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1. Introduction 

The two-dimensional inviscid linearized stability of parallel shear flows, 
defined on the domain -Y0 < Y < Y0, - o o  < x < oo, is governed by the 
well-known Rayleigh's equation (Rayleigh, 1880): 

u " ]  
r r =0, (la) 

subject to the boundary conditions 

q~(_Y0) = 0. ( lb) 

Here, the real part of {qS(y)exp[ie(x- ct)]} defines the stream function 
~p(x, y, t) for two-dimensional disturbances (u(x, y, t), v(x, y, t)) to the basic 
parallel shear flow U(y), with u - 0y, v - -@x- The primes in (la) stand for 
differentiation with respect to y, and ~ and c are the real wavenumber and 
(possibly complex) eigenvalue respectively. The flow U(y) is unstable if there 
are non-trivial solutions 4) to (la,b) for complex values of the eigenvalue c. 

For smooth basic velocity profiles U(y), equations l(a,b) have, in 
general, not been very amenable to theoretical analysis, although series 
solutions and competent numerical algorithms are available. For details of 
the available theoretical results on Rayleigh's equation, as well as for a review 
of the voluminous literature on hydrodynamic stability, the reader is referred 
to the text books of C. C. Lin (1955), S. Chandrasekhar (1961) and Drazin 
and Reid (1981), and to the review articles of Drazin and Howard (1966) and 
Bayly, Orszag and Herbert (1988). Here we confine ourselves to stating some 
of the relevant inviscid stability theorems. 

I. Rayleigh's inflexion point theorem (Rayleigh, (1880)) 

A necessary condition for instability is that the basic velocity profile U(y) 
should have an inflexion point on y ~ ( -Yo,  Yo)- 
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II. Fjortoft's theorem (Fjortoft, (1950)) 

A necessary condition for instability is that U"(y)[U(y)-  U(ys)] < 0 
somewhere in the field of flow, where Ys is a point at which U" = 0. 

This version of Fjortoft's theorem is stated in Drazin and Reid (1981). 

III. Howard's semicircle theorem (Howard, (1961)) 

For unstable velocity profiles U(y), c must lie in the following semicircle 
in the complex plane: 

C r 1 - -  ~(Uma x -~- Umin)}  2 A I- c/2 ,< { l ( U m a  x - -  Umin )}  2, 

where ci > 0, cr and ci are the real and imaginary parts of c and Urnax and 
Urea n a r e  the maximum and minimum values of U(y) in the flow domain. 

Recently, Barston (1991) has provided extensions of Fjortoft's theorem 
for flows with multiple inflexion points. Note that the above theorems 
provide necessary, but not sufficient conditions for instability. 

The only notable class of exact solutions of (la) for arbitrary (possibly 
complex) c and arbitrary real a is for the case of piecewise linear velocity 
profiles U(y); here, the eigenvalue c can be determined such that the 
eigenfunction 4) satisfies appropriate jump conditions at the points of 
discontinuity of U or U' (Rayleigh (1880); see also Drazin and Howard 
(1966) and Drazin and Reid (1981)). For the special case of 
U(y) = 1 - e x p ( - y ) ,  (y > 0), ( la) can be converted to the hypergeometric 
equation and hence solved in closed form for arbitrary complex c and real 
a [see Lin (1955, p. 90) and Drazin and Howard (1966, p. 42)]. Apart from 
the above cases, only neutrally stable exact solutions of (la,b) are available, 
for specific velocity profiles like U(y)= sin(y), U(y)= sech"(y)tanh(y),  
U(y) = tanh(y) and U(y) = sech2(y); see Drazin and Howard (1966). 

The main objective of the present paper, addressed in Sections 3-5, is to 
prescribe sufficient conditions for the inviscid instability of a general class of 
smooth velocity profiles U(y) which are odd (satisfying U(y) = - U ( - y ) ) .  
Thus this paper is primarily concerned with constructing a class of basic 
profiles U(y) that is guaranteed to be unstable; we are not concerned here 
with the instability or otherwise of a given arbitrary U(y), which can be 
tackled by previously known methods--ei ther  numerical or series methods, 
or for example, the criteria of Rosenbluth and Simon (1964; see their 
equations (2) and (4)). The method used here is novel, in that the basic 
velocity profile U(y) is not specified a priori. Rather, the quantities specified 
are the real wave number ~, the complex eigenvalue c and the real part h(y) 
of the adjoint eigenfunction. Rayleigh's equation can then be converted into 
a nonlinear integral equation for U(y), along with an appropriate linear 
integral equation as the boundary condition. The solution U(y) of these 
integral equations, if it exists, is clearly guaranteed to be unstable. Sections 
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3-5 are therefore concerned with specifying conditions on h(y)  that ensure 
the existence and uniqueness of solutions to these integral equations. The main 
message of these sections is that the nonlinear integral formulation can be 
handled by elementary techniques and provides substantial new insight into 
the global properties of unstable velocity profiles and the corresponding 
eigenfunctions. Indeed, it is clear that only a global (or integral) analysis can 
provide sufficient conditions for instability; local properties of velocity profiles, 
such as the existence of inflexion points, cannot do so. Previously available 
series solutions, though globally valid, do not provide any insight into the 
global properties of unstable velocity profiles; that is, given these series 
solutions, we still do not know how to prescribe a class o f  profiles that are 
guaranteed to be unstable. 

In Section 2, a method is provided for obtaining new, exact neutrally stable 
solutions of Rayleigh's equation. The basic idea here is to specify a functional 
relationship ~(U) between the eigenfunction qb(U(y)) and U( y); the resulting 
nonlinear ordinary differential equation for y = y(U)  can be solved in closed 
form. The problem then reduces to specifying real c and ~ such that the 
homogeneous boundary conditions are satisfied; a specific example of exact 
neutrally stable solutions for a class of jet-like velocity profiles is given. 

2. Exact solutions of ( la,b) for real c 

We let the velocity U be the independent variable in (la), and seek 
y = y (U)  when qS(y) = ~b(U(y)), where (I)(U) is a known function of U. This 
transformation, when applied to (la), leads to the following differential 
equation for y(U): 

y "  - F" y '  + a ( y ' )  3 = O, (2)  

where the primes refer to differentiation with respect to U, and F and G are 
defined by 

f v ~" ( s )  F(U) = ,~,(~) _ ~(~__!) d~, 

S - - C  

~2~(U) 
a(u) = 

~ ( m )  ~ ' (u)  
U - - c  

Equation (2) is a Bernoulli's equation for y', and has the following closed-form 
solution: 

[ ;o ] ( y , ) - 2  _ (dU/dy)2 = B + 2 G(s) exp[2F(s)] ds exp[-2F(U)] ,  (3) 
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where B is an arbitrary real constant.  Equat ion  (3) can be solved for y as 
a funct ion of  U, given an appropria te  function q~(U). In principle, one can 
then obtain U(y), and finally q~(y) = O(U(y)). In general, a solution ~bo(y) 
of  ( la )  generated by the procedure described above will not  satisfy the 
homogeneous  boundary  condit ions ( lb) .  However,  given one solution ~b0 of  
( la) ,  a second linearly independent  solution qS~ can be generated explicitly, 
and these two solutions combined appropriately to satisfy ( lb )  for specific 
values of  c and ~. In this manner ,  one can obtain classes of  exact neutrally 
stable solutions of  ( la ,b)  which were not  previously known;  an example is 
given below. We let 

