
Machine Learning, 8, 151-166 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Probabilistic Automata and Markov Chains
via Queries

WEN-GUEY TZENG
Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794

Editor: Thomas G. Dietterich

Abstract. We investigate the problem of learning probabilistic automata and Markov chains via queries in the
teacher-student learning model. Probabilistic automata and Markov chains are probabilistic extensions of finite
state ,automata and have similar structures. We discuss some natural oracles associated with probabilistic automata
and Markov chains. We present polynomial-time algorithms for learning probabilistic automata and Markov Chains
using these oracles.

Keywords. Learning via oracles, probabilistic automaton, deterministic finite automaton, Markov chain.

1. In t roduct ion

In this paper we use the teacher-student learning model (Angluin, 1987a). In the model
a learner has access to oracles that provide correct information about the target concept.
The goal of the learner is to learn the target concept exactly in polynomial time, with a
polynomial number of queries. Informally, the teacher-student learning protocol can be
described as follows. A teacher (oracle) has some target concept. A student (learning
algorithm) tries to learn the concept by asking some questions (queries) about the concept.
The student then constructs a hypothesis for the target concept and presents it to the teacher.
The teacher tells the student whether the hypothesis is correct. I f the hypothesis is incor-
rect, the teacher provides an instance (a counterexample) in which the hypothesis and the
target concept disagree. The student uses the information provided by this counterexample
to ask more questions and construct a new hypothesis. The student repeats this process
until he/she presents a correct hypothesis to the teacher.

As an example, we describe a structure of the teacher-student protocol for learning deter-
ministic finite automata (DFAs). Let A be a DFA and L(A) be the language accepted by
A. The target concept is L(A). The student asks some membership questions (i.e., whether
a srring x ~ L(A)). Then the student constructs a DFA A' and asks the teacher whether
L(A') = L(A) (an equivalence query). I f the answer is "no," the teacher gives the student
a counterexample, which is a string belonging to L(A), but not to L(A'), or vice versa.
using information obtained from membership and equivalence queries, the student repeats
the inference process again, until a correct DFA A" is obtained, i.e., L(A) = L(A").

Intuitively, the learning ability of a student depends on the information the teacher pro-
vides. For example Angluin (1987a, 1989) showed that there is no polynomial-time algorithm
for learning (i.e., exactly identifying) DFAs via membership queries alone or via

152 WEN-GUEY TZENG

equivalence queries alone. In contrast, she (Angluin, 1987b) showed that there is a
polynomial-time algorithm that learns DFAs via a combination of membership and
equivalence queries. A general problem in learning theory is to find, for each concept class,
minimal sets of (natural) query types that enable the student to learn the class efficiently
(in polynomial time by asking a polynomial number of queries). In this paper we present
minimal sets of query types for learning probabilistic automata and Markov chains.

Probabilistic automata (PAs) and Markov chains (MCs) have been used to model some
learning systems and pattern recognition problems (Bush & Mosteller, 1955; Fu, 1966).
A PA is a finite state machine with probabilistic transitions among states. When a PA is
in a state q and reads a symbol a, there is a fixed probability, for each state q', that the
PA will move to state q'. These probabilities sum to 1. MCs are slightly different. They
generate strings, rather than accepting them. When an MC is in state q, it has some proba-
bility p of generating the symbol "0" and probability 1 - p of generating the symbol "1"
(we assume there are only two symbols). The next state it enters is determined by the sym-
bol it generates. We treat PAs and MCs as functions that map strings into real numbers
(the real numbers are accepting probabilities in the case of PAs and generating probabilities
in the case of MCs). Both PAs and MCs are probabilistic generalizations of DFAs.

For a PA U, the state distribution (probability distribution of states) induced by an input
string x is a vector indicating, for each state q in U, the probability that U enters state
q after reading string x. We explore the SD oracle, which takes as input a string x and
returns the state distribution induced by x for the target PA. Using a technique in linear
algebra, we present a polynomial-time algorithm for learning PAs using the SD oracle.
The same proof technique also yields a polynomial-time algorithm for the equivalence prob-
lem for PAs (Tzeng, 1990). We also show that this oracle is optimal for learning PAs in
the following senses: (a) the consistency problem for PAs using information represented
by the SD oracle is NP-complete and (b) it is provable that no polynomial-time algorithm
can learn PAs using a weaker natural oracle.

When the SD oracle is restricted to DFAs, it takes as input a string x and returns the
state q that the target DFA will enter after reading x. It is easy to see that we can learn
DFAs using the SD oracle. However, we show that the corresponding consistency problem
for DFAs is NP-complete. Each example used in the above consistency problem has the
form (x, q), which says that the target DFA enters state q after reading string x. The infor-
mation provided by examples of the form (x, q) is stronger than that which only indicates
whether a string is accepted (Angluin, 1978; Gold, 1978).

For MCs, we discuss two types of oracles. The first one is similar to the membership
oracle for DFAs. It takes as input a string x and outputs the probability that the string x
is to be generated. The second one is similar to the equivalence oracel for DFAs. It takes
as input an MC B, and if B is not equivalent to the target MC B*, it outputs a string x
that is generated with different probabilities by B and B*. Our main results on learning
MCs are as follows: (a) using the combination of these two oracles, we can learn MCs
in polynomial time and (b) there is no polynomial-time algorithm for learning MCs using
the first oracle alone or using the second oracle alone. These results are extensions of
Angluin's (1987a, 1987b, 1989).

