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Abstract. We introduce a new formal model in which a learning algorithm must combine a collection of 
potentially poor but statistically independent hypothesis functions in order to approximate an unknown target 
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1. Introduction 

In this paper, we are concerned with the problem of combining a number of potentially 
poor but statistically independent hypotheses in order to obtain a significantly better 
approximation to an unknown target function. Out motivating scenario is a world in 
which a large number of learning agents each collects a small but independent sample 
and forms a hypothesis based on its sample. Although the data available to individual 
agents is limited, the entire population regarded as a single entity has collected a large 
number of independent examples. These examples are no longer directly available, but 
have been translated into many individual hypotheses, eacb with potentially large error. 
We are thus interested in learning not from random examples, hut from the population's 
many hypotheses. The goal is to combine a number of these limited accuracy hypotheses 
in order to obtain a new hypothesis with arbitrarily small error. 

There are two lines of prior research in computational learning theory and related fields 
that immediately come to mind in our setting. The first is the recent work on combin- 
ing "expert" opinions in an Optimal on-line fashion (see (Cesa-Bianchi, et. al, 1993) 
for recent results and an extensive bibliography). Briefly, in the reseaxch on experts, 
we assume that have access to the predictions of a panel of experts, and our goal is to 
make predictions with a mistake rate approaching that of the best expert. Since typ- 
ically no assumptions are made regarding the sequence being predicted or the experts 
(for instance, the sequence may be arbitrarily time-dependent, so an expert's perfor- 
mance on any part of the sequence may be a poor predictor of its future performance), 
approaching the best expert's mistake rate is the most that can expected in such rnod- 
els (Cesa-Bianchi, et. al, 1993). 

In contrast, in this paper we make assumptions about both the desired predictions 
and the "experts" (which we do not regard as being especially expert). The desired 
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predictions are represented by a fixed, unknown target function chosen from a restricted, 
known class, and each "expert" (or hypothesis) is the result of training on a small but 
independent random sample of the target function. By making these assumptions, we 
allow the possibility of somehow combining the independent hypotheses in a way that 
considerably outperforms any single hypothesis. 

The second loosely related line of research is the work on boosting weak learning 
algorithms(Schapie, 1990; Freund, 1990; Freund, 1992), in which the goal is to combine 
a collection of hypotheses from a mediocre learning algorithm in order to obtain an 
arbitrarily accurate hypothesis. Although our goals are similar, a crucial difference is that 
in the boosting work, we have control over the executions of the weak learning algorithm 
and thus by modifying the training distribution we can force each subsequent hypothesis 
to have a slight prediction advantage where the previous hypotheses have failed. Here we 
assume no such mechanism, and each hypothesis is trained on the same fixed distribution. 
Indeed, it is interesting to note that natural schemes for combining hypotheses that are 
successful in the boosting setting, such as majority vote (Freund, 1990), often fail in our 
setting. 

1.1. Overview of Results 

We now give a summary of the paper. In Section 2, we introduce and motivate our 
model, which we call population learning. Briefly, in this model a population learner 
is provided with an oracle that on each call produces a function that is consistent with 
an independent random sample of the unknown target function. Thus, each call to the 
hypothesis oracle causes a new sample of m random examples to be drawn, and for a 
function consistent with these m examples to be returned to the population learner. The 
method by which the consistent function is chosen can sometimes be crucial and is a 
parameter of our model. For several of our results, we concentrate on the case where 
the returned function is chosen randomly from among all consistent hypotheses (that is, 
by a Gibbs learner). We regard ra as a fixed constant over which the population learner 
has no control, but the population learner may draw as many hypotheses as desired in 
order to obtain arbitrarily small error. 

In Section 3, we analyze a simple population leaa'ning problem and introduce the impor- 
tant and natural idea of the distribution induced on hypotheses by the hypothesis oracle. 
This allows us to develop some general theory for population learning in Section 4. 
We first introduce our central technical tool, the separation functions. These functions 
essentially quantify how the distance between two possible target functions (measured 
with respect to the target distribution) translates to the distance between the two corre- 
sponding induced distributions on hypotheses (measured by Kullback-Leibler divergence 
or variation distance). Intuitively, if this translation results in an extreme contraction of 
distances, then population learning is difficult, and if this translation is relatively mild, 
then population learning can be accomplished with a modest number of hypotheses. 

With the notions of induced hypothesis distributions and separation functions in hand, 
we next turn to the fundamental problem of providing general upper and lower bounds 
on the number of hypotheses that must be drawn in order to obtain a desired level of 



LEARNING FROM A POPULATION OF HYPOTHESES 257 

accuracy. This is analogous to the problem of determining upper and lower bounds on 
sample complexity in standard models of learning from examples. 

For the upper bound, we formulate population learning as a problem of classical para- 
metric distribution estimation of the induced distributions on hypotheses. We then invoke 
the powerful tools of the uniform convergence literature to analyze the maximum likeli- 
hood method for this problem, in order to obtain an upper bound which is polynomial in 
the inverse of the separation functions and a dimension term. We then provide a lower 
bound that is also polynomial in the inverse of the separation functions, thereby demon- 
strating that these functions give a coarse and partial characterization of the required 
number of hypotheses. 

Section 5 gives several applications of the general theory. We analyze some simple 
population learning problems, including problems where the hypotheses are initial in- 
tervals of the real line, boolean conjunctions, and perceptrons. We also consider both 
cases where the Gibbs algorithm is used to choose consistent hypotheses, and where an 
arbitrary consistent hypothesis is chosen. 

Section 6 mentions several areas for further research. 
We wish to emphasize that although some of the methods we propose here are com- 

putationally efficient in the limited settings we consider, our primary concern in this 
paper is with the statistics of learning from a population of hypotheses, that is, with the 
number of independent hypotheses that are necessary and sufficient for learning in our 
model (whether by a computationally efficient algorithm or not). In general we have left 
the important problem of computational feasibility to future investigations. 

2. The Population Learning Model 

Imagine a world populated by a large number of initially identical learning agents. Each 
agent wanders through the world, acquiring a limited number of independent examples 
of an unknown target function, and then applies an internal algorithm for learning from 
examples to the data it has collected in order to obtain a hypothesis function. We assume 
that all agents use the same internal algorithm for learning from examples, so agents 
differ only in the data they have gathered and its subsequent effects on their hypotheses. 
In this paper, we wish to investigate the problem of learning not from examples, but 
from the hypotheses computed by the independent agents. 

A population learning problem will be defined as a triple (.7-, D, rn) (we will add 
some further components shortly). Here ? is the class of possible {0, 1}-valued target 
functions over the input space X,  D is a probability distribution over X (or density in 
the case of continuous X), and rn > 1 is a natural number called the agent sample size, 
which is the number of random examples seen by each agent. 