I~(U) = U b+(1/2), - o o  < y  < 0% (3a) 

where b is any real constant  satisfying - 1/2 < b < oo. I f  b = 1/2, it is easy 
to show that  (3a) and (3) lead to the well-known exact solution for the 
Bickley jet (see Drazin and Howard  (1966) and Drazin and Reid (1981)). 
Therefore we shall assume b r 1/2 in what  follows. Equat ion  (3) can then 
be reduced to ( taking B = 0) 

dU _ sgn(~y{2b - 1}) - 2b +____11 [~(U)]'/2' (3b) 

dy U 2 b - 1  

where ~(U) is defined by 

( U 2 2bcU e 2 ) 
~(U) --- 2b-T3  (2b - 1)(b + 1) +2--b-2~- 1 (2b - 1 ) - ' .  (3c) 

Wi thout  loss of  generality, we may  take c to be an arbitrary positive 
constant  in what  follows. It can be shown from an elementary analysis that  
equations (3b,c) define a symmetric, positive smooth  velocity profile satisfy- 
ing U ~ 0 as ]~y[--, oo. The max imum velocity can be made  to occur at 
y = 0 and is given by Umax = /3, where /3 is the smallest positive root  of  
~(U) = 0; further it can be demonst ra ted  (for example, by a simple compu-  
tation) tha t /3  satisfies 

~/c > 1, for all - 1/2 < b < oo, b # 1/2, 

and in particular, 

1 < fl/c < (2b + 1)/(2b - 1) for b > 1/2. 

Hence there is no singularity in (dU/dy) for all - 1/2 < b < oo, b # 1/2, as 
can be seen f rom (3b). Note  that  fl/c > 1 implies that  U(y) - c vanishes for 
some y =Yc; since we have shown that  U(y) is indeed smooth  for 
- o o  < y  < o% it follows that  U"(yc) must  vanish as required by ( la)  (note  
f rom (3a) that  4~(Yc) does not  vanish). That  U"(yc) vanishes can be 
explicitly demonstra ted;  first note that  U'(yc) is given by (3b) with 
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Figure 1 
A plot of U(y) and ~b(y) for the example of  equation (3d) and ct = e = 1; the solid and dashed lines 
represent U(y) and qS(y) [ = { U(y) } In] respectively. 

U(yc) = c on the right hand  side; upon  differentiating (3b) and replacing 
U'(yc) and U(yc) by the appropria te  quantities, we find that  U"(yc) = 0, as 
expected. The decay of  U as leyl--* oo is easily demonst ra ted  by a simple 
asymptot ic  analysis. Letting U ~ 0  in (3b), we obtain 

dU/dy ~ -sgn(c~y)(2c~g)/(2b + 1), 

the solution of  which decays exponentially as Ic~yl ~ or. In particular, (3b) 
can be integrated explicitly for the special case b = 0 and the result is 

sin-l(3-1/2U/c) _ 3-1/2 ln((31/2c + [3c 2 - U 2] ~/2)/U) 

= (re/2) - (2/31/2) Icy ]. (3d) 

It is easy to verify that  the above equat ion does indeed define a symmetric,  
positive smooth  velocity profile for arbitrary real ~ and positive c and with 
a m a x i m u m  velocity of  (31/%) at y = 0; further,  U(y) decays exponentially 
as [c~y[-, or. Plots of U(y) [as given by (3d)] and qS(y) [=[U(y)] U2, a s  in 
(3a) with b = 0] are given in Fig. 1; here we have taken c~ = c = 1. Note  that  
U(yc) = 1 at Yc "~ -+ 1.4004, and that  U"(yc) does indeed vanish, as can be 
established by differentiation of  (3d) [U"(y) = - y " ( U ) / y  I3] and as is clear 
f rom Fig. 1 (here y~ occurs at the points  where the solid and the dashed 
lines cross). 

We have demonst ra ted  that  equat ion (3) leads to at least one class of 
smooth  velocity profiles on an infinite domain,  namely that  defined by 
(3b,c), for which the eigenfunction qS(y)= @(U(y)) (given by (3a) in this 
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case) satisfies the homogeneous  boundary  conditions. The problem that  is 
worthy of  further investigation is to identify the most  general class of  func- 
tions �9 (U) that  form neutrally stable eigenfunctions for smooth  velocity pro- 
files U(y) given by equat ion (3), bo th  on bounded  and unbounded  domains.  

The solution procedure described in this section is useful only for real 
values of  c. Al though  (3) is still valid for complex c, one now needs to guess 
a complex funct ion ~ (U)  such that  (3) leads to a real velocity profile U(y), 
and this turns out  to be a formidable task. 

3. Integral formulation of (la,b) for complex c 

Let c be a given complex constant  (cr + ici), where the subscripts r and 
i s tand for real and imaginary parts, and ci # 0. Further ,  let e # 0 be a given 
real constant.  We make  the following change of  variables in l(a,b):  

Y = Y , / e ,  Yo = yo, /e ,  d?(y) = (9r(y,) + i(~i(y,),  

u ( y )  = - < w ( y , ) .  

Separating out the real and imaginary parts in ( 1 a,b), we obtain the following 
pair of  equat ions for q% and q%: 

( w,,w  { 
q~' - ,  1 + w-ST 1-] ~b~ - \w--5--~] ~b~ = 0 (4a) 

(ww  (w) 
~b:' - 1 + w-ST 1-] q~ + ~ q% = 0 (4b) 

q%(+Y0,) = ~b,(+Yo,) = 0. (4c) 

In what  follows, we let ~ = ci = 1, so that  we may  set y ,  =Y, Y0, =Y0, 
wi thout  loss of  generality. Assume that  w(y) is an odd, twice-differentiable 
function, so that  

w(y) = - w ( - y ) .  (5a) 

Then it is easy to verify that  there is at least one solution of (4a,b) satisfying 
(see Drazin and Howard  (1966)) 

q~s(y) = ~b~(-y). (5b) 

In fact, a second linearly independent  solution of  ( la)  can also be constructed 
to satisfy (5b), so that  the general solution of (1 a) is of  the type (5b) to within 
an arbitrary multiplicative constant.  We now define two new independent  
variables h(y) and g(y) to satisfy the following equations: 

q%(y) = [1 + w(y)]h(y) - [1 - w(y)]g(y), (6a) 

~bi (y) = [ 1 - w(y)]h(y) + [ 1 + w( y)]g(y). (6b) 
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From 5(a,b) it follows that h(y)  is even and g (y )  is odd. Upon inserting 
(6a,b) into (4a) (or (4b)) and separating out the odd and even parts, we 
obtain the following pair of ordinary differential equations: 

h" - h + w(g"  - g) + 2w 'g '  -- 0, (7a) 

g" -- g -- w(h" - h) - 2w 'h '  = 0, (7b) 

and the boundary conditions reduce to 

h(yo)  = g(Yo) = h'(0) = g(0) = 0. (8) 

In (8), we have reduced the domain to (0 -< y <- Y0), since h is even and g is 
odd. It should be pointed out here that there is nothing new in the 
transformations (6a,b); it can be shown that (h + ig) is merely the adjoint 
eigenfunction given to within a multiplicative constant by d k / ( U -  c) (see 
Drazin and Reid (1981), Sec. 21). 

