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In designing a language-directed machine architecture, the choice of the techni- 
que used in interpreting machine instructions has considerable influence on 
machine performance. Yet, there does not appear to exist any well established 
design method for choosing an interpretive mechanism; or for determining the 
hardware/firmware support for an efficient implementation of such a 
mechanism. The purpose of this paper is to propose such a design method, 
based on the use of an architecture description language. The specific architec- 
tural focus of the paper is the variable-addressing mechanism in Ada and the 
implications that such mechanisms have on the implementation of procedure 
CALL/RETURN and block ENTRY/EXIT functions; The analysis presented in 
this paper clearly establishes that either Dijkstra's mechanism or "local display 
method" is not suitable for adoption in designing architectural support for 
variable-addressing in Ada. 

KEY WORDS: language-directed architecture; virtual and real transfer com- 
plexity; variable-addressing mechanisms proposed by Rohl, Tanenbaum, 
Dijkstra and the "local-display method". 

1. INTRODUCTION 

In designing an instruction set for a language-directed machine, usage 
statistics on various high-level language (HLL) constructs play an 
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obviously important role. (1-3~ Furthermore, the choice of the technique 
used in interpreting these instructions will have considerable influence on 
machine performance. Yet, there does not appear to exist any well 
established design method for choosing an interpretive mechanism or for 
determining the appropriate hardware/firmware support for an efficient 
implementation of such a mechenism, The purpose of this paper is to 
propose such a design method. The methodology is used in designing the 
architectural support for variable-addressing in Ada. In a more general 
sense it is also intended as a contribution to architecture design 
methodology. (4~ 

The architectural focus of this paper is the variable-addressing 
mechanism in programs written in block-structured language Ada and the 
implications that such mechanisms have on implementation of procedure 
CALL/RETURN and block ENTRY/EXIT functions. 4 It is well known 
that these are some of the most important and frequently used operations 
in block-structured HLL environment; hence they are highly appropriate 
candidates for architectural support through semantically "close" instruc- 
tions in a language directed machine. A one-to-one correspondence 
between such HLL functions and machine level instructions can lead to 
effective exploitation of the available processor/memory bandwidth. (2) This 
of course, implies that a single instruction like CALL (for example) would 
include in its semantics and its implementation a sequence of operations 
over and above those necessary for actual transfer of control. 

The execution performance of the CALL/RETURN and 
ENTRY/EXIT instructions will clearly depend on the technique used to 
implement the variable-addressing mechanism. So the architect of a 
language-directed architecture is faced with the problem of choosing the 
most efficient implementation technique. 

The results presented in this paper may be compared to De Prycker's 
work. (5/ De Prycker attempted to evaluate two different variable-address- 
ing methods implemented in existing architectures. We, on the other hand, 
concentrate primarily on the development of a method for designing the 
hardware/firmware support for the HLL procedure CALL/RETURN and 
block ENTRY/EXIT functions for a language-directed architecture. 

Various techniques have been proposed by system designers for 
implementing the variable-addressing mechanism in block-structured 
languages. We will consider the following four techniques: 

(a) The "classical" display mechanism as suggested by Dijkstra. (6) 

(b) A modified display mechanism proposed by Rohl. (7~ 

4 Block structuring in Ada is similar to that of Algol with the important exception that Ada 
does not allow formal procedure parameters. 
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(c) A local display mechanism as implemented in the ICL 2900 
Pascal compiler. (8/This was also implemented as part of a virtual 
architecture for Ada. (9) 

(d) Tanenbaum's proposal/3~ 

We shall use the term architectural component to denote any part of 
an architecture that can be studied, analyzed and designed in reasonable 
isolation. For example, the architectural support provided for the HLL 
functions of procedure CALL and RETURN can be viewed as an architec- 
tural component. An examination of the execution 5 of such components 
within the framework of von Neumann style architectures reveals that the 
transfer operation is by far the predominating operation. Transfers can 
occur between: 

(i) two memory locations; 

(ii) a processor register and a memory location; 

(iii) two processor registers. 

