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Abstract. This paper presents a Bayesian method for constructing probabilistic networks from databases. In par- 
ticular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypoth- 
esis testing, automated scientific discovery, and automated construction of probabifistic expert systems. We extend 
the basic method to handle missing data and hidden (latent) variables. We show how to perform probahilistic 
inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary 
evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods 
in this paper to previous work, and we discuss open problems. 
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1. I n t r o d u c t i o n  

In this paper, we present a Bayesian method for constructing a probabilist ic network from 
a database of  records, which we call cases. Once constructed, such a network can provide 
insight into probabilist ic dependencies that exist among the variables in the database. One 
application is the automated discovery of dependency relationships. The computer program 
searches for a probabil ist ic-network structure that has a high posterior probabili ty given 

the database, and outputs the structure and its probability. A related task is computer-assisted 
hypothesis testing: The user enters a hypothetical structure of the dependency relationships 
among a set of variables, and the program calculates the probabil i ty of the structure given 
a database of cases on the variables. 

We can also construct a network and use it for computer-based diagnosis. For  example, 
suppose we have a database in which a case contains data about the behavior of some sys- 
tem (i.e., findings). Suppose further that a case contains data about whether this part icular 
behavior follows from proper system operation, or alternatively, is caused by one of several 
possible faults. Assume that the database contains many such cases from previous episodes 
of proper  and faulty behavior. The method that we present in this paper  can be used to 
construct from the database a probabilistic network that captures the probabilistic dependen- 
cies among findings and faults. Such a network then can be applied to classify future cases 
of system behavior by assigning a posterior  probabil i ty to each of  the possible faults and 
to the event "proper  system operation." In this paper, we also shall discuss diagnostic infer- 
ence that is based on combining the inferences of mult iple alternative networks. 
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Table 1. A database example. The term case in the first column 

denotes a single training instance (record) in the database--  
as for example, a patient case. For brevity, in the text we some- 

t imes use 0 to denote absent and 1 to denote present. 

Variable values for each case 

Case xl x2 x3 

1 present absent absent 
2 present present present 
3 absent absent present 
4 present present present 
5 absent absent absent 
6 absent present present 
7 present present present 
8 absent absent absent 
9 present present present 

10 absent absent absent 

Let us consider a simple example of the tasks just described. Suppose the fictitious data- 
base of cases in table 1 is the training set. Suppose further thatx 1 represents a fault in the 
system, and that x2 and x3 represent two findings. Given the database, what are the quali- 
tative dependency relationships among the variables? For example, do xl and x 3 influence 
each other directly, or do they do so only through x2? What is the probability that x3 will 
be present if Xl is present? Clearly, there are no categorically correct answers to each of 
these questions. The answers depend on a number of factors, such as the model that we 
use to represent the data, and our prior knowledge about the data in the database and the 
relationships among the variables. 

In this paper, we do not attempt to consider all such factors in their full generality. Rather, 
we specialize the general task by presenting one particular framework for constructing prob- 
abilistic networks from databases (as, for example, the database in table 1) such that these 
networks can be used for probabilistic inference (as, for example, the calculation of P(x3 = 

present  Ix1 = present)) .  In particular, we focus on using a Bayesian belief network as a 
model of probabilistic dependency. Our primary goal is to construct such a network (or 
networks), given a database and a set of explicit assumptions about our prior probabilistic 
knowledge of the domain. 

A Bayesian belief-network structure B s is a directed acyclic graph in which nodes repre- 
sent domain variables and arcs between nodes represent probabilistic dependencies (Cooper, 
1989; Horvitz, Breese, & Henrion, 1988; Lauritzen & Spiegelhalter, 1988; Neapolitan, 
1990; Pearl, 1986; Pearl, 1988; Shachter, 1988). A variable in a Bayesian belief-network 
structure may be continuous (Shachter & Kenley, 1989) or discrete. In this paper, we shall 
focus our discussion on discrete variables. Figure 1 shows an example of a belief-network 
structure containing three variables. In this figure, we have drawn an arc from x 1 to x 2 
to indicate that these two variables are probabilistically dependent. Similarly, the arc from 
x2 to x 3 indicates a probabilistic dependency between these two variables. The absence of 
an arc from x 1 to x3 implies that there is no direct probabilistic dependency between xl 
and x 3. In particular, the probability of each value of x3 is conditionally independent of 
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Figure 1. An example of a belief-network structure, which we shall denote as B s 1. 

the value of x~ g i v e n  that the value of  x2 is known. The representation of conditional de- 
pendencies and independencies is the essential function of bel ief  networks. For a detailed 
discussion of  the semantics of Bayesian belief  networks, see (Pearl, 1988). 

A Bayesian belief-network structure, B s ,  is augmented by conditional probabilities, B e ,  

to form a Bayesian bel ief  network B. Thus, B = ( B  s, B e ) .  For brevity, we call B a belief 
network. For  each node I in a belief-network structure, there is a condit ional-probabil i ty 
function that relates this node to its immediate predecessors (parents). We shall use 7r i to 
denote the parent nodes of variable x i. If  a node has no parents, then a prior-probabil i ty 

function, P(x i ) ,  is specified. A set of probabilities is shown in table 2 for the belief-network 
structure in figure 1. We used the probabil i t ies in table 2 to generate the cases in table 1 
by applying Monte Carlo simulation. 

We shall use the term c o n d i t i o n a l  p r o b a b i l i t y  to refer to a probabili ty statement, such 
as P ( x 2  = p r e s e n t  l x l  = p r e s e n t ) .  We use the term c o n d i t i o n a l - p r o b a b i l i t y  a s s i g n m e n t  to 

denote a numerical  assignment to a conditional probability, as, for example, the assign- 
ment P(x2  = p r e s e n t  ] x~ = p r e s e n t )  = 0.8. The network structure B s  1 in figure 1 and the 
probabilit ies Be1  in table 2 together define a bel ief  network which we denote as B~. 

Belief networks are capable of representing the probabil i t ies over any discrete sample 
space: The probabil i ty of  any sample point in that space can be computed from the proba-  

bilities in the belief  network. The key feature of belief  networks is their explicit represen- 
tation of the conditional independence and dependence among events. In particular, investi- 
gators have shown (Kiiveri,  Speed, & Carlin, 1984; Pearl, 1988; Shachter, 1986) that the 
joint probabil i ty of any particular instantiation ~ of all n variables in a bel ief  network can 
be calculated as follows: 

P(X~ . . . . .  X~) = I ~  P(X~. [ ~r~), (1 )  
i=1 

where X i represents the instantiation of variable x i and 7r i represents the instantiation of 

the parents of x i. 

Therefore, the joint  probabili ty of any instantiation of all the variables in a belief network 
can be computed as the product  of only n probabilities. In principle, we can recover the 

Table 2. The probability assignments associated with the belief-network structure Bsl 
in figure 1. We shall denote these probability assignments as Bpi. 

P(xl = present) = 0.6 
P(x2 = present[x~ = present) = 0.8 
P(x2 = present[x1 = absent) = 0.3 
P(x3 = present [x2 = present) = 0.9 
P(x3 = present[xz = absent) = 0.15 

P(xl = absent) = 0.4 
P(x2 = absentlxl = present) = 0.2 
P(xz = absentlxl = absent) = 0.7 
P(x3 = absentlx2 = present) = 0.1 
P(x3 = absentlx2 = absent) = 0.85 
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complete joint-probability space from the belief-network representation by calculating the 
ioint probabilities that result from every possible instantiation of the n variables in the net- 
work. Thus, we can determine any probability of the form P(WIV) ,  where W and V are 
sets of variables with known values (instantiated variables). For example, for our sample 
three-node belief network B1, P(x3 = present lxl = present) = 0.75. 

In the last few years, researchers have made significant progress in formalizing the theory 
of belief networks (Neapolitan, 1990; Pearl, 1988), and in developing more efficient 
algorithms for probabilistic inference on belief networks (Henrion, 1990); for some com- 
plex networks, however, additional efficiency is still needed. The feasibility of using belief 
networks in constructing diagnostic systems has been demonstrated in several domains 
(Agogino & Rege, 1987; Andreassen, Woldbye, Falck, & Andersen, 1987; Beinlich, Suer- 
mondt, Chavez, & Cooper, 1989; Chavez & Cooper, 1990; Cooper, 1984; Heckerman, 
Horvitz, & Nathwani, 1989; Henrion & Cooley, 1987; Holtzman, 1989; Suermondt & 
Amylon, 1989). 

Although researchers have made substantial advances in developing the theory and appli- 
cation of belief networks, the actual construction of these networks often remains a diffi- 
cult, time-consuming task. The task is time-consuming because typically it must be per- 
formed manually by an expert or with the help of an expert. Important progress has been 
made in developing graphics-based methods that improve the efficienq¢ of knowledge acqui- 
sition from experts for construction of belief networks (Heckerman, 1990). These methods 
are likely to remain important in domains of small to moderate size in which there are 
readily available experts. Some domains, however, are large. In others, there are few, if 
any, readily available experts. Methods are needed for augmenting the manual expert-based 
methods of knowledge acquisition for belief-network construction. In this paper, we pre- 
sent one such method. 

The remainder of this paper is organized as follows. In section 2, we present a method 
for determining the relative probabilities of different belief-network structures, given a data- 
base of cases and a set of explicit assumptions. This method is the primary result of the 
paper. As an example, consider the database in table 1, which we call D. Let Bsl denote 
the belief-network structure in figure 1, and let Bs2 denote the structure in figure 2. The 
basic method presented in section 2 allows us to determine the probability of B s 1 relative 
to Bs2. We show that P(Bsl I D) is 10 times greater than P(Bs2ID), under the assumption 
that Bsl and Bs2 have equal prior probabilities. In section 3, we discuss methods for 
searching for the most probable belief-network structures, and we introduce techniques 
for handling missing data and hidden variables. Section 4 describes techniques for employing 

Figure 2. A belief-network structure that is an alternative to the structure in figure 1 for characterizing the proba- 
bilistic dependencies among the three variables shown. We shall use Bs2 to denote this structure. 
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the methods in section 2 to perform probabilistic inference. In section 5, we report the 
results of an experiment that evaluates how accurately a 37-node belief network can be re- 
constructed from a database that was generated from this belief network. Section 6 contains 
a discussion of previous work. Section 7 concludes the paper with a summary and discus- 
sion of open problems. 

2. The basic model  

Let us now consider the problem of finding the most probable belief-network structure, 
given a database. Once such a structure is found, we can derive numerical probabilities 
from the database (we discuss this task in section 4). We can use the resulting belief net- 
work for performing probabilistic inference, such as calculating the value of P(x 3 = 
present lx 1 = present). In addition, the structure may lend insight into the dependency 
relationships among the variables in the database; for example, it may indicate possible 
causal relationships. 

Let D be a database of cases, Z be the set of variables represented by D, and Bsi and 
Bsj be two belief-network structures containing exactly those variables that are in Z. In this 
section, we develop a method for computing P(Bsi I D)/P(Bsj I D). By computing such 
ratios for pairs of belief-network structures, we can rank order a set of structures by their 
posterior probabilities. To calculate the ratio of posterior probabilities, we shall calculate 
P(Bsi, D) and P(Bs~, D) and use the following equivalence: 

P(Bs,, D) 
P(Bs~[D) _ P(D)  _ P(Bs~, D)  
P(BsjT-~)) P(Bs, i, D)  P(Bs2 , D)  " 

P(D) 

(2) 

Let Bs represent an arbitrary belief-network structure containing just the variables in Z. 
In section 2.1, we present a method for calculating P(B s, D). In doing so, we shall intro- 
duce several explicit assumptions that render this calculation computationally tractabIe. A 
proof of the method for calculating P(Bs, D) is presented in theorem 1 in the appendix. 