We may eliminate g from (7a,b) by simple manipulations. Letting 

(w2 +_71" ~ 0 =- \ ~ j ( h " -  h) + wh'  = - g ' ,  (9) 

equations (7a,b) and (8) reduce to 

0" - 0 - d [2w'h '  + w(h" - h)], (10a) ay 

subject to 

h'(O) = h'"(O) = h(yo)  = g(yo)  = 0, (10b) 

where 

g( y)  -= - 0 '  - w(h" - h) - 2w'h ' .  (10c) 

Note that the additional requirement h ' " (0 )=0  in (10b) ensures that 
g(0) = 0 is satisfied. 

We now treat (10a) as an equation to be solved for w(y) ,  given an even 
function h(y )  satisfying h ' ( 0 ) =  h '" (0)= h ( y o ) =  0. Noting from (Sa) that 
w(y)  is odd, the boundary conditions on w reduce to 

w(O) = w"(O) = g(Yo) = 0, (11) 

where g is defined by (10c). Clearly, real velocity profiles w(y)  which solve 
(10a) subject to (11) are unstable. Therefore the conditions on h(y)  such 
that (10a) and (11) can be solved for real w(y)  form sufficient conditions for 
the instability of such profiles. It is surprising that the questions of existence 
and uniqueness of solutions to this nonlinear variable-coefficient boundary- 
value problem for w(y)  can be addressed theoretically for a fairly general 
class of functions h. 
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We first solve (10a) for 0, treating the right-hand side as known, to 
obtain the following integro-differential equation: 

0 = K cosh(y) + ~ss[2W'h'+w(h"-h)] sinh(s -y )ds ,  (12) 

where K is a real constant of integration. After a couple of integrations by 
parts on the integral in (12), using w(0) = h'(0) = 0, we may eliminate all 
derivatives of w from the integrand; substituting for 0 from (9) in the left 
hand side of (12), we obtain 

w'  = (w2 + 1)(h" - h) 
H(y; K) ' (13) 

where 

g(y;  K) - 2K cosh(y) - 6w(y)h'(y) + 2 w(s)2(s, y) ds, (14a) 

and 2 is defined by 

2(s, y) =- [h"(s) + h(s)] cosh(s - y) + 2h'(s) sinh(s - y). (14b) 

Finally, using w(0) = 0, we convert (13) to the following nonlinear integral 
equation for w: 

If0 ~ [h" ( r ) -  h(r)] dr]. (15a) w(y) = tan H(r; K) 

To obtain an integral form of the boundary condition g(Yo) = 0, we replace 
0 in (10c) by the right hand side of (12); after a couple of integrations by 
parts, we obtain 

g(Yo) = O, (15b) 

where 

io g(y) - - K  sinh(y) - w(s)2y(s, y) ds. (16) 

The problem thus reduces to solving (15a) and specifying K such that (15b) 
holds (if this is possible). 

4. Existence, uniqueness and properties of solutions to equations (15a,b) 

In the rest of this paper, we consider a class of non-negative functions 
h that decrease monotonically on the interval (0, y0); our goal is to 
theoretically state sufficient conditions for the existence and uniqueness of 
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solutions to (15a,b). To be specific let y~ e (0, Y0) be a constant, and let h(y) 
satisfy the following restrictions 

h(y) is analytic on y e [0, Y0], 

h'(O) = h'"(O) = h(yo) = O, 

h"(y) - h ( y )  < 0  o n y  e [O, yl) and 

h"(y , ) -h(y~)  = 0  and h"'(y~)-h'(y~) >0,  

h"(y) + h(y) >- 0 on y e [0, yo] 

and 

h'(y) < 0 on y e (0, Yo]. 

(17a)  

(17b) 

h " ( y )  - h ( y )  > o on y e (y , ,  yo), 

(17c) 

(17d) 

(17e) 

(17f) 

It is clear that this class of functions h is non-negative and decreases 
monotonically from h(0) to zero. Note from (17e,f) that 2(s, y) and 2y(s, y) 
are non-negative functions on y ~ [0, Y0], s e [0, y]. An example of a func- 
tion satisfying (17) is h(y)=(1/2)+cos(y) ,  with y0=2g/3 ,  and 
yj = c o s - ~ ( - 1 / 4 ) .  It is sufficient to consider K < 0  in (15a,b) and (16); 
clearly, for a given solution W(y) of (15a,b) with K = Ko, - W ( y )  is also a 
solution with K = - K o .  The following lemma is useful in proving the 
uniqueness and existence of solutions to (15a,b). 

Lemma 1. A smooth solution w(y) of (15a), if it exists for a given K < 0 
and for functions h satisfying (17), must satisfy the following restrictions: 

ff_ [h"(r) - h(r)] dr ~ r , - K ~  < rr/2 on y ~ [0, y0J, (18a) 

and either of (18b) or (18c), which are given by 

H(y;K)  < 0  (resp. >0) for y < y j  (resp. >y~), 

H(yl ;K)=O,  H'(y~;K)>O and w ( y ) > 0  

o r  

H(y; K) < 0 on y e [0, yo) and 

on y e (0, Yo], 

(18b) 

w(y)>Oon  y~(O, yl]. (18c) 

The proof of Lemma 1 is as follows; equation (18a) is obviously necessary 
for w(y) to be nonsingular. It is clear that H(0; K ) =  2K < 0. Equations 
(18b,c) essentially state that if at all H(y; K) vanishes, it must do so at 
Y =Yl,  and further, H(y;K)  must change sign as y crosses Yl with 
H'(yl; K) > 0. The first part of this assertion follows from (13) and (17c), 
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for w' would become singular at any y r Yl where H vanishes. Further,  it is 
also obvious from (13) and (17d) that w' would become singular at y =Yl 
if both H and H '  vanish there; hence the requirement in (18b) that 
H'(y~; K) be non-vanishing. In fact H'(yl; K) must be positive if H(y~; K) 
vanishes, for its negativeness implies that H also vanishes somewhere on 
(0, y~) and this is not  permitted. The statements in (18b,c) on the sign of  
w(y) now follow, and the proof  of  Lemma 1 is complete. 

The "converse" of  Lemma 1 is aIso important  for our purposes, and 
may be stated as follows. 

Lemma 2. Suppose h(y) satisfies (17); suppose further that for some 
K < 0 and some Y2 e (0, Y0) a smooth solution w(y) of  (15a) exists for all 
y e [0, Y2), but  either w(y) or some higher derivative becomes singular at 
Y = Y2. Then we must necessarily have H(y2; K) = 0 and also Y2 ~ Yl. 

Remark. From equations (13) and (14a), we conclude that w(y;K) 
must be finite as y approaches Y2 from below. To see this, assume the 
contrary; then from (13), (14a) and (17e,f) we find that 

w' ~,, -w(h" - h)/[6h'], as y ~ y ~ - .  

But the above equation implies that both w and w' are of  the same order of  
magnitude as y ~ y ~ - ,  and this establishes the desired contradiction. Note 
that w'(y; K) does become unbounded as y approaches Y2 from below. 
Hence w' (given by (13)) must have an integrable singularity at y =Y2. 