Thus, it is quite reasonable to compare different implementation techniques 
in terms of the number of transfer operations to implement an architectural 
component in a given host processor. 6 If we assign appropriate weights for 
the different kinds of transfers and if the necessary statistics on program 
behavior are known, the average cost of execution of a particular 
implementation of an architectural component on a given host processor 
can be determined. This is, therefore, essentially a technique for analyzing 
the suitability of host processors for implementing given HLL functions. A 
similar study for two of the previously mentioned techniques for 
implementing variable-addressing mechanisms [(a) and (d)] was reported 
by De Prycker./5) However, as we shall show, the method we propose here 
should be regarded essentially as a design method rather than a technique 
for analysis. 

To begin with, our only assumption concerning the underlying host 
processor organization is that it conforms to the von Neumann style. Thus, 
in the absence of any particular host structure it is necessary that we use an 
abstract way of describing architectural components and their implemen- 
tations. The architecture description language (ADL) S*A is used for this 

s For convenience we use the phrase "execution of a component" to denote the collective 
sequence of events that would take place if a realization of the component were to be 
activated. 

6 To avoid any terminological confusion we shall use the term "host" to denote any processor 
on which an architectural component supporting HLL functions are being implemented. We 
have borrowed this term, for obvious analogical reasons, from the terminology of 
microprogramming and emulation. 
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purpose. (4'1~ From an S*A description of an architectural component we 
derive two measures termed the Virtual Transfer Complexity (VTC) and 
the Average Virtual Transfer Complexity (AVTC). As explained in Sec- 
tion 3, the VTC measure is a design aid in that it indicates the minimum 
transfer complexity that could be achieved using a particular implemen- 
tation technique. Note that the VTC and AVTC measures as determined 
from an S*A description are independent of the characteristics of any par- 
ticular host structure. The AVTC measure, however, is dependent on the 
usage statistics obtained from the programming language environment 
under consideration. 

The rest of the paper is organized as follows. In Section 2, we develop 
the notion of virtual transfer complexity. We also include some example 
VTCs computed for a few typical S*A statements. In Section 3, we review 
briefly, the relevant notions of maintenance and variable access in the run 
time representation of a typical Algol-like block-structured environment. 
Complete S*A descriptions of the procedure CALL/RETURN (CR) and 
block ENTRY/EXIT (BE) components for all four implementation techni- 
ques have been developed and are described in Ref. 12. For the sake of 
brevity, however, we include in this paper only two of these descriptions, 
viz., those of the techniques suggested by Rohl and Tanenbaum. In Sec- 
tion 4, we present the AVTs for the CR and BE components corresponding 
to each implementation technique. 

In the remaining sections we derive a host processor organization from 
the S*A descriptions and evaluate the Real Transfer Complexity (RTC) of 
the components for this organization. A comparison of the AVTC and 
ARTC values indicate that the choice of implementation techniques could 
be restricted to those suggested by Rohl and Tanenbaum. It is, moreover, 
concluded that the choice between these two schemes depends critically on 
the relative frequency of procedures being declared at an intermediate (i.e., 
neither local nor global) lexical level with respect to the calling level. 

2. V I R T U A L  T R A N S F E R  C O M P L E X I T Y  

The ADL S*A has previously been described in several papers (see 
Refs. 10, 11, and 13). A complete definition of the language is available and 
has appeared in a book. (4) The use of S*A in describing architectures 
facilitates the design process in a number of ways: 

(a) It makes it possible to describe the functioning and behavior of 
an architectural component at a level that is essentially indepen- 
dent of any particular hardware/firmware implementation of the 
component. 
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(b) The description helps identification of the specific statistics of the 
HLL environment upon which the performance of the architec- 
tural component depends. This, in turn, facilitates the collection 
of the appropriate usage statistics. 

(c) The description clearly indicates the possible trade-offs between 
M and R measures u4) necessary for performance improvement. 
Furthermore, if all the architectural components of a language- 
directed architecture are considered together, the S*A descrip- 
tions of the components collectively provide a fairly complete 
picture of the hardware/firmware requirements of the underlying 
processor. 

(d) Because S*A has been formally defined, it becomes possible to 
formally verify the correctness of an architectural design at a very 
early stage in the design process. ~3) 

Given an S*A description of an architectural component, its virtual 
transfer complexity (VTC), when using a particular technique, is a measure 
of the number of transfers necessary for the "execution" of the component. 
In computing the VTC, all the variables are assumed to be available in the 
registers of a virtual processor. The array types are considered as register 
banks with the usual access mechanism, and a transfer through an ALU is 
view~ed as a register--register transfer between the input and output buffers 
of an ALU. 