2.1. A formula for computing P(Bs, D) 

In this section, we present an efficient formula for computing P(Bs, D). We do so by first 
introducing four assumptions. 

Assumption 1. The database variables, which we denote as Z, are discrete. 

As this assumption states, we shall not consider continuous variables in this paper. One 
way to handle continuous variables is to discretize them; however, we shall not discuss 
here the issues involved in such a transformation. 
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A belief network, which consists of a graphical structure plus a set of conditional proba- 
bilities, is sufficient to capture any probability distribution over the variables in Z (Pearl, 
1988). A belief-network structure alone, containing just the variables in Z, can capture 
many--but not all--of the independence relationships that might exist in an arbitrary proba- 
bility distribution over Z (For a detailed discussion, see (Pearl, 1988)). 

In this section, we assume that B s contains just the variables in Z. In section 3.2, we 
allow B s to contain variables in addition to those in Z. 

The application of assumption 1 yields 

P(Bs, D) = f Bp P(D I Bs' BP)f(Bp I Bs)P(Bs)dBe' (3) 

where B e is a vector whose values denote the conditional-probability assignments associ- 
ated with belief-network structure Bs, and f is the conditional-probability density function 
over B e given B s. Note that our assumption of discrete variables leads us to use the proba- 
bility mass function P(D I Bs, Be) in equation 3, rather than the density functionf(D [Bs, 
Be). The integral in equation (3) is over all possible value assignments to Be. Thus, we 
are integrating over all possible belief networks that can have structure B s. The integral 
represents a multiple integral and the variables of integration are the conditional probabili- 
ties associated with structure B s. 

Example: Consider an example in which B s is the structure Bs~ shown in figure 1 and D 
is the database given by table 1. Let Be denote an assignment of numerical probability 
values to a belief network that has structure B s 1. Thus, the numerical assignments shown 
in table 2 constitute one particular value of Be--call it B~. Integrating over all possible 
Bp corresponds to changing the numbers shown in table 2 in all possible ways that are 
consistent with the axioms of probability theory. The term f(B~] Bsl) denotes the likeli- 
hood of the particular numerical probability assignments shown in table 2 for the belief- 
network structure Bsl. The term P(DIB s, B~) denotes the probability of seeing the data 
in table 1, given a belief network with structure Bsl and with probabilities given by table 
2. The term P(Bsl) is our probability--prior to observing the data in database D--that 
the data-generating process is a belief network with structure Bs~. ~ 

The term P(Bs) in equation (3) can be viewed as one form of preference bias (Buntine, 
1990a; Mitchell, 1980) for network structure B s. Utgoff defines a preference bias as "the 
set of all factors that collectively influence hypothesis selection" (Utgoff, 1986). A computer- 
based system may use any prior knowledge and methods at its disposal to determine P(Bs). 
This capability provides considerable flexibility in integrating diverse belief construction 
methods in artificial intelligence (AI) with the learning method discussed in this paper. 

Assumption 2. Cases occur independently, given a belief-network model. 

A simple version of assumption 2 occurs in the following, well-known example: If  a 
coin is believed with certainty to be fair (i.e., to have a 0.5 chance of landing heads), then 
the fact that the first flip landed heads (case 1) does not influence our belief that the second 
flip (case 2) will land heads. 
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It follows from the conditional independence of  cases expressed in assumption 2 that 

I ~ I  P(Ch l Bs' Bp)I f(Bp I (4) P(Bs, D) = f oBe 

where m is the number of cases in D and Ch is the hth case in D. 

Assumption 3. There are no cases that have variables with missing values. 

Assumption 3 generally is not valid for real-world databases, where often there are some 
missing values. This assumption, however, facilitates the derivation of our basic method 
for computing P(Bs, D). In section 3.2.1 we discuss methods for relaxing assumption 3 
to allow missing data. 

Assumption 4. The density function f(BelBs) in equations (3) and (4) is uniform. 

This assumption states that, before we observe database D, we are indifferent regarding 
the numerical probabilities to place on belief-network structure Bs. Thus, for example, it 
follows for structure Bs~ in figure 1 that we believe that P(x2 = present lxl = present) 
is just as likely to have the value 0.3 as to have the value 0.6 (or to have any other real- 
number value in the interval [0, 1]). In corollary 1 in the appendix, we relax assumption 4 
to permit the user to employ Dirichlet distributions to specify prior probabilities on the 
components of f(BplBs). 

We now introduce additional notation that will facilitate our application of the preceding 
assumptions. We shall represent the parents of X/as a list (vector) of variables, which we 
denote as ~r i. We shall use wij to designate theflh unique instantiation of the values of the 
variables in 7ri, relative to the ordering of the cases in D. We say that wij is a value or 
an instantiation of ~r i. For example, consider node x2 in Bs~ and table 1. Node Xl is the 
parent of x2 in Bsl, and therefore 7r 2 = (xl). In this example, w21 = present, because in 
table 1 the first value of x~ is the value present. Furthermore, w2~ = absent, because the 
second unique value of xl in table 1 (relative to the ordering of the cases in that table) 
is the value absent. 

Given assumptions 1 through 4, we prove the following result in the appendix. 

Theorem 1. Let Z be a set of n discrete variables, where a variable xi in Z has ri possible 
value assignments: (vii, • •., viri). Let D be a database of  m cases, where each case con- 
rains a value assignment for each variable in Z. Let B s denote a belief-network structure 
containing just the variables in Z. Each variable xi in B s has a set of parents, which we 
represent with a list of variables 7r i, Let Wij denote the j th  unique instantiation of 7r~ relative 
to D. Suppose there are q~ such unique instantiations of 7r i. Define Nijk to be the number 
of cases in D in which variable xi has the value vi~ and 7ri is instantiated as w~j. Let 

k=l  
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Given assumptions 1 through 4 of this section, it follows that 

n qi ri 

(ri - 12! I - I  Nij~! (5) PW , D) = e(Bs) 1-I 1-I + 
i=l j = l  k=l 

[] 

Example: Applying equation (5) to compute P(B~I, D) ,  given belief-network structure Bs~ 
in figure 1 and database D in table 1, yields 

(: - ( 2  - ( :  - ( 2  - ( 2  - 

P(Bsl ,  D) : e ( B s l ) - f f 6 - + - ~ S ~ !  ( 5 ~ - - - - 1 ~  ~ -S- ~-~---1~ ( 5 ~ - - - ~  ~ -S-~-- ' l~  

= P(Bs~ ) 2.23 × 10 -9 . 

By applying equation (5) for Bs2 in figure 2, we obtain P(Bs2, D)  = P(Bs2 ) 2.23 × 
10-1°. If  we assume that P(Bs~ ) = P(Bs2), then by equation (2), P(Bs~ I D) /P(Bs2 [D) = 10. 
Given the assumptions in this section, the data imply that Bs~ is 10 times more likely than 
Bs~. This result is not surprising, because we used B~ to generate D by the application 
of Monte Carlo sampling. [] 

2.2. Time complexity o f  computing P(B  s, D)  

In this section, we derive a worst case time complexity of computing equation (5). In the 
process, we describe an efficient method for computing that equation. Let r be the max- 
imum number of possible values for any variable, given by r = max1 <_i<_n [ri]. Define t~s 
to be the time required to compute the prior probability of structure B s. For now, assume 
that we have determined the values of Nij~, and have stored them in an array. For a given 
variable x i the number of unique instantiations of the parents ofx i ,  given by qi, is at most 
m, because there are only m cases in the database. For a given i and j ,  by definition 
Nij = S,l<_~<_r~Ni~k, and therefore we can compute N/~ in O(r) time. Since there are at most 
m n terms of the form Nij, we can compute all of these terms in O(m n r) time. Using this 
result and substituting rn for qi and r for r i in equation (5), we find that the complexity 
of computing equation (5) is O(m n r + tBs), given that the values of Nij~ are known. 

Now consider the complexity of computing the values of  Nijk for a node x i. For a given 
x i, we construct an index tree T,., which we define as follows. Assume that 7r i is a list of 
the parents of xi. Each branch out of a node at level d in T~ represents a value of the 
(d + 1)th parent of xi. A path from the root to a leaf corresponds to some instantiation 
for the parents of x i. Thus, the depth of the tree is equal to the number of parents of xi. 
A given leaf in T/contains counts for the values o f x  i (i.e., for the values vil,  . . . ,  Vir~) 
that are conditioned on the instantiation of the parents of xi as specified by the path from 
the root to the leaf. If  this path corresponds to the j th  unique instantiation of 7r i (i.e., 
7f i = W i j ) ,  then we denote the leaf as lj. Thus, lj in Ti corresponds to the list of values of 
Nii~ for k = 1 to ri. We can link the leaves in the tree using a list Li. Figure 3 shows an 
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I x~=0]  - 

,~ I 

N/jk values: I 4 

Figure 3. An index tree for node x2 in structure B s 1 using the data in table i. In B s 1, x2 has only one parent-- 
namely, xl; thus, its index tree has a depth of 1. A 4 is used to highlight an entry that is discussed in the text. 

index tree for the node x 2 in Bs1 using the database in table 1. For example, in table 1, 
there are four cases in which x2 is assigned the value present (i.e., x2 = 1) and its parent 
xl is assigned the value present (i.e., x I = 1); this situation corresponds to the second col- 
umn in the second cell of list L2 in figure 3, which is shown as ~. 

Since xi has at most n - 1 parents, the depth of T/is  O(n). Because a variable has at 
most r values, the size of  each node in T i is O(r).  To enter a case into T~, we must branch 
on or construct a path that has a total of O(n) nodes, each of  size O(r). Thus, a case can 

be entered in O(n r) time. I f  the database contained every possible case, then T/would  
have O(r n) leaves. However, there are only m cases in the database, so even in the worst 
case only O(m) leaves will  be created. Hence, the time required to construct T/for  node 
x i is O(m n r ) .  Because there are n nodes, the complexity of  constructing index trees for 
all n nodes is O(m n 2 r). The overall complexity of both constructing index trees and using 

them to compute equation (5) is therefore O(m n 2 r) + O(m n r + tBs ) = O(m n ~ r + tBs ) ? 
If  the maximum number of parents of any node is u, then the overall complexity is just 
O(m u n r + t~s), by a straightforward restriction of the previous analysis. 4 I f  O(tes ) = 
O(u n r), and u and r can be bounded from above by constants, then the overall complexity 
becomes simply O(m n). 