Proof of Lemma 2. Suppose first that H(y2; K) ~ O. Define w(y2; K) as 
the limit (from below) of w(y; K). By repeated differentiation of  (13) we 
may demonstrate  recursively that all (one-sided) derivatives of  w exist and 
are bounded at y = Y2- This implies that w does not  have a pole or a branch 
point at y =y2-  From (15a) and (17), we conclude that w cannot  have a 
jump discontinuity (either finite or infinite) as y crosses Y2; for example, 
suppose that w has a finite jump discontinuity as y crosses Y2. But then the 
right hand side of  (15a) would be continuous at y = Y2 while the left hand 
side is not, and we have the desired contradiction. This assertion is also true 
of  all derivatives of  w as may be demonstrated inductively by repeated 
differentiation of  (13). Therefore w(y2; K) must be infinitely differentiable at 
Y = Y2, and we have arrived at a contradiction. 

Suppose next that yz=yl  and H(y l ;K)=0;  if H ' ( y l ; K ) 5 0 ,  the 
preceding arguments again apply and therefore there can be no singularity 
at y = y~. In fact, H'(y~; K) cannot  vanish if H(yl ; K) = 0; to see this, we 
differentiate (14a) to find 

H" = -- 2g -- 6w'h" - 6wh" + 2w(h" + h), (19) 
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where g is given by (16). Now if H and H '  were to vanish at y = y~, we find 
from (13) and (17) that w ' ~  +oe  as y -~Yl ( f rom below); further, f rom the 
remark below Lemma 2, w(y) must be well defined and finite as y approaches 
Y l from below. But then we find from (17f) and (19) that H '  ~ + oe as y ~ y i-, 
which is a contradiction. Therefore we have established that Y2 ~ Yl, and the 
proof  of Lemma 2 is complete. 

An immediate consequence of  Lemmas 1 and 2 is the following. 

Lemma 3. Suppose h(y) satisfies (17) and suppose that for some K < 0, 
a smooth solution w(y) of  (15a) exists for all y s [0, y2] (so that Lemma 1 
applies), where Y2 e (0, Y0]. Then w(y) must be infinitely differentiable on 

y E [0, Y21. 

The proof  of Lemma 3 is contained in that of  Lemma 2. Note that infinite 
differentiability at y = Y2 implies that the solution w(y) can be extended to 
some y > Y2, at least for sufficiently small (y  -Y2).  We next deduce an im- 
portant  requirement of  solutions of  (15a,b). Note that the function g(y) is 
smooth and vanishes at y = 0 and y = Y0. Therefore it is obvious that g '  must 
change sign at least once on y E (0, Yo). But from (9), this means that both 
(h" - h)/w" and wh' (or equivalently, H(y; K) and wh') cannot  have the same 
sign for all y e (0, Y0). This requirement is indeed satisfied by solutions w(y) 
of  (15a) for which (18b) is true, as can be seen from Lemma 1. But if w(y) 
satisfies (18c), it can be shown that g '  cannot  change sign on y e (0, Y0). Hence 
in this paper, we shall only be concerned with solutions w that satisfy (18a,b). 

Theorem 1. Uniqueness of solutions to (15a,b). Let a given function h(y) 
satisfy (17) and let K be restricted to negative values. Then there can exist 
at most one smooth solution w(y) to (15a,b) that satisfies (18a,b). 

Proof. See Appendix A. 

Remark. Note that we are not interested in the possible existence of 
non-smooth solutions to (15a,b); these must necessarily have an infinite 
derivative (and an infinite jump in the derivative) at some point, as seen from 
the remark below Lemma 2, and are therefore not  physically significant. 

We next address the issue of  existence of  solutions to (15a) that satisfy 
(18a,b). Our method here is to directly construct a convergent iterative solu- 
tion on y ~ [0, y~ ] and then to show that this solution can be extended to y = Y0 
without running into any singularity. Consider the following iterative scheme. 

wn(y; K) - tan H-~-~ (r7 K-) d r ,  Vn~N, (20) 
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where the symbol V should be read as "for  all", N is defined to be the set 
of  all non-negative integers, and Hn is defined by 

H0(y;  K) - 2K cosh(y),  (21a) 

and 

Hn+ , (y ;  K) - 2K cosh(y)  - 6w,(y ;  K)h'(y) 

+ 2 w~(s; K)2(s, y) ds, gn e N. (21b) 

Theorem 2. Existence of solutions to (15a). Suppose h(y) satisfies (17). 
There exists a negative sequence {Kn }, 1 < n ~ N, converging to the finite 
limit Koo, such that  

H,,(y~; K.) = 0, V positive n ~ N, (22) 

and further, {K. } satisfies the following ordering: 

0 > K. > K. + ~, V positive n e N. (23) 

The sequence {wn(y;Koo)} converges uniformly on y e [0 ,  yi] to the 
bounded,  smooth  limit function woo(y; K~o) which is the exact solution of  
(15a). Further ,  for K- -Koo,  there exists a smooth  solution of  (15a) on 
y ~ [0, Yo] that  coincides with woo(y; Ko~) on y ~ [0, y~] and satisfies (18a,b). 

Proof. See Appendix  B. 

Remark.  In proving this result in Appendix  B, we have frequently 
appealed to a well-known theorem from elementary calculus, which is stated 
below for completeness. 

Intermediate Value Theorem 

I f f ( y )  is a cont inuous,  real function on y e [a, b] and i f f ( a )  = A, and 
f(b) = B > A, then for every C c [A, B], there must  exist at least one 
c ~ [a, b] for which f(c) = C. 

5. Sufficient conditions for instability 

In this section, we study the following question. Is there any function 
h(y) satisfying (17) for which the solution w(y) of (15a), guaranteed to exist 
by Theorem 2 for K = Koo, also satisfies (15b)? We can go surprisingly far 
in answering this rather difficult question. The key result that  we shall use 
is that  if h0 and h~ are two functions that  satisfy (17), then any linear 
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combina t ion  Aho + Bhu, where A and B are non-negative constants,  must  
also satisfy (17) as can be easily verified. 

In particular,  let h0 and h~ satisfy (17) with y, =y~0~ and yt = y ~  
respectively; let us require the further restrictions that  both (h'('-h~) and 
( h i ' - h 6 )  be positive for all y between y~O) and y~). Let h,: be defined by 

h~.(y) =-eh,(y) + ( 1  -t)ho(y), Ve e [0, 1]. (24) 

Since h0 and h~ satisfy (17), the Intermediate  value theorem ensures that  
there exists a y, between y~0) and y~l) such that  h,: satisfies (17) with y~ = y,: ; 
further,  y~ depends cont inuously  on e e [0, 1]. Note  that  the addit ional  
restrictions on (h'('-h~) and ( h i ' - h ; )  ment ioned above ensure that  there is 
one and only one such %, so that  h~(y) in (24) is indeed of  the class given 
by (17). N o w  from Theorem 2, there must  exist a smooth  solution w,:(y) of 
(15a) (with h =h, ,(y))  that  satisfies (18a,b) for some K = K ~ ( t ) < 0 .  A 
crucial result is the fact that  Koo(t) depends cont inuously on t e [0, 1]; this 
is a s t raightforward consequence of  the iterative procedure used to construct  
Koo in Theorem 2 and will not  be proved here. But it then follows from 
(15a), (24), (17) and Lemmas  1-3 that  w~.(y) (with K = K~(e)) also depends 
cont inuously  on e ~ [0, 1] uniformly in y e [0, Yo]; in fact for y e [0, y,:], this 
is a s traightforward consequence of  the iterative procedure  used to construct  
w~. We are now ready to state the main result of  this paper. 

