several domains
(Agogino & Rege, 1987; Andreassen, Woldbye, Falck, & Andersen, 1987; Beinlich, Suer-
mondt, Chavez, & Cooper, 1989; Chavez & Cooper, 1990; Cooper, 1984; Heckerman,
Horvitz, & Nathwani, 1989; Henrion & Cooley, 1987; Holtzman, 1989; Suermondt &
Amylon, 1989).

Although researchers have made substantial advances in developing the theory and appli-
cation of belief networks, the actual construction of these networks often remains a diffi-
cult, time-consuming task. The task is time-consuming because typically it must be per-
formed manually by an expert or with the help of an expert. Important progress has been
made in developing graphics-based methods that improve the efficiency of knowledge acqui-
sition from experts for construction of belief networks (Heckerman, 1990). These methods
are likely to remain important in domains of small to moderate size in which there are
readily available experts. Some domains, however, are large. In others, there are few, if
any, readily available experts. Methods are needed for augmenting the manual expert-based
methods of knowledge acquisition for belief-network construction. In this paper, we pre-
sent one such method.

The remainder of this paper is organized as follows. In section 2, we present a method
for determining the relative probabilities of different belief-network structures, given a data-
base of cases and a set of explicit assumptions. This method is the primary result of the
paper. As an example, consider the database in table 1, which we call D. Let By, denote
the belief-network structure in figure 1, and let B, denote the structure in figure 2. The
basic method presented in section 2 allows us to determine the probability of By, relative
to Bg,. We show that P(Bg,| D) is 10 times greater than P(Bg, | D), under the assumption
that By, and Bg, have equal prior probabilities. In section 3, we discuss methods for
searching for the most probable belief-network structures, and we introduce techniques
for handling missing data and hidden variables. Section 4 describes techniques for employing

®
®

Figure 2. A belief-network structure that is an alternative to the structure in figure 1 for characterizing the proba-
bilistic dependencies among the three variables shown. We shall use By, to denote this structure.



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 313

the methods in section 2 to perform probabilistic inference. In section 5, we report the
results of an experiment that evaluates how accurately a 37-node belief network can be re-
constructed from a database that was generated from this belief network. Section 6 contains
a discussion of previous work. Section 7 concludes the paper with a summary and discus-
sion of open problems.

2. The basic model

Let us now consider the problem of finding the most probable belief-network structure,
given a database. Once such a structure is found, we can derive numerical probabilities
from the database (we discuss this task in section 4). We can use the resulting belief net-
work for performing probabilistic inference, such as calculating the value of P(x; =
present|x, = present). In addition, the structure may lend insight into the dependency
relationships among the variables in the database; for example, it may indicate possible
causal relationships.

Let D be a database of cases, Z be the set of variables represented by D, and B, and
B _be two belief-network structures containing exactly those variables that are in Z. In this
section, we develop a method for computing P(B, |D)/P(B | D). By computing such
ratios for pairs of belief-network structures, we can rank order a set of structures by their
posterior probabilities. To calculate the ratio of posterior probabilities, we shall calculate
P(Bsi, D) and P(st , D) and use the following equivalence:

P(Bg, D)
P@®s|D) _ “BDy  _ P(Bs, D) )
PB5[D) ~ P(By, D) _ P(Bs, D) @
F(D)

Let By represent an arbitrary belief-network structure containing just the variables in Z.
In section 2.1, we present a method for calculating P(Bg, D). In doing so, we shall intro-
duce several explicit assumptions that render this calculation computationally tractable. A
proof of the method for calculating P(Bg, D) is presented in theorem 1 in the appendix.

2.1. A formula for computing P(Bg, D)

In this section, we present an efficient formula for computing P(Bg, D). We do so by first
introducing four assumptions.

Assumption 1. The database variables, which we denote as Z, are discrete.
As this assumption states, we shall not consider continuous variables in this paper. One

way to handle continuous variables is to discretize them; however, we shall not discuss
here the issues involved in such a transformation.



314 G.F. COOPER AND E. HERSKOVITS

A belief network, which consists of a graphical structure plus a set of conditional proba-
bilities, is sufficient to capture any probability distribution over the variables in Z (Pearl,
1988). A belief-network structure alone, containing just the variables in Z, can capture
many—but not all—of the independence relationships that might exist in an arbitrary proba-
bility distribution over Z (For a detailed discussion, see (Pearl, 1988)).

In this section, we assume that Bg contains just the variables in Z. In section 3.2, we
allow Bg to contain variables in addition to those in Z.

The application of assumption 1 yields

P(Bs, D) = [ P(D| By, Br)f(Bp| B5)P(By)dBy, )

where Bp is a vector whose values denote the conditional-probability assignments associ-
ated with belief-network structure By, and fis the conditional-probability density function
over Bp given Bs. Note that our assumption of discrete variables leads us to use the proba-
bility mass function P(D | Bg, Bp) in equation 3, rather than the density function f(D| By,
Bp). The integral in equation (3) is over all possible value assignments to Bp. Thus, we
are integrating over all possible belief networks that can have structure Bg. The integral
represents a multiple integral and the variables of integration are the conditional probabili-
ties associated with structure Bg.