2.3. Computing P(Bs I D)  

If  we maximize P(Bs, D) over all Bs for the database in table 1, we find that x 3 --, x2 -~ x~ 
is the most likely structure; we shall use Bs3 to designate this structure. Applying equa- 
tion (5), we find that P(Bs3, D)  = P(Bs3) 2.29 × 10 -9. I f  we assume that the database 
was generated by some belief network containing just the variables in Z, then we can com- 
pute P(D)  by summing P(Bs, D)  over all possible B s containing just the variables in Z. 
In the remainder of section 2.3, we shall make this assumption. For  the example, there 
are 25 possible belief-network structures. For simplicity, let us assume that each of these 
structures is equally likely, a priori .  By summing P(Bs, D)  over all 25 belief-network 
structures, we obtain P(D)  = 8.21 x 10 -10. Therefore, P(Bs3 ID) = P(Bs3, D) /P(D)  = 
(1/25) x 2.29 x 10-9/8.21 x 10 -1° = 0.112. Similarly, we find that P(Bsl  ID) = 0.109, 
and P(Bs2 ID) = 0.011. 
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Now we consider the general case. Let Q be the set of all those belief-network structures 
that contain just the variables in set Z. Then, we have 

P(Bsi l D) = P(Bsi, D) (6) 

P(Bs, D) 
B:Q 

As we discuss in section 3.1, the size of Q grows rapidly as a function of the size of Z. 
Consider, however, the situation in which S,B:rP(B s, D) ~ P(D), for some set Y c Q, 
where ] Y I is small. If  Y can be located efficiently, then P(Bsi I D) can be approximated 
closely and computed efficiently. An open problem is to develop heuristic methods that 
attempt to find such a set Y. One approach to computing equation (6) is to use sampling 
methods to generate a tractable number of belief-network structures and to use these struc- 
tures to derive an estimate of P(Bsi[D). 

Let G be a belief-network structure, such that the variables in G are a subset of the vari- 
ables in Z. Let R be the set of those belief-network structures in Q that contain G as a 
subgraph. We can calculate the posterior probability of G as follows: 

Z P(Bs, D) 

P(GID) - Bsee 
~a P(Bs, D) 

Bs~:Q 

(7) 

For example, suppose Z = {xl, x2, x3}, and G is the graph x I ~ x2. Then, Q is equal 
to the 25 possible belief-network structures that contain just the variables in Z, and R is 
equal to the 8 possible belief-network structures in Q that contain the subgraph x 1 ~ x2. 
Applying equation (7), we obtain P(xl --* x2 I D), which is the posterior probability that 
there is an arc from node xl to node x2 in the underlying belief-network process that gen- 
erated data D (given that the assumptions in section 2.1 hold and that we restrict our model 
of data generation to belief networks). Probabilities (such as the probability P(x1 ~ x2 I D)) 
could be used to annotate arcs (such as the arc xl ~ x2) to convey to the user the likeli- 
hoods of the existences of possible arcs among the variables in Z. Such annotations may 
be particularly useful for those arcs that have relatively high probabilities. It may be possi- 
ble to develop efficient heuristic and estimation methods for the computation of equation 
(7), which are similar to the methods that we mentioned for the computation of equation (6). 

When arcs are given a causal interpretation, and specific assumptions are met, we can 
use previously developed methods to infer causality from data (Pearl & Verma, 1991; Spirtes, 
Glymour, & Scheines, 1990b). These methods do not, however, annotate each arc with 
its probability of being true. Thus, the resulting categorical statements of causality that 
are output by these methods may be invalid, particularly when the database of cases is 
small. In this context, arc probabilities that are derived from equation (7)--such as P(Xl 
-~ x2 ]D)--can be viewed as providing information about the likelihood of a causal rela- 
tionship being true, rather than a categorical statement about that relationship's truth. 
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We also can calculate the posterior probability of an undirected graph. Let G '  be an 
undirected graph, such that the variables in G '  are a subset of the variables in Z. Let 
R' = {Bs[B s is in Q, and if for distinct nodes x and y in G '  there is an edge between 
x and y in G', then it is the case that x --* y is in B s or y --, x is in Bs, else it is the case 
that x and y are not adjacent in Bs}. By replacing R with R '  and G with G '  in equation 
(7), we obtain a formula for P(G' ]D). Thus, for example, if  we use " - - "  to denote an 
undirected edge, then P(xl -- x2 I D) is the posterior probability that the underlying belief- 
network process that generated data D contains either an arc from xl to x2 or an arc from 
x 2 t o x  1 • 

3. Application and extension of the basic model 

In this section, we apply the results of  section 2 to develop methods that locate the most 
probable belief-network structures. We also discuss techniques for handling databases that 
contain missing values and belief-network structures that contain hidden variables. 

3.1. Finding the most probable belief-network structures 

Consider the problem of determining a belief-network structure B s that maximizes 
P(Bs[D). In general, there may be more than one such structure. To simplify our exposi- 
tion in this section, we shall assume that there is only one maximizing structure; finding 
the entire set of maximally probable structures is a straightforward generalization. For a 
given database D, P(Bs, D) ~x P(Bs[D), and therefore finding the B s that maximizes 
P(Bs[D) is equivalent to finding the Bs that maximizes P(Bs, D). We can maximize 
P(Bs, D) by applying equation (5) exhaustively for every possible Bs. 

As a function of the number  of nodes, the number  of possible structures grows exponen- 
tially. Thus, an exhaustive enumeration of all network structures is not feasible in most 
domains. In particular, Robinson (1977) derives the following efficiently computable recur- 
sive function for determining the number of possible belief-network structures that contain 
n nodes: 

f (n) = Z  ( -1)i+1 2i(n-i)f(n -- i). 
i=1 

For n = 2, the number of possible structures is 3; for n = 3, it is 25; for n = 5, it is 
29,000; and for n = 10, it is approximately 4.2 × 1018. Clearly, we need a method for 
locating the B s that maximizes P(BslD) that is more efficient than exhaustive enumera- 
tion. In section 3.1.1, we introduce additional assumptions and conditions that reduce the 
time complexity for determining the most probable B s. The complexity of this task, how- 
ever, remains exponential. Thus, in section 3.1.2, we modify an algorithm from section 
3.1.1 to construct a heuristic method that has polynomial time complexity. 
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3.1.1. Exact methods 

Let us assume, for now, that we can specify an ordering on all n variables, such that, if 
x i precedes xj in the ordering, then we do not allow structures in which there is an arc 
from xj to xs. Given such an ordering as a constraint, there remain 2(~) = 2 n(n-1)/2 possi- 
ble belief-network structures. For large n, it is not feasible to apply equation 5 for each 
of 2 n(n-1)/2 possible structures. Therefore, in addition to a node ordering, let us assume 
equal priors on Bs. That is, initially, before we observe the data D, we believe that all struc- 
tures are equally likely. In that case, we obtain 

f i  ri 
~' (ri - 1_)! I-~ NO~!, 

P(Bs,  D)  = c I - I  (Ni~ 7+ 7i 1)! ~:~ 
i=1 j = l  

(8) 

where c is the constant prior probability, P(Bs) ,  for each Bs. To maximize equation (8), 
we need only to find the parent set of  each variable that maximizes the second inner prod- 
uct. Thus, we have that 

(r i -- 1)! H Nij~ ! , max[P(B s, D)] = c max (Nil 7+ -/i 1)! ~=I 
BS i = 1 ~ri j = l 

(9) 

where the maximization on the right of  equation (9) takes place over every instantiation 
of the parents ~r i of xi that is consistent with the ordering on the nodes. 

A node xi can have at most n - 1 nodes as parents. Thus, over all possible B s consis- 
tent with the ordering, xi can have no more than 2 n-I unique sets of parents. Therefore, 
the maximization on the right of equation (9) occurs over at most 2 n-1 parent sets. It fol- 
lows from the results in section 2.2 that the products within the maximization operator 
in equation (9) can be computed in O(m n r) time. Therefore, the time complexity of com- 
puting equation (9) is O(m n 2 r 2n). I f  we assume that a node can have at most u parents, 
then the complexity is only O(m u n r T(n, u)), where 

O<-k<_u 

Let us now consider a generalization of equation (9). Let ~r/s be the parents of xi in Bs, 
denoted as ~r/s - ,  x i. Assume that P(Bs)  can be calculated as P(Bs)  = IIl<_i<_nP(Tri  S ~ x i ) .  

Thus, for all distinct pairs of variables xi and xj, our belief about xi having some set of 
parents is independent of our belief about xj having some set of parents. Using this assump- 
tion of independence of priors, we can express equation (5) as 

f i  ri z~ (r, - 12! 1-I N~j~! P(B s, D)  = P(~r~ s -)  x,) H (Nil ~ ~, 1)! " 
i = i  /=1 k=~ 

0o) 
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The probability P(~ri s -~ xi) could be assessed directly or be derived with additional meth- 
ods. For example, one method would be to assume that the presence of an arc in ~r~ ~ xi 
is independent of the presence of the other arcs there; if the probability of each arc in 
~ri s ~ xi is specified, we then can compute P(~:i s --* xi). Suppose, as before, that we have 
an ordering on the nodes. Then, from equation (10), we see that 

I qi ri i 
max[P(Bs, D)] = f i  max P(~r i -~ xi) I - I  ,~r (r i+ - 1)~ 1- I  N/j~! 

BS i=1 ~ri j=l v*ij ri 1)~ k=l 
(11) 

where the maximization on the right of equation (11) is taken over all possible sets ~r i con- 
sistent with the node ordering. The complexity of  computing equation (11) is the same as 
that of computing equation (9), except for an additional term that represents an upper bound 
on the complexity of computing P(~ri -~ xi). From equation (11), we see that the determi- 
nation of the most likely belief-network structure is computationally feasible if we assume 
(1) that there is an ordering on the nodes, (2) that there exists a sufficiently tight limit on 
the number of parents of any node, and (3) that P(~r i -* xi) and P(~rj -* xj) are marginally 
independent when i ;e j ,  and we can compute such prior probabilities efficiently. Unfor- 
tunately, the second assumption in the previous sentence may be particularly difficult to 
justify in practice. For this reason, we have developed a polynomial-time heuristic algorithm 
that requires no restriction on the number of parents of a node, although it does permit 
such a restriction. 

3.1.2. A heuristic me thod  

We propose here one heuristic-search method, among many possibilities, for maximizing 
P(Bs,  D) .  We shall use equation (9) as our starting point, with the attendant assumptions 
that we have an ordering on the domain variables and that, a priori, all structures are con- 
sidered equally likely. We shall modify the maximization operation on the right of equa- 
tion (9) to use a greedy-search method. In particular, we use an algorithm that begins by 
making the assumption that a node has no parents, and then adds incrementally that parent 
whose addition most increases the probability of the resulting structure. When the addi- 
tion of no single parent can increase the probability, we stop adding parents to the node. 
Researchers have made extensive use of similar greedy-search methods in classification 
systems--for example, to construct classification trees (Quinlan, 1986) and to perform var- 
iable selection (James, 1985). 

We shall use the following function: 

qi ri 
(r/ - l)! I - [  Nijk!, 

g(i, ~ri) = I I  (Ni2 + ~ii 1)! k=l 
j=l 

(12) 

where the Nijk are computed relative to 71- i being the parents of x i and relative to a database 
D, which we leave implicit. From section 2.2, it follows that g(i, ~ri) can be computed 



322 (~.E COOPER AND E. HERSKOVITS 

in O(m u r) time, where u is the maximum number of parents that any node is permitted 
to have, as designated by the user. We also shall use a function Pred(xi) that returns the 
set of nodes that precede xi in the node ordering. The following pseudocode expresses the 
heuristic search algorithm, which we call K2. 5 

1. procedure  K2; 
2, {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the 
3. number of parents a node may have, and a database D containing m cases. } 
4. {Output: For each node, a printout of the parents of the node.} 
5. f o r i  :=  1 r o n d o  
6. a-i: = 0; 
7. Pold :=  g(i, ~ri); {This function is computed using equation (12).} 
8. OKToProceed :=  t rue 
9. while OKToProceed and l a-il < u do 

10. let z be the node in Pred(xi) - ~r i that maximizes g(i, ~r i U {z}); 
11. Pnew :=  g(i, 7r i t_J {Z}); 
12. if P,~w > Pold then 
13. Potd :=  Pn~; 
14. 7ri : =  ~'i U {Z} 

!5. else OKToProceed :=  false; 
16. end {while}; 
17. write( 'Node: ' ,  xi, 'Parents of this node:;  ~ri) 
18. end {for}; 
19. end {K2}; 

We now analyze the time complexity of K2. We shall assume that the factorials that are 
required to compute equation (12) have been precomputed and have been stored in an array. 
Equation (12) contains no factorial greater than (m + r - 1)!, because Nij can have a value 
no greater than m. We can compute and store the factorials of the integers from 1 to 
(m + r - 1) in O(m + r - 1) time. A given execution of line 10 of the K2 procedure 
requires that g be called at most n - 1 times, because xi has at most n - 1 predecessors 
in the ordering. Since each call to g requires O(m u r) time, line 10 requires O(m u n r) 

time. The other statements in the while statement require O(1) time. Each time the while 
statement is entered, it loops O(u) times. The for statement loops n times. Combining these 
results, the overall complexity of K2 is O(m + r - 1) + O(m u n r) O(u) n = O(m u 2 

n 2 r). In the worst case, u = n, and the complexity of K2 is O(m t7 4 r) .  