Define g~(y) by equat ion (16) with h(y), w(y) and K replaced by h,:(y), 
w~.(y) and Ko~ (e) respectively. Consider  the even extension of  h,~ and the odd 
extensions of  w, and g~. to the domain  y e [ - y 0 ,  Y0]. 

Theorem 3. Sufficient conditions for instability. Suppose ho(y) and hj (y) 
both  satisfy (17), with Yl = y~0) and yl = y~l) respectively; let us require the 
further restrictions that  both  (h ' l"-  h~) and ( h i ' - h 6 )  be positive for all y 
between y~0) and y~l). Suppose further that  we are able to find h0 and h~ such 
that  g~(Yo) <- 0 for e = 0 and g~(Yo) >- 0 for t = 1. Then there must  exist at 
least one to e [0, 1] such that  g~(Yo) = 0. For  t = ~0 denote  g~(y), w,:(y) and 
h~(y) by g(y; ~o), w(y; eo) and h(y; t0) respectively. The class of  velocity 
profiles defined by U(y)=-w(y;eo)  is unstable on the domain  y e 
[ -Y0,  Yo] with the wavenumber  and eigenvalue given by ~ = 1 and c = i. 
The real and imaginary parts of  the eigenfunction ~b in ( la ,b)  are given by 
equat ions (6a,b) with w(y) and g(y) replaced by w(y; t0) and g(y; ~o) 
respectively. 

Proofi The function g~(y) depends cont inuously  on e e [0, 1] uniJormly 
in y; this follows f rom (16) and the corresponding cont inuous  dependence 
of  h~(y), w~(y) and K~ (e). Therefore the assertion regarding the existence of  
at least one eo e [0, l] follows f rom the Intermediate  value theorem. The rest 
of  Theorem 3 is a direct consequence of  the results of  Sections 3 -5 .  
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Remark 1. We may further relax the restrictions on hi stated in Theo- 
rem 3. For  example, take hi (y) to satisfy (17a,b,e,f) with (17c,d) replaced 
by 

h'((y) -h , (y )  < 0 on y ~ [0, yo), hT(yo)-h,(yo) = 0, 

and 

hT'(y) -h~(y) > 0 for all y ~ [y]~ yo] 

where y~O) is as defined in Theorem 3. This class of functions h~ may be 
thought of as the limiting case of the class given by Eqs. (17) with y~ ~Yo- 
A suitable example of such a h~ is hi(y)  --cos(y) ,  with Yo--1r/2. It is easy 
to see that Theorem 2 with y~ replaced by Yo and with the last sentence 
excluded, is valid for h =h~(y) ;  the proof  is identical to that given in 
Appendix B. The advantage of  choosing h~ (y) as in this Remark is that we 
know for sure that for all h~(y) in this class, we must have g(Yo) > 0, since 
from (9), g'(y) is non-negative on y ~ [0, Yo] [note that when h = hi, we 
have from Theorem 2 that w ' >  0 and w > 0 in (9), for all y ~ (0, yo)]. 
Further,  any linear combination h~(y) as in (24) (for any ho satisfying (17) 
with Yl = y~0) and with [h~' - h6] positive for all y between y~O) and Y0) must 
satisfy (17a- f )  for all e ~ [0, 1), as can be easily verified; here it is helpful to 
observe that ( h ~ - h o )  is necessarily positive at y =Yo. Note that K~(~) 
depends continuously on e ~ [0, 1]. Hence Theorem 3, with h~ defined as in 
this Remark and with y~O replaced by Yo, holds. The significance of this 
result is elaborated upon in Section 6. 

Remark 2. By Theorem 1, the solution w(y; e0) is the unique solution of 
(15a,b) with h = h(y; e0) and K restricted to be negative. Note that we refer 
to a class of velocity profiles U(y) in Theorem 3. What  we mean here is that 
for each pair of functions (h0(y), h~(y)) satisfying the requirements of 
Theorem 3 (or with h~ (y) as in Remark 1) there exists at least one unstable 
velocity profile U(y). Further observe that by Howard 's  semicircle theorem 
(Theorem III of Section 1) we must have ]w(y;eo)l> 1 for some 

Y ~ [ -Yo, Yo]. 

6. Concluding remarks 

Theorem 3 is interesting in that we are able to linearly combine the real 
parts {h(y)} of adjoint solutions for two different velocity profiles, and 
deduce that this linear combination is the corresponding real part of the 
adjoint eigenfunction for a third, unstable velocity profile U(y). 

Note that Theorem 3 requires the specification of two functions h0 and 
h~ with the desired properties. In Remark 1 below Theorem 3, we have 
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explicitly specified a class of functions hi which are indeed suitable. The task 
of explicitly specifying the class of functions ho(y) satisfying the require- 
ments of Theorem 3 remains; the problem here is that given any suitable 
candidate ho(y), the condition g(Yo) <- 0 of Theorem 3 can be verified only 
by numerical solution of (15a,b). However, this is an extremely difficult (but 
not necessarily impossible) task, for the following reason. We are interested 
here in computing solutions w(y) of (15a) that satisfy (18b); Theorem 2 
shows that for a given h(y) satisfying (17) there is only one value of K, 
namely K = K~, for which a solution w(y) of the desired type exists. 
Further, no solution exists in a neighbourhood of K =  Ko~. Therefore 
numerical solutions require that Ko~ and w(y) be computed with great 
precision (in principle, infinite precision) so that the requirement 
H(yl; K) --0 of (18b) is satisfied "exactly"; only then can the solution be 
continued up to and beyond y = yl. This presents a formidable challenge, 
and is an interesting research problem for the future. 

What should be noted carefully is that once we find one suitable ho(y) 
satisfying the conditions of Theorem 3, such that g(Yo) < 0, then we may 
combine this h0 with a suitable class of functions h~(y) (for example, that 
given in Remark 1 below Theorem 3) and apply Theorem 3 to obtain an 
entire class of unstable profiles. The significance of Remark 1 below Theo- 
rem 3 is now clear. Hence the main advantage of the integral equation 
approach of this paper is that we are able to prescribe a procedure by which 
classes of unstable velocity profiles can be specified. Note further that the 
eigenfunction is available in closed form, and Sections 4 and 5 provide us 
with a number of global properties of the eigenfunction and the correspond- 
ing unstable velocity profile. It should therefore be of great interest to study 
equations (15a,b) further, with the goal of generalizing Theorem 3 to a 
broader class of functions h(y) than those satisfying (17). 

We close by observing that although Theorem 3 is intended to be the 
main result of this paper, Section 2 contains some significant new exact 
neutrally stable solutions of Rayleigh's equation. A specific example of 
neutrally stable eigenfunctions for a class of jet-like velocity profiles on an 
infinite domain is given. The reader should therefore take note of the 
comment at the end of Section 2 that there is considerable scope for further 
generalization of these results. 