Example: Consider an example in which By is the structure Bg shown in figure 1 and D
is the database given by table 1. Let Bp denote an assignment of numerical probability
values to a belief network that has structure Bg;. Thus, the numerical assignments shown
in table 2 constitute one particular value of Bp—call it Bp. Integrating over all possible
Bp corresponds to changing the numbers shown in table 2 in all possible ways that are
consistent with the axioms of probability theory. The term f(B}|Bs,) denotes the likeli-
hood of the particular numerical probability assignments shown in table 2 for the belief-
network structure Bg;. The term P(D|Bg, B}) denotes the probability of seeing the data
in table 1, given a belief network with structure By, and with probabilities given by table
2. The term P(Bg;) is our probability—prior to observing the data in database D—that
the data-generating process is a belief network with structure Bg. O

The term P(Bs) in equation (3) can be viewed as one form of preference bias (Buntine,
1990a; Mitchell, 1980) for network structure Bg. Utgoff defines a preference bias as “‘the
set of all factors that collectively influence hypothesis selection” (Utgoff, 1986). A computer-
based system may use any prior knowledge and methods at its disposal to determine P(Bg).
This capability provides considerable flexibility in integrating diverse belief construction
methods in artificial intelligence (AI) with the learning method discussed in this paper.

Assumption 2. Cases occur independently, given a belief-network model.

A simple version of assumption 2 occurs in the following, well-known example: If a
coin is believed with certainty to be fair (i.e., to have a 0.5 chance of landing heads), then
the fact that the first flip landed heads (case 1) does not influence our belief that the second
flip (case 2) will land heads.



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 315

It follows from the conditional independence of cases expressed in assumption 2 that

P(Bs, D) = fB H P(C;,| Bs, Bp) | f(Bp| Bs)P(Bg)dBp, )
p | h=1

where m is the number of cases in D and C,, is the Ath case in D.

Assumption 3. There are no cases that have variables with missing values.

Assumption 3 generally is not valid for real-world databases, where often there are some
missing values. This assumption, however, facilitates the derivation of our basic method
for computing P(Bg, D). In section 3.2.1 we discuss methods for relaxing assumption 3
to allow missing data.

Assumption 4. The density function f(Bp|Bs) in equations (3) and (4) is uniform.

This assumption states that, before we observe database D, we are indifferent regarding
the numerical probabilities to place on belief-network structure Bg. Thus, for example, it
follows for structure Bg, in figure 1 that we believe that P(x, = present|x; = present)
is just as likely to have the value 0.3 as to have the value 0.6 (or to have any other real-
number value in the interval [0, 1}). In corollary 1 in the appendix, we relax assumption 4
to permit the user to employ Dirichlet distributions to specify prior probabilities on the
components of f(Bp|By).

We now introduce additional notation that will facilitate our application of the preceding
assumptions. We shall represent the parents of X; as a list (vector) of variables, which we
denote as m;. We shall use w;; to designate the jth unique instantiation of the values of the
variables in ;, relative to the ordering of the cases in D. We say that wj; is a value or
an instantiation of ;. For example, consider node x, in B, and table 1. Node x, is the
parent of x, in By, and therefore 7, = (x;). In this example, w,y = presen:, because in
table 1 the first value of x; is the value present. Furthermore, wy, = absent, because the
second unique value of x; in table 1 (relative to the ordering of the cases in that table)
is the value absent.

Given assumptions 1 through 4, we prove the following result in the appendix.

Theorem 1. Let Z be a set of n discrete variables, where a variable x; in Z has r; possible
value assignments: (v;y, ..., Vir,). Let D be a database of m cases, where each case con-
tains a value assignment for each variable in Z. Let Bg denote a belief-network structure
containing just the variables in Z. Each variable x; in Bg has a set of parents, which we
represent with a list of variables ;. Let w;; denote the jth unique instantiation of ; relative
to D. Suppose there are g; such unique instantiations of ;. Define N4 to be the number
of cases in D in which variable x; has the value v; and =; is instantiated as wy;. Let

7
Ny =2 Ny
k=1



316 G.E. COOPER AND E. HERSKOVITS

Given assumptions 1 through 4 of this section, it follows that

i

n 9
(r; = 1!
N SEJI;JI:(M'J'_F”*U!/«I} ijk ()
]

Example: Applying equation (5) to compute P(Bg;, D), given belief-network structure By,
in figure 1 and database D in table 1, yields

-DISIS -4l 2-n41r 2 -n1orst 2-nt4! 1!

P(BS"D):P(BS‘)(10+2—1)! G+2-D G+2-D! G+2—-D!I G+2-1D!

P(Bg)) 2.23 x 107°.

By applying equation (5) for By, in figure 2, we obtain P(Bg,, D) = P(Bg,) 2.23 X
107, If we assume that P(Bg,) = P(Bs,), then by equation (2), P(Bs; | D)/P(Bg, | D) = 10.
Given the assumptions in this section, the data imply that By, is 10 times more likely than
Bg,. This result is not surprising, because we used B, to generate D by the application
of Monte Carlo sampling. |

2.2. Time complexity of computing P(Bg, D)

In this section, we derive a worst case time complexity of computing equation (5). In the
process, we describe an efficient method for computing that equation. Let 7 be the max-
imum number of possible values for any variable, given by r = max, ¢;<,[r;]. Define 15
to be the time required to compute the prior probability of structure Bg. For now, assume
that we have determined the values of N, and have stored them in an array. For a given
variable x; the number of unique instantiations of the parents of x;, given by ¢;, is at most
m, because there are only m cases in the database. For a given i and j, by definition
N; =L <k=<r Vi, and therefore we can compute N; in O(r) time. Since there are at most
m n terms of the form N;, we can compute all of these terms in O(m n r) time. Using this
result and substituting m for ¢; and r for 7; in equation (5), we find that the complexity
of computing equation (5) is O(m n r + tg.), given that the values of Ny are known.