In the next section we will present the VTC and AVTC of the 
CALL/RETURN and ENTRY/EXIT components for all four of the 
variable-addressing mechanisms mentioned in Section 1. Before that, 
however, we illustrate the method of computing the VTC by taking some 
typical S*A statements. 

Let us assume the following data type and data object declarations: 

type M = seq [..] bit; 

glovar A, B : array [..] of M; 

glovar X, Y, P, Q : M 

Here, we have defined a sequence data type named M; (global) variables 
X, Y, P, and Q are declared as instances of this type, while A and B are 
declared as arrays of elements of type M. The square brackets [..]. in the 
first two declarations simply represent the (unspecified) sizes of the 
sequence and array respectively. 

Example 1. 
A[X-] := B[P + A[Q]] 
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The transfers are: from Q to the selection mechanism of A; from the selec- 
ted element of A to A L U 1 ;  from P to ALU_2; transfer through the ALU; 
from ALU_0 to the selection mechanism of B; transfer from X to the selec- 
tion mechanism of A; and, finally, transfer from the selected element in B 
to the selected element in A. The VTC of this statement is 7. 

Example 2. 

while P = Q do S o d  

Here S denotes the body of the while statement. If the VTC of S is w and 
assuming that S is iterated m times, the VTC of the while statement is 
mw+3(m+l ) ;  the predicate is evaluated m + l  times and in each 
evaluation three transfers are involved--from P to the comparator; from Q 
to the comparator; and a transfer through the comparator. The transfer 
involved in the branching operation is ignored--that  is, we ignore the 
information transfer resulting from a transfer of control. 

3. VARIABLE ADDRESSING TECHNIQUES 

A program written in a block-structured language may be depicted as 
a tree which would highlight the nested structure of program blocks. (15'16) 
Each block would be associated with a level in the tree called its static 
lexical level. 

Execution of a program may be viewed as a dynamic changing of 
lexical levels, hence, the lexical level of a block during program execution is 
termed its dynamic lexical level. 

From a "static" point of view (i.e., the program as viewed at compile 
time) blocks and procedures are treated identically in that the body of a 
procedure is viewed as a block and is assigned a lexical level one higher 
than the level of declaration of the procedure identifier. Within a block, a 
variable is uniquely identified by the ordered pair 

(lexical level, sequence number ) 

where "lexical level" denotes the static lexical level of the block in which 
the variable is declared and "sequence number" indicates the relative 
position of the declaration in the block. 

A dynamic change in lexical levels occurs during a block invocation or 
a procedure call. However, the nature of the change in the two cases are 
quite different. The new (dynamic) level due to a block invocation is iden- 
tical to the static level of the invoked block whereas, calling a procedure 
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changes the dynamic level to correspond to the static level of the procedure 
body--that is, to a level one higher than the static level of the procedure 
declaration. An exit of a block or a return from a procedure requires the 
dynamic level to be reset to the level at which the block was invoked or the 
procedure called. 

According to the scope rule for Ada a variable may be accessed if it is 
declared in the same block or in a statically surrounding block--i.e., if the 
variable is declared in one of the levels corresponding to the nodes in the 
path from the root of the tree to the node corresponding to the level at 
which the variable is referenced. Thus, the set of nodes on the path from 
the root to the active node characterizes the legitimate lexical levels in the 
variable accessing environment. In the case of procedure calls, the 
procedure identifier is treated as a variable, identified by means of the usual 
(lexical level, sequence number) pair, and the rule for procedure 
accessibility is the same as that for a variable. 

In a typical Ada environment blocks may be treated as degenerate 
procedures called from the level at which they are defined. The foregoing 
discussion indicates that we need two linked list structures to represent the 
static and dynamic aspects of the environment. Usually, the expression 
evaluation/storage allocation stack is combined with these two linked list 
structures to form an activation stack. The stack frames corresponding to 
the static program structure are connected through a static link, while 
dynamic program activity is recorded and maintained through a dynamic 
link in each stack frame. Note that the dynamic and static links in a frame 
allocated as a result of a block invocation contain the same values, that 
both point to the previous frame; whereas in a frame allocated to the body 
of a procedure, the dynamic link points to the previous frame, while the 
static link points to the frame in which the procedure identifier was 
allocated. The dynamic link information is used in reverting back to the 
dynamic procedure call/block invocation level when the procedure/block 
execution has been completed. The static link is utilized in accessing non- 
local variables. 