Rudich (1985) and DeSantis, et al. (1988) also discussed inference of MCs. They treated
an MC as a device outputting an infinite sequence of symbols. Rudich showed how to infer

LEARNING PAs AND MCs 153

the structure of the target MC with probability 1 in the limit by observing the output se-
quence. In contrast, we investigate the problem of exactly learning MCs in polynomial
time using information about finite strings generated by the target MC.

In Valiant's PAC (probably approximately correct) learning model, we observe that ex-
amples are given probabilistically according to some probability distribution. Critical ex-
amples sometimes cannot be obtained through probabilistic sampling, because their share
of probability measure in the sample space is negligibly small. Thus it is possible that
some domains are learnable using oracles, but not learnable in Valiant's model (under the
assumption that NP-hard problems cannot be solved in polynomial time by randomized
algorithms, i.e., that NP ~ RP) ~. Our results on learning PAs and MCs demonstrate a
case where learning using oracles is more powerful than learning in Valiant's model. Other
examples of concepts that are learnable using oracles, but not learnable in Valiant's model
include, for example, read-once formulas (Angluin et al. 1989) and k-term DNF formulas
(Angluin, 1987c; Kearns, et al. 1987).

2. Learning probabilistic automata

2.1. Definitions

A (row) vector is stochastic if all its entries are greater than or equal to 0 and sum to 1.
A matrix is stochastic if all its row vectors are stochastic, let ~ (i , j) be the set of all
i x j stochastic matrices. Let X be the empty string and Ixl be the length of string x. Let
~ r be the transpose of the vector c~.

W~ first give definitions for deterministic finite automata and probabilistic automata in
th.e following.

Definition 2.1 A deterministic finite automaton (DFA) A is a 5-tuple (Q, ~, 3, ql, F), where
Q is a finite set o f states, ~ is an input alphabet, ~ is a transition function from Q × r.
into Q, ql is the initial state, and F c_ Q is a set o f f inal states.

The size of A is defined to be the number of states in Q and symbols in ~. The transition
function 3 is extended to the domain Q x ~* in the standard way, i.e., for any q E Q,
cr E E and string x, 6(q, xa) = 3(3(q, x), ~r) and 6(q, X) = q.

Det~irfition 2.2 Let A1 and A2 be two DFAs. Then AI and A~ are said to be equivalent iJ
L(A1) = L(A~), where L(A1) and L(A2) are the languages accepted by A~ and A2
respectively.

Definition 2.3 A probabilistic automaton (PA) U is a 5-tuple (Q, ~, M, p, F), where Q
= {ql, q2 qn} is a finite set o f states, P. is an input alphabet, M is a function from
~ into fig (n, n), 0 is an n-dimensional stochastic row vector and F ~_ Q is a set offinal states.

The size of U is defined to be the number of states in Q and symbols in ~. The vector
p is called an initial-state distribution whose ith component is the probability of state qi

154 WEN-GUEY TZENG

being the initial state. Let o ~ E. The value M(a)[i,j] is the probability that U moves from
state qi to state qj after reading a. We extend the domain of function M from ~ to ~* in
the standard way, i.e., M(xa) = M(x)M(a). Let ~TF be an n-dimensional row vector such
that for 1 _< i _< n,

~e[i]
S 1 if qi ~ F

0 otherwise.

Definition 2.4 Let U = (Q, ~, M, ; , F) be a PA. Then the state distribution Pu(x) induced
by string x is pM(x), whose ith component is the probability that U with initial-state distribu-
tion p moves to state qi ~ Q after reading x.

The accepting probability of x by U is Pu(x)(~F) T, which is the probability that U enters
a final state when the input string is x.

Definition 2.5 Let U1 = (Q1, ~, M1, Pl, El) and U2 = (Q2, ~, M> P2, F2) be two PAs.
Then U1 and U~ are said to be equivalent i f for each string x, the accepting probability
of x by U1 is equal to the accepting probability o f x by U 2, i.e., Yx ~ ~*, Pu,(X)(~F) ~ =
Pu~(x)(n~_) r.

U1 and U2 are said to be state-distribution equivalent i f for each string x, the state
distribution induced by x for U1 is equal to the state distribution induced by x for U2, i.e.,
vx ~ ~*, Pul(x) = Pu2(x).

We now give the definition for polynomial-time learning in the oracle learning model
in the following.

Definition 2.6 Let R be a class to be learned and On be an oracle for R. Then R is said
to be polynomially learnable using the oracle On i f there is a learning algorithm L and
a two-variable polynomial p such that for every target r ~ R of size n, L runs in time
p(n, m) at any point and outputs a hypothesis that is equivalent to r, where m is the max-
imum length of data returned by On so far in the run.

The above definition can be easily extended to the case where two or more oracles are
used. The reason that the learning algorithm must run polynomially in every intermediate
step is that otherwise the algorithm could delay outputting a correct hypothesis until after
it found one (not necessarily in polynomial time). It could then ask the (equivalence) oracle
about an hypothesis that differed from the target concept on very long strings only. The
oracle would be forced to output a very long counterexample. Such an algorithm would
run in "polynomial time" by using the size of such counterexamples as the complexity
measure.