We assume that 5 c, D and rn are all known to the algorithm trying to solve the 
population learning. We also assume that every agent sees the same number m of 
random examples. In general, throughout the paper we will at any time be discussing a 
fixed population learning problem, so for notational brevity we will not explicitly indicate 
dependences on .7", D and rn except where necessary. Note also that we are studying a 
"distribution-specific" model of learning, in the sense that D is fixed and known. 
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As is typical of concept learning models, we seek algorithms that can find good ap- 
proximations to an unknown target function f E ~ with respect to the distribution D. 
However, in our model the algorithm (called a population learning algorithm) does not 
have direct access to random exampIes of f ,  but only to a large collection of hypotheses 
that have been independently computed using random examples of f .  More precisely, 
for the population learning problem (S,  D, m) a population learning algorithm is given 
access to the oracle POP(f) that runs in unit time and behaves as follows on each call: 

o Draw m inputs S = {Xl , . . . ,  x~}  randomly and independently according to D. Let 
Sf  denote the set of inputs in S paired with the labels given by the target function 
f c 5  c. 

• Choose an element h of the version space VS(Sf), which is the set of all functions 
in 5 c that are consistent with the labeled sample Sf (further details of this step are 
discussed below). 

• Return h. 

Thus, we may think of each call to the oracle POP(f) as returning the hypothesis of a 
single learning agent from a large population of agents, each member of which saw m 
independent random examples of f .  If we make g calls to this oracle, we obtain a pool 
h l ,  • • . , h e  of hypotheses. Although we expect each hi to have limited accuracy (because 
each hi was obtained using only m examples), the total number of independent random 
examples that was used to train the entire pool is g • m. 

Despite the fact that a population learning algorithm has access only to the hi, for 
sufficiently large g in principle it may be possible to combine hi, . . . ,  he in some manner 
to obtain a new hypothesis f that is considerably more accurate than any of the hi. 
Indeed, as g becomes large one might expect to be able to obtain f with arbitrarily small 
error. It is exactly this type of statement that we wish to formalize and quantify in this 
paper. 

A crucial detail left unspecified by the given description of POP(f) is which element 
of VS(Sf) is returned by the oracle. The insistence that the chosen hypothesis be 
consistent with the examples is in fact largely inconsequential to the general theory we 
will develop, but is a reasonable working assumption. The method used to choose from 
the version space amounts to an assumption on what common algorithm for learning 
from examples is used by the learning agents. There are many reasonable and interesting 
assumptions that could be made here. In this paper we will both develop a general theory 
that applies regardless of what algorithm is used by the agents, and also study the details 
of a model in which the agents use the so-called Gibbs algorithm. 

In the general case, we add another item A (called the agent algorithm) to the descrip- 
tion of a population learning problem (5 c, D, m, A). Here A may be any randomized 
algorithm that takes as input a set Sf of labeled examples of some f E 5 and outputs 
some h c VS(Si). Again, as for the other items in the quadruple defining a population 
learning problem, we shall usually leave any dependences on A implicit for notational 
brevity. 
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Under agent algorithm A, the previously underspecified second step of the oracle 
POP(f) is completed as follows: the h C VS(Sy) chosen for output by the oracle is 
simply A(Sf) (the output of A when given the labeled sample @). It is important to 
note that the agent algorithm A is part of the description of a population learning problem 
and thus is considered to be "known" by the population learning algorithm. Thus, we 
allow population learning algorithms to be designed for the particular agent algorithm A 
in question (as well as the particular 5 c, D and rn). 

A special case of interest occurs when the agent algorithm A is the well-studied Gibbs 
algorithm, which is known to be a near-optimal learning algorithm in terms of its expected 
error as a function of the number of examples rn (Haussler, Kearns, & Schapire, 1994). 
This algorithm simply chooses h uniformly at random from the version space VS(Sy). 
This models a population in which each agent learns by choosing a consistent hypothesis 
from f without bias, in the sense that given consistency with the training data, all 
functions are equally likely to be chosen. 

A population learning algorithm P for a population learning problem (S, D, rn, A) is 
an algorithm that for any target function f E 5 = is given access to the oracle POP(f) 
and two inputs 0 < c, (5 < 1, and eventually halts by outputting a function f ~ 5 c that 
with probability at least 1 - (5 satisfies D[fAf] <_ e. 

Given any fixed population learning problem ($-, D, rn, A), in this paper we are pri- 
marily interested in the population size required for learning. Thus, for a population 
learning problem (5 c, D, rn, A) we define the function g(e, (5) to be the minimum over 
all population learning atgorithms/~ for (.Y', D, rn, A) of the maximum number of calls 
(over all target functions f E 5 c) made by P to the oracle POP(f) on inputs e and (5. 
Note that g(e, (5) depends on all four parameters of the population learning problem. 

Several points regarding the model bear mentioning before we embark on our inves- 
tigation. First, note that we fix the population learning problem (5 r, D, m, A), and then 
seek an algorithm that works for all values of c and (5 for this problem. Thus, we think 
of the agent sample size rn as a constant, and a population learning algorithm can obtain 
more information about the target only by drawing a larger number of hypotheses that 
each have this same constant amount of training. 

Second, note that we assume that the oracle POP(f) returns exact descriptions of 
hypotheses, as opposed to only returning "black boxes" (input-output oracles) for hy- 
potheses. Thus, in principle a population learning algorithm may not only evaluate the 
sampled hypotheses, but may use the defining parameters of the sampled hypotheses in 
any way it sees fit. For instance, if the function class 9 c is a class of neural networks of 
some fixed architecture, the population learning algorithm has access to the values of the 
weights in the hypotheses returned by POP(f). Although the algorithms we propose 
will technically use this capability, in general we suspect that there is little additional 
power gained over black-box use of the hypotheses. For instance, for every specific 
population learning problem analyzed in Section 5, our algorithms are easily coverted to 
make only black-box use of hypotheses with no change in the required population size. 

Finally, the population learning model could be viewed as an instance of what statisti- 
cians call meta-analysis, in which multiple sources of perhaps secondary data are com- 
bined to give a unified hypothesis. 
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3. An Illustrative Example: The High-Low Game 

In this example, the domain X is the real interval I0, 1], and ~- is the class of all initial 
intervals. Thus, each target function is a real number f E [0, 1], and the positive examples 
are the subinterval [0, f], with the interval (f, 1] being the negative examples. Let D be 
the uniform distribution on [0, 1]. These settings are also known as the "high-low game", 
since each example x of f simply indicates whether x is smaller or larger than f .  