We can improve the run-time speed of K2 by replacing g(i , 7ri) and g(i, 7ri kJ {z}) by 
log(g(/ , ~-i)) and log(g(/, 7r i U {z})), respectively. Run-time savings result because the 
logarithmic version of equation (12) requires only addition and subtraction, rather than 
multiplication and division. If  the logarithmic version of equation (12) is used in K2, then 
the logarithms of factorials should be precomputed and should be stored in an array. 

We emphasize that K2 is just one of many possible methods for searching the space of 
belief networks to maximize the probability metric given by equation (5). Accordingly, 
theorem 1 and equation (5) represent more fundamental results than does the K2 algorithm. 
Nonetheless, K2 has proved valuable as an initial search method for obtaining preliminary 
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test results, which we shall describe in section 5. An open research problem is to explore 
other search methods. For example, consider an algorithm that differs from K2 only in 
that it begins with a fully connected belief-network structure (relative to a given node order) 
and performs a greedy search by removing arcs; call this algorithm K2R (K2 Reverse). 
We might apply K2 to obtain a belief-network structure, then apply K2R to obtain another 
structure, and finally report whichever structure is more probable according to equation 
(5). Another method of search is to generate multiple random node orders, to apply K2 
using each node order, and to report which among the belief-network structures output 
by K2 is most probable. Other search techniques that may prove useful include methods 
that use beam search, branch-and-bound techniques, and simulated annealing. 

3.2. Missing data and hidden variables 

In this section, we introduce normative methods for handling missing data and hidden var- 
iables in the induction of belief networks from databases. These two methods are funda- 
mentally the same. As we present them, neither method is efficient enough to be practical 
in most real-world applications. We introduce them here for two reasons. First, they demon- 
strate that the Bayesian approach developed in this paper admits conceptually simple and 
theoretically sound methods for handling the difficult problems of missing data and hidden 
variables. Second, these methods establish a theoretical basis from which it may be possible 
to develop more efficient approaches to these two problems. Without such a theoretical 
basis, it may be difficult to develop sound methods for addressing the problems pragmatically. 

3.2.1. Missing data 

In this section, we consider cases in database D that may contain missing values for some 
variables. Let Ch denote the set of variable assignments for those variables in the hth case 
that have known values and let C[ denote the set of variables in the case that have missing 
values. The probability of the hth case can be computed as 

P(ChlBs, Be) = ~  P(Ch, C/,IBs, Be), (13) 
cA 

where ~cA means that all the variables in C~ are running through all their possible values. 
By substituting equation (13) into equation (4), we obtain 

I I (14) 

To facilitate the next step of the derivation, we now introduce additional notation to describe 
the value assignments of variables. Let xi be an arbitrary variable in C[ or Ch. We shall 
write a value assignment of xi as xi = dih, where dih is the value of xi in case h. For a 
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variable xi in C/,, dih is not known, because xi is a variable with a missing value. The sum 
in equation (13) means that for each variable xi in C~ we have dih assume each value that 
is possible for xi. The overall effect is the same as stated previously for equation (13). 

As an example, consider a database containing three binary variables that each have pres- 
ent or absent as a possible value. Suppose in case 7 that variable xl has the value present 
and the values of variables x2 and x3 are not known. In this example, C7 = {x~ = present}, 
and C4 = {xa = dzT, x3 = d3v}. For case 7, equation (13) states that the sum is taken over 
the following four joint substitutions of values for dz7 and d37:{d~7 +-- absent, d37 ~- 
absent}, {d27 ~- absent, d37 ~ present},  {dza ~ present, d~7 ~ absent},  and {d27 ~- 
present, d37 ~ present}.  For each such joint substitution, we evaluate the probability 
within the sum of equation (13). 

The reason we introduced the dih notation is that it allows us to assign case-specific 
values to variables with missing values. We need this ability in order to move the summa- 
tion in equation (14) to the outside of the integral. In particular, we now can rearrange 
equation (14) as follows: 

P(Bs, D) =~__~ , . .  ~-] fe  I ~ P(Ch, C/,IBs, Be)]f(Bp[Bs)P(Bs)dBp. 
C~ C~ P _ h=i  

(15) 

Equation 15 is a sum of the type of integrals represented by equation (4), which we solved 
using equation (5). Thus, equation (15) can be solved by multiple applications of equation (5). 

The complexity of computing equation (15) is exponential in the number of missing val- 
ues in the database. As stated previously, this level of complexity is not computationally 
tractable for most real-world applications. Equation 15 does, however, provide us with a 
theoretical starting point for seeking efficient approximation and special-case algorithms, 
and we are pursuing the development of such algorithms. Meanwhile, we are using a more 
efficient approach for handling missing data. In particular, if a variable in a case has a 
missing value, then we give it the value U (for unknown). Thus, for example, a binary 
variable could be instantiated to one of three values: absent, present, or U. Other approaches 
are possible, including those that compute estimates of the missing values and use these 
estimates to fill in the values. 

Example: Suppose that our database D is limited to the first two cases in table 1, and that 
the value of x 2 in the first case is missing. Let us calculate P(Bs~, D) .  Applying equation 
(14), we have 

P(Bs~, D) = fe [P(x~ -~ 1, x2 = O, x 3 = OIBsl , Be) + P(x~ = 1, x 2 = 1,  
P 

X 3 = 0 [ B s 1 ,  Bp)] X P(x 1 = 1, x 2 = 1, x3 = 1 ]Bs~, Be) f (BptBs~)P(Bs l )dBp 

which, by equation (15), is equal to 
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f ~  P(xl = 1, x~ = O, x3 = OIBs~, Be)P(xl = 1, x2 = 1, x3 = l J B s l ,  Be) 
P 

f (Bp I Bs 1)P(Bs~)dBp 

+ f~  P(xl = 1, x2 = 1, x3 = OlBs~, Be)P(x~ = 1, x 2 = 1, x 3 = 1 ]Bsl, Be) 
P 

f (B~, I Bs OP(Bs 1)dBe. 

Each of these last two integrals can be solved by the application of equation (5). 

3. 2.2. Hidden variables 

A hidden (latent) variable represents a postulated entity about which we have no data. For 
example, we may wish to postulate the existence of a hidden variable i f  we are looking 
for a hidden causal factor that influences the production of the data that we do observe. 
We can handle a hidden variable (or variables) by applying equation (15), where the hidden 
variable is assigned a missing value for each case in the database. In a belief-network struc- 
ture, the hidden variable is represented as a single node, just  as is any other variable. 

Example: Assume the availability of the database shown in table 3, which we shall denote 

as D. 
Suppose that we wish to know P(Bs2 , D), where Bs2 is the network structure shown 

in figure 2. Note that, relative to D, x~ is a hidden variable, because D contains no data 
about xl.  Let  us assume for this example that x~ is a binary variable. Applying equation 

(15), we obtain the following result: 

P(Bs2, D) = 

fB P(xl = O, X2 = O, X 3 = OIBs2, Be) P(xl = O, x 2 = 1, x 3 = l IBs2, Be) 
P 

f (Be l Bs2)P(Bsz)dBe 

+ f ~  P(x~ = 0, X 2 = 0 ,  X 3 = O IBs2, Be) P(x~ = 1, x2 = 1, x3 = I lBse, Be) 
P 

f (Be ] Bs ~)P (Bs 2)dBe 

+ fl~ P(xl = 1, x~ = O,x 3 = O IBs2, Be) P(xl = O, x2 = 1, x 3 = I IBse, Be) 
P 

f (B~, I Bs 2)P(Bs2)dBe 

+ fB  P(xl = 1, x2 = 0, x 3 = O IBs2, Be) P(x~ = 1, X 2 = 1 ,  X 3 = 1 I Bs~, Be) 
P 

f (Bp I Bsz)P (Bsz)dBe. 

Each of these four integrals can be solved by application of equation (5). []  
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Table ~ The database for the hidden 
variable example. 

Case x2 x3 

1 absent absent 
2 present present 

One difficulty in considering the possibility of hidden variables is that there is an unlimited 
number of them and thus an unlimited number of belief-network structures that can contain 
them. There are many possible approaches to this problem; we shall outline here the ap- 
proaches that we believe are particularly promising. One way to avoid the problem is simply 
to limit the number of hidden variables in the belief networks that we postulate. Another 
approach is to specify explicitly nonzero priors for only a limited number of belief-network 
structures that contain hidden variables. In addition, we may be able to use statistical indi- 
cators that suggest probable hidden variables, as discussed in (Pearl & Verma, 1991; Spirtes 
& Glymour, 1990; Spirtes et al., 1990b; Verma & Pearl, 1990); we then could limit ourselves 
to postulating hidden variables only where these indicators suggest that hidden variables 
may exist. 

A related problem is to determine the number of values to define for a hidden variable. 
One approach is to try different numbers of values. That is, we make the number of values 
of each hidden variable be a parameter in the search space of belief-network structures. 
We note that some types of unsupervised learning have close parallels to discovering the 
number of values to assign to hidden variables. For example, researchers have successfully 
applied unsupervised Bayesian learning methods to determine the most probable number 
of values of a single, hidden classification variable (Cheeseman, Self, Kelly, Taylor, Freeman, 
& Stutz, 1988). We believe that similar methods may prove useful in addressing the prob- 
lem of learning the number of values of hidden variables in belief networks. 

4. Expectations of probabilities 

The previous sections concentrated on belief-network structures. In this section, we focus 
on deriving numerical probabilities when given a database and a belief-network structure 
(or structures). In particular, we shall tbcus on determining the expectation of probabilities. 

4.1. Expectations of network conditional probabilities 

Let Oij k denote the conditional probability P(x  i = Vik I 7F i = wij)--that is, the probability 
that x i has value vik, for some k from 1 to ri, given that the parents of xi,  represented by 
~ri, are instantiated as w O. Call Oijk a ne twork  condi t ional  probabi l i ty .  Let ( denote the four 
assumptions in section 2.1. Consider the value of E[Oij~ID, Bs ,  (], which is the expected 
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value of 0/j~ given database D, the belief-network structure Bs, and the assumptions ~. In 
theorem 2 in the appendix, we derive the following result: 

E [ O i j k [ D ,  Bs, ~] - Nij~ + 1 
Nij + ri 

(16) 

In corollary 2 in the appendix, we derive a more  general version of E[OijklD, B s, ~] by 
relaxing assumption 4 in section 2.1 to allow the user to express prior probabilities on 
the values of  network conditional probabilities. E[Oij~] D, Bs, ~] is sometimes called the 
Bayes" estimator of Oij~. The value of E[OijklD, Bs, ~] in equation (16) is equal to the ex- 
pectation of Oijk as calculated using a uniform probability distribution and using the data 
in D (deGroot, 1970). We note that Spiegelhalter and Lauritzen (1990) also have used such 
expectations in their work on updating belief-network conditional probabilities. 