Since the computation of real numbers is a subtle issue, we assume that probabilities
associated with automata are rational numbers and that each arithmetic operation of ra-
tional numbers can be done in constant time.

Without loss of generality, in the rest of this paper we assume that ~ = {0, 1}, unless
stated otherwise.

LEARNING PAs AND MCs 155

2.2. Learnability o f probabilistic automata

We first consider a natural oracle AP for PAs. For a PA U = (Q, r~, M, 0, F), the AP
oracle takes as input a string x and returns the accepting probability Pu(x)(~lF) r of x by
U~ This oracle is identical to the membership oracle if it is applied to DFAs. For a DFA
A, the membership oracle returns "yes" (i.e., the accepting probability is 1) for a string
x if and only i fx is accepted by A. Since Angluin (1987a) has already shown that we cannot
learn DFAs using the membership oracle alone, we cannot learn PAs using the AP oracle
alone.

Theorem 2.7 (Angluin, 1987a) DFAs are not polynomially learnable using the member-
ship oracle only.

Corollary 2 ~ PAs are not polynomially learnable using the AP oracle only.

Therefore, we consider a stronger oracle SD for PAs. For a PA U, the SD oracle takes
as input a string x and returns the state distribution Pv(x) induced by x. To demonstrate
that the information carried by this oracle is not too strong, we show that the consistency
problem, based on the information carried by this oracle, for PAs is NP-complete.

First, we consider an analogous consistency problem for DFAs. For a DFA A = (Q,
E, ~' ql, F), the SD oracle takes as input a string x and returns the state q that A will
enter after reading x. In other words, the data about A presented in the corresponding con-
sistency problem is given in the form (x, q), which says 6(ql, x) = q. The information
carried by this type of data is stronger than that which only indicates whether a string is
accepted (Angluin, 1978; Gold, 1978). It is easy to learn DFAs using the SD oracle alone.
However, we show, in Theorem 2.10, that its corresponding consistency problem does not
admit a polynomial-time algorithm if P ;e NP. Theorem 2.10 is quite strong in the sense
that each state of the target DFA is reached (not just passed) by some string in the given
data. The proof is a generalization of Angluin's (1978).

Theorem 2.9 DFAs are polynomially learnable using the SD oracle.

Pro~of: Since the proof is easy, we omit it here. []

Theorem 2.10 The following problem is NP-complete: given a set T of data of the form
(x, q), determine whether there is a DFA A = (Q, ~, 15, ql, ") consistent with T, i.e., for
each (x, q) in T, 6(ql, x) = q, such that Q = {q : 3x, (x, q) ~ T } .

Proof: It is easy to see that this problem is in NP. Then, we reduce the NP-complete pro-
blem SAT' (Gold, 1978) with each clause containing positive literals only or negative literals
only to our consistency problem. Let V = {vl, v2, • • . , Vn} be a set of variables and C
= {Cl, c2 Cm} be a set of clauses over V such that each ci is either positive (con-
tain~ng positive literals only) or negative (containing negative literals only). For conven-
ien6e, in the following we will use 6(ql, x) = q to denote the example (x, q).

156 W E N - G U E Y T Z E N G

We first construct some tree-like automata Av and AQ, 0 _< i _ n, in Figure 1. The
automaton Av of height ~log n-] and state set Qv has the root node qv and leaf nodes q~,

• • . , qvn,, where n' = 2 ~log n~. The leaf node qv~ corresponds to the variable vi of V. Let x,~,
1 _< i _< n', be the string of length ~log nq such that 6(q,, x,i) = 6,~. For each 0 _<
i <__ n, the automaton Aq of height ~log m~ and state set Qc~ has the root node qq and
leaf nodes qc~ ~ q~ m', where m ' = 2 ~log m~. The leaf node qcd corresponds to the
clause cj of ~. Let xc., 1" <_ j <_ m', be the string of length ~log rn] such that 6(qc., x~.)

J t J
= q~d" Let the state set Q w~th the ~mtml state ql be {q~, q2, q3, q4, qs, q6} U Qv U
tA n (i=o Qq)-
The transition (data) set T of our reduction is

T~ U Tz U T~ U T4 U T~ U Tv U I Oi=o Tc t '

where

T~ : 6(ql, 0) = qv,

6(ql, l) = qCo,

6(qb 0xvgl) = ~(q~, 1) -- qc~, 1 < i <_ n,

T2 : 6(q~, 0x~.glxg0) = t q2
if vl in cj

L q3 otherwise, 1 _< i _< n, 1 < - j < m,

T 3 : 5 (q b lx@lxgO) = q2, 1 <_ j <_ m,
r ' -

if cj is positive
T4 : 6(qt, lxg00) = 4 q 4

k q5 otherwise, 1 _< j _< m,

T5 : 6(qi, Yi o) = 6(qi a) = q6, ff ~ {0, 1},
where 3(q~, Yi) = qi, 2 <_ i < 6,

6(q~, Oxv~ lxc. i O) = 6(qc~,i, O) = q6, O <_ i <_ n, m + 1 <_ j <- m',

6(ql, Oxv~lxc~ 1) = 6(qc~i , 1) = q6, 0 < i _< n, 1 _< j _< m' ,

6(q~, 0xv~cr) = 6(q,~, a) = q6, n + 1 <_ i <- n', ~r ~ {0, 1},

T v : {transitions of Av defined on Q},

Tq : {transitions of Act defined on Q}, 0 -< i -< n.