Let us examine the population learning problem (5 c, D, m = 1, A = Gibbs). In this 
problem, for target f the oracle POP(f)  behaves as follows: a single x E [0, 1] is 
chosen uniformly at random. If x _< f (positive example), then a random h C [x, 1] is 
chosen uniformly and returned. If x > f (negative example), then a random h E [0, x) 
is chosen uniformly and returned. 

An important observation that applies to any population learning problem is that for 
any target f E 5 ~, the oracle POP(f)  induces a well-defined probability distribution qy 
over 5 c. Thus, for any h c 5 r, we let qs [h] denote the probability that h is output by 
the oracle POP(f )  (or the density of qy at h in the continuous äc case). Note that qy 
depends crucially on the agent algorithm A. A population learning algorithm has access 
to random draws from q/ as its sole source of information. The function class 5 c gives 
rise to the associated class of induced distributions Q = {qf : f ~ U}. 

It is the analysis of the problem of learning the distribution qI, and the relationship 
between this problem and approximating the target function f ,  that will form the back- 
bone of our entire approach. We will shortly obtain general upper bounds on required 
population size by analyzing the classical maximum likelihood approach to estimating 
qy. For the specific case of the high-low game, it turns out to be sufficient for the analysis 
to compute EhEqi [h] = E[h], which is the expected value of the hypotheses h E [0, 1] 
generated by the distribution qy. (Throughout the paper, we use the subscript h E qy on 
an expectation or probability to denote that h is chosen randomly according to qy, and 
h E S to denote that h is chosen uniformly from the set S.) We may write 

/0 ' E[h] = E[hlx]dx 

/0 ~ /1 = Ehc[z,1 ] [h]dx + Ehc[0,x ] [h]dx 

f 1 - + 
2 4 

Here we have broken the expectation into two easily analyzed patts: the first where 
the single example x is positive (in which case h is drawn randomly from [x, 1] and 
thus has expected value x + (1 - x)/2), and the second where x is negative (in which 
case h has expected value x/2). This calculation immediately suggests the foUowing 
population learning algorithm: draw h l , . . . ,  he from the oracle POP(f)  and let havg = 

e 
(l/g) ~ i=1  hi; then solve havg = f /2  + 1/4 for the final hypothesis f .  Correctness and 
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convergence of this procedure can be proven via Chernoff bounds, giving the following 
theorem. 

THEOREM 1 Ler .P be the class of initial intervals over [0, 1], and D the uniform 
distribution on [0, 1]. Then for the population learning problem (~,  D, rn = 1, A = 
Gibbs), g(e, 5) = O(1/e 2 log 1/5). 

This bound compares favorably with the O(1 /e log l /5 )  sample size that is required 
for learning 5 from the random examples themselves (rather than the hypotheses) with 
respect to the same distribution. Thus, even when each agent has seen only a single 
example of the target function, a relatively small sampling of hypotheses can be combined 
to find a much more accurate hypothesis. Note that our algorithm for this simple problem 
is also computationally efficient. 

3.1. Remarks on  the  High-Low Garne 

Several other points regarding this simple example bear mentioning. First of all, the 
choice of the agent algorithm A can sometimes have great effect: let A be the consistent 
algorithm that for a positive example z chooses the hypothesis h = x + 3 ,̀ and for a 
negative example z chooses the hypothesis h = z - 3' (for some small 3' _> 0). Then 
it easy to see that as 3" approaches 0, qf approaches the uniform distribution on [0, 1] 
independent of f .  This demonstrates that for the high-low game with m = 1, it is not 
possible to obtain a single finite upper bound on g(é, æ) that holds simultaneously for 
all choices of A, and we must analyze the required population size for different agent 
algorithms on a case-by-case basis. 

Second, however, the effects of the particular agent algorithm A can sometimes be 
overcome by a sufficiently large agent sample size rn. Thus, we will later show that in 
the rn = 2 case of the high-low game, we can upper bound g(e, 5) by a polynomial in 
1/e and 1/5 simultaneously for all agent algorithms. ]In general, we expect larger agent 
sample size to make population learning easier (or at least not more difficult). However, 
there are some subtleties involved with this intuition that we discuss later. 

Finally, the high-low garne is a simple problem for which several natural and naive 
approaches to population learning fail. For instance, it is tempting to conjecture that a 
general approach to population learning is majority voting: sample hypotheses h l , . . . ,  he 
and let f be the majority vote of these hypotheses. In the high-low game, it is easy to see 
that this scheme is equivalent to choosing f to be the median of h l , . . . ,  hg. However, 
when the target function f = 0, it can be shown that the median converges to the value 
0.1865... as g ~ oo, and thus will not achieve arbitrarily small error even given an 
infinite population size. 

4. Development of the General Theory 

Throughout this section, we assume a fixed population learning problem (5 c, D, m, A). 
Thus rar, we have observed that each target function f E b r gives rise to an induced 
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distribution qf E Q over 5 c which is exactly the distribution sampled by the oracle 
POP(f);  note that each qf depends on all four parameters of the population learning 
problem in addition to f .  One natural approach to population learning would be to learn 
an approximation ~ to q f, and somehow use ~ to find a good approximation to f itself. 
Our approach to the high-low game can be viewed as a special case of this approach, 
where all that was needed was an approximation to the mean of qf. 

In order to formalize this approach, we must specify what is meant by learning the 
distribution qi (or more precisely, what measure is used to evaluate a hypothesis distri- 
bution), and then study quantitatively how the problem of learning the distribution qI 
relates to the original problem of learning the target function f .  

We will find it convenient to consider two different standard measures for the distance 
between two probability distributions. The first is the KulIback-Leibler divergence (which 
is not a metric, since it lacks symmetry): 

KL(qfl ]lqf2) = ~ qf~ [h] log qfl [hi 
h~= q f2 [h]' 

The second is the variation distance: 

V(qf~,qf2 ) = sup [qfl[.T']-qf2[.T~]l. 

Both measures have analogues for densities in the continuous case; in developing our 
general theory, however, we shall restrict ourselves to the case of distributions for sim- 
plicity. We will use the following theorem due to Kullback (1967): 

THEOREM 2 For any distributions qfl, q f2 

KL(qfl Ilqh) >- V2(qY~, qh). 

4.1. The Separation Functions 

Having defined these two closeness measures for probability distributions, we now intro- 
duce their associated separation functions. This is our most important definition, and is 
motivated as follows: suppose that in a population learning problem, two potential target 
functions f l ,  f2 E 5 have disagreement D[flAf2] = e. If we had access to random 
examples of the target function, we could distinguish between f l  being the target and f2 
being the target in O(1/e) examples. 