With this general description in mind, accessing a variable in the 
"parent" static environment requires following the static link chain to the 
appropriate level of declaration. Thus, depending on the difference in the 
lexical levels of access and declaration, a variable access could involve 
several levels of indirection. To reduce this overhead, Dijkstra suggested 
the use of an extra set of display locations, in the form of a stack. (6~ 
According to this scheme any accessible lexical level can be directly reached 
through the display location associated with that level. The top of the dis- 
play stack points to the current active frame, while the remaining display 
contains copies of the static links of the accessing environment. 

828/14/1-5 
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A major problem with this now classical technique, is in rebuilding the 
display stack on return from a procedure; the number of locations to be 
reset is directly proportional to the lexical level difference between the call- 
ing level and that of the procedure declaration. A modification to this 
technique was suggested by Rohl. (7) He observed that in Dijkstra's scheme, 
there is a redundancy of information within the static links, the dynamic 
links, and the display. Rohl's modified version is described by the S*A 
mechanism M2 (Fig. 2) while Fig. la depicts the base of the corresponding 
stack frame. The static and dynamic links are replaced here by a single link 
that connects only the frames associated with the same lexical level. Thus, 
whenever we overwrite the contents of a display location (during a CALL 
or an ENTRY) the corresponding information is stored in the stack frame 
associated with that dynamic lexical level. So we can see that the display 
rebuilding overhead after returning from a procedure is independent of the 
lexical level difference between the calling level and the level of the 

S p t r  I 
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Proc RETURN ; 

Sptr = Frame-mark ; (I) Frame-mark := Stack [sptr] ; (2) 

/, Deallocation of frame ,/ 

Local := Display [Dis-top] ; (2) 

Display [Dis-top] := Stack [Local-l] (5) 

/* reinstated the content that was destroyed due 

to call * /  

Dis-top := Stack [Local - 3] ; [5) 

Pctr := Stack [Local - 2] ; (5) 

EndProo ; 

Proc ENTRY ; 

Stack [Sptr] := Frame-mark ; (2) 

Frame-mark := Spit; (I) Sptr := Sptr * I ; (3) 

Dis-top := Dis-top + 1 ; [3) 

Stack [Sptr] := Display [Dis-Top] ; Sptr := $ptr + I ; 

/, AS in call ,/ 

Display [Dis-top] := Sptr ; (3) 

/* Display [Dis-top] points to present environment */ 

endProc ; 

Proc EXIT ; 

Sptr := Frame-mark ; (I) 

Frame-mark := stack [sptr] ; (2) 

Display [Dis-top] := 

Stack [Display [Dis-top] - I] ; (6) 

/* restored the content overwritten due to 

Block entry =/ 

Dis-top :- Dis-top - I ; (3) 

EndProc ; 

End Mech Mz ; 

Fig. 2. S*A descriptions of CR and BE components of mechanism 
M2 (the numbers in parentheses indicate VTCs of the statements). 



Mech M, ; /. TANENBAUM's METHOD */ 

type memword = seq [..] bit; 

glovar mainmem: array [..] of memword; 

syn stack = mainmem; 

glovar sptr, Frame-mark, Pctr : memword; 

glovar LP, GP : memword; 

glovar Inst-reg : tuple 

adr : tuple 

Dlex: seq[..] bit; 

Offset : seq [..] bit; 

endtup 

e n d t u p ;  

: memword; 

prlvar chain, Ptr : memword ; 

Proc  CALL; 

Stack [Sptr] := Frame-mark ; (2) 

Frame-mark := Sptr ; (I) Sptr:-Sptr + I ; (3) 

Stack [Sptr] := Pctr ; (2) Sptr := Sptr + 1 ; (3) 

Stack [Sptr] := LP ; (2) sptr := Sptr+ I ; (3) 

/* Dynamic link stored */ 

If Inst-reg. Adr. Dlex = 'Global' (3) 