The transition set T5 collects all unrelated transitions by directing them to the state q6-
It is not hard to see that there is a DFA with state set Q on which the transitions in T1,
Tz, Ts, Tv, TQ, 0 _< i _< n, can be defined. Thus the only transitions to be determined
are those in

LEARNING PAs AND MCs 157

0
q ~ < 0

1

0 q~'~ 0 q~i4
0 q~. ~ 0 "" 0 q~"2
0 q~ ~,~'C~--~.. 0 0 q~'~

~ 0
"0 q~., ' 0 q~,,~'

A v Ac;

Figure 1. Automata A v and Ac~ , 0 <_ i < n.

R : ~ (q l , lxg0), 1 < j < m,

6(ql, Oxv~O) = 6(qv~, 0), 1 _< i _< n.

Now we prove that C is satisfiable if and only if there is a DFA with state set Q on which
the transitions in Tcan be defined. For the forward direction, assume that ~ is a truth assign-
ment for V that satisfies C. We define a DFA A = (Q, Z,/~, q~, ") such that, in addition
to the transitions in T, the (undetermined) transitions in R are defined as

~(q~, lxg0) = qv~, 1 <_ j < m,

where the clause cj is satisfied by ~-(vk), and

if T(Vi) true

~(q l , OXviO) = ?9(qvi,O) ---- ~

q5 if r(vi) = false, 1 <_ i <- n.

We can check that all transitions in T, in particular, those in T 3 and T4, are legal for A.
For the backward direction, let A = (Q, E, ~i, q~, .) be a DFA on which transitions in

T are defined. Then, transitions in T 2 and T3 guarantee that for every 1 _< j < m,/5(q~,
lxgO) = qv~ for some 1 _< k < n and variable Vk is in the clause cj. Furthermore transi-
tions in T 4 guarantee that t~(ql, lxcjO0) = 6(qvk, 0) = q4 or q5. So, we define the follow-
ing truth assignment ~ for C:

tFue

r(Vk) = ~ false
~_arbitrary

if/5(ql, lx¢.00) = 6(qv~, 0) = q4
if ~5(ql, xg~O) = 6(qv~, O) = q5
otherwise,

such that a clause cj is satisfied by r(vk) if ~i(ql, lxg0) = qvk-
The above theorem holds for the case of PAs.

[]

1 5 8 W E N - G U E Y T Z E N G

Theorem 2.11 The following problem is NP-complete: given a set T' of data of the form
(x, #'), determine whether there is a PA U consistent with T; i.e., for each (x, 1 y) in T',
Pv(x) = 1~. 2

Proof: We use the same construction (reduction) as in the previous proof, except that we
use state distributions to represent transitions. Letff[q] be the coordinate that corresponds
to the state q in Q of the previous proof. Then the set T' of state distributions is defined as

{(x,/Y) : 3q, (x, q) ~ T,/Y[q] = 1, ff[q '] = 0 if q' ;~ q}.

The same argument as in the previous proof proves that if C is satisfiable then there exists
a PA U with state set Q on which state distributions in T' can be defined. Proving the con-
verse of this statement is less straightforward.

In the previous proof, we assigned a truth value to a variable vt depending on whether
~(ql, lxgO0) = 6(qv~, 0) was equal to q4 or qs. In the case of PAs, the state distributions
in R' (which corresponds to R in the previous proof) may reach different states with dif-
ferent probabilities. This may appear to cause a problem in using the above method to
assign truth values to the variables. We will show, however, that there is no such problem.
The state distributions in T~ and T~ (which corresponds to T 2 and T 3 in the previous proof
respectively) guarantee that U, on input lxc,0, will reach some state qv~ in {qvj,, qvj }
with probability 1, where vii, vjr are t~e variables appearing in the clause cj. Othe~-
wise the probability that U, on input lxc.01x~ 0, reaches qa is not 1, violating state distribu-

• . ~ - J J , .

tlons m T3. But when U, on ~nput lxg0 , reaches qv, with probability 1, it, on input lxcjO0 ,
either goes to q4 with probability 1 or to q5 with probability 1. Otherwise it violates state
distributions in T~ (which corresponds to T 4 in the previous proof). Therefore, we may
use the method of the previous proof to assign truth values to the variables. []

We can relax the requirement of the state set being Q = {q : 3x, (x, q) ~ T} in Theorem
2.10 to get a non-approximation result for the case where the given data has the form (x, q).

]Theorem 2.12 The following problem is NP-hard for any fixed polynomial p: given a set
T of data of the form (x, q), find a DFA consistent with T and of number of states at most
p (n*), where n* is the minimum number of states of any consistent DFA.

Proof: (Sketch) The proof is a simple reduction from the non-approximation result of DFAs
(Pitt & Warmuth, 1989). In Pitt and Warmuth (1989), an example of the given set T' has
the form (x, ~) such that string x is accepted if and only if ~ is +. Let @ be a new alphabet
symbol and q+, q_, qa be three new states. The set T of our reduction is

U

U

U

{(x@, q+) : (x, +) E T'}

{(x@, q_) : (x, -) E T'}

{(@, q+), (@0, q_), (@1, q_), (@00, q+), @01, q+)}

{(x, q,t) : x = @@, @0, @1, @0@, @00, @01, @@@, @@0, @@1}.