Now consider the complexity of computing the values of N;; for a node x;. For a given
x;, we construct an index tree T;, which we define as follows. Assume that =; is a list of
the parents of x;. Each branch out of a node at level d in 7; represents a value of the
(d + Dth parent of x;. A path from the root to a leaf corresponds to some instantiation
for the parents of x;. Thus, the depth of the tree is equal to the number of parents of x;.
A given leaf in T; contains counts for the values of x; (i.e., for the values vy, ..., V)
that are conditioned on the instantiation of the parents of x; as specified by the path from
the root to the leaf. If this path corresponds to the jth unique instantiation of =; (i.e.,
m; = wy), then we denote the leaf as /;. Thus, l; in T; corresponds to the list of values of
Ny for k = 1 to r;. We can link the leaves in the tree using a list L;. Figure 3 shows an



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 317

Rootof T, =0 m=1
Vd \\
List L, Y P o P
N values:| 4 1 i 4

Figure 3. An index tree for node x, in structure Bg; using the data in table 1. In By, x; has only one parent—
namely, x;; thus, its index tree has a depth of 1. A 4 is used to highlight an entry that is discussed in the text.

index tree for the node x, in By, using the database in table 1. For example, in table 1,
there are four cases in which x, is assigned the value present (i.e., x, = 1) and its parent
xy is assigned the value present (i.e., x; = 1); this situation corresponds to the second col-
umn in the second cell of list L, in figure 3, which is shown as 4.

Since x; has at most n — 1 parents, the depth of 7; is O(n). Because a variable has at
most r values, the size of each node in T; is O(r). To enter a case into 7;, we must branch
on or construct a path that has a total of O(n) nodes, each of size O(r). Thus, a case can
be entered in O(n r) time. If the database contained every possible case, then 7; would
have O(r") leaves. However, there are only m cases in the database, so even in the worst
case only O(m) leaves will be created. Hence, the time required to construct 7; for node
x; is O(m n r) . Because there are n nodes, the complexity of constructing index trees for
all n nodes is O(m n* r). The overall complexity of both constructing index trees and using
them to compute equation (5) is therefore O(m n’ r) + O(mnr + tg) = O(m n’r+ tpg)>
If the maximum number of parents of any node is u, then the overall complexity is just
O(munr + 1), by a straightforward restriction of the previous analysis* If O(ip) =
O(unr), and u and r can be bounded from above by constants, then the overall complexity
becomes simply O(m n).

2.3. Computing P(B,| D)

If we maximize P(Bg, D) over all B for the database in table 1, we find that x3 — x, — x;
is the most likely structure; we shall use Bgs to designate this structure. Applying equa-
tion (5), we find that P(Bg;, D) = P(Bg3) 2.29 X 107°. If we assume that the database
was generated by some belief network containing just the variables in Z, then we can com-
pute P(D) by summing P(Bg, D) over all possible Bg containing just the variables in Z.
In the remainder of section 2.3, we shall make this assumption. For the example, there
are 25 possible belief-network structures. For simplicity, let us assume that each of these
structures is equally likely, a priori. By summing P(Bg, D) over all 25 belief-network
structures, we obtain P(D) = 8.21 x 107, Therefore, P(Bs; | D) = P(Bgs, D) P(D) =
(1/25) X 2.29 X 107°/8.21 x 1079 = 0.112. Similarly, we find that P(Bg,|D) = 0.109,
and P(Bg,| D) = 0011



318 G.E COOPER AND E. HERSKOVITS

Now we consider the general case. Let Q be the set of all those belief-network structures
that contain just the variables in set Z. Then, we have

P(Bs, D)
>3 P(Bs, D)

BgeQ

P(Bg,| D) = ©)

As we discuss in section 3.1, the size of Q grows rapidly as a function of the size of Z.
Consider, however, the situation in which Ep yP(Bs, D) =~ P(D), for some set ¥ € Q,
where | Y| is small. If ¥ can be located efficiently, then P(Bs |D) can be approximated
closely and computed efficiently. An open problem is to develop heuristic methods that
attempt to find such a set Y. One approach to computing equation (6) is to use sampling
methods to generate a tractable number of belief-network structures and to use these struc-
tures to derive an estimate of P(B,|D).

Let G be a belief-network structure, such that the variables in G are a subset of the vari-
ables in Z. Let R be the set of those belief-network structures in @ that contain G as a
subgraph. We can calculate the posterior probability of G as follows:

>, P(Bs, D)

BgER

S P®Bs, D)

BgeQ

P(G|D) = Y

For example, suppose Z = {xj, x,, x3}, and G is the graph x; — x,. Then, Q is equal
to the 25 possible belief-network structures that contain just the variables in Z, and R is
equal to the 8 possible belief-network structures in @ that contain the subgraph x; = x,.
Applying equation (7), we obtain P(x; = x; | D), which is the posterior probability that
there is an arc from node x; to node x, in the underlying belief-network process that gen-
erated data D (given that the assumptions in section 2.1 hold and that we restrict our model
of data generation to belief networks). Probabilities (such as the probability P(x; = x; | D))
could be used to annotate arcs (such as the arc x; — x;) to convey to the user the likeli-
hoods of the existences of possible arcs among the variables in Z. Such annotations may
be particularly useful for those arcs that have relatively high probabilities. It may be possi-
ble to develop efficient heuristic and estimation methods for the computation of equation
(7), which are similar to the methods that we mentioned for the computation of equation (6).
When arcs are given a causal interpretation, and specific assumptions are met, we can
use previously developed methods to infer causality from data (Pearl & Verma, 1991; Spirtes,
Glymour, & Scheines, 1990b). These methods do not, however, annotate each arc with
its probability of being true. Thus, the resulting categorical statements of causality that
are output by these methods may be invalid, particularly when the database of cases is
small. In this context, arc probabilities that are derived from equation (7)—such as P(x,
— x,|D)—can be viewed as providing information about the likelihood of a causal rela-
tionship being true, rather than a categorical statement about that relationship’s truth.