Stack [Sptr] := GP ; (2) Ptr := GP; (I) 

II Inst-reg. Adr. Dlex - 0 (3) Stack [sptr] := LP ; (2) 

Ptr := LP; (I) 

[] DO chain := Inst-reg.Adr. Dlex ; (I) 

WHILE Chain--]= 0 (3 [m + I]) 

DO Ptr := Stack [Ptr - I] ; (4) 

Chain := Chain - I ; (3) 

OD 

Stack [Sptr] := ptr ; (2) Sptr := Sptr § ] ; (3) 

/* static link set ,/ 

OD /* m = lexical level difference between 

the level of call and the level of declaration 

of  t h e  p r o c e d u r e  i d e n t i f i e r  , when t h e  p r o c e d u r e  

i d e n t i f i e r  i s  an in termediate  v a r i a b l e  . , /  

LP := Sptr; (I) /* New LP set */ 

Pctr :- S t a c k  [ptr + Inst.reg. adr. offset] ; (5) 

l n d P r o c  ; 
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Proc RETURN ; 

Sptr := Frame-mark ; (I) 

Frame-mark := stack [sptr] : (21 

Pctr := Stack [LP - 3] ; (5) /* ret. address 

LP : Stack [LP - 2] ; (5) /* LP points to 

Calling environment */ 

endProc; 

P r o c  ENTRY ; 

Stack [sptr] : =  Frame-mark ; (2) 

Frame-mark := Sptr; (I) Sptr := Sptr * 1 ; (3) 

Stack [sptr] := LP ; (21 sptr := sptr § 1 ; (3) 

,/ 

Stack [sptr] := LP ; (2) sptr := sptr + I ; (3) 

/, both links are stored, for uniformity in vat 

access mem */ 

LP := Sptr; (I) 

e n d P r o c  ; 

Proc EXIT ; 

Sptr := Frame-mark ; (I) 

Frame-mark := Stack [Sptr] ; (2) 

LP := Stack [LP - I] ; (4) 

e n d P r o c  

end Mech H. ~. 

Fig. 3. S*A descriptions of the CR and BE components of 
mechanism M4 (numbers in parentheses indicate VTCs of the 

statements). 

procedure declarat ion-- i t  involves only the resetting of a single display 
location associated with the static lexical level of the procedure body. 

Another technique for implementing variable-addressing through dis- 
play locations is the so-called "local display" method. (8"9) In this method, 
the display locations necessary to represent the current variable accessing 
environment are stored on the current frame of the activation stack. The 
current frame is deallocated on return from a procedure or on exit from a 
block. Thus, there is practically no oVerhead for rebuilding the display on 
return from a procedure. 
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A significant variation on the basic theme was suggested by 
Tanenbaum (3) whose basic premise (which may not altogether be true for 
Algol-like languages) was that most variable accesses are local or global in 
nature--thus dedicated display locations for nontocal references were 
unnecessary. He proposed, instead, the use of two dedicated display 
locations or registers, one for pointing to the base of the current frame, the 
other to the global frame of the activation stack (Fig. lb). The S*A 
mechanism M 4 (Fig. 3) describes the operations. 

4. E V A L U A T I O N  OF V I R T U A L  T R A N S F E R  COMPLEXIT IES  

Based on the foregoing S*A descriptions we can now evaluate the vir- 
tual transfer complexities of the archtectural components (in the following, 
the legend Ms. CR and Mi. BE denote respectively, the CALL/RETURN 
and ENTRY/EXIT components in mechanism Mi). 

1A: V T C ( M l ' C R ) = 6 4 +  126p 
(where &p represents the difference in lexical levels between the 
point of calling and the point of declaration of the procedure 
identifier) 
AVTC(M1 �9 CR) = 64 + 128p 
(where 8p is the average 0p computed over a large set of sample 
programs characterizing the programming language environ- 
ment under consideration) 

1B: VTC(M1-BE)=23 + 6 = 2 9  
AVTC(M1 �9 BE) = 29 

2A: VTC(M 2. CR) = 37 + 20 = 57 
AVTC(M2" CR) = 57 

2B: VTC(M 2. BE) = 12 + 12 = 24 
AVTC(M 2 �9 BE) = 24 

3A: V T C ( M 3 - C R ) = 3 5 +  12/?+3(/?+ 1)+ 1 2 = 5 0 +  15/? 
(where/? is the lexical level of the procedure identifier) 
AVTC(M3 -CR) = 50 + 15/~ 
(where/~ is the average/? computed over a large number of sam- 
ple programs) 