LEAI~AIING PAs AND MCs 159

Now we can see that there is an n-state DFA consistent with T ' if and only if there is an
(n + 3)-state DFA consistent with T. Thus the non-approximation result of Pitt and War-
mut~ (1989) also holds for the new form of data. []

2.3. Learning probabilistic automata using the SD oracle

In this section we present a polynomial-time algorithm for learning PAs using the SD oracle.

Theorem 2.13 PAs are polynomially learnable using the SD oracle even if the output
hypothesis of the learning algorithm must be state-distribution equivalent to the target PA.

Corol lary 2.14 PAs are polynomially learnable using the SD oracle.

The rest of this section is devoted to prove Theorem 2.13.

2.3.L Overview

We first review the result on the equivalence problem for PAs in Tzeng (1990), because
the ideas and techniques are crucial to our learning algorithm.

Let U1 = (Q1, ~, M1, ol, F1) and U2 = (Q2,]], m2, 02, F2) be two PAs of nl and n 2

states respectively. We define

Mv,®v2(x) = I
M1 (x) 0n,×n~-

On~×n~ M2(x)_

where On× m is the (n × m)-dimensional zero matrix. Let Pu,® ~2(x) = [P l, p2]Mu,® u2(x)
and H = {Pv,®v~(x) : x fi ~*}. Then U1 and U2 are equivalent if and only if Yx ~ Z*,
P~,®v2(x)[rIF,, -- ~v2] T = 0, i.e., span(H) is a null space for [~TF,, -- ~/V~] T, where span
is the function that maps a set of vectors to the vector space generated by the vectors in
the set. The key idea of designing a polynomial-time algorithm for the equivalence prob-
lem for PAs is to find a basis V for span(H) in polynomial time. Then U1 and U2 are
equivalent if and only if YVfi V, V[~F1, -- ~V,] r = 0.

We define a binary tree T as follows. The root of tree T is node(X) and each node(x)
(x is a string) has two children node(xO) and node(xl). Let Pv,®~,(x) be the (nl + n2)-
dimensional vector associated with node(x). For node(xa), a ~ r., its associated vector
Pv,®v2(xa) can be calculated by multiplying its father's associated vector P~,®v~(x) by

MUl®U~((l).
The method we use to determine whether the two PAs are equivalent is to prune the

tree T. Initially, we set V to be the empty set. Then, we visit tree T in breadth-first order.
At each node, we verify whether the associated vector of the currently visited node is lin-
early independent of V. If it is so, we add the vector to V. Otherwise we prune the sub-tree
rooted at the current node. We stop traversing tree Twhen every node in Tis either visited
or pruned. The vectors in the resulting set V form a basis for span(H). Actually the

160 WEN-GUEY TZENG

order of traversal can be arbitrary. Different orders of traversal result in different bases
for span(H).

Lemma 2.15 (Tzeng, 1990) There is a polynomial-time algorithm that takes as input two
PAs U1 and U 2, and determines whether UI and U 2 are equivalent.

2.3.2. The algorithm

Let the target PA be U* = (Q, E, M*, O*, F), where Q and F are known. Our algorithm
for learning PAs using the SD oracle appears in Table 1. By the definition of the SD oracle,
we can see that 0* =/Yx = SD(X). In the first part of the algorithm (lines 1-9), we find
a basis V for the vector space span({P~,(x) : x E ~*}) by the same techniques we used
to solve the equivalence problem for PAs. Then, in the second part of the algorithm (lines
10-14), we define a system of linear equations from Vand solve it to get an arbitrary solu-
tion for the transition matrices M(~r), o fi E. We show, in the following subsection, that
the inferred PA U = (Q, ~, M,/~x, F) is state-distribution equivalent to the target U*.

Table 1. Learning algorithm for probabilistic automata.

~. p~ ,-- SD(X);

2. Set V to be the empty set;

3. W *- {node(X)};

4. while W is not empty do

5. begin Take an element node(x) from W;

6. /~ , - SD(x);

7. i f ~x f~ span(V)

8. then begin Add node(xO) and node(xl) to W;

9. V *- V U {p-~} end;

end;

10. Let M(0) = [xij]and M(1) = [Yij], 1 < i , j <_ n;

11. Define a linear system:
for /~ e Vand a e {0, 1},/~xM(a) = /~o = SD(xa),

for 1 -< i -< n, C]=1 xij = 1, ~=1 Yij = 1,

for 1 <- i, j <. n, xij >~ O, Yij ~ 0;

12. Find a suitable solution for xij's and Yij's;

13. if there is a solution then return (U = (Q, {0, 1}, M, fix, F))

14. else return (not exis0;

LEARNING PAs AND MCs 161

2.3. 3. Correctness

We prove that the PA U returned by the above algorithm is state-distribution equivalent
to the target PA U*. Note that the transition function M of U may not be identical to M*
of U*, but their behaviors with respect to the state distributions for strings are the same.

Lemma 2.16 For all strings x ~ E*, Pv(x) = P~.(x).

Proof: Let V = {~, ~ , Vr} be the set of vectors obtained by the above algorithm
in node(xl), node(x2), . . . , node(xr) and N = {node(xi) : 1 <_ i <_ r}. Let TN be the tree
formed by the nodes in N. Let N O = N and Ni = {node(xy) : node(x) is a leaf of TN and
Jyl --= i}, w h i c h is the set of nodes of distance i from T N. Then UL0{Ni} = {node(x)
: x ~ ~*}. Note that the vectors in V form a basis for span({Pv,(x) : x ~ r~*}). We prove
this lemma by induction on i.