Appendix A. Proof of Theorem 1 

We first prove that there cannot be two different smooth solutions to 
(15a,b) for a given value of K. Suppose there are two solutions W I ( y )  -> 0 
and W2(y) > 0 to (15a,b), for some K < 0 and suppose that both W1 and 
W2 satisfy (18a,b). We assume that there is some sub-interval of [0, Yo] on 
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which W~ and W2 are not identically equal and then arrive at a contradiction. 
Define H~(y; K) and H2(y; K) by (14a) with w replaced by W~ and W2 
respectively. From (18b), we must have H~ (yl; K) = H2(y~; K) = 0; therefore 
it follows from (14a) that 

f0 " [W, (s) -- We(s)12(s;y,) = 3h ' ( y , ) [W, (y , )  - W2(Y,)I. (A.1) ds 

But from (17e,f) 2(s; Yl) is non-negative and h ' (yl )  is negative. Hence (A.1) 
implies that if W~ and W2 are not identically equal on y ~ [0, y~], then 
(Wl - W2) must necessarily change sign on y ~ (0, y~ ); suppose this change 
of sign does happen. Then there must necessarily exist a Y3 e (0, Yl ) such that 

Wl(Y3) = W2(y3) , 

W,(y) >- W2(y) -> 0, 

W, (y) > W2(y) > O, 

'7'y e [0,  Y3], 

for y on some sub-interval of [0, Y3]. 

(A.2a) 

(A.Zb) 

(A.2c) 

Note that in (A.2b,c), W~ and W2 can be interchanged without loss of generality. 
From (A.2b,c) and (17) it immediately follows that 0 > H1 >/ /2  for ally c [0, Y3 ] 
with H1 >H2 for y on some sub-interval of [0, y3]. But this in turn implies 
that W~ (y3) > W2 (y3), as can be seen from (15a) and (17); this result contradicts 
(A.2a). It is clear that the source of this contradiction lies in the assumption 
that W~ and W2 are not identically equal on y e [0, y~] and this assumption 
is therefore false. Next note that the boundary condition (15b) requires 

f :'o Yo) ds = 0. (A.3) [W, (s) 
'1 

The lower limit of zero has been replaced by y~ because we have just proved 
that W1 and W2 must be identically equal for y ~ [0, y~]. From (17e,f) 2y is 
non-negative; it therefore follows from (A.3) that (WI - W2) must either be 
identically equal to zero on y ~ [y~, Y0] or it must change sign there. We may 
eliminate the latter possibility by a similar argument to that given earlier. The 
conclusion is that there can be at most one smooth solution of (15a,b) 
satisfying (18a,b) for a given negative value of K. 

Next suppose that there are two smooth solutions W1 (y) and W2(y) of 
(15a) for K = K~ and K =/(2 respectively, and that both W~ and W2 satisfy 
(18a,b). We will show that this assumption leads to a contradiction and must 
therefore be false. We take K~ </s < 0 without loss of generality. Define H~ 
and/ /2  as done earlier. Equation (18b) again requires that H~ and H2 both 
vanish at y = y~ and this leads to 

fo ~' (s) -- W2(s)]2(s; ) ds = 3h ' (y , )[W,(y~)  - W2(y,)] [W, Yl 

+ (K2 - K, ) cosh y,. (A.4) 
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From (15a) and (17), and the fact that K1 < / ( 2 < 0 ,  we conclude that 
[ W l ( s ) -  W2(s)] < 0  as s ~ 0  +. But from (A.4) and (17e,f), we find that 
[W~ (s) - W2(s)] cannot remain negative for all s e [0, Yl] for then the left hand 
side of (A.4) would be negative and the right hand side positive. Hence it 
follows that [W1 (s) - W2(s)] must change sign at least once on y ~ (0, Yl ). This 
implies the existence of a Y4 @ (0, 21) such that 

WI(y4) = W2(y4) (A.5) 

and 

0 < W~ (s) < W2(s), Vs e (0, Y4). (A.6) 

But (A.6) and (14a), along with (17) imply that 

Hi(s; KI) < H2(s; K2) < 0, fs r (0,  Y4]. (A.7) 

Equation (A.7) together with (15a) and (17c) leads to the conclusion that 
W1 (Y4) < W2(y4), which contradicts (A.5). Hence there can be at most one 
negative value of K for which both (15a) and (18b) are true. The proof of 
Theorem 1 is now complete. 

Appendix B. Proof of Theorem 2 

Define An(y; K) to be the argument of the tan function in (20), as follows. 

fo : h " ( r )  - -  h ( r )  
A n ( y ; K ) -  Hn(r;K) dr, foryE[O, y l ]andVneN,  (B.1) 

where, as in Section 4, N is defined to be the set of all non-negative integers. 
Further define 

g,(y; K) =- - g  sinh(y) - w~(s; K)2y(s, y) ds. (g.2) 

In what follows in Appendix B, whenever the argument Kis specified (without 
any suffix) for functions like wn, H,,  g~ or An, we will implicitly assume that 
K is negative and such that the above functions are well defined. We now state 
and prove Lemmas 4 and 5 below, in preparation for proving Theorem 2. 

Lemma 4. The functions defined by equations (20)-(21) and 
( B . 1 ) - ( B . 2 )  must satisfy equations (B.3) below for any n ~ N  and 
Vy e (0, y~): 

Hn(y;K)<H,+~(y;K) and OHm~OK>O, (B.3a,b) 

7r/2>A~+~(y;K)>An(y;K)>O and 8A~/OK>O, (B.3c,d) 

Wn+~(y;K)>w~(y;K)>O and 8w~/OK>O, (B.3e,f) 

and 

g,,(y;K)>gn+~(y;K) and Ogn/OK<O. (B.3g,h) 
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Proof. The upper bound of ~/2 in (B.3c) and the indicated signs of A, 
and w, in (B.3c,e) are obviously required for these functions to be well 
defined for all n e N. First take n = 0 in equations (B.3). Equation (B.3b) is 
obviously true and (B.3d,f) follow from (17c,d) and (20). From (17e,f) and 
the fact that w0 is positive on y ~ (0, y~], we find that (B.3a) holds; but this 
implies that A,(y; K) > A0(y; K) for y > 0 (as can be verified from (B.1) 
and (17c,d)), and hence, from (20), equation (B.3e) follows. We have just 
demonstrated that (B.3a-f)  hold for n = 0. These arguments can be re- 
peated for n = 1; thus (B.3e) and (B.3f) for n = 0 imply that (B.3a) and 
(B.3b) respectively hold for n = 1, as can be seen from the relevant 
equations. But now (B.3c,d,e,f) follow for n = 1. By induction, it is clear 
that (B.3a-f)  are true for any given n ~ N, as claimed. Equations (B.3g,h) 
follow trivially from (B.2), (B.3e,f) and (17e,f). Lemma 4 is now proved. 

Remark. A straightforward consequence of (B.3a-h)  is that if the 
functions Hn, An, w, or g, exist for a given y at K = K .  < 0, then they must 
be continuously dependent on K for all K ~ ( - or, K . )  at the same value of 
y. This fact will be used repeatedly in the rest of this Appendix without 
explicitly stating it each time. 