In population learning, however, all we have access to is either q fl or qA. If  despite 
the e separation between f l  and f~, the separation between qll and qf~ is much smaller 
than e, then we may require a very large population size to achieve error ¢. On the other 
hand, if the e separation between f l  and f2 implies a "significant" (say e 2) separation 
between q fl and c/f2, then a modest population size may suffice. We thus define the 
separation functions as: 
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CrKL (k, m)  = min KL(qf~ ]lqf2 ) 
f l , f2~.~,D[f l  A f2]>~e 

and 

t u ( k ,  m) = min V(qyl, qf~). 
fl,f2E.T',D[fl A f2]>e 

(In cases where the minimum does not exist, we instead take the infimum.) Here we 
are violating our convention of leaving dependence on the agent sample size m implicit 
for reasons we shall discuss shortly in Section 4.2. Both separation functions take k as 
an argument, and find the closest (with respect to either Kullback-Leibler divergence or 
variation distance) that two c-separated functions in 5 c (with respect to D) can become 
in the space Q of induced distributions. Note that by Theorem 2 we have «KL(k, ra) >_ 
(CrV(k ' m))2 always. 

Shortly we will provide evidence for the significance of the separation functions by 
showing that they provide a rough characterization of the population size required for 
any population learning problem. Specifically, we give upper and lower bounds on the 
population size g(e, 5) that are polynomial expressions in 1/CrKL(e, rn) and 1/crv(k, m) 
(as well as 1/5 and various complexity measures of the population learning problem). 
We first engage in a brief discussion of the dependence of the separation functions on 
the agent sample size m. 

4.2. The Role of Agent Sample Size 

Let us briefly digress from the main development in order to discuss a primary but 
unfortunately unfulfilled goal of our investigation, and to clear the air of any confusion 
that this failure may cause. As we have indicated, a "nice" separation function would 
have behavior such as «KL(e, m) _> e 2, so that large distances in the metric induced on 5 c 
by D would translate to large distances (either Kullback-Leibler divergence or variation 
distance) in Q. We will soon see that such nice behavior leads to relatively modest upper 
bounds on the required population size. 

In the population learning model, we essentially regard m as a fixed constant, repre- 
senting the limited amount of training received by each learning agent in the population. 
In particular, we do not allow m to increase according to the desired error bound e given 
to the population learning algorithm - -  m is independent of k, and all the population 
learning algorithm can do to achieve smaller and smaller k is to take more and more 
hypotheses of this fixed sample size m. Thus, an important question for us is how small 
ra can be while the separation functions still have nice behavior. 

More precisely, note that in general we expect that as m increases, each induced 
distribution qf (which of course implicitly depends on m) becomes more peaked around 
f .  For this reason, we expect that as m increases, KL(qfl I Iqf2) and V(qfl, qf2) become 
larger for any two functions f l ,  f2, and thus «KL(k, ra) and ~rv (k, m) should also increase 
with m. While this much seems clear, the challenging problem is to obtain conditions 
on m that are independent of k but that guarantee that «KL(C, m) and (zu(k, m) are 
polynomially large in k. 
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To see the difficulty, let us lower bound CrKL(e, m) in terms of  e and m using some 
standard methods from uniform convergence analysis and see why they are insufficient 
for our purposes. Suppose we consider two functions A ,  f2 E ~-, let e = D[flAf2], 
and let m be the fixed agent sample size. For any numbers 0 < r, s < 1 let us define 
KL(rl Is) = r log(r/s) + (1 - r)  log((1 - r ) / (1  - s)); it is easy to show that this is lower 
bounded by max{r  log 1Is - 1, (1 - r ) l o g  1/(1 - s) - 1}. 

Now it is also true (Kullback, 1967) that for any 7 C ~ ,  

KL(qA Ilqf~) >- KL(qA [ f ' ] l lqA [Y]) .  (1) 

Thus to lower bound KL(q A llqA) let us choose S '  to be the c/2-ball around f2 in .7:" 
with respect to D, that is 

.~' = { f  E f :  D[f2Af] < e/2}. 

Now using uniform convergence methods (Vapnik, 1982; Haussler, 1992) one can show 

(2m) d ae2m 
qs~ [S] _> 1 - c - T - . ,  ~- 

and 

(2m) d ~Om 
qA [Y'] < e--U-.e- 

for constants c, c~ > 0, where d is the Vapnik-Chervonenkis dimension of f .  Thus using 
Equation (1) and the lower bound on KL(rlls ) we obtain 

1 1 
KL(qAllqf~ ) >_ -~lOgc(2m)de_,~dm 1 

a , ,  

_> c l e 2 m -  c 2 d l o g m  + calogd!  + c4 

for constants cl, e2, c3, c4 > 0. This first term of  the lower bound has the desired "nice" 
behavior: if two functions are at a distance e, then their induced distributions have 
Kullback-Leibler divergence f~(e2). Unfortunately, despite this machinery, the lower 
bound is negative until m = f~(1/e2), a condition that is unacceptable for the reasons 
outlined above. 

In fact, it is possible to argue that the desired condition on ra needed to enforce 
niceness of  the separation functions cannot be expressed solely in terms of  a parameter 
of  the function class 5 such as the Vapnik-Chervonenkis dimension. It appears that 
the best we could hope for is a statement of the form: provided m >_ F ( f ,  D),  we 
have ~v(e, m) > e 2 (or some similarly large function of  e), for some function F of  the 
function class ,7" and distribution D. We have been unable to obtain such a result so far. 

In any case, our belief that the separation functions may be sensitive functions of m, 
combined with our inability to quantify this sensitivity, prompts us to explicitly indicate 
the dependence on m for these functions. 
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4.3. A General Upper B o u n d  on  Population Size 

An important observation regarding the separation functions is given in the following 
lemma, whose proof is immediate from the definitions of «Kr(e, m) and crv (e, m). 

LEMMA 1 For any f , f  E 5,  if KL(qf[Iqf ) < (TKL(e, rn) or V(qf ,qf)  < crv(e,m ) 

then D[f A f] < e. 

Given the machinery we have developed thus far, we can now recast population learn- 
ing as a problem in parametric distribution estimation. The population learner receives 
g hypotheses h l , .  • •, hg drawn independently at random from a distribution. The learner 
knows that this distfibution is a member of the class Q, which is parametrized by 5 r.  We 
study the case where the learner uses the method of maximum likelihood estimation, and 

thus outputs a hypothesis f that is a maximum of r I i=l  qf, [h~] with respect to f ' .  This 
method treats f '  C .7" as an abstract parameter that does nothing more than parametrize 
the distributions q f, c Q. This method may be of more theoretical than practical rele- 
vance, since the likelihoods qf [h] are generally difficult to compute. Nevertheless, the 
bounds on the population size required by maximum likelihood a r e a  useful frst  step 
towards bounds for more practical learning algorithms. 