Base. For all node(x) ~ No U N1, Pv(x) = Pv*(x) follows from the algorithm.

Hypothesis. For all node(x) ~ Ni, Pu(x) = P~,(x) holds for i.

Step. For node(xa) ~ Ni+l, where node(x) ~ N i and o ~ I2,

Pv(xa) = Pv(x)M(a) = Pu,(x)M(a) =

= ~ mi(Ti'M(ff))
i=1

I i =~1 miv~ M(o)

= mi(vi M (~r)) = mi'~ M*(a)
i = 1 i = 1

= pv,(x)M*(a) = pv,(xa) []

2.3. 4. Complexity

The first part of the algorithm is polynomial-time solvable by Lemma 2.15. The second
part defines and solves a system of linear equations under the positive variable constraint.
This is a typical linear programming problem. We only need a feasible solution which
is not necessarily optimal. The problem of linear programming has been known to be
polynomial-time solvable (Khachiyan, 1979; Karmarkar, 1984). So, our learning algorithm
runs polynomially in n, where n is the number of states of the target PA U*.

2.3.5. Remark

The requirement that, for each state qi and each alphabet symbol a, the outgoing proba-
/~

bilities of state qi on o sum to 1 (i.e., 12i=1 M(a)[i, j] = 1) is not essential to our results.

162 WEN-GUEY TZENG

Another natural definition for PA is that, for each state qi, the outgoing probabilities of
state qi on all alphabet symbols sum to 1 (i.e., Zos~ E]=l M(a)[i, j] = 1). For learning
this type of PA using the (modified) SD oracle, we only need replace "for 1 < i _< n,
~ff=l Xi,j -1- ~=1 Yi,j = 1" with "for 1 _< i _< n, ~=1 xi , j = 1 , ~=1 Yi,j = 1" in line 11
of the algorithm.

3. Learning Markov chains

In this section we discuss the learnability of Markov chains via queries. Let [0, 1] be the
set of real numbers between 0 and 1. Let 7ri(c¢) be the ith component of the tuple ~x.

Definition 3.1 A Markov chain (MC) B is a 4-tuple (Q, P~, (P, ql), where Q is a finite
set of states, E is a finite alphabet, (P is a function from Q x ~ into Q × [0, 1] such that
for every q ~ Q Z~r2((P(q, ~r)) = 1, and q~ is the initial state.

The size of B is defined to be the number of states in Q and symbols in P~. We treat
MCs as probabilistic symbol-generating automata. When B is in state q, it has probability
7r2((P(q, 0)) of generating symbol "0" and probability 1 - 7r2((P(q, 0)) of generating sym-
bol "1" (for the case that Z = {0, 1}). It then enters the next state according to the symbol
it generates. The generating probability ofx by B is the product of the probabilities associated
with the transitions passed by B when x is generated. This probability is relative to strings
of length]x]. Let g~(x) be the function that maps a string x to its generating probability
byB.

Definition 3.2 Let B1 and B2 be two MCs. Then B~ and B 2 are said to be equivalent if
for each string x, the generating probability of x by B~ is equal to the generating probabil-
ity of x by B2 i.e., vx ~ P,*, gsl(x) = gn2(x).

We consider two oracles GP and Et~ for MCs. For an MC B, the GP oracle takes as
input a string x and returns the generating probability g~(x) of x. The EQ oracle takes
as input an MC B', and if B and B' are equivalent, it returns "yes." Otherwise it returns
a string x and its generating probability ge(x) by B such that gg(x) ~ g~,(x). These two
oracles are similar to and a little stronger than the membership and equivalence oracles
for DFAs respectively.

Our results about learning MCs using the ~ P and EQ oracles are similar to Angluin's
results about learning DFAs using the membership and equivalence oracles (Angluin, 1987a,
1987b, 1989). The proof techniques we use are also similar to hers. We state our results
about learning MCs using oracles in the following three theorems and sketch how to modify
Angluin's proofs for them.

Theorem 3.3 MCs are not polynomially learnable using the GF ~ oracle only.

LEAI~.NING PAs AND MCs 163

Proof: (Sketch) Assume that there is a polynomial-time algorithm II that exactly identifies
MCs using the GP oracle. Le tp ~ 1/2 be a number between 0 and 1. We prove the theorem
by an adversary argument. We first construct a set S of MCs B = ({ql qn}, {0, 1},
(P, q~), where

(P(qi, 0) ~ {(qi+~, 1/2), (q~, 1/2)}, 1 < i < n - 1,

f(q~+~, 1/2) if (P(qi, 0) = (ql, 1/2)
(P(q~, 1))

~._(q~, 1/2) if (P(qi, O) = (qi+~, 1/2), 1 _< i _< n - 1,

(9(qn, O) = (q., p).

There are 2 n-1 MCs in the set S. Any two MCs in S are not equivalen,t. When II queries
G P on string x of length rn, if there is at least one MC in S that generates string x with
probability 1/2 m then the oracle returns 1/2 m. There are at most m - n + 2 MCs in S
that do not generate string x with probability 1/2 m if m _ n - 1. So, when algorithm II
makes a query, only a few (polynomial) number of MCs in S need be removed to maintain
consistency. Therefore, the number of MCs in S (which initially contains 2 n-1 MCs) can-
not be reduced to 1 by only a polynomial number of GP queries. Thus the polynomial-
time learning algorithm II does not exist. []

Theorem 3.4 MCs are not polynomiaIly learnable using the EQ oracle only.