3B: VTC(M3.BE)=20+9v+6(v+l)+7=33+15v 
(where v is the number of displays to be transferred from the 
previous frame) 
AVTC(M3 - BE) = 33 + 15~ 
(where f is the average v computed over a large number of sam- 
ple programs) 
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4A: V T C ( M 4 " C R ) =  
ff procedure identifier is a global variable 

then (22 + 6) + 13 = 41 
/f procedure identifier is a local variable at calling level 

then (22 + 3 + 6) + 13 = 44 
otherwise (22 + 3 + 3 + (106; + 13)) + 13 = 54 + 10~Sp 
AVTC(M 4 .CR)  ---- 35 -k- r/pg(6) + r/p,(9) + t/pi(29 + 10S;) 

where 

tTpx= relative frequency of a procedure identifier being a global 
variable 

~/pt = relative frequency of a procedure identifier being a local variable 

r/p i = relative frequency of a procedure identifier being an intermediate 
variable 

We assume that the relative frequencies are obtained by considering all the 
(static) procedure calls in a large number  of sample programs characteriz- 
ing the programming language environment. 

4B: V T C ( M  4. BE) = 24 
AVTC(M4 �9 BE) = 24 

4.1. Compar ison  of  the  A V T C s  

For  purposes of comparison we use the following preliminary statistics 
on Algol 60 obtained by De Prycker(1): 

Sp- - - - -2 ;  /~---1; f~-2  

Using these values we observe that: 

AVTC(M1 ' CR) "~ 88; AVTC(M2 �9 CR) = 57; AVTC(M 3 �9 CR) - 65 

Thus, as far as the CR component  is concerned, M 2 �9 CR appears to be the 
most superior. Similarly, in the case of the BE component  we obtain: 

AVTC(M1 �9 BE) = 29; AVTC (M  2 �9 BE) = 24; AVTC(M 3 - BE) ,-~ 63 

Again, M2" BE appears to be the most efficient. 
It  is difficult to make an absolute comparison between M4" CR and 

the other CR components as the statistics ~]pg, qpl, and ~/pi are unavailable. 
Nonetheless, it is possible to make an interesting observation when we 
compare AVTC(M2" C R ) - - t he  best of the first three CR componen t s - -and  
AVTC(M4 �9 CR). 
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Let qpl + t/pg be denoted by t/lg. Then 

AVTC(M4 �9 CR) - 35 + t/tg(7.5 ) + t/p~(29 + 20) = 35 + 7.5r/lg + 49t/pi 

We know that AVTC(Ma'  CR) = 57, and r/tg + r/pi = 1. Thus, we see that if 
the relative frequency of declaring a procedure at an intermediate level (t/p~) 
is greater than 0.35, then 

AVTC(M4 �9 CR § M 4 �9 BE) > AVTC(M2 �9 CR § M2" BE) 

(Note: AVTC(M 2 - BE) = AVTC(M4 �9 BE)) 
If we want to compare these implementation techniques for the pur- 

pose of selecting a variable accessing mechanism for a block-structured 
environment, we need to take into account the VTCs of variable accesses. 
For the description of the four mechanisms it is obvious that the VTC of 
accessing a variable is the same for M~ and M2; this is less than the VTC 
of a variable access in M 3. The discussion on the average cost (per average 
program) of using any of these techniques is deferred to a later section (see 
Section 6) where we include the cost of variable access in the evaluation. 

5. THE  REAL T R A N S F E R  C O M P L E X I T Y  

The AVTCs indicate the best that  the designer can extract from the 
implementation techniques. He is now faced with the problem of choosing 
one of the techniques for implementation on a real host architecture. Note 
that a choice based on AVTC computations might not be  the best for a 
'real' hardware/firmware realization unless we have an "ideal" range for 
mapping the domain of S*A constructs onto "real" hardware/firmware. 
(The following discussion is based on the use of a microprogram controlled 
processor; however, the conclusions reached would remain valid for an 
equivalent hardwired control scheme.) 