The classical analysis of the error of the maximum likelihood method, involving the 
Fisher information, requires that the distribution class Q be a smooth function of contin- 
uous, real-valued parameters. As will be illustrated by specific examples in Section 5, 5 c 
(and hence Q) often admits no continuous parametrization. Furthermore, even in the case 
of a continuous parametrization, the likelihood can be nondifferentiable in its parameters, 
as noted by Amari(Amari, Fujita, & Shinomoto, 1992). Hence classical statistics is not 
typically applicable to the learning problems of interest here. 

Instead we proceed by invoking uniform convergence theorems (Haussler, 1992; Pol- 
lard, 1984; Dudley, 1978) to bound fluctuations in empirical log-loss. These theorems 
are relevant because maximizing the likelihood is equivalent to minimizing the empirical 

g 
log-loss, which is -1 /g  ~~=1 log qf,[h{]. Hence maximum likelihoõd is but a specific 
case of the general class of empirical loss minimization algorithms. Combined with 
Lemma 1, which relates log-loss in Q to loss in the parameter space 5 ,  the uniform 
convergence bounds lead to the following upper bound on population size, whose proof 
is omitted due to space considerations, but is a faMy straightforward application of the 
main theorem of Haussler(1992). 

THEOREM 3 Let (5 c, D, ~ ,  A) be any population learning problem. Then 

«(~, ~) = o \ ~ ~ ~  log «K~(,,,~) + log 

and 

«@,~)  : 0 \ ( o . v @ , m ) )  4 ]og - -  ov(e ,m)  + l o g  . 
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Here dito(Q) is the combinatorial dimension (Haussler, 1992) of the distribution class 
Q, and M is a bound on the empirical log-loss of any distribution in Q. 

Let us take a moment to absorb this result. First of all, the combinatorial dimension 
dito(Q) is a generalization of the Vapnik-Chervonenkis (VC) dimension (Vapnik & Cher- 
vonenkis, 1971) and can be considered a standard and natural notion of the "complexity" 
of the population learning problem. In the finite 5 c case, dito(Q) <_ log [.7-[. We refer 
the interested reader to Haussler(1992) for details. Secondly, although the appearance of 
the bound M in the population size upper bound might initially seem worrisome (since 
we have no a priori reason to assume a finite bound on - l o g  qf[h] for all f ,  h E .7"), 
this is often a technicality: we can typically get around any difficulty using quite general 
"clamping" techniques that choose a hypothesis from a restricted subclass that excludes 
degenerate distributions witb large loss. 

The bounds in Theorem 3 depend on e and ra through the separation functions. A1- 
though it seems intuitively clear that the separation functions should tend to increase 
with rn and decrease with e, we have not succeeded in characterizing this dependence 
rigorously, and it appears that uniform convergence theory may be too coarse a tool 
for this task (see the extensive discussion of this issue in Section 4.2). This technical 
difficulty is related to the difficulty of performing the quenched average in statistical 
mechanical analyses of learning (Seung, Sompolinsky, & Tishby, 1992). In the absence 
of general bounds, we must settle for calculation of the separation functions for some 
specific learning problems, to be done in Section 5. 

A more positive statement about Theorem 3 is that the dependence of g(e, 8) on e is 
captured in the polynomial dependence on 1/~KL(C, ra) and l / e r ( e ,  ra). This demon- 
strates the importance of the separation functions: good lower bounds on the separation 
functions lead to good upper bounds on the required population size. If we can prove, for 
instance, that C~KL(C, ra) is bounded below by c 2, then we have sbown that g(e, 8) has an 
©(1/e 4) dependence on e. If, on the other hand, «KL(C, ra) grows like e n where n is a 
complexity measure such as the Vapnik-Chervonenkis dimension, we face the possibility 
of exponentially large population size. Indeed, in the following subsection we show that 
this possibility can in fact be realized, and complete our rough characterization of g(e, 8) 
by providing a lower bound expressed in terms of the separation functions. 

4.4. A General Lower Bound on Population Size 

THEOREM 4 Let (.7", D, ra, A) be any population learning problem. Then 

( ) ( 1 1  1 and g(e,8) a o-v(2e, ra) e(c,8~ = ~ , /«~L(2c ,  ra/ 

Proof: The proof is most easily done for the variation distance; the Kullback-Leibler 
lower bound then follows from Theorem 2. Thus let e ~ = 2e, and let f l ,  f2 E -7- be 
such that D[flAf2] >_ e' and V(qsl,qS2 ) = ~rv(e',ra). Such functions taust exist by 
the defnition of «v(e t, m). Let P be a population learning algorithm requiring at most 
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g calls to the oracle P O P ( f )  to obtain error smaller than e (for some small constant 6) 
for any f c U. 

To prove the lower bound, we will choose the target function randomly between f l  
or f2, and we may assume without loss of generality that under these conditions, P 
outputs either f l o r  f »  Let us define two complementary sets of g-tuples of functions 
in 5 :  Tfl = {T C j:-e : P ( T )  = f~} and Tf2 = { T  C_ 5 e : P ( T )  = f2}. Here 
P ( T )  ~ { f l ,  f~} is the output of algorithm P when the sequence T = ( h l , . . . ,  he) is 
returned by the oracle. We assume that P is deterministic; the same proof holds with 
only minor modification if P is randomized. Thus, Tf~ is the set of all sequences of g 
functions causing P to output f l ,  and similarly for Tl2. 

We now analyze the probability (over the random choice of f l  or f2 as the target 
function f ,  and the subsequent random choices of P O P ( f )  from qf) that algorithm P 
outputs the wrong function; notice that if this event occurs, the error of P ' s  hypothesis 
is at least e'. We may write 

l e  le  
PrfE{f l , f2} ,T{q}[P(T)  7 & f] = -~qf~[Th] + ~qA[TA] 

: ~+ q 2 [ T f ~ ] - q ~ [ T A ] )  • 

Here we have used the equality qe A [Ty 2 ] = 1 - q}~ IT A ]. Now 

Iq}~[TSl]- q}~[~l]l _< ~ !qeh[(h l , . . . ,h~)] -qey~[(h l , . . . ,he)] l  
(hl ..... hl)ETfl  

-< E 
(hl , . . . ,h~)e~ e 

<- E 
(hl ..... he)E- T~ 

ic}2 [(bi , . . . ,  he)] - q~l [(hl , . . . ,  be)Il 

q}: 1[(hl, . . . ,  he_l)] qs2 [he] 

-q}~-l[(hl , . . .  , he- J ]q yl [he] ! 