By applying an analogous analysis for variance, we can show that (Wilks, 1962) 

Var[Oi~lD, Bs, ( l  = ( N i ~  + 1)(N~ + r i - N i j  ~ - 1) 
(Nij + ri)2(Nij + r i + 1) 

(17) 

Example: Consider the probability P(x2 = present [ x~ = present) for belief-network struc- 
ture Bsa. Let 0212 represent P(x2 = present lxl = present). We now wish to determine 
E[O2tz I D, Bs, ~] and Var[0212 I D, Bs, ff], where D is the database in table L Since x2 is 
a binary variable, r2 = 2. There are five cases in D in which x~ = present and therefore, 
N21 = 5. Of  these five, there are four cases in which Xl = present and x2 = present, and, 
thus, N2~ = 4. Substituting these values into equations (16) and (17), we obtain E[O212[D, 
Bs, ~1 = 0.71 and Var[02121D, Bs, ~] = 0.03. [] 

4.2. Expectations of  general conditional probabilities given a network structure 

A common application of a belief network is to determine E[P(WI i W2)], where W~ and 
W 2 are sets of instantiated variables. For example, W 1 might be a disease state and W 2 a 
set of symptoms. Consider a decision that depends on just the likelihood of W~, given that 
W2 is known. Researchers have shown that E[P(W~IW2)] provides sufficient information 
to determine the optimal decision to make within a decision-theoretic framework, as long 
as the decision must be made without the benefit of additional information (Howard, 1988). 
Thus, in many situations, knowledge of E[P(WII W2)] is sufficient for decision making. 

Since, in this paper we are constructing belief networks based on a database D, we wish 
to know E[P(Wll W2) ID , Bs, ~]. In (Cooper & Herskovits, 1991), we derive the follow- 
ing equation: 

E[P(W1 I W2) t D, Bs, ~] = P(Wl l W2), 08) 

where P(WI 1 W2) is computed with a belief network that uses the probabilities given by 
equation (16). 
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4.3. Expectations of general conditional probabilities over all network structures 

On the right side of equation (18), D, B s and ~ are implicit conditioning information. To 
be more explicit, we can rewrite that equation as 

E[P(WIlWz) ID, Bs, ~] = P(w~iw2, D, Bs, ~) (19) 

where P(W 1 i W2, D, B s, ~) may be calculated as P(WI [ g½) using a belief network with 
a structure Bs and with conditional probabilities that are derived using equation (16). For 
optimal decision making, however, we actually wish to know E[P(WI ! W2) [D, (], rather 
than E[P(Wt 1 W2) I D, Bs, ~] for some particular Bs about which we are uncertain. We can 
derive E[P(W1iW2)]D, ~] as 

E[P(Wll Wa)ID, ~l = Z  E[P(WIIW2)]D, Bs, ~1 P(BsI W2, D ~), 
BS 

which, by equation (19), becomes 

E[P(W1]W2)ID, ~] = ~  P(WtIW2, D, B s, ~) P(Bs]W2, D ~). 
BS 

(20) 

The probability P(Bs] I412, D, ~) is interesting because it contains W2 as conditioning infor- 
mation. We can view W z as additional data that augment D. If D is large, we may choose 
to approximate P(Bs[ W2, D, ~) as P(B s I D, ~). Alternatively, we may choose to assume 
that W2 provides no additional information about Bs, and therefore that P(Bs] W2, D, e~) 
= P(Bs[D, ~). Otherwise, we must treat W 2 as an additional case in the database. Typ- 
ically, Wz will represent an incomplete case in which some model variables have unknown 
values. In this situation, the techniques we discuss in section 3.2.1 for handling missing 
data can be used to compute P(BstW2, D, ~). 

Although it is not computationally feasible to calculate equation (20) for models with more 
than a few variables, this equation provides a theoretical framework for seeking rapid and 
accurate special-case, approximate and heuristic solutions. For example, techniques--such 
as those discussed in the final paragraph of section 3.1--might be used in searching for 
belief-network structures that yield relatively high values for P(Bs I W2, D, ~). If we normal- 
ize over this set of structures, we can apply equation (20) to estimate heuristically the value 
of E[P(WI [ W2) I D, ~1. Another possible approach toward estimating E[P(WI I W2) i D, ~] 
is to apply sampling techniques that use stochastic simulation. 

Example: Suppose we wish to know P(x z = present Ix 1 = present) given database D, 
which is shown in table 4. 

Let us compute P(x 2 = present ]xl = present) by using equation (20) and the assump- 
tion that P(Bstxl = present, D, ~) = P(Bst D, ~). For simplicity, we abbreviate P(x 2 = 
presentlx 1 = present) as P(x 2 Ix1), leaving the values of x 1 and x 2 implicit. We shall 
enclose network structures in braces for clarity; so, for example, {x~ -~ x2} means that 
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Table 4. The database used in the example 
of the application of equation (20). 

Case X 1 X 2 

1 present present 
2 present present 
3 present present 
4 absent present 
5 absent absent 

Xl is the parent of x2. Given a model with two variables, there are only three possible 
belief-network structures--namely, {Xl ~ x2}, {x2 --' Xl}, and {Xl x2}. Thus, by equa- 
tion (20) 

E[P(x2]xl)lD, ,~] = P(x2]x~, D, {xl -~ x2}, ~)P({xl ~ x2} ID, ~) 

÷ P(x2lx~, D, {x 2 ~ x~}, ~)P({x2 ~ x~} ID, ~) 

÷ P(x21xl, D, {xl x2}, ~)P({xl x2}]D, ~) 

= 0.80 × 0.33 + 0.83 × 0.40 + 0.71 × 0.27 = 0.79, 

where (1) the probabilities 0.80, 0.83, and 0.71 were computed with the three respective 
belief networks that each contain network conditional probabilities derived using equation 
(16), and (2) the probabilities 0.33, 0.40, and 0.27 were computed using the methods discussed 
in section 2.3. 

5. Preliminary results 

In this section, we describe an experiment in which we generated a database from a belief 
network by simulation, and then attempted to reconstruct the belief network from the data- 
base. In particular, we applied the K2 algorithm discussed in section 3.1.2 to a database 
of 10,000 cases generated from the ALARM belief network, which has the structure shown 
in figure 4. Beinlich constructed the ALARM network as an initial research prototype to 
model potential anesthesia problems in the operating room (Beinlich et al., 1989). To keep 
figure 4 uncluttered, we have replaced the node names in ALARM with the numbers shown 
in the figure. For example, node 20 represents that thepatient is receiving insufficient anes- 
thesia or analgesia, node 27 represents an increased release o f  adrenaline by the patient, 
node 29 represents an increased patient heart rate, and node 8 represents that the EKG 
is measuring an increased patient heart rate. When ALARM is given input findings-- 
such as heart rate measurements--it outputs a probability distribution over a set of possible 
problems--such as insufficient anesthesia. ALARM represents 8 diagnostic problems, 16 
findings, and 13 intermediate variables that connect diagnostic problems to findings. ALARM 
contains a total of 46 arcs and 37 nodes, and each node has from two to four possible values. 
Knowledge for constructing ALARM came from Beinlich's reading of the literature and 
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Figure 4. The ALARM belief-network structure, containing 37 nodes and 46 arcs. 

from his own experience as an anesthesiologist. It took Beinlich approximately 10 hours 
to constrnct the ALARM belief-network structure, and about 20 hours to fill in all the 
corresponding probability tables. 

We generated cases from ALARM by using a Monte Carlo technique developed by 
Henrion for belief networks (Henrion, 1988). Each case corresponds to a value assignment 
for each of the 37 variables. The Monte Carlo technique is an unbiased generator of cases, 
in the sense that the probability that a particular case is generated is equal to the probability 
of the case existing according to the belief network. We generated 10,000 such cases to 
create a database that we used as input to the K2 algorithm. We also supplied K2 with 
an ordering on the 37 nodes that is consistent with the partial order of the nodes as specified 
by ALARM. Thus, for example, node 21 necessarily appears in the ordering before node 
10, but it is not necessary for node 21 to appear immediately before node 10 in the order- 
ing. Observing this ordering constraint, we manually generated a node order using the 
ALARM structure. 6 In particular, we added a node to the node-order list only when all 
of that node's parents were already in the list. During the process of constructing this node 
order, we did not consider the meanings of the nodes. 

From the 10,000 cases, the K2 algorithm constructed a network identical to the ALARM 
network, except that the arc from node 12 to node 32 was missing and an arc from node 
15 to node 34 was added. A subsequent analysis revealed that the arc from node 12 to 
node 32 is not strongly supported by the 10,000 cases. The extra arc from node 15 to node 
34 was added due to the greedy nature of the K2 search algorithm. The total search time 
for the reconstruction was approximately 16 minutes and 38 seconds on a Macintosh II 
running LightSpeed Pascal, Version 2.0. We analyzed the performance of K2 when given 
the first 100, 200, 500, 1000, 2000 and 3000 cases from the same 10,000-case database. 
The results of applying K2 to these databases are summarized in table 5. Using only 3000 
cases, K2 produced the same belief network that it created using the full 10,000 cases. 

Although preliminary, these results are encouraging because they demonstrate that K2 
can reconstruct a moderately complex belief network rapidly from a set of cases using 
readily available computer hardware. (For the results of K2 applied to databases from other 
domains, see (Herskovits, 1991).) We plan to investigate the extent to which the performance 
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Table 5. The results of applying K2 with subsets of the 10,000 ALARM cases. 

100 5 33 19 
200 4 19 29 
500 2 7 55 

1,000 1 5 108 
2,000 I 3 204 
3,000 1 1 297 

10,000 1 1 998 

of K2 is sensitive to the ordering of  the nodes in ALARM and in other domains. In addi- 
tion, we plan to explore methods that do not require an ordering. 

6. Re la t ed  w o r k  

In sections 2 through 5, we described a Bayesian approach to learning the qualitative and 
quantitative dependency relationships among a set of discrete variables. For notational sim- 
plicity, we shall call the approach BLN (Bayesian/earning of belief networks). Many diverse 
methods for automated learning from data have been developed in fields such as statistics 
(Glymour, Scheines, Spirtes, & Kelley, 1987; James, 1985; Johnson & Wichern, 1982) and 
AI (Blum, 1982; Carbonell, 1990; Hinton, 1990; Michalski, Carbonell, & Mitchell, 1983; 
Michalski, Carbonell, & Mitchell, 1986). Since it is impractical to survey all these methods, 
we shall restrict our review to representative methods that we believe are closest to BLN. 
We group methods into several classes to organize our discussion, but acknowledge that 
this classification is not absolute and that some methods may cross boundaries. 

6,1. Methods based on probabilistic-graph models 

In this section, we discuss three classes of techniques for constructing probabilistic-graph 
models from databases. 