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 319

We also can calculate the posterior probability of an undirected graph. Let G' be an
undirected graph, such that the variables in G’ are a subset of the variables in Z. Let
R’ = {Bg|Bg is in Q, and if for distinct nodes x and y in G’ there is an edge between
x and y in G’, then it is the case that x — y is in Bgor y — x is in By, else it is the case
that x and y are not adjacent in Bg}. By replacing R with R’ and G with G' in equation
(7), we obtain a formula for P(G'| D). Thus, for example, if we use ““—’ to denote an
undirected edge, then P(x; — x,|D) is the posterior probability that the underlying belief-
network process that generated data D contains either an arc from x, to x, or an arc from
Xy to X1.

3. Application and extension of the basic model

In this section, we apply the results of section 2 to develop methods that locate the most
probable belief-network structures. We also discuss techniques for handling databases that
contain missing values and belief-network structures that contain hidden variables.

3.1. Finding the most probable belief-network structures

Consider the problem of determining a belief-network structure By that maximizes
P(Bg| D). In general, there may be more than one such structure. To simplify our exposi-
tion in this section, we shall assume that there is only one maximizing structure; finding
the entire set of maximally probable structures is a straightforward generalization. For a
given database D, P(Bs, D) « P(Bg|D), and therefore finding the B that maximizes
P(Bs| D) is equivalent to finding the By that maximizes P(Bs, D). We can maximize
P(Bs, D) by applying equation (5) exhaustively for every possible Bg.

As a function of the number of nodes, the number of possible structures grows exponen-
tially. Thus, an exhaustive enumeration of all network structures is not feasible in most
domains. In particular, Robinson (1977) derives the following efficiently computable recur-
sive function for determining the number of possible belief-network structures that contain
n nodes:

f(n) =§ (—1)i*! [’l’] 210=Df(p — ).

For n = 2, the number of possible structures is 3; for n = 3, it is 25; for n = 5, it is
29,000; and for n = 10, it is approximately 4.2 X 108, Clearly, we need a method for
locating the By that maximizes P(Bg|D) that is more efficient than exhaustive enumera-
tion. In section 3.1.1, we introduce additional assumptions and conditions that reduce the
time complexity for determining the most probable Bs. The complexity of this task, how-
ever, remains exponential. Thus, in section 3.1.2, we modify an algorithm from section
3.1.1 to construct a heuristic method that has polynomial time complexity.



320 G.F. COOPER AND E. HERSKOVITS

3.1.1. Exact methods

Let us assume, for now, that we can specify an ordering on all n variables, such that, if
x; precedes x; in the ordering, then we do not allow structures in which there is an arc
from x; to x;. Gwen such an ordering as a constraint, there remain 2 2) = pnnhi2 possi-

ble belief-network structures. For large n, it is not feasible to apply equation 5 for each
of 2™ V12 pogsible structures. Therefore, in addition to a node ordering, let us assume
equal priors on Bg. That is, initially, before we observe the data D, we believe that all struc-
tures are equally likely. In that case, we obtain

-1 i
P(BS,D>=cHH—f+—rl—_)WHzUk, ®

i=1 j=1

where c is the constant prior probability, P(By), for each Bs. To maximize equation (8),
we need only to find the parent set of each variable that maximizes the second inner prod-
uct. Thus, we have that

= (ﬁ _
max{P(Bs, D)) = c H max H —— 1), H Na!l ©

T

where the maximization on the right of equation (9) takes place over every instantiation
of the parents «; of x; that is consistent with the ordering on the nodes.

A node x; can have at most n — 1 nodes as parents. Thus, over all possible By consis-
tent with the ordering, x; can have no more than 2"! unique sets of parents. Therefore,
the maximization on the right of equation (9) occurs over at most 2! parent sets. It fol-
lows from the results in section 2.2 that the products within the maximization operator
in equation (9) can be computed in O(m n r) time. Therefore, the time complexity of com-
puting equation (9) is O(m n? r 2™). If we assume that a node can have at most u parents,
then the complexity is only O(m u n r T(n, u)), where

T, u) = 2, Z]

O<k=u

Let us now consider a generalization of equation (9). Let «; be the parents of x; in By,
denoted as 77 — x,. Assume that P(Bg) can be calculated as P(Bg) = o P(xc ~ xp).
Thus, for all distinct pairs of variables x; and x;, our belief about x; having some set of
parents is independent of our belief about x; having some set of parents. Using this assump-
tion of independence of priors, we can express equation (5) as