Proof: (Sketch) The construction of a set of MCs to be used for the adversary argument
is basically the one used in Angluin (1989). We refer readers to her paper and only give
a sketch of modifying her construction. Let @ be a new alphabet symbol and qr, qf be
two new distinguished states. Let Pl ~ 1/3 and P2 ~ 1/3 be two different numbers be-
tween 0 and 1. For each DFA A = (Q, r~, ~, ql, F) in Angluin's construction, we con-
struct a corresponding MC B = (Q t.J {qr, qf}, ~ I~ {@}, (P, ql) , where

(P(q, a) --- (6(q, a), 1/3) f o r q ~ Q a n d a ~ {0, 1},

(P(q, @) --- (qr, 1/3) for q ~ Q - F,

(P(q, @) --- (qf, 1/3) for q ~ F,

(P(qr, O) = (qr, Pl), (~(qr, 1) : (qr, 1 -- Pl), (P(qr, @) = (qr, 0),

(P(qf, O) = (qf, P2), (P(qf, 1) = (qf, 1 - P2), (P(qf, @) = (qf, 0).

Any two MCs in the set we constructed are not equivalent. For each counterexample (x,
~o) returned by the equivalence oracle of DFAs, the corresponding counterexample returned
by the E(~ oracle would be string x@0 with generating probability Pl/3 m+l i f ~o = - , and
x@GI with generating probability p~_/3 m+~ if ~o = +, where Ixl = m. Then, the adversary
argument in Angluin (1989) can be applied to the case of MCs in the same way. []

Theorem 3.5 MCs are polynornially learnable using the GI a and EQ oracles.

164 WEN-GUEY TZENG

Proof: (Sketch) First, we extend Angluin's (1987b) learning algorithm for DFAs using the
membership and equivalence oracles to learn rrudti-class DFAs using the (modified) member-
ship and (modified) equivalence oracles. A multi-class DFA is a DFA with each state being
classified into a class. Thus a (standard) DFA is a two-class DFA with the "acceptance"
and "nonacceptance" classes. Two multi-class DFAs A~ and Az are equivalent if and only
if for each string x, A 1 and A2, both on input x, enter states in the same class. For a multi-
class DFA A, the modified membership oracle takes as input a string x and returns the
class of the state that A, on input x, enters. The modified equivalence oracle takes as input
a multi-class DFA A', and ifA and A' are equivalent, it returns "yes." Otherwise it returns
a string x and the class r of the state that A, on input x, enters such that A', on input x,
does not enter a state of class r.

Angluin's algorithm is basically a refinement algorithm. In the beginning, the algorithm
partitions the states of the target DFA into two (acceptance and nonacceptance) classes.
Then using the counterexamples provided by the equivalence oracle and querying the
membership oracle, it further separates states in the same class until no further separation
is possible. The learning algorithm, using the (modified) membership and (modified)
equivalence oracles, for multi-class DFAs is an easy extension of Angluin's by first group-
ing states in the same class together and then refining them by the information provided
by oracles. We refer to Angluin's paper (1987b) for the learning algorithm for DFAs using
the membership and equivalence oracles.

For MCs, we identify a class by a number. Our basic observation is that we can classify
states of MCs into classes by their transition probabilities. For an MC B = (Q, E, 6', q~),
state q E Q is in the class 7r2((P(q, 0)) (for the case of the two-letter alphabet). Two states
q and q ' are in the same class if and only if ~r2((P(q, 0)) = ~r2((P(q', 0)). These classes
defined by numbers are analogous to the classes of multi-class DFAs. Like querying the
(modified) membership oracle about the class of the state that the target multi-class DFA,
on input x, enters, we can query the GP oracle to obtain the class of the state that the
target MC enters when a string x is generated. When string x is generated by B, B enters
a state in the class g~(xO)/gs(x). The EQ oracle for MCs is analogous to the (modified)
equivalence oracle tbr multi-class DFAs. Thus the learning algorithm, using the (modified)
membership and (modified) equivalence oracles, for multi-class DFAs can be applied to
learn MCs using the G~ and EC~ oracles directly. []

4. Conclusion

By studying the basic properties of PAs and MCs, we explored the learnability of PAs and
MCs by examples and by using oracles. We investigated natural oracles associated with
PAs and MCs. For PAs, we presented a polynomial-time learning algorithm using the SD
oracle. We showed that PAs are not learnable using the weaker AP oracle. We also showed
that the consistency problem from the information carried by the SD oracle for PAs (or,
DFAs) is NP-complete. For MCs, we presented a polynomial-time algorithm using both
the GP and EQ oracles. We showed that if we drop either of the G[~ and E(~ oracles then
no polynomial-time algorithm exits.

LEARNING PAs AND MCs 165

Acknowledgments

The author would like to thank Professor Ker-I Ko for his support, encouragement, and
many helpful discussions. The author also thanks the referees for their valuable comments.
Part of this paper appeared in the extended abstract "The equivalence and learning of prob-
abilistic automata." Proceedings of the Thirtieth Annual Symposium on Foundations of
Computer Science (1989). Los Alamitos, CA: IEEE Press. The work of the author was
supported in part by NSF grant CCR-8801575.