Lemma 5. Existence of solutions to (15a) for large ]K]. 
Consider functions h(y) satisfying (17). For K < 0 and for sufficiently 

large Ixl, the sequence {w,(y;K)} defined by (20) - (21)converges  uni- 
formly on y e[0 ,  yl] to the bounded, smooth limit function w~(y;K),  
which is the exact solution of (15a). Further, Woo satisfies the following: 

w~(y; K) > w,(y; K) > O, Vn E N and Vy c (O, y~], (B.4a) 

and 

w ~ ( y ; K ) ~ O  + as K ~ - ~ , V y  ~ (0, yl]. (B.4b) 

For the proof  of Lemma 5, see Appendix C, where the meaning of 
"sufficiently large IK[" is also precisely defined by an estimate. We now 
proceed with the proof  of Theorem 2. In the rest of this Appendix, we will 
refer to the Intermediate value theorem as IVT. 

We will first show that there exists a K1 < 0 such that (22) holds for 
n = 1. Define K0 < 0 by 

1 h " ( r )  - h (r )  
Ko = -  ~z j o  cosh(r) dr. 

Obviously, A0(yl; K0) = ~/2; therefore w0(y~; K) is continuous for 
K ~ ( - ~ ,  Ko) and has a non-integrable singularity (a pole) at K = Ko. We 
therefore obtain from (21b) and (17): 

H~(y~; K) ~ + ~  as K ~ K o .  (B.5a) 
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It is also obvious that 

H ~ ( y ~ ; K ) ~ - ~  as K ~ - ~ .  (B.5b) 

From (B.5a,b) and the IVT it follows that there exists a K~ e ( - v o ,  K0) 
such that (22) is true for n = 1; further, (B.3b) guarantees that K1 is 
uniquely defined by (22). 

We next prove (22) and (23) by induction. Assume that (22) holds for 
some n = j ~ N  where j >  1 and for some K / < 0 .  Then the function Hj 
satisfies 

Hg(y,; Kj) = 0, (B.6) 

and any one of equations (B.7a,b,c) below: 

H/(y;K/)<OVye[O,  yl) and Hj(y~;K/)>O, (B.7a) 

o r  

H j ( y ; K j ) < 0 V y e [ 0 ,  yl) and H ~ ( y ~ ; K j ) = 0 ,  (B.7b) 

o r  

H/(y+ (Kj); Kj) > 0, (B.7c) 

where we define y+(K) in (B.7c) to be that value of y +[0, yl] that 
maximises H/(y;K).  Suppose first that (B.7a) holds; from (17c,d), 
A/(y;K/) must be well defined on y e[0,  y~]. Suppose further that 
A/(yl;  K j) < re/2; it then follows that wj(y; K/) and hence, H/+ ~ are well 
defined smooth functions on y 6 [0, y~]. But then from (B.3a) and (B.6) we 
obtain 

/4j+,(yl; Kj) >0. (B.8) 

From Lemma 5 and (B.4a,b) we have the following result: 

w,,(y; K) ~O as K ~ - - ~  uniformly in n ~ N and y ~ (O, yl). (B.9) 

Hence from (B.9), we conclude that 

H /+ , (y l ;  K ) - ~ - v o  as K ~ - ~ .  (B.10) 

From (B.8), (B.10), (B.3b) and the IVT it follows that there must 
exist a uniquely defined K/+I ~ ( - ~ ,  K/) such that (22) is true for n = 
j + l .  

Next suppose that either (B.7b) holds or (B.7a) is true with 
A/(y~; K/) > n/2. Now Aj(y; K/) is smooth for all y ~ [0, y~) and either has 
a pole at y =y~, in which case A j ( y l ; K ) ~  + ~  as K ~ K  7,  or satisfies 
A/(yl;Kg) >n/2. From (B.9) we find that Aj(yl;K)-+O + as K ~ - ~ .  
Hence by the IVT and (B.3d) we infer that for both of the above possibili- 
ties there exists a uniquely defined ~:g e ( - ~ ,  K/] such that A/(y~; ~c/) = ~/2. 
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But then we may  deduce that  wj(y; •j) is smooth  on y ~ [0, y~) and has a 
pole at y = yl.  We conclude f rom the relevant equations that  

/ / j + ~ ( y , ; K ) ~ + ~  as K ~  7 .  (B.11) 

F r o m  (B.11), (B.10), (B.3b) and the IVT it follows that  there must  exist a 
uniquely defined Kj.+ 1 ~ ( - ~ ,  xj) such that  (22) is true for n = j  + 1. 

It remains to consider the possibility that  (B.7c) is true, and we assume 
this in what  follows. F r o m  (B.9), we obtain 

t t j ( y + ( K ) ; K ) ~ - ~  as K ~  - oo. (B. 12) 

Hence f rom (B.7c), (B.12) and the IVT, there must  exist a kj. ~ ( - o o ,  Kj) 
such that  

~ . ( y +  (kj); kj) = 0. (B.13) 

and (B.3b) necessarily imply that  y+ (kj) ~ (0, y~); that  is, y+ (kj) 
to be an interior point.  Hence by definition of  the maximum,  we 

Hj  (y+ (kj); kj) = 0. (B.14) 

But (B.13) and (B.14) imply that  Aj(yl; K)-~ + ~ as K ~ k f .  The rest of  
the p roo f  is identical to that  for the case (B.7b); there must  exist a xj such 
that  (B.11) is true and therefore there must  exist a uniquely defined 
Kj+ ~ r ( - ~ ,  tcj) such that  (22) is true for n = j  + 1. 

To summarize,  we have shown that  (22) is true for n = 1, and if (22) 
holds for some n =j  ~ N, j  > 1, it must  hold for n = j  + 1 as well; further, 
the ordering given in (23) must  be preserved. It is clear that  we have proved 
by induct ion that  (22) and (23) hold for all positive n ~ N, as claimed. 

We now demonst ra te  that  the limit Koo of  the sequence {Kn } defined by 
(22) mus t  be finite. Assume that  Kn - ,  - ~ as n -~ ~ .  F r o m  (B.9) we would 
then find that  H , , ( y l ; K , ) ~ - ~  as n ~ o v .  But this implies that  for 
sufficiently large n ~ N, (22) would be violated; we have arrived at a 
contradict ion because we have just  proved that  (22) holds for any positive 
n ~ N. It follows that  the sequence {K, } is bounded;  since it is also ordered 
as in (23), it must  converge to the finite limit K~ as claimed. 

Next  we show that  the limit funct ion Wo~ (y;  Ko~) is uniformly bounded  
on y ~ [0, yl]. It is clear f rom the preceding construct ion of  K~ that  the 
sequence {w,,(y;K~)} is well defined for all n~N.  Assume that  
w,,(y; Koo) ~ oo as n ~ ~ for some y_ ~ (0, y l ] .  It follows f rom (21b) and 
(17e,f) that /am+ ~(y_ ; Ko~) becomes positive for some large n = m ~ N. But 
this leads to a contradict ion,  for wm+ I (Y- ;  K~)  would now be non-existent. 
We conclude that  the sequence {w,(y;  K~)} is uniformly bounded  on 
y ~ [0, Yl] as n ~ or. Since it is also an ordered sequence (as in (B.3e), it 
follows that  it must  converge uniformly on y ~ [0, y~] to the bounded  
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smooth limit function w~(y; Koo) as claimed. Upon taking the limit n ~ oo 
in (20) it is easy to demonstrate that w~(y; Ko~) is an exact solution of 
(15a) on y ~ [0, y~]. 