Now it is not hard to show that for any A, A', B, B' _< 1 

l A X  - B B '  I <_ rA' - B'[ + ]A - B I. 

Applying this to the above equation gives 

[q}~ [~1]- 41[~-±11[ 

Z-1  + ~ q,~ [(hl,...,hù~)] 
(h l , . . . , h~- l )EÆ e 

-q}~-~[(ht,..., h«_l)] 

Now the first term in this final expression is bounded above by crv(e' , m), and so by 
induction the sum of the two terms is bounded above by g- crv(e', m). Thus 
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Prf~{yl,f2},TC«}[P(T ) # f] > 1 / 2 -  (1/2)g. crv(e',m). 

The expected error of P is thus g (7 v ½(1 - - (e',rn))e'. Thus to obtain expected error 
smaller than e = e'/2 requires g = a(1/crv(2e,  rn)), as desired. [] 

Note that we suspect the existence of stronger lower bounds, since Theorem 4 lower 
bounds only the dependence on the separation functions. It seems plausible that a lower 
bound also incorporating dirn(Q) is the right answer, but the given bound is sufficient 
for an initial characterization of population size. 

Let us review where we are. At this point we have shown that the population size is 
roughly characterized by crv(e, m) or (TKC(e, rn) and the dimension term dirn(Q). A 
natural question to pose is how different are the given bounds from the usual bounds 
on the number of random examples required for learning from examples? The answer 
to this lies in how dramatically the separation functions may contract distances. For 
instance, if we could somehow prove that for any population learning problem we have 
Crv(e, rn) > e 2 then we would have shown (at least for finite classes, where dirn(Q) is 
bounded by log 151) that the population size required for learning is always polynomially 
bounded by the number of random examples required for learning. 

Unfortunately, and not surprisingly, the answer is not so simple in general, as the sep- 
aration functions can greatly contract distances. For instance, one can show that for 5 ~ 
the class of all parity functions over n boolean variables, D the uniform distribution over 
{0, 1} ~, and for small values of rn, even when the agent algorithm A is the Gibbs algo- 
dthm we have «v (1 /2 ,  m) _< 1/2 ~ (in this problem, e = 1/2 is the only relevant value 
since every pair of target functions disagree on 1/2 the inputs). Theorem 4 immediately 
implies an exponential lower bound on the population size for this problem, whereas it is 
well-known that O(n) random examples suffice for learning from examples. Thus, given 
a population learning problem, in general we must expect to make a specific argument 
for polynomial population size. 

In the Section 5, we make such arguments for several population learning problems 
by lower bounding a separation function. In doing so, we illustrate a case where it is 
possible to analyze the effects of increasing the agent sample size rn, and a case where 
we can prove small population sizes regardless of the agent algorithm A. 

4.5. More General Learning Models 

It is worth noting that all of the theory we have developed in this section for the population 
learning model can actually be applied to a much more general setting of learning from 
secondary data. The only properties of the population learning model that we have used 
in this section are: 

• The existence of a primary metric space Z. In the population learning model, the 
primary space was Z = 5 c and the metric was simply that induced by the distribution 
D. 



LEARNING FROM A POPULATION OF HYPOTHESES 269 

« The existence for each z c Z of an induced distribution qz over some secondary 
abstract data space Y. In the population learning model, for f E 5 c, qf happens to 
be over Y = 9 c, and is defined by POP(f) .  

Thus in general, we could study the problem of learning a point close to a target point 
z E Z when given access only to q» The separation functions can be defined, and both 
our upper and lower bounds will apply to this more general setting. 

5. Applieations of the General Theory 

We now give polynomial upper bounds on the population size required for several popu- 
lation learning problems of interest. The general approach is to lower bound a separation 
function and then apply Theorem 3. It should be noted that since Theorem 3 is obtäined 
by Haussler(1992) in an extremely general setting, we suspect the existence of consid- 
erably better upper bounds than those we provide here; for now, however, we restrict 
our efforts towards proving polynomial bounds, leaving improvement of the polynomial 
degree for future research. 

5.1. The High-Low Garne with Any Agent Algorithm 

Recall that in Section 3, we argued that in the high-low game with agent sample size rn = 
1, it was impossible to obtain an upper bound on population size that held simultaneously 
for all consistent agent algorithms. In the following theorem, we show that with rn = 2, 
we can obtain such a uniform bound. We include a proof sketch that is illustrative of 
the type of reasoning used to prove such bounds. 

TttEOREM 5 Let ~ be the class of initial intervals over [0, 1], and D the uniform 
distribution on [0, 1]. Then for any consistent agent algorithm A, the population learning 
problem (~, D, m = 2, A) satisfies g(~, 5) = O(1/é s log 1/e + log 1/5). 

Proof: We demonstrate that the separation function for the variation distance obeys 
« v  (e, 2) = Q(e2); the stated upper bound on g(e, 5) can then be obtained as outlined in 
Section 4.3 and Theorem 3. 

Let f E [0, 1] be a potential target function. Recalt that in the population learning 
problem (5 c, D, m = 2, A), POP(f)  draws two points uniformly from [0, 1], labels them 
according to f ,  and applies the consistent agent algorithm A to the resulting sample to 
obtain the returned hypothesis h E [0, 1]. Without loss of generality, we will use ZL to 
denote the smaller of the two chosen sample points, and «R to denote the larger. 

To prove that crv (e, 2) = f~(e 2) it suffices to show that for any e and any target functions 
f l ,  f2 E [0, 1] such that D[flAf2] >_ e, V(qSl , qf2) = f~(e2) - For S, SL, SR C [0, 1], let 
us use qf[S[xL C SL, zR E SR] to denote the probability that qf generates a hypothesis 
h falling in S given that in the two-point sample, xL fell in SL and xR fell in SR. 

For f l ,  f2 satisfying D[flAf2] = e (let us assume without loss of generality that 
f l  _< f2 = f l  + e), we first have that for any S _C [0, 1], 
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qf~ [SlzL, xR ¢ fl/kf2] =- qf2 [SlXL, XFt « fl/kf2]. 

This is because the behavior of P O P ( f )  depends only on the labeled sample, and not 
directly on the target function, so as long as both f l  and f2 give the same labeling to 
the sample the conditional distribution of hypotheses is identical regardless of which 
function is the target. 

Now l e t z  be the midpoint between f l  and f2, so z = ( f l  4- f2 ) /2  = f l  4, e/2. It is 
easy to see that 

«~~ [[o, ~] I~~ e [f~, z], ~R e [z, f~]] = 1 

and 

«j~I[z,1]l~L e [f~,z],xR e [z, f~]] = 1. 