Notes

1. There are several variations of the definition for PAC-learnability that have been used in the literature (Valiant,
1984; Haussler, et al., 1988; Pitt & Warmuth, 1990). Here we adopt the definition that requires the output
hypothesis to be in the forrn of the original domain. A more general version of PAC-tearnabillty does not
require any fixed representation domain for the output hypothesis. This is sometimes called PAC-predictability.
It has been pointed out that NP-completeness of the consistency problem for a domain does not imply that
the domain is not PAC-predictable under the assumption NP ~ RP (Pitt & Warmuth, 1989; Pitt, 1990)~

2. Since data of the form (x,/~) fixes the number of states of U to be the dimension ofp'~ the state set is not
art issue for the case of PAs.

References

Angluin, D. (1978), On the complexity of minimum inference of regular sets. Information cmd Control, 39, 337-350.
Angluln, D. (1981). A note on the number of queries needed to identify regular languages. Information and Con-

troll, 51, 76-87.
Angluin, D. (1987a). Queries and concept learning, Machine Learning, 2, 319-342.
Angluin, D. (1987b). Leaming regular sets from queries and counterexamples. Information and Control, 75, 87-106.
Angluin, D, (t987c), Learning k-term DNF formulas using queries and counterexamples (Technical Report

YALEU/DCS/RR-559). New Haven, CI': Yale University, Computer Science Department.
Angluin, D. (1988). Negative results for equivalence queries (Technical Report YALEU/DCS/RR-648), New Haven,

CT: Yale University, Computer Science Department.
Angluin, D. (1989). Equivalence queries and approximate fingerprints..Proceedings of the Second Workshop on

Computational Learning Theory ~p. 134-145). San Mateo, CA: Morgan Kaufmann.
Angluin, D., Hellerstein, L., & Karpinski, M. (1989). Learning read-onceformula~ with queries (Technical Report

UCB/CSD 89-528). Berkeley, CA: University of California-Berkeley, Computer Science Division (EECS).
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Lcarnability and the Vapnik-Chervone~ff-.is

dimension. Journal of the Association for Computing Machinery, 36, 929-965.
Board, R., & Pitt, L. (1990). On the necessity of Occean algorithms. Proceedings of the Twenty-SeeondAnnual

Symposium on Theory of Computing (pp, 54-63). New York: NY: ACM Press.
Bush, R.R., & Mosteller, E (1955). Stochastic models for learning. New York, NY: Wile);
DeSantis, A~, Markowsky, G., Wegman, M.N. (1988). Learning probabilistic prediction functions, Proceedings

of the Twenty-Ninth Annual Symposium on Foundations of Computer Science (pp, 110-119). Los Alamitos, CA:
IEEE Press.

Fu, K.S. (1966). Stochastic automata as models of learning systems. Proceedings of Symposium on Computer
and' Information Science. Columbus, OH: Purdue University.

Gold, E.M, (1978), Complexity of automaton identification from given data. Information and Control, 37,, 302-320.
Hanssler, D., Kearns, M., Littlestone, M., & Warmuth, M.K. (1988). Equivalence of models for polynomial

learnability, Proceedings of the First Workshop on Computational Learning Theory (pp. 42-55). San mateo,
CA: Morgan Kaufmann.

166 WEN-GUEY TZENG

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4, 373-395.
Kearns, M., Li, M., Pitt, L., & Valiant, L.G. (1987). On the learnability of boolean formulae. Proceedings of

the Nineteenth Annual Symposium on Theory of Computing (pp. 285-295). New York, NY: ACM Press.
Kearns, M., & Valiant, L.G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata.

Proceedings of the Twenty-First Annual Symposium on Theory of Computing (pp. 433-444). New York, NY:
ACM Press.

Khachiyan, L.G. (1979). A polynomial algorithm in linear programming (in Russian). Translated in Soviet
Mathematics Doklady, 20, 191-194.

Paz, A. (1971) Introduction to probabilistic automata~ New York, NY: Academic Press.
Pitt, L. (1989). Inductive inference, DFAs, and computational complexity (Technical Report UIUCDCS-R-89-1530).

Champaign, IL: Univeristy of Illinois at Urbana-Champaign, Department of Computer Science.
Pitt, L., & Warmuth, M.K. (1989). The minimum consistent DFA problem cannot be approximated within any

polynomial. Proceedings of the Twenty-First Annual Symposium on theory of Computing (pp. 421-432). New
York, NY: ACM Press.

Pitt, L., & Warmuth, M.K. (1990). Prediction-preserving reducibility. Journal of Computer and System Sciences,
43, 430-467.

Rabin, M.O. (1963). Probabilistic automata. Information and Control, 6, 230-245.
Rudich, S. (1985). Inferring the structure of a Markov chain from its output. Proceedings of the Twenty-Sixth

Annual Symposium on Foundations of Computer Science (1989) (pp. 321-326). Los Alamitos, CA: IEEE Press.
Tzeng, W. (1990). A polynomial-time algorithm for the equivalence of probabilistic automata. Submitted for

publication.
Valiant, L.G. (1984). A theory of the learnable. Communications of the Association for Computing Machinery,

27, 1134-1142.