The real transfer complexity (RTC) of an S*A statement is expressed 
as a matrix of three components, viz., the number of register-register trans- 
fers R(S1), the number of transfers through the ALU A(S1), and the num- 
ber of transfers across the processor-memory interface MP(S1), required 
for the execution of a statement $1, appearing in an S*A description. Thus: 

RTC(S1)-- [R(S~) A(S~) MP(S1)] 

We denote the RTC of a component X in mechanism Mt as RTC(Mt.  X) 
where 

RTC(M~ .X) = ~, RTC(Si) 
i 
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the summation taken over all the statements in the execution of the com- 
ponent M,-X. The Average RTC(ARTC) is calculated as before. 

In the S*A description of the architectural components we have inten- 
tionally avoided any possible parallelisms among the various statements. 
Similarly, we assume that the microprogram control of the real host 
processor is of a purely vertical nature. We make these simplifying 
assumptions so that the fundamental issues in our design method are 
clearly visible. In passing, we note that the language S*A has adequate 
constructs to express parallelism. (4"~~ The mechanisms could easily be 
modified to include parallel operations, in which case the underlying 
firmware control (to be designed) would be changed to a horizontal 
scheme. The evaluation of the corresponding VTCs and RTCs would 
require very simple modifications. 

Before we can compute the RTCs we need to propose an organization 
for the hardware/firmware complex that will support these components. 
The requirements that the host must meet to achieve a RTC measure 
reasonably close to the VTC measure can be directly extracted from the 
S*A descriptions. 

Rather than describe four different processor organizations for the four 
mechanisms, we adopt a basic yon Neumann style structure similar to 
Fuller's canonical processor (14) and indicate any special requirements 
needed for each mechanism. This organization is shown in Fig. 4. Though 
not clearly indicated in the diagram, it is assumed that any two of the 
registers can participate in a register-register transfer through a common 
bus. 

The stack is assumed to be in main memory. The glovar Display is 
mapped onto a bank of registers, while the privar Dis_top is mapped onto 
a register that is used as a selector index for the register bank, Display. The 
glovar's Sptr, Pctr, and Frame_mark are mapped onto the processor 
registers SP, PC, and FM; Inst_reg is mapped onto IP (instruction 
register). The privar's local (in M 1 and M J  as well as the glovar LP (in 
M4) are mapped onto the processor register L. The privar Ptr is mapped 
onto the register PT. The privar's Stat (in M1), Base (in M3) , and the 
gloval GP is mapped onto the register T1. At this point we do not specify 
which of the registers are user addressable and which ones are only used by 
the microprograms. Such a specification is quite straightforward if we 
restrict ourselves to a specific mechanism. In any case, the microcode can 
address any one of the registers. The register T2 is to be only used by the 
microcode. The register ACC serves as one of the inputs to the ALU. 
A L U 2  and ALU_0 are, respectively the second input and the output 
registers of the ALU. For any monadic ALU operation, the operand is 
expected to be in ACC. 
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Fig. 4. The processor organization (control lines are not 
shown). 

The choice of this particular processor structure represents a direct 
implementation of the S*A description on a typical yon Neumann style 
microarchitecture with a "pure" vertical microprogram control in which 
obvious design constraints lead us to implement the glovar stack in main 
memory with a constant access base (st_base) known to the firmware. It 
should be noted that the processor is not biased towards any particular 
mechanism and, thus, the comparison of RTCs based on this processor 
structure can be considered to be fair. 

We now present examples of RTC evaluations for some typical S*A 
statements involved in describing the mechanisms. 

Stack [Sptr]  :=Display [Dis_top];  
As mentioned earlier Display is a bank of registers is in the 
processor indexed by the register D i s to p .  The transfers for this 
statement are: 
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. 

Display [Dis_top] --+ MDR; 2(R) 
Stack-base --+ ALU_2; (R) SP --+ ACC; (R) 
ADD; (A) A L U 0  ~ MAR; (R) WRITE; (M) 
The RTC of the statement is: [5R 1A 1M] 
Pctr :-- Stack [Display [Dis_top + Inst_reg. adr. offset] ] 
The Inst reg.adr, offset field of Inst_reg is known to the firmware 
and appropriate mask in known to the firmware for extracting the 
field