61.1. Belief-network methods 

Chow and Liu (1968) developed a method that constructs a tree-structured Markov graph, 
which we shall call simply a tree, from a database of discrete variables. I f  the data are 
being generated by an underlying distribution P that can be represented as a tree, then 
the Chow-Liu algorithm constructs a tree with a probability distribution that converges 
to P as the size of the database increases. If  the data are not generated by a tree, then the 
algorithm constructs the tree that most closely approximates the underlying distribution 
P (in the sense of cross-entropy). 

A polytree (singly connected network) is a belief network that contains at most one un- 
directed path (i.e., a path that ignores the direction of arcs) between any two nodes in the 
network. Rebane and Pearl (1987) used the Chow-Liu algorithm as the basis for an algorithm 
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that recovers polytrees from a probability distribution. In cases where the orientation of 
an arc cannot be determined from the distribution, an undirected edge is used. In deter- 
mining the orientation of arcs, the Rebane-Pearl algorithm assumes the availability of a 
conditional-independence (CI) test--a test that determines categorically whether the follow- 
ing conditional independence relation is true or false: Variables in a set X are independent 
of variables in a set Y, given that the variables in a set Z are instantiated. In degenerate 
cases, the algorithm may not return the structure of the underlying belief network. In addi- 
tion, for a probability distribution P that cannot be represented by a polytree, the algorithm 
is not guaranteed to construct the polytree that most closely approximates P (in the sense 
of cross-entropy). An algorithm by ~ Geiger, Paz, and Pearl (1990) generalizes the Rebane- 
Pearl algorithm to recover polytrees by using less restrictive assumptions about the distri- 
bution P. 

Several algorithms have been developed that use a CI test to recover a muln'ply connected 
belief network, which is a belief network containing at least one pair of nodes that have 
at least two undirected paths between them. All such algorithms we describe here run in 
time that is exponential in the number of nodes in the worst case. Wermuth and Lauritzen 
(1983) describe a method that takes as input an ordering on all model nodes and then applies 
a CI test to a distribution to construct a belief network that is a minimal I-map. 7 Srinivas, 
Russell, and Agogino (1990) allow the user to specify a weaker set of constraints on the 
ordering of nodes, and then use a heuristic algorithm to search for a belief network I-map 
(possibly nonminimal). 

Spirtes, Glymour, and Scheines (1990b) developed an algorithm that does not require 
a node ordering in order to recover multiply connected belief networks. Verma and Pearl 
(1990) subsequently presented a related algorithm, which we now shall describe. The algo- 
rithm first constructs an undirected adjacency graph among the nodes. Then, it orients 
edges in the graph, when this step is possible given the probability distribution. The method 
assumes that there is some belief-network structure that can represent all the dependencies 
and independencies among the variables in the underlying probability distribution that gen- 
erated the data. There are, however, probability distributions for which this assumption 
is not valid. Verma and Pearl also introduce a method for detecting the presence of hidden 
variables, given a distribution over a set of measured variables. They further suggest an 
information-theoretic measure as the basis for a CI test. The CI test, however, requires 
determining a number of independence relations that is on the order of n - 2. Such tests 
may be unreliable, unless the volume of data is enormous. 

Spirtes, Glymour, and Scheines (1991) have developed an algorithm, called PC, that, for 
graphs with a sparse number of edges, permits reliable testing of independence using a 
relatively small number of data. PC does not require a node ordering. For dense graphs 
with limited data, however, the test may be unreliable. For discrete data, the PC algorithm 
uses a CI test that is based on the chi-square distribution with a fixed alpha level. Spirtes 
and colleagues applied PC with the 10,000 ALARM cases discussed in section 5. PC recon- 
structed ALARM, except that three arcs were missing and two extra arcs were added; the 
algorithm required about 6 minutes of computer time on a DecStation 3100 to perform 
this task (Spirtes, Glymour, & Scheines, 1990a). 
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6,1.2. Markov graph methods 

Fung and Crawford (1990) have developed an algorithm called Constructor that constructs 
an undirected graph by performing a search to find the Markov boundary of each node. 
The algorithm uses a chi-squared statistic as a CI test. In general, the smaller the Markov 
boundary of the nodes, the more reliable the CI test statistic. For nodes with large Markov 
boundaries, the test can be unreliable, unless there is a large number of data. A probability 
distribution for the resulting undirected graph is estimated from the database. The method 
of Lauritzen and Spiegelhalter (1988) then is applied to perform probabilistic inference 
using the undirected graph. An interesting characteristic of Constructor is that it pretunes 
the CI test statistic. In particular, instead of assuming a fixed alpha level for the test statistic, 
the algorithm searches for a level that maximizes classification accuracy on a test subset 
of cases in the database. Constructor has been applied successfully to build a belief network 
that performs information retrieval (Fung, Crawford, Appelbaum, & Tong, 1990). 

6,1.3. Entropy-based methods 

In the field of system science, the reconstruction problem focuses on constructing from 
a database an undirected adjacency graph that captures node dependencies (Pittarelli, 1990). 
Intuitively, the idea is to find the smallest graph that permits the accurate representation 
of a given probability distribution. The adequacy of a graph often is determined using entropy 
as a measure of information content. Since the number of possible graphs typically is enor- 
mous, heuristics are necessary to render search tractable. For example, one reconstruction 
algorithm searches for an adjacency graph by starting with a fully connected graph. The 
search is terminated when there is no edge that can be removed from the current graph 
G1 to form a graph G2, such that the information loss in going from G1 and G 2 is below 
a set threshold. In this case, G1 is output as the dependency graph. 

The Kutat6 algorithm, which is described in (Herskovits, 1991; Herskovits & Cooper, 
1990), shares some similarities with the system-science reconstruction algorithms. In par- 
ticular, Kutat6 uses an entropy measure and greedy search to construct a model. One key 
difference, however, is that Kutat6 constructs a belief network rather than an undirected 
graph. The algorithm starts with no arcs and adds arcs until a halting condition is reached. 
Using the 10,000 cases generated from the ALARM belief network discussed in section 5, 
Kutat6 reconstructed ALARM, except that two arcs were missing and two extra arcs were 
added. The reconstruction required approximately 22.5 hours of computer time on a Mac- 
intosh II computer. For a detailed analysis of the relationship between entropy-based algo- 
rithms such as Kutat6, and Bayesian algorithms such as K2, see (Herskovits, 1991). 

An algorithm developed by Cheeseman (1983) and extended by Gevarter (1986) implicitly 
searches for a model of undirected edges in the form of variable constraints. The algorithm 
adds constraints incrementally to a growing model. If  the maximum-entropy distribution 
of models containing constraints of order n + 1 is not significantly different from that 
of models containing constraints of order n, then the search is halted. Otherwise, con- 
straints of order n + 1 are added until no significant difference exists; then, constraints 
of order n + 2 are considered, and so on. 
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6.2. Classification trees 

Another class of algorithms constructs classification trees 8 from databases (Breiman, Fried- 
man, Olshen, & Stone, 1984; Buntine, 1990b; Hunt, Marin, & Stone, 1966; Quinlan, 1986). 
In its most basic form, a classification tree is a rooted binary tree, where each pair of 
branches out of a node corresponds to two disjoint values (or value ranges) of a domain 
variable (attribute). A leaf node corresponds to a classification category or to a probability 
distribution over the possible categories. We can apply a classification tree by using known 
attribute values to traverse a path down the tree to a leaf node. In constructing a classifica- 
tion tree, the typical goal is to build the single tree that maximizes expected classification 
accuracy on new cases. Several criteria, including information-theoretic measures, have 
been explored for determining how to construct a tree. Typically, a one-step lookahead 
is used in constructing branch points. In an attempt to avoid overfitting, trees often are 
pruned by collapsing subtrees into leaves. CART is a well-known method for constructing 
a classification tree from data (Breiman et al., 1984). CART has been studied in a variety 
of domains such as signal analysis, medical diagnosis, and mass spectra classification; it 
has performed well relative to several pattern-recognition methods, including nearest- 
neighbor algorithms (Breiman et al., 1984). 

Buntine (1990b) independently has developed methods for learning and using classifica- 
tion trees that are similar to the methods we discuss for belief networks in this paper. In 
particular, he has developed Bayesian methods for (1) calculating the probability of a 
classification-tree structure given a database of cases, and (2) computing the expected value 
of the probability of a classification instance by using many tree structures (called the option- 
trees method). Buntine empirically evaluated the classification accuracy of several algorithms 
on 12 databases from varied domains, including the LED database of Breiman et al. (1984) 
and the iris database of Fisher. He concluded that "option trees was the only approach 
that was usually significantly superior to others in accuracy on most data sets" (Buntine, 
1990b, page 110). 

Kwok and Carter (1990) evaluated a simple version of the option-trees method on two 
databases. In particular, they averaged the classification results of multiple classification 
trees on a set of problems. The averaging method usually yielded more accurate classifica- 
tion than did any single tree, including the tree generated by Quinlan's ID3 algorithm 
(Quinlan, 1986). Averaging over as few as three trees yielded significantly improved classi- 
fication accuracy. In addition, averaging over trees with different structures produced clas- 
sification more accurate than that produced by averaging over trees with similar structures. 

In the remainder of section 6.2, we present a brief comparison of classification trees 
and belief networks. For a more detailed discussion, see (Crawford and Fung, 1991). Clas- 
sification trees can readily handle both discrete and continuous variables. A classification 
tree is restricted, however, to representing the distribution on one variable of interest--the 
classification variable. With this constraint, however, classification trees often can repre- 
sent compactly the attributes that influence the distribution of the classification variable. 
It is simple and efficient to apply a classification tree to perform classification. For belief 
networks, there exist approximation and special-case methods for handling continuous var- 
iables (Shachter, 1990). Currently, however, the most common way of handling these vari- 
ables is to discretize them. Belief networks can capture the probabilistic relationships among 
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multiple variables, without the need to designate a classification variable. These networks 
provide a natural representation for capturing causal relationships among a set of variables 
(see (Crawford & Fung, 1991) for a case study). In addition, inference algorithms exist 
for computing the probability of any subset of variables conditioned on the values of any 
other subset. In the worst case, however, these inference algorithms have a computational 
time complexity that is exponential in the size of the belief network. Nonetheless, for net- 
works that are not densely connected, there exist efficient exact inference algorithms 
(Henrion, 1990). In representing the relationship between a node and its parents, there 
are certain types of value-specific conditional independencies that cannot be captured easily 

" in a belief network. In some instances, classification trees can represent these independen- 
cies efficiently and naturally. Researchers recently have begun to explore extensions to be- 
lief networks that capture this type of independence (Fung & Shachter, 1991; Geiger and 
Heckerman, 1991). 

6.3. Methods that handle hidden variables 

In the general case, discovering belief networks with hidden variables remains an unsolved 
problem. Nonetheless, researchers have made progress in developing methods for detecting 
the presence of hidden variables in some situations (Spirtes & Glymour, 1990; Spirtes et al., 
1990b; Verma & Pearl, 1990). Pearl developed a method for constructing from data a tree- 
structured belief network with hidden variables (Pearl, 1986). Other researchers have devel- 
oped algorithms that are less sensitive to noise than is Pearl's method, but that still are 
restricted to tree-structured networks (Golmard & Mallet, 1989; Liu, Wilkins, Yin, & Bian, 
1990). The Tetrad program is a semiautomated method for discovering causal relationships 
among continuous variables (Glymour et al., 1987; Glymour & Spirtes, 1988). Tetrad con- 
siders only normal linear models. By making the assumption that linearity holds, the pro- 
gram is able to use an elegant method based on tetrads and partial correlations to introduce 
likely latent (hidden) variables into causal models; these methods have been evaluated and 
compared to statistical techniques such as LISREL and EQS (Spirtes, Scheines, & Glymour, 
1990c). Researchers have made little progress, however, in developing general nonparametric 
methods for discovering hidden variables in multiply connected belief networks. 