Furthermore, the probability that xc  E [fl,z] and x• E [z, f2] is 62/4. Thus, if we 
restrict our attention only to the conditional cases of x r  and xR discussed so far, we 
have found two regions on which qfl and qf2 differ by (9(e2): that is, qI1 is e2/4 more 
likely than qI2 to generate a hypothesis in [0, z] and qy~ is e2/4 more likely than qfl 
to generate a hypothesis in [z, 1]. It is fairly straightforward to show that the remaining 
cases of XL and xR do not alter this difference, thus giving qf~ [[0, z]] = qA [[0, zl] 4. e2/4 
and qf2[[z, 1]1 = qfl[[z, 1]] 4, e2/4. Either of these suffice to show V(qfl ,qf2 ) >_ e2/4, 
as desired. [] 

Better upper bounds for this problem may be possible by direct analysis of the Kullback- 
Leibler separation function. The proof of Theorem 5 also provides a case where it 
reasonably straightforward to analyze the beneficial effects of increased agent sample 
size m. In the proof, we lower bounded Crv(e, 2) by the probability we drew a sample 
XL, x a such that xL C Il1, z] and xR E [z, f~]. The arguments given hold for any 
m, but now the probability that we draw a set S of ra points from D such that there 
exists x r ,  xR E S satisfying x r  E Il1, zl and xR E [z, f2] can be lower bounded by 
1 - 2(1 - e/2) r~ ~ 1 - e c~ern for some constant c~. Thus in the high-low game, for any 
consistent A and any m we have crv(e, m) _> 1 - e c~ern, giving considerably improved 
population size upper bounds for large m via Theorem 3. This is a rare case where we 
can precisely quantify the effects of increasing m, as opposed to the general situation 
discussed in Section 4.2. 

5.2. Conjunctions with Gibbs and Any Distribution 

The high-low garne is a one-dimensional learning problem, so we have not examined 
the potential effects of high dimension on the separation functions (other than for the 
class of parity functions with small agent sample size in Section 4.4, where we saw that 
the contraction of distance was exponentially small in the dimension). We now examine 
some population learning problems in high-dimensional spaces and find that often the 
effects are rather modest, and still permit polynomial population size. We begin with 
the well-studied class of boolean conjunctions, for which we can actually obtain a bound 
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that holds simultaneously for any fixed distribution. Here we restrict our attention to the 
~'~ = 1 case. 

THEOREM 6 Let 5n  be the cIass of all monotone conjunctions over n boolean variables, 
and let D be any distribution over {0, 1}% Then for the population learning problem 
(.~, D, m = 1, A = Gibbs) we have g(e, 6) = O(71,5/e 4 log n /e  + log 1/6). 

Proof: We proceed as usual by demonstrating an appropriate lower bound on ~Tv(G 1). 
Thus, let f l  and f2 be any monotone conjunctions, and let D[fzAf2] = ¢. Let T1 be the 
set of variables appearing in f l  but not in f2 and let T2 be the set of variables appearing 
in f2 hut not in f »  Let q be the probability with respect to D that an x is drawn 
satisfying f l ( x )  = 1, f2(x) = 0 and let e2 be the probability that f l ( x )  = 0, f2(x) = 1; 
note that 61 ÷ e2 = e. 

First let us describe the behavior of the Gibbs algorithm in this context. Given a 
positively Iabeled x, a random consistent hypothesis is obtained by randomly choosing a 
subset of the variables set to 1 in x, and forming the conjunction of this subset. Given a 
negatively labeled x, a random consistent hypothesis is obtained by choosing a random 
subset of all the variables, then rejecting the trial unless the chosen subset contains at 
least one variable set to 0 in x. 

To demonstrate a difference between qfl and qf~ we may restrict our attention to points 
where f l  and f2 disagree. Thus, suppose that f l  is the target and we draw x such that 
fz (x) = 1, f2 (x) = 0 (which happens with probability el). Then the expected number of 
variables in T1 chosen by the Gibbs algorithm is IT1 I/2 (since all these variables taust be 
set to 1 in x), and the expected number of variables in T2 chosen is at most (IT2[ - 1 ) / 2  
(since at least one variable in T2 is set to 0). On the other hand, if f l  is the target and 
we draw x such that f l  (x) = 0, f2 (x) = 1 (which happens with probability e2), then the 
expected number of variables in T1 chosen is at least ]T1[/2 (the fact that T1 contains 
at least one variable set to 0 can only introduce a bias towards larger subsets), and the 
expected number of variables in T2 chosen is tT2[/2 (since all variables in T2 must be set 
to 1 in x). If for any monotone conjunction h, we ler Xl(h) denote number of variables 
in h appearing in Tl, these facts are easily combined to give 

Ehcqh [Xl(h)] -- EhEqf 2 [Xl(h)] 

el e2 el C2 2- I ]  

e2 
2 

By symmetric arguments, if x2(h) denotes the number of variables in h appearing in T2, 
we have 

el 

Since either el > e/2 or e2 _> e/2, we may assume without loss of generality that 

Ehcq,rl [Xl(h)] - Ehcqf 2 [Xl(h)] _~ e/4. Now 

Ehcq h [Xl(h)] - EhEqs2 [xl(h)] ----- E ( q f l  [h] - qh [h])Xl(h) 
h 
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_< t q i , [ h ]  - 
h 

h 

<- 2nV(qA ,  qf2) 

where we have used the fact that x l (h )  <_ n always. Thus we have V(qfl  , qf2) >- e/8n 
or cry(e, 1) _> e/8n. Application of Theorem 3 then yields the stated bound on g(e, 5). 

[] 

5.3. Learning f rom a Population of  Perceptrons 

The population learning formalism can also be applied to the learning of homogeneous 
linear threshold functions (perceptrons) with respect to a spherically symmetric input 
distribution. This learning problem is nontrivial, yet analytically tractable, so that the 
Kullback-Leibler divergence can calculated to within very tight bounds for the case of 
agent sample size m = 1. 

THEOREM 7 Let S~ be the class of homogeneous linear threshold functions on R ~+1, 
and let D be any spherically symmetric distribution over R n+l. Then for the population 
learning problem (Un, D, m = 1, A = Gibbs) we have 

g(e, (5) = O(n21e4(log l te)( log n/e> + log 1/6). 

Proof: Each perceptron in the concept class is parametrized as sgn(zg. ~), where zg E 
/~+1 is constrained to lie on the unit n-sphere S ~ (the magnitude of ~7 does not matter). 
As shorthand notation, we will refer to a perceptron by its weight vector ~. We assume 
a spherically symmetric input distribution D on the input space X = / ~ + 1 .  The angle 
012 between two unit vectors ~71 and tg2 is defined by zgl • u72 = cos 012. It is easily 
shown that the probability of disagreement between two perceptrons is proportional to 

012: 

012 D[tgl A~2] _ (2) 
71" 

This result depends on u71 and v72 only through the angle 0xz because of the spherical 
symmetry of the input distribution D. 