P(Bs, D) = [] P(xf - x) r_[ _W—T)T H N ! (10)
i=1



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 321

The probability P(xf — x;) could be assessed directly or be derived with additional meth-
ods. For example, one method would be to assume that the presence of an arc in 77 — x;
is independent of the presence of the other arcs there; if the probability of each arc in
xf — x; is specified, we then can compute P(x] — x;). Suppose, as before, that we have

an ordering on the nodes. Then, from equation (10), we see that

a )
max[P(Bg, D) = H max | P(m; = x) |1 (TV‘(EJTTTI)T H NUkJ . ab

=1 7 j=1

where the maximization on the right of equation (11) is taken over all possible sets «; con-
sistent with the node ordering. The complexity of computing equation (11) is the same as
that of computing equation (9), except for an additional term that represents an upper bound
on the complexity of computing P(x; — x;). From equation (11), we see that the determi-
nation of the most likely belief-network structure is computationally feasible if we assume
(1) that there is an ordering on the nodes, (2) that there exists a sufficiently tight limit on
the number of parents of any node, and (3) that P(m; — x;) and P(x; — x;) are marginally
independent when i # j, and we can compute such prior probabilities efficiently. Unfor-
tunately, the second assumption in the previous sentence may be particularly difficult to
justify in practice. For this reason, we have developed a polynomial-time heuristic algorithm
that requires no restriction on the number of parents of a node, although it does permit
such a restriction.

3.1.2. A heuristic method

‘We propose here one heuristic-search method, among many possibilities, for maximizing
P(Bg, D). We shall use equation (9) as our starting point, with the attendant assumptions
that we have an ordering on the domain variables and that, a priori, all structures are con-
sidered equally likely. We shall modify the maximization operation on the right of equa-
tion (9) to use a greedy-search method. In particular, we use an algorithm that begins by
making the assutnption that a node has no parents, and then adds incrementally that parent
whose addition most increases the probability of the resuiting structure. When the addi-
tion of no single parent can increase the probability, we stop adding parents to the node.
Researchers have made extensive use of similar greedy-search methods in classification
systems—for example, to construct classification trees (Quinlan, 1986) and to perform var-
iable selection (James, 1985).
We shall use the following function:

qi T

SN
g, m) = III (’Tr‘—_)—l),' H Ny !, (12)
al

where the N are computed relative to 7; being the parents of x; and relative to a database
D, which we leave implicit. From section 2.2, it follows that g(i, ;) can be computed



322 G.F. COOPER AND E. HERSKOVITS

in O(m u r) time, where u is the maximum number of parents that any node is permitted
to have, as designated by the user. We also shall use a function Pred(x;) that returns the
set of nodes that precede x; in the node ordering. The following pseudocode expresses the
heuristic search algorithm, which we call K25

L. procedure K2;

2. {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the

3. number of parents a node may have, and a database D containing m cases. }
4. {Output: For each node, a printout of the parents of the node.}

S5.fori:= 1tondo

6. m =0

7. Puu:= g(i, m); {This function is computed using equation (12).}

8.  OKToProceed := true

9.  while OKToProceed and |m;| < u do

10, let z be the node in Pred(x;) — =, that maximizes g(i, =; U {z}};
11. P = g, m; U {2});

12. if P, > P,, then

13. Pog = Prow;

14, = T U {Z}

15. else OKToProceed := false;

16.  end {while};

17.  write(*"Node:’, x;, ‘Parents of this node:’, ;)
18. end {for};

19. end {K2},

We now analyze the time complexity of K2. We shall assume that the factorials that are
required to compute equation (12) have been precomputed and have been stored in an array.
Equation (12) contains no factorial greater than (m + r — 1)!, because N;; can have a value
no greater than m. We can compute and store the factorials of the integers from 1 to
m + r — 1)in O(m + r — 1) time. A given execution of line 10 of the K2 procedure
requires that g be called at most n — 1 times, because x; has at most # — 1 predecessors
in the ordering. Since each call to g requires O(m u r) time, line 10 requires O(m u n r)
time. The other statements in the while statement require O(1) time. Each time the while
statement is entered, it loops O(u) times. The for statement loops n times. Combining these
results, the overall complexity of K2is O(m + r — 1) + O@mun r) O@w) n = O(m u*
n2 7). In the worst case, u = n, and the complexity of K2 is O(m n* 7).

We can improve the run-time speed of K2 by replacing g(i , =;) and g(i, m; U {z}) by
log(g(i , 7)) and log(g(i, m; U {z})), respectively. Run-time savings result because the
logarithmic version of equation (12) requires only addition and subtraction, rather than
multiplication and division. If the logarithmic version of equation (12) is used in K2, then
the logarithms of factorials should be precomputed and should be stored in an array.

We emphasize that K2 is just one of many possible methods for searching the space of
belief networks to maximize the probability metric given by eguation (5). Accordingly,
theorem 1 and equation (5) represent more fundamental results than does the K2 algorithm.
Nonetheless, K2 has proved valuable as an initial search method for obtaining preliminary



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 323

test results, which we shall describe in section 5. An open research problem is to explore
other search methods. For example, consider an algorithm that differs from K2 only in
that it begins with a fully connected belief-network structure (relative to a given node order)
and performs a greedy search by removing arcs; call this algorithm K2R (K2 Reverse).
We might apply K2 to obtain a belief-network structure, then apply K2R to obtain another
structure, and finally report whichever structure is more probable according to equation
(5). Another method of search is to generate multiple random node orders, to apply K2
using each node order, and to report which among the belief-network structures output
by K2 is most probable. Other search techniques that may prove useful include methods
that use beam search, branch-and-bound techniques, and simulated annealing.

3.2. Missing data and hidden variables

In this section, we introduce normative methods for handling missing data and hidden var-
iables in the induction of belief networks from databases. These two methods are funda-
mentally the same. As we present them, neither method is efficient enough to be practical
in most real-world applications. We introduce them here for two reasons. First, they demon-
strate that the Bayesian approach developed in this paper admits conceptually simple and
theoretically sound methods for handling the difficult problems of missing data and hidden
variables. Second, these methods establish a theoretical basis from which it may be possible
to develop more efficient approaches to these two problems. Without such a theoretical
basis, it may be difficult to develop sound methods for addressing the problems pragmatically.