7. Summary and open problems 

The BLN approach presented in this paper can represent arbitrary belief-network struc- 
tures and arbitrary probability distributions on discrete variables. Thus, in terms of its rep- 
resentation, BLN is nearest to the most general probabilistic network approaches discussed 
in section 6.1. 

The BLN learning methodology, however, is closest to the Bayesian classification-tree 
m.~thod discussed in section 6.2. Like that method, BLN calculates the probability of a 
structure of variable relationships given a database. The probability of multiple structures 
can be computed and displayed to the user. Like the option-trees method, BLN also can 
use multiple structures in performing inference, as discussed in section 4.3. The BLN 
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approach, however, uses a directed acyclic graph on nodes that represent variables rather 
than a tree on nodes that represent variable values or value ranges. When the number of 
domain variables is large, the combinatorics of enumerating all possible belief network 
structures becomes prohibitive. Developing methods for efficiently locating highly probable 
structures remains an open area of research. 

Except for Bayesian classification trees, the methods discussed in section 6 are non- 
Bayesian. These methods emphasize finding the single most likely structure, which they 
then may use for inference. They do not, however, quantify the likelihood of that structure. 
If  a single structure is used for inference, implicitly the probability of that structure is 
assumed to be 1. Section 6.2 discussed results suggesting that using multiple structures 
may improve the accuracy of classification inference. Also, the non-Bayesian methods rely 
on having threshold values for determining when conditional independence holds. BLN 
does not require the use of such thresholds. 

BLN is data-driven by the cases in the database and model-driven by prior probabilities. 
BLN is able to represent the prior probabilities of belief-network structures. In section 2.1 
we suggested the possibility that these probabilities may provide one way to bridge BLN 
to other AI methods. Prior-probability distributions also can be placed on the conditional 
probabilities of a particular belief network, as we show in corollaries 1 and 2 in the appen- 
dix. If  the prior-probability distributions on structures and on conditional probabilities are 
not available to the computer, then uniform priors may be assumed. Additional methods 
are needed, however, that facilitate the representation and specification of prior probabilities, 
particularly priors on belief-network structures. 

As we discussed in section 6.3, there has been some progress in developing methods 
for detecting hidden variables, and in the case of some parametric distributions, for search- 
ing for a likely model containing hidden variables. BLN can compute the probability of 
an arbitrary belief-network structure that contains hidden variables and missing data without 
assuming a parametric distribution. More specifically, no additional assumptions or heuris- 
tics are needed for handling hidden variables and missing data in BLN, beyond the assump- 
tions made in section 2.1 for handling known variables and complete data. Additional 
research is needed, however, for developing ways to search efficiently the vast space of 
possible hidden-variable networks to locate the most likely networks. 

Although BLN shows promise as a method for learning and inference, there remain 
numerous open problems, several of which we summarize here. For databases that are gen- 
erated from a belief network, it is important to prove that, as the number of cases in the 
database increases, BLN converges to the underlying generating network or to a network 
that is statistically indistinguishable from the generating network. This result has been proved 
in the special case that we assume a node order (Herskovits, 1991). Proofs of convergence 
in the presence of hidden variables also are needed. Related problems are to determine 
the expected number of cases required to recover a generating network and to determine 
the variance of P(Bs] D). The theoretical and empirical sensitivities of BLN to different 
types of noisy data need to be investigated as well. Another area of research is Bayesian 
learning of undirected networks, or, more generally, of mixed directed and undirected net- 
works. Also, recall that the K2 method presented in section 3.1.2 requires an ordering on 
the nodes. We would like to avoid such a requirement. One approach is to search for likely 
undirected graphs and to use these as starting points in searching for directed graphs. 



BAYESIAN INDUCTION OF PROBABILISTIC NETWORKS 337 

E x t e n d i n g  B L N  to h a n d l e  c o n t i n u o u s  va r i ab les  is a n o t h e r  open  p r o b l e m .  O n e  app roach  

to this p rob lem is to use  Bayesian methods  to discretize cont inuous  variables.  Finally, regard- 

ing evaluat ion,  the  results  in sec t ion  5 are p romis ing ,  bu t  are l imi ted  in scope.  Signif icant ly  

m o r e  emp i r i ca l  work  is needed  to inves t iga te  the  p rac t i ca l i ty  of  the  B L N  m e t h o d  w h e n  

app l ied  to da t abases  f r o m  di f fe rent  domains .  
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No te s  

1. Since there is a one-to-one correspondence between a node in B s and a variable in Bp, we shall use the terms 
node and variable interchangeably. 

2. An instantiated variable is a variable with an assigned value. 
3. If hashing is used to store information equivalent to that in an index tree, then it may be possible to obtain 

a bound tighter than O(m n 2 r + t~s ) for the average performance. In the worst case, however, due to the 
collisions of hash keys, an approach that uses hashing may be less efficient than the method described in this 
section. 

4. Binary trees can be used to represent the values of nodes in the index trees we have described. We note, but 
shall not prove here, that the overall complexity is reduced to O(m n 2 lg r + t~s ) if we use such binary trees 
in computing the values of Nij k and Nij. 

5. The algorithm is named K2 because it evolved from a system named Kutat6 (Herskovits & Cooper, 1990) 
that applies the same greedy-search heuristics. As we discuss in section 6.1.3, Kutatd uses entropy to score 
network structures. 

6. The particular ordering that we used is as follows: 12 16 17 18 19 20 21 22 23 24 25 26 28 30 31 37 1 2 
3 4  10 36 13 35 15 34 32 33 11 14 27 29 6 7  8 9  5. 

7. A belief network B is an I-map of a probability distribution P if every CI relation specified by the structure 
of B corresponds to a CI relation in P Further, B is a minimal I-map of P if it is an I-map of P and the removal 
of any arc from B yields a belief network that is not an I-map of P 

8. Classification trees also are known as decision trees, which are different from the decision trees used in deci- 
sion analysis. To avoid any ambiguity, we shall use the term classification tree. 

Appendix 

This  a p p e n d i x  inc ludes  two t h e o r e m s  and  two coro l l a r i es  tha t  a re  r e fe renced  in the  paper .  

The  proofs  o f  the  t h e o r e m s  are  de r ived  in detai l .  A l t h o u g h  this  level  of  detai l  l eng thens  

the  proofs, it avoids our  re ly ing on  prev ious  resul ts  that  may no t  be  famil iar  to some readers.  

Thus ,  the  proofs  are  largely  se l f -conta ined .  



338 G.F. COOPER AND E. HERSKOVITS 

Theorem 1, Let Z be a set of n discrete variables, where a variable x i in Z has r i possible 
value assignments: (vi~ . . . . .  viri)" Let D be a database of m cases, where each case con- 
tains a value assignment for each variable in Z. Let B s denote a belief-network structure 
containing just the variables in Z. Each variable xi in Bs has a set of parents, which we 
represent with a list of variables ~ri. Let Wgj denote the j th  unique instantiation of ~r i relative 
to D. Suppose there are qi such unique instantiations of ~ri. Define Nij~ to be the number 
of cases in D in which variable xi has the value vi~ and ~ri is instantiated as wij. Let 

r i 

= Z 
k=l 

Suppose the following assumptions hold: 

1. The variables in Z are discrete 
2. Cases occur independently, given a belief-network model 
3. There are no cases that have variables with missing values 
4. Before observing D, we are indifferent regarding which numerical probabilities to assign 

to the belief network with structure B s. 

From these four assumptions, it follows that 

qi (F i - -  1)! H Nijk!" 
P(Bs, D) = P(Bs) i=1 "= ( N i j  + r i  - -  1)! ~=1 

Proof.  By applying assumptions 1 through 4, we derive a multiple integral over a product 
of multinomial variables, which we then solve. 

The application of assumption 1 yields 

P(Bs, D )  = fB P(DIBs, Bp)f(BpIBs)P(Bs)dBp, 
P 

(A1) 

where Be is a vector whose values denote the conditional-probability assignments associ- 
ated with belief-network structure Bs, and f is the conditional-probability-density function 
over Be given B s. The integral is over all possible value assignments to Be. 

Since P(Bs) is a constant within equation (A1), we can move it outside the integral: 

P(Bs, D) = P(Bs) fB P(D[Bs' BP)f(BelBs)dBp" 
P 

(A2) 

It follows from the conditional independence of cases expressed in assumption 2 that equa- 
tion (A2) can be rewritten as 
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I ~-I P(ChlBs, Bp)J f (BetBs)dB~,  P(B s, D) = P(Bs) f Bp h=~ (A3) 

where rn is the number of  cases in D, and Ch is the hth case in D. 
We now introduce additional notation to facilitate the application of assumption 3. Let 

dih denote the value assignment of variable i in case h. For example, for the database in 
table 1, dzl = 0, since x2 = 0 in case 1. In B s, for every variable x i, there is a set of parents 
7ri (possibly the empty set). For each case in D, the variables in the list 7r i are each assigned 
a particular value. Let wi denote a list of the unique instantiations for the parents of xi 
as seen in D. An element in wi designates a list of values that are assigned to the respec- 
tive variables in the list 7ri. I f x  i has no parents, then we define wi to be the list (0), where 
0 represents the empty set of parents. Although the ordering of the elements in wi is arbi- 
trary, we shall use a list (vector), rather than a set, so that we can refer to members of 
wi using an index. For example, consider variable x2 in Bsl, which has the parent list 
7r2 = (xl). In this example, w2 = ((1), (0)), because there are cases in D where Xl has 
the value 1 and cases where it has the value 0. Define wij to be thej th  element of w i. Thus, 
for example, w21 is equal to (1). Let a(i, h) be an index function, such that the instantia- 
tion of 7r i in case h is the a(i, h)th element of wi. Thus, for example, 0(2, 3) = 2, because 
in case 3 the parent of variable xz--namely, x l - - is  instantiated to the value 0, which is 
represented by the second element of w2. Therefore, w2,o(2, 3) is equal to (0). Since, accord- 
ing to assumption 3, cases are complete, we can use equation (1) in section 1 to represent 
the probability of each case; thus, we can expand equation (A3) to become 

I (A4) 

The innermost product of equation (A4) computes the probability of a case in terms of 
the conditional probabilities of the variables in the case, as defined by belief network 
(Bs, Bp). 

By grouping terms, we can rewrite equation (A4) as 

I f i  qi ri 
P(Bs, D)  = P(Bs) f B H U P(xi -= Vikl Tri = wij, Bp) Nijk f(BplBs)dBe. (A5) 

P i=1 j = l  k = l  

Let Oij k denote the conditional probability P(x i = vik ] 7r i = wij, Be). We shall call an assign- 
ment of numerical probabilities to Oij~, for k = 1 to ri, a probability distribution, which 
we represent as the list (Oijl, . • . ,  Oijri). Note that, since the values of vi~, for k = 1 to 
r/, are mutually exclusive and exhaustive, it follows that ~ <_~<_riOijk = 1. In addition, for 
a given xi and wij, let f(Oijl . . . . .  Oijri) denote the probability density function over (Oij l, 
. . . ,  Oijri). We call f (Oijl . . . . .  Oijr~) a second-order probability distribution because it is 
a probability distribution over a probability distribution. 