For the case m = 1, the ratio of the probability density dqw 1 to the uniform density 
dqo is proportional to 1 - D[tgA~l], that is, 

dq,z~ _ 2(1 - D[~A~I] )  (3) 
dqo 

because all version spaces determined by a single example have the same volume. The 
normalization constant 2 is set by noting that the expectation of D[vTAvT1] for v7 drawn 
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according to dqo is 1/2. An analogous result holds for dq~ 2. In this continuous setting, 
the Kullback-Leibler divergence is defined by 

KL(dq~~ I[dq~~ ) = / dq~oz log dq~z dq~v2 " (4) 

In the appendix, this is evaluated using spherical coordinates. The resulting integral can 
be tightly bounded for large n using Laplace's method. The result described by Equation 
(7) depends on ag1 and zg2 through their angle, and implies 

~2 

KL(e)-  ~rv/~ 
__ - -  __ O ( e 4 n - 1 / 2 )  + O ( n  -3 /2 )  

for small e = D[vT1Azg2]. In particular, this implies that the separation function 
~7gr(c, 1) = ~2(e2/v/n). The only obstacle to application of Theorem 3 is the lack 
of a simple bound on dito(Q) due to the infinite cardinality of 5 c. However, by con- 
structing a maximal e-separated set in 5e, we can obtain a finite concept class 5 er of 
cardinality O((1/e)n),  the learning of which is equivalent to the learning of 5e. This 
construction leads to a bound on g(e, 6) that is equivalent to that provided by Theorem 3 
with the substitution of dim(se') = O(nlog l /e )  for dito(Q). [] 

6. Future Research 

There are many open problems in the population learning model. Here is a small sam- 
pling: 

• Effects of Agent Sample Size. It would be nice to prove general quantitative theorems 
regarding the effect of increasing the agent sample size m. This is perhaps the most 
important open problem, and some of the difficulties involved in its solution were 
discussed in Section 4.2. For instance, for the high-low garne in Section 5, we 
showed that «v(e, m) grows like 1 - e-~Cm; can we give general conditions under 
which such exponenfial behavior occurs? 

• Natural  Algorithms. The maximum likelihood or empirical loss minimization pro- 
cedure we proposed, while providing very general upper bounds on population size, 
does not seem like the most natural method of combining hypotheses. On the other 
hand, we know that certain intuitive methods such as majority vote fail. It would 
be interesting to obtain good upper bounds on other natural approaches, such as 
weighted voting schemes. 

s Bounds on dito(Q). We suspect that except for degenerate classes, the combinatorial 
dimension dira(Q) can be bounded by a slowly growing function of the Vapnik- 
Chervonenkis dimension of 5e. It would be interesting to give conditions for this. 
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Technical Appendix 

This appendix gives the details of the calculation of the Kullback-Leibler divergence 

between two densities dqgz and dq,12 induced on 5 c by two perceptrons 31 and 32. We 
parametrize the concept class b r = S ~ using spherical coordinates: 

W 1 ---~ 

W 2 : 

W 3 : 

Wn+ 1 : 

COS qOn COS qOn_  1 - - - COS qO 2 COS qO 1 

COS @ n  COS ~ g n _  1 • . .  COS ~ 2  s i n  ~ 1  

cos ~p~ cos ~pn_ 1 • • "sin ~P2 

cos (p~ sin ~?n-1 

sin ~Pn- 

Here ~1 E [-~r, 7c] and P 2 , . . . ,  ~ E [-~r/2, 7r/2]. The spherically symmetric measure 
on S n is given by 

1 
dqo = ~ cos n -1  ~ cos ~-2  ~n--1 " ' '  COS ~ 2 d p ~ d ~ - i  "'" d ~ l  

where the normalization constant An is the area of S ~, or 

d~n " • " d ~ l  cos n -2  ~Pn--t " " " COS ~2 
d -7r/2 ~r 

27r(n+l)/2 

+ 1)/2] 

To write the densities dq~vl and dqm 2 in spherical coordinates, we first align our co- 

ordinate system so that 31 = ( 0 , . . . ,  1) and 32 = (0, . . . , sin 012, cos 012), which is 

consistent with 31 - 32 = cos 012. This choice of coordinates, which involves no loss of 
generality, leads to 

3 - 3 1  = s i n p ~  

3 -  32 = sin 99n cos 012 + cos ~n sin ~ n - I  sin 0 1 2 .  

For the sequel we define 

R = sin Cpn cos 012 + cos 9n  sin Tn-1  sin 012 

for notational brevity. 
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Substitution of this result in Equations (2) and (3) yields the induced densities 

In spherical coordinates, the Kullback-Leibler divergence of Equation (4) takes the form 

KL(dq~~ I[dq~~) 

_- i,~o(,+,:~),o, ,+'.~.. 1 + 7 sin-  ~ R 

An_2 f ~ / 2  f ~ / 2  - -  d~n c o s  n - 1  ~n d~n-1 c o s  n - 2  ~ n - 1  
An J-~/2 J-~/2 

1 +  n log 2 s i n - l R "  (5) 
1 + 7  

The last equality was obtained by performing the integral over d~~_2 . . ,  d~l, yielding 
A~_2, the area of S ~-2. 

For large n, we can derive an asymptotic expansion for this integral using Laplace's 
method (Erdelyi, 1956): 

LEMMA 2 (Laplace's Method) Let 

J(A) = f g(x)e-;'f(~)dx (6) 

where A is a large positive parameter and the integration domain I in ÆN contains some 
neighborhood of the origin. If the minimum of f in I is at the origin, f and 9 possess 
fourth-order Taylor expansions about the origin, and the Hessian of f at the origin is 
positive definite, then 

J(~') = fR~ g~(x)~-~v'(~)dx + O(~-~/~) 

whet'e ,fu and 92 are the second-order Taylor expansions of f and g. 

The proof of this lemma can be found in many textbooks, but the intuition behind 
it is simple. As A becomes large, only the neighborhood around the minimum of f 
contributes to the integral. Hence the integral can be approximated by Taylor expanding 
f and g. 

The integral of Equation (5) can be pur in the form of Equation (6) by setting f = 
- log cos ~ n -  1 - log cos ~n, A = n - 1, and 9 equal to the rest of the integrand. We 
Taylor expand f and g to second order, and perform the resulting Gaussian integrals, 
yielding 

2 1 - cos 012 + 0(n_3/2) (7) 
KL(dq~~ []d«~,) = ~ v/_ £ 

where we have used An-2/A~ = (n - 1)/27c. 
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