3.2.1. Missing data

In this section, we consider cases in database D that may contain missing values for some
variables. Let C, denote the set of variable assignments for those variables in the hAth case
that have known values and let C;, denote the set of variables in the case that have missing
values. The probability of the Ath case can be computed as

P(C,| B, Bp) =2, P(Cy, Ci|Bs, Bp), 13)
Ci

where ¢, means that all the variables in Cj, are running through all their possible values.
By substituting equation (13) into equation (4), we obtain

P(Bs, D) = fB 11 Z P(C,, C},|Bs, Bp) | | f(Bp|Bs)P(Bs)dBp. (14)
Pl h=1| ¢

To facilitate the next step of the derivation, we now introduce additional notation to describe
the value assignments of variables. Let x; be an arbitrary variable in C; or C,. We shall
write a value assignment of x; as x; = djy,, where dy, is the value of x; in case A. For a



324 G.F. COOPER AND E. HERSKOVITS

variable x; in Cj;, d;;, is not known, because x; is a variable with a missing value. The sum
in equation (13) means that for each variable x; in Cj we have d;;, assume each value that
is possible for x;. The overall effect is the same as stated previously for equation (13).

As an example, consider a database containing three binary variables that each have pres-
ent or absent as a possible value. Suppose in case 7 that variable x; has the value present
and the values of variables x, and x; are not known. In this example, C; = {x; = present},
and Cj = {x, = dy, x3 = dy}. For case 7, equation (13) states that the sum is taken over
the following four joint substitutions of values for dy and dy: {dy <« absent, dy «
absent}, {dy; < absent, dy; < present}, {dy < present, dy; < absent}, and {dy; <
present, dy; < present}. For each such joint substitution, we evaluate the probability
within the sum of equation (13).

The reason we introduced the dj, notation is that it allows us to assign case-specific
values to variables with missing values. We need this ability in order to move the summa-
tion in equation (14) to the outside of the integral. In particular, we now can rearrange
equation (14) as follows:

m
PBs, D) =25 - 25 [ | IT P(Ci. CilBs, Be) | fBpIBoPBs)aBp.  (15)
C Cp, Y Br 1 k=1
Equation 15 is a sum of the type of integrals represented by equation (4), which we solved
using equation (5). Thus, equation (15) can be solved by multiple applications of equation (5).

The complexity of computing equation (15) is exponential in the number of missing val-
ues in the database. As stated previously, this level of complexity is not computationally
tractable for most real-world applications. Equation: 15 does, however, provide us with a
theoretical starting point for seeking efficient approximation and special-case algorithms,
and we are pursuing the development of such algorithms. Meanwhile, we are using a more
efficient approach for handling missing data. In particular, if a variable in a case has a
missing value, then we give it the value U (for unknown). Thus, for example, a binary
variable could be instantiated to one of three values: absent, present, or U. Other approaches
are possible, including those that compute estimates of the missing values and use these
estimates to fill in the values.

Example: Suppose that our database D is limited to the first two cases in table 1, and that
the value of x; in the first case is missing. Let us calculate P(Bg, D). Applying equation
(14), we have

P(Bgy, D) zf [Pxy =1,x =0,x =0[Bsy, Bp) + Px; = 1, x, = 1,

Bp
x3 = 0|Bgy, Bp)l X P(x; =1, x, = 1, x5 = 1| By, Bp)f(Bp| Bs)P(Bs1)dBp

which, by equation (15), is equal to



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 325

. P(x; =1, % =0, x3 = 0|Bg;, Bp)P(x; = 1, x, =1, x3 = 1|Bs, Bp)
P

f(Bp|Bs1)P(Bs;)dBp

+ P(xl = ]-: X = la X3 = O|lea BP)P(xl = 1s Xy = 1’ X3 = 1|les BP)
Bp

f(Bp| Bs1)P(Bs1)dBp.

Each of these last two integrals can be solved by the application of equation (5).
3.2.2. Hidden variables

A hidden (latent) variable represents a postulated entity about which we have no data. For
example, we may wish to postulate the existence of a hidden variable if we are looking
for a hidden causal factor that influences the production of the data that we do observe.
We can handle a hidden variable (or variables) by applying equation (15), where the hidden
variable is assigned a missing value for each case in the database. In a belief-network struc-
ture, the hidden variable is represented as a single node, just as is any other variable.

Example: Assume the availability of the database shown in table 3, which we shall denote
as D.

Suppose that we wish to know P(Bg,, D), where By, is the network structure shown
in figure 2. Note that, relative to D, x; is a hidden variable, because D contains no data
about x,. Let us assume for this example that x; is a binary variable. Applying equation
(15), we obtain the following result:

P(Bg, D) =

B P(-xl = 07 Xy = 0’ X3 = 0’B527 BP) P(xl = 09 X2 = 1’ X3 = 1,BSZ9 BP)
P

f(BP l BSZ)P(Bsz)dBp

+ P(.xl
Bp

0,x, =0, x = 0|Bsy, Bp) P(xj = 1, %, = 1, x3 = 1|Bg,, Bp)

f(Bp| Bs2)P(Bs)dBp

+ P(x; = 1,x, = 0, x3 = 0|Bsy, Bp) P(x; = 0, x, = 1, x3 = 1|Bg,, Bp)

Bp

f(Bp|Bs2)P(Bs2)dBp

0|Bs,, Bp) P(x; = 1, x;

1, x3 = 1|Bs,, Bp)

f(Bp|Bs2)P (Bs;)dBp.