Two assumptions follow from assumption 4: 
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4a. The distr ibut ion f (Oij I, . . . ,  Oijr;) is independent of the distr ibut ion f (Oi,j, l . . . . .  Oi,j, ri,) , 
for 1 <_ i, i '  <_ n, 1 <_- j <_ qi, 1 <_ j '  <_ qi', a n d i j  ~ i ' j ' ;  

4b. Dis t r ibut ion  f(Oij l  . . . . .  Oijr~) is uniform, for 1 <_ i <_ n, 1 <_ j <_ qi. 

Assumption 4a can be expressed equivalently as 

f i  qi f ( B p I B s )  = l - I  f (o i j l  . . . . .  Oijri). 
i=I j = l  

(A6) 

Equation (A6) states that our belief about the values of a second-order probability distribu- 
t ionf(Oij l  . . . .  , Oijr~ ) is not influenced by our belief about the values of other second-order 
probability distributions. That is, the distributions are taken to be independent. 

Assumption 4b states that, initially, before we observe database D, we are indifferent 
regarding giving one assignment of values to the conditional probabilities Oijl . . . . .  Oi~r;, 
versus some other assignment. 

By substituting Oij k for P(xi  = vi~lrr; = wij, Bp) in equation (A5), and substituting equa- 
tion (A6) into equation (A5), we obtain 

P(Bs,  D )  = 

I II 1 e (ns )  f "" f I-I H Oi~k ijk H f(Oijl . . . .  ' Oijri) 
Oijk i=1 j= l  k=l i=1 j = l  

d0111 . . . .  , dOok, . . . ,  dOnqn~ (A7) 

where the integral is taken over all Oij~ for i = 1 to n, j = 1 to qi, and k = 1 to ri, such 
that 0 -< Oij ~ -< 1, and for every i a n d j  the following condition holds: E~ Oij~ = 1. These 
constraints on the variables of integration apply to all the integrals that follow, but for brevity 
we will not repeat them. 

By using the independence of the terms in equation (A7), we can convert the integral 
af products in that equation to a product of integrals: 

fI qi [ , ( , , , , , )  = , ( , , )  11 f... f 
i=1 j = l  Oijk 

H 0 f(Oij 1 
k=l 

, . . . ,  Oi~r;)dOi~l, . . . ,  dOijrc 

(A8) 

By Assumption 4b, it follows that f(Oij 1, " ' ' ,  Oijri) = Cij  for stone constant Cij. Since 
f(Oijl . . . . .  Oijri) is a probability-density function, it necessarily follows that, for a given 
i and j ,  

f .o~;k. f Cij dOijl . . . . .  dOijri = 1. (A9) 
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We show later in this proof that solving equation (A9) for C/j yields Cij = (ri - 1)!, 
and, therefore, that f(Oijl, . . . ,  Oijr~) = (ri - 1)!. Substituting this result into equation 
(AS), we obtain 

fiq~f flr' ,~l P(Bs, D)  = P(Bs) I - I  ' ' '  I - I  ON# (ri - 1)! dOijl, . . . ,  dOijri. 
i=l j= l  Oijk k=l zjk J 

(A10) 

Since ( r  i - -  l)! is a constant within the integral in equation (A10), we can move it outside 
the integral to obtain 

flqi f f P(Bs, D)  = P(Bs) I I  (ri - 1)! . . .  
i=1 j = l  Oijk 

ri 

I I  o~ j~ dOijl, . . . ,  dOijr,. 
k = l  

(A11) 

The multiple integral in equation (All) is Dirichlet's integral, and has the following solution 
(Wilks, 1962): 

ri 

ri 17 
f f k=l (A12) " ' "  H 0 ~  jk dOijl . . . . .  dOijri = (Nij q- r i 1)! " 

O ij k k = 1 -- 

Note that, by applying equation (A12) with N/j k = 0, and therefore Nij = 0, we can solve 
equation (A9), as previously stated, to obtain Cij = ( r i  - 1)!. 

Substituting equation (A12) into equation (All), we complete the proof: 

f l  ri qi (ri - 12r I - I  N6~: !. P(Bs, D) = P(Bs) 1-I (N~ -+ -~i 1)! 
i=1 j = l  k ~  

(A13) 

[] 

Note that the symbol D in theorem 1 represents the cases in the particular order that 
they were observed. Let D' represent the cases without regard to order. By assumption 2, 
the cases are independent of one another, given some belief network (B s, Be). Thus, 
P(D'I  Bs, Be) = k P (DIB  s, Be), where k is the number of unique wa~vs of ordering the 
cases in D, known as the multiplicity. Since k is a constant relative to D, by equation (2) 
in section 1 the ordering of P(Bsi, D)  and P(Bsj, D)  is the same as the ordering of P(Bsi, 
D') and P(Bsj, D' ) .  Furthermore, by Bayes' rule, it is straightforward to show that if 
P ( D ' I B  s, Bp) = k P(DIBs ,  Bp), then P(BsiID ) = e (Bs i lD '  ). Thus, in this paper, we 
consider only the use of D. 

Assumption 4 in theorem 1 implies that second-order probabilities are uniformly distrib- 
uted (Assumption 4b), from which we derived that f(Oijl . . . . .  Oijri) = (ri - 1)!. This 
probability density function is, however, just a special case of the Dirichlet distribution 
(deGroot, 1970). We can generalize assumption 4b by representing eachf(Oij ~, . . . ,  Oijri) 
with a Dirichlet distribution: 
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f(Oijl, , O i j r i )  = (Ni. ~ ~- r i - 1)! N;-1 oN;j>, (A14) 
• . . ri O i j ~  • . . ijri ' 

I - I  U/j~! 
k=l 

where 

U,~. -- ~ ]  U~)~. 
k=l 

The values we assign to Ni'j~ determine our prior-probability distribution over the values 
of Oij l, • - . ,  Oijr~. All else being the same, the higher we make a particular Ni'j~, the higher 
we expect (a priori) the probability Oij~ to be. As we discussed in section 2.1, we can view 
the term P(Bs)  as one form of preference bias for belief-network structure B s. Likewise, 
we can view the terms Ni)~ in equation (A14) as establishing our preference bias for the 
numerical probabilities to place on a given belief-network structure B s. We summarize the 
result of this generalization of assumption 4 with the following corollary. 

Corol lary 1. If  assumptions 1, 2, 3, and 4a of theorem 1 hold and second-order probabilities 
are represented using Dirichlet distributions as given by equation (A14), then 

~ t ri 
qi ( i i j  + r i - -  1)! ~ ( N ~  + Ng.~)! 

P(Bs,  D)  = P(Bs)  ~a  (N~j + N~ + ~. - -  1)! ~=~ 
i=~ j=~ ~ 

(A15) 

Proof. Equation (A15) results when we substitute equation (A14) into equation (A8) and 
apply the steps in the proof  of theorem 1 that follow equation (A8). [] 

Note that when Ni)k = 0, for all possible i, j ,  and k, the Dirichlet distribution, given 
by equation (A14), reduces to the uniform distribution, and equation (A15) reduces to equa- 
tion (A13), as we would expect. 

Theo rem 2. Given the four assumptions of theorem 1, it follows that 

E[Oo~ID, Bs ' ~] _ Nijk + 1 
N i j  + r i  

Proof .  This proof  will be specific to determining conditional probabilities in belief net- 
works; however, we note that it parallels related results regarding the expected value of 
probabilities given a Dirichlet distribution (Wilks, 1962). To simplify our notation, we shall 
use E[Oij~]D] to designate E[Oij~]D, Bs, (] in this proof. Also, for brevity, in this proof, 
we shall leave implicit the following constraints on the variables of integration: all integrals 
are taken over all Oij k for i = 1 to n, j = 1 to qi, and k = 1 to ri, such that 0 ___ Oij k ~ 1, 
and for every i and j the condition E~ Oii~ = 1 holds. 
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By the definition of expectation, 

g [ O i j k I D ]  : J ~  " ' "  f o  O i j k f ( O i j l '  "" " '  O i j r i l O ) d O i j l  . . . . .  dOijri" 
ij I ijr i 

(A16) 

The function f(Oijt . . . . .  Oij,.~lD) in equation (A16) is known as the posterior density 
function, and it can be expressed as 

f (Oijb • OijrilD) = P(D( i ' j ) IO0~ . . . . .  O i j r i ) f ( O i j l  . . . .  ' O i j r i )  

" P(D(i ,  j))  ' 
(A17) 

where D(i, j)  denotes the distribution of x i in D for those cases in which the parents of 
xi have the values designated by wij. Solving for P(D(i ,  j)) in equation (A17), we obtain 

P(D(i ,  j)) = f " '" f o  P(D(i ,  j)]Oijb . . . ,  Oijr)f(Oij~ . . . . .  Oijri)dOijl, . . . ,  dOijr, 
O ij 1 ijr i [ri ] 

. .  f I 1  1 , .  . = • Oi~ ~ f(Oij . . ,  Oijri)dOijI, . . ,  dO(ir~, 
ij 1 "~ Oijri ~ = 1 

(A18) 

which, when the assumptions and methods in the proof of theorem 1 are applied, yields 

r i 
(r,. - 12! I I  

P(D(i ,  j)) = (N 0 + ri 1)! ~=l (A19) 

where we use K as an index variable in the product, since in this theorem k is fixed. Similarly, 
note that the numerator of equation (A17) can be written as 

1 P(D( i , j ) lOi j l  . . . .  , Oijri)f(Oijl, . . . ,  Oijr) = I - I  0~  ~ f(Oijl,  . . . ,  Oijr). 
t~=l ~ 

(A20) 

Substituting equations (A19) and (A20) into equation (A17), and substituting the resulting 
version of equation (A17) into equation (A16), we obtain 

E[Oij~,ID] : (Nq + ri~,.-1)! fo  "'" fo  Oi~k I I  O~ij~ 

(r i - 1)! I - I  NijK! ij, i~r, K=I ']~ J 
~=1 

f(Oijl,  . . . ,  Oi)ri)dOijl . . . . .  dOipi 
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(N o + ri - 1)! 
f O  f O  Niii~ 1 N i ' k+[  . O~ i j r  ~ ri . . . O _ _  . . . OijkJ . . qri  

ij 1 ijr i 
(r, - I I  

~=1 

f (Oi j l ,  . . ,  Oqri)dOijl . . . . .  dOqr i. (A21) 

The multiple integral in equation (A21) can be solved by the methods in the proof of 
theorem 1 to complete the current proof: 

E[Oij~[D, Bs ,  ~] = 
(Nij + ri - 1)! (ri -- 1)! Ni j l !  . . .  (Nij k + 1)! . . .  gijri! 

ri (Nij + r i ) !  

(r  i - 1)! 1-I Nij~r 
g= l  

_ Nij~ + l 

Uij + r i '  

where, in the left-hand side of this equation, we have expanded our previous shorthand 
for the expectation. [] 

Just as corollary 1 generalizes theorem 1, in the following corollary we generalize the- 
orem 2 by permitting second-order probability distributions to be expressed as Dirichlet 
distributions. 

Corollary 2. If assumptions 1, 2, 3, and 4a of theorem 1 hold and second-order probabili- 
ties are represented using Dirichlet distributions as given by equation (A14), then 

E[Oijk]O, Bs,  ~1 = Nijk + Ni)k + 1 
NO" + Ni) + ri 

(A22) 

Proof. Equation (A22) results when we substitute equation (A14) into equations (A17) and 
(A18), and apply the steps in the proof of theorem 2 that follow equation (A17). 
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