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Guest Editor's Introduction 

This special issue of Machine Learning is devoted to the Sixth Annual ACM Conference 
on Computational Learning Theory (COLT '93) which was held in Santa Cruz, California 
on July 26-28, 1993. These papers were selected from those presented at the 1993 
COLT conference (ACM Press, 1993) based on both the significance of their results 
from a theoretical viewpoint and the relevance of the results to the machine learning 
community. While the authors were invited to submit their papers to this special issue, 
all papers went through the standard refereeing procedures of this journal. 

I would like to thank the authors and the referees for their help in making timely 
publication of this special issue possible. This issue could not have been produced 
without them. In addition to this special issue, other selected papers from the 1993 
COLT conference will be appearing in a special issue of the Journal of Computer and 
System Sciences. 

As the field of computational learning theory has matured, the breadth of topics ad- 
dressed has continued to grow, and the papers in this special issue give a sampling of 
such breadth. For readers who would like to obtain some general background about 
computational theory there are three textbooks (Kearns & Vazirani, 1994; Anthony & 
Biggs, 1992; Natarajan, 1991) as weil as two survey articles written by Dana Angluin 
(Angluin, 1992, 1993). There are also special issues of Machine Learning devoted to 
previous COLT conferences (Hellerstein, 1994; Li & Valiant, 1994; Blumer & Case, 
1992; Pitt, 1990). 

The field of computational learning theory began with the seminal paper of Valiant 
(1984) in which he introduced the PAC (probably approximately correct) model of learn- 
ing. There has been a tremendous amount of research related to this model. In the 
PAC model, a major contribution to the understanding of sample complexity was made 
by Blumer et al. (Blumer, Ehrenfeucht, Haussler & Warmuth, 1989). Building on the 
work of Vapnik and Chervonenkis (Vapnik & Chervonenkis, 1971), they showed that the 
combinatorial parameter of the VC-dimension of a concept class essentially character- 
izes the needed sample complexity. In particular, if you can show the VC-dimension of 
a concept class is polynomial in the relevant parameters, then any hypothesis from the 
class that is consistent with a polynomial size sample will satisfy the PAC criteria. While 
polynomial upper bounds on the VC-dimension are easily obtained for discrete concept 
classes, little was known about what general conditions guarantee polynomial bounds 
on the VC-dimension for non-discrete classes. The first paper of the special issue, by 
RW. Goldberg and M.R. Jerrum, shows that for non-discrete classes the VC-dimension 
is polynomially bounded if the containment of an instance in a concept is testable in 
polynomial time or if the criterion for membership of an instance in a concept can be 
expressed as a formula with fixed quantification depth and exponentially-bounded length. 

Another central issue with regard to the PAC model is whether or not learning algo- 
rithms can be made robust against noise. While there has been tremendous progress in 
this area, there are still many interesting and important open questions to answer. Re- 
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cently, Kearns (Kearns, 1993) has introduced the statistical query rnodel and shown that 
any algorithm that can be formulated in this model is also PAC learnable with random 
classification noise in the random examples. However, much less is known about the 
variant of the PAC model in which there are membership queries that are incorrectly 
answered. The second paper in this issue, by D. Ron and R. Rubinfeld, presents a poly- 
nomial time algorithm that uses corrupted random examples and membership queries to 
learn an arbitrarily good approxirnation to an unknown deterrninistic finite state automa- 
ton where the random examples are drawn from the uniform distribution on the inputs. 
In particular, they consider the model of noise in which both the answers to the queries 
and random examples are corrupted with independently distributed errors with an error 
rate bounded away frorn 1/2, and these errors are persistent. 

While there is a fairly well developed theory for concept learning, where each example 
is classified as either a positive or negative example of the target concept, very little 
is known about the theory of learning real-valued functions. In particular, there have 
been few results about general properties of function learning and only a few non-trivial 
function classes for which positive results had been exhibited. The third paper of this 
issue, by P. Auer, P.M. Long, W. Maass, and G.J. Woeginger, presents new results on the 
complexity of function learning in the most common non-probabilistic models of on-line 
learning. They provide a combinatorial max-min definition that characterizes the optimal 
learning cost for learning a class of real-valued functions. They also relate the cost for 
learning a union of function classes to the learning costs for the individual function 
classes. Furthermore, they give an efficient algorithm for learning convex piecewise 
linear functions from Nä into ~. They also give a sufficient condition for learnability 
that they can apply to obtain efficient learning algorithms for a number of additional 
non-trivial classes of functions from N to N. 

In addition to exploring the leärnability of various concept classes under the existing 
learning rnodels, a central problem in computational learning theory is to further develop 
and investigate new learning models and to formalize learning tasks into new learning 
problems so that they can be studied in a formal setting. The final two papers in this 
special issue fall into these categories. The fourth paper of this issue, by M. Betke, 
R.L. Rivest, and M. Singh, introduces the problem of learning a graph by a piecerneal 
search, in which the learner taust occasionally return to its starting point (say, to refuel). 
They present two linear-time piecemeal-search algorithms for learning grid graphs with 
rectangular obstacles. Recently, Baruch, et al. (Baruch, Betke, Rivest, & Singh, 1994) 
have given an algorithm that will explore, in a piecemeal manner, every vertex and edge 
in an arbitrary graph G = (V, E) in O([E I + IV11÷o<1>) time. There has also been some 
recent work on learning graphs (Bender & Slonim, 1994). 

The fifth paper of this issue, by M. Kearns and H.S. Seung, considers the question 
of how one can make optimal use of multiple independent runs of a mediocre learning 
algorithm. They introduce a new formal model in which the learning algorithm must 
combine a collection of potentially poor but statistically independent hypotheses in order 
to approximate an unknown target function arbitrarily well. A second motivation for this 
study is the setting in which many hypotheses are obtained by a distributed population 
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of identical learning agents and one wants to cornbine thern to obtain an agent that is 
significantly bettet than any individual in the population. 

Once again, let me thank all of the authors and reviewers for their help. I hope you 
enjoy reading the papers contained in this special issue, and I look forward to hearing 
about the future research that builds upon them. 

Sally A. Goldman 
Department of Computer Science 
Washington University 
St. Louis, MO 63130 
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