Define Hoo(y; K) by (14a) with w replaced by woo(y; K) (or equiva- 
lently, by the limit of the sequence {H,(y;  K)}). It is clear from the above 
iterative construction of K~ that Ho~(y; Koo) < 0 on y s [0, y~). We next 
prove that Hoo(y~;Koo)=0. Note that the sequences {H,,(y;K)} and 
{w~(y; K)} must converge uniformly on y c [0, y~] for all K ~ ( - o o ,  K~J, 
since these are ordered sequences (as in (B.3a,e)) and bounded by 
Hoo (y; K~ ) and w oo (y; Koo) respectively (as can be inferred from (15a), (17) 
and (B.3b,f)). Therefore the limit functions Hoo ( y ; K )  and w~ ( y ; K )  (which 
is the exact solution of (15a)) must also satisfy the following equivalent of 
(B.3b,f) uniformly on y e (0, y~) and K e ( - 0 %  Koo): 

8Hoo/SK > O and 8woo/SK > O. (B.15a,b) 

Now we suppose H~(y~;Koo)<0 (which is the only possibility if this 
quantity does not vanish) and arrive at a contradiction. By Lemma 2 and 
(B.15a,b), the solution w~(y; K) would remain smooth (in fact infinitely 
differentiable, by Lemma 3) as K is increased to some K ,  such that 
O>K, >Koo. But then H~(y; K,) should exist and be negative on 
y ~[0, yl); further, from (15a), (17) and (B.3a,e), we conclude that the 
ordered sequences {wn(y; K,)}  and {Hn(y; K,)}  converge to w~(y; K,) 
and H<(y; K,) respectively. Noting that the sequence {K,} converges to 
Koo, let us take some n = m  sufficiently large that Koo <K, .  < K , .  
Now since Hm(y~; K,)<Hoo(yl; K,) -<  0, it follows from (B.3b) that 
we must have Hm(y~; Km)< 0; but this violates (22), which was proved 
earlier, and we have the desired contradiction. We have proved that 
H~(yL;KOO) =0.  

By Lemmas 2 and 3, wo~(y; Koo) must be infinitely differentiable on 
y e [0, y~] and therefore we must necessarily have H~(y~; Koo) > 0; other- 
wise w~(y~;Koo) would be non-existent, as can be seen from (13) and 
(17c,d) and this contradicts Lemma 2. This infinite differentiability auto- 
matically implies that the solution woo(y; K~) can be extended to some 
y >y~, as we have noted in the paragraph below Lemma 3; therefore 
Hoo(y; K~) must change sign and become positive as y increases past yl 
(since it has a positive derivative at y~). 

It remains to show that the solution woo(y; Koo) is smooth for all 
y e[0,  y0], to complete the proof of Theorem 2. We suppose that 
woo(y;Koo) is smooth for all ye[O, ys) but has a singularity at 
y = y~ e (y~, Yo], and arrive at a contradiction. Now by Lemma 2, we must 
necessarily have 

Ho~(ys; Ko~) = 0. (B.16a) 
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If ys=yo and if, say, h"(yo) vanishes but h"(yo) does not, then (B.16a) 
must be supplemented by the vanishing of H~(ys;  K~). Further, we must 
also have 

H~(y;Koo)>O on y 6 ( y , , y s ) ,  (B.16b) 

with H ~  vanishing at the end points of the above interval. From (B.16a) 
! and (17c) we find that w~(y ,  K~) ~ + ~  as y ~y~- .  The Remark below 

Lemma 2 establishes that this singularity in w~ is integrable and therefore 
w~(ys; Koo) is finite. These facts, along with (19) and (17f) imply that 

H ~ ( y ; K ~ ) ~ + o o  as y ~ y ~ - .  (B.16c) 

But (B.16c) is not compatible with (B.16a,b) and we have arrived at the 
desired contradiction. For  example, if (B.16a) is true, then (B.16c) implies 
that H~(y;  K~) becomes negative as y ~ y ~ - ,  which contradicts (B.16b). 
Thus w,~(y;K~) is infinitely differentiable on y ~[0,  yo] and satisfies 
(18a,b); the proof  of Theorem 2 is complete. 

Appendix C. Proof of Lemma 5 of Appendix B 

L e t k - = - K > 0 .  Define r/ > 0 and ~ > 0 b y  

fl h"(r) - h(r) 
t/--- -- 2cosh(r) dr, (C. la)  

and 

~ - max , (C. lb) 
y ~ [0, y 1] cosh(y) 

where 2(s, y) is given by (14b). Consider the sequence {ft, }, defined by 

fi0 - tan(q/k) > 0, 

and 

ft, +, - tan[t//(k -- fin ~)] > O, 

(C.2a) 

Vn 6 N. (C.2b) 

Here, it is assumed that k is sufficiently large that fin is well-defined for any 
given n e N (in particular, 0 < [q/(k - fl,~)] < re/2). From (20)-(21)  and 
(17), we find that 

ft, > w,,(y; K) >- O, Vn ~ N and Vy ~ [0, Yl]. (C.3) 

Let fl~ > 0 be defined to satisfy 

A(fl~) -- rico - tan[~//(k - f l ~ ) ]  = 0. (C.4) 
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From (C.4), we find that for any given e > 0, and for sufficiently large 
k = k(e), the following must hold: 

A(0) < 0  and A(e) > 0 .  (C.5) 

We conclude from (C.5) that there must exist a flo~ e (0, e) such that (C.4) 
holds. From (C.2a,b) and (C.4), it is easy to see that the following ordering 
must hold: 

/3o~ >/3.+1 >/3., Vn E N. (C.6) 
The sequence {/3. }, which is ordered and bounded, must necessarily converge 
to the limit/3o~ But the sequence {w~ } is also ordered as in (B.3e) and bounded 
by /30~ (as can be seen from (C.3) and (C.6)); it must therefore converge. 
Further, upon taking the limit e ~ 0  + in (C.5), it follows that /3~j ~ 0  + as 
k ~ ~ ,  and (B.4b) follows. Equation (B.4a) may now be easily deduced by 
induction from (B.3e), (15a), (17) and (20) - (21) .  For if (B.4a) holds for n = j ,  
it must also hold for n = j  + 1, and (B.4a) obviously holds for n = 0. Note 
that "sufficiently large ]KI" in Lemma 5 may now be precisely defined to mean 
"sufficiently large k( = [K[) such that (C.4) has a positive root for/3~ ." Finally, 
upon taking the limit n ~ ov in (20), it is easily shown that w~(y;  K) is an 
exact solution of  (15a). The proof of Lemma 5 is now complete. 
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Abstract 

The primary goal of this paper is to specify sufficient conditions for the inviscid instability of a 
general class of plane parallel shear flows. For given complex eigenvalue c and real wave number c~, and 
for given h(y), the real part of the adjoint eigenfunction, Rayleigh's equation is converted into a 
nonlinear integral equation for the basic velocity profile U(y). Sufficient conditions are deduced for the 
existence and uniqueness of solutions to this integral equation, subject to appropriate homogeneous 
boundary conditions on the eigenfunction 0(Y); the velocity profiles U(y) so derived are guaranteed to 
be unstable. Also separately described in this paper is a method to obtain a general class of new, exact 
neutrally stable solutions of Rayleigh's equation; given any real c and ct, and a function ~(U), the 
velocity profile U(y) and the eigenfunction ~(U(y)) may be determined theoretically. A specific example 
of a class of neutrally stable solutions for jet-like profiles on an unbounded domain is given. 
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