+ P(x1=1,x2=0,x3
Bp

Each of these four integrals can be solved by application of equation (5). O



326 G.F. COOPER AND E. HERSKOVITS

Table 3. The database for the hidden
variable example.

Case Xy X3
1 absent absent
2 present present

One difficulty in considering the possibility of hidden variables is that there is an unlimited
number of them and thus an unlimited number of belief-network structures that can contain
them. There are many possible approaches to this problem; we shall outline here the ap-
proaches that we believe are particularly promising. One way to avoid the problem is simply
to limit the number of hidden variables in the belief networks that we postulate. Another
approach is to specify explicitly nonzero priors for only a limited number of belief-network
structures that contain hidden variables. In addition, we may be able to use statistical indi-
cators that suggest probable hidden variables, as discussed in (Pearl & Verma, 1991; Spirtes
& Glymour, 1990; Spirtes et al., 1990b; Verma & Pearl, 1990); we then could limit ourselves
to postulating hidden variables only where these indicators suggest that hidden variables
may exist.

A related problem is to determine the number of values to define for a hidden variable.
One approach is to try different numbers of values. That is, we make the number of values
of each hidden variable be a parameter in the search space of belief-network structures.
We note that some types of unsupervised learning have close parallels to discovering the
number of values to assign to hidden variables. For example, researchers have successfully
applied unsupervised Bayesian learning methods to determine the most probable number
of values of a single, hidden classification variable (Cheeseman, Self, Kelly, Taylor, Freeman,
& Stutz, 1988). We believe that similar methods may prove useful in addressing the prob-
lem of learning the number of values of hidden variables in belief networks.

4. Expectations of probabilities

The previous sections concentrated on belief-network structures. In this section, we focus
on deriving numerical probabilities when given a database and a belief-network structure
(or structures). In particular, we shall focus on determining the expectation of probabilities.

4.1. Expectations of network conditional probabilities

Let 6, denote the conditional probability P(x; = vy |m = w;;)—that is, the probability
that x; has value vy, for some k from 1 to r;, given that the parents of x;, represented by
m;, are instantiated as wy. Call 0 a network conditional probability. Let ¢ denote the four
assumptions in section 2.1. Consider the value of E[()ijk!D, Bg, £], which is the expected



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 327

value of 6 given database D, the belief-network structure Bs, and the assumptions £. In
theorem 2 in the appendix, we derive the following result:

N + 1
E[6,,|D, B, ] = =&~ —
[ljk' S‘E] ]Vij+ri

(16)
In corollary 2 in the appendix, we derive a more general version of E[6;; | D, Bg, £] by
relaxing assumption 4 in section 2.1 to allow the user to express prior probabilities on
the values of network conditional probabilities. E[O,-jk|D, B, £] is sometimes called the
Bayes’ estimator of 0. The value of E [BijkID, Bg, £] in equation (16) is equal to the ex-
pectation of 6, as calculated using a uniform probability distribution and using the data
in D (deGroot, 1970). We note that Spiegelhalter and Lauritzen (1990} also have used such
expectations in their work on updating belief-network conditional probabilities.
By applying an analogous analysis for variance, we can show that (Wilks, 1962)

_ Wy + DNy + 1 = Ny — D
Var[oijlea BSa E] - (sz + ri)z(]vij ¥ r; =+ 1) . (17)

Example: Consider the probability P(x, = present|x; = present) for belief-network struc-
ture Bg,. Let 8,,, represent P(x, = present|x, = present). We now wish to determine
E[6,,| D, Bg, £] and Var[,,,| D, Bg, £], where D is the database in table 1. Since x, is
a binary variable, r, = 2. There are five cases in D in which x; = present and therefore,
Ny = 5. Of these five, there are four cases in which x; = present and x, = present, and,
thus, Ny, = 4. Substituting these values into equations (16) and (17), we obtain E[6,p, | D,
Bg, £] = 071 and Var[6,, | D, Bg, £] = 0.03. il

4.2. Expectations of general conditional probabilities given a network structure

A common application of a belief network is to determine E[P(W, | W,)], where W, and
W, are sets of instantiated variables. For example, W, might be a disease state and W, a
set of symptoms. Consider a decision that depends on just the likelihood of W, given that
W, is known. Researchers have shown that E[P(W, | W,)] provides sufficient information
to determine the optimal decision to make within a decision-theoretic framework, as long
as the decision must be made without the benefit of additional information (Howard, 1988).
Thus, in many situations, knowledge of E[P(W, | W,)] is sufficient for decision making.

Since, in this paper we are constructing belief networks based on a database D, we wish
to know E[P(W;|W,)|D, B, £]. In (Cooper & Herskovits, 1991), we derive the follow-
ing equation:

E[P(W,|W)|D, By, £ = P(W,|Wy), (18)

where P(W, | W,) is computed with a belief network that uses the probabilities given by
equation (16).



328 G.F. COOPER AND E. HERSKOVITS

4.3. Expectations of general conditional probabilities over all network structures

On the right side of equation (18), D, By and £ are implicit conditioning information. To
be more explicit, we can rewrite that equation as

E[P(W,|W))|D, Bs, £] = P(W,|W,, D, Bs, £) (19)

where P(W,|W,, D, Bg, £) may be calculated as P(W, | W,) using a belief network with
a struciure Bg and with conditional probabilities that are derived using equation (16). For
optimal decision making, however, we actually wish to know E[P(W,|Wy)|D, £], rather
than E[P(W; | W,)|D, Bs, £] for some particular By about which we are uncertain. We can
derive E[P(W,|W,)|D, £] as

E[P(W,|W,) D, £] =, EIP(W,|W,)|D, Bs, £] P(Bs| Wy, D ),

8Bg
which, by equation (19), becomes

E[P(W,|Wy)|D, §] :Z P(W,|W,, D, Bs, £) P(Bs| W), D ). (20)
Bg

The probability P(Bg| W, D, §) is interesting because it contains W, as conditioning infor-
mation. We can view W, as additional data that augment D. If D is large, we may choose
to approximate P(Bg| W,, D, £) as P(Bg|D, £). Alternatively, we may choose to assume
that W, provides no additional information about By, and therefore that P(Bg| Ws, D, £)
= P(Bg|D, £). Otherwise, we must treat W, as an additional case in the database. Typ-
ically, W, will represent an incomplete case in which some model variables have unknown
values. In this situation, the techniques we discuss in section 3.2.1 for handling missing
data can be used to compute P(Bs| W,, D, £).

Although it is not computationally feasible to calculate equation (20) for models with more
than a few variables, this equation provides a theoretical framework for seeking rapid and
accurate special-case, approximate and heuristic solutions. For example, techniques—such
as those discussed in the final paragraph of section 3.1--might be used in searching for
belief-network structures that yield relatively high values for P(Bs| W, D, £). If we normal-
ize over this set of structures, we can apply equation (20) to estimate heuristically the value
of E[P(W,|W,)|D, £]. Another possible approach toward estimating E[P(W, | W,)|D, &)
is to apply sampling techniques that use stochastic simulation.

Example: Suppose we wish to know P(x, = present|x, = present) given database D,
which is shown in table 4,

Let us compute P(x, = present|x, = present) by using equation (20) and the assump-
tion that P(Bg|x, = present, D, £) = P(Bg|D, £). For simplicity, we abbreviate P(x, =
present|x; = present) as P(x,|x)), leaving the values of x; and x, implicit. We shall
enclose network structures in braces for clarity; so, for example, {x; — x,} means that



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 329

Iable 4. The database used in the example
of the application of equation (20).

Case X3 Xz
1 present present
2 present present
3 present present
4 absent present
5 absent absent

x; is the parent of x,. Given a model with two variables, there are only three possible
belief-network structures—namely, {x; = x}, {x, = x}, and {x; x,}. Thus, by equa-
tion (20)

i

E[P(xy|x)|D, £] = P(xz]x;, D, {x; = x3}, H)P({x; = x}|D, §)
+ P(x2|x1, D7 {x2 - X]}, E)P({XZ - xl},D9 g)
+ Py |xy, D, {x;  x}, &P({x;  x}|D, §)

0.80 x 0.33 + 0.83 x 0.40 + 0.71 x 0.27 = 0.79,

where (1) the probabilities 0.80, 0.83, and 0.71 were computed with the three respective
belief networks that each contain network conditional probabilities derived using equation
(16), and (2) the probabilities 0.33, 0.40, and 0.27 were computed using the methods discussed
in section 2.3.

5. Preliminary results

In this section, we describe an experiment in which we generated a database from a belief
network by simulation, and then attempted to reconstruct the belief network from the data-
base. In particular, we applied the K2 algorithm discussed in section 3.1.2 to a database
of 10,000 cases generated from the AL ARM belief network, which has the structure shown
in figure 4. Beinlich constructed the ALARM network as an initial research prototype to
model potential anesthesia problems in the operating room (Beinlich et al., 1989). To keep
figure 4 uncluttered, we have replaced the node names in ALARM with the numbers shown
in the figure. For example, node 20 represents that the patient is receiving insufficient anes-
thesia or analgesia, node 27 represents an increased release of adrenaline by the patient,
node 29 represents an increased patient heart rate, and node 8 represents that the EKG
is measuring an increased patient heart rate. When ALARM is given input findings—
such as heart rate measurements—it outputs a probability distribution over a set of possible
problems—such as insufficient anesthesia. ALARM represents 8 diagnostic problems, 16
findings, and 13 intermediate variables that connect diagnostic problems to findings. ALARM
contains a total of 46 arcs and 37 nodes, and each node has from two to four possible values.
Knowledge for constructing ALARM came from Beinlich’s reading of the literature and



330 G.F. COOPER AND E. HERSKOVITS

Figure 4. The ALARM belief-network structure, containing 37 nodes and 46 arcs.

from his own experience as an anesthesiologist. It took Beinlich approximately 10 hours
to construct the ALARM belief-network structure, and about 20 hours to fill in all the
corresponding probability tables.

We generated cases from ALARM by using a Monte Carlo technique developed by
Henrion for belief networks (Henrion, 1988). Each case corresponds to a value assignment
for each of the 37 variables. The Monte Carlo technique is an unbiased generator of cases,
in the sense that the probability that a particular case is generated is equal to the probability
of the case existing according to the belief network. We generated 10,000 such cases to
create a database that we used as input to the K2 algorithm. We also supplied K2 with
an ordering on the 37 nodes that is consistent with the partial order of the nodes as specified
by ALARM. Thus, for example, node 21 necessarily appears in the ordering before node
10, but it is not necessary for node 21 to appear immediately before node 10 in the order-
ing. Observing this ordering constraint, we manually generated a node order using the
ALARM structure. In particular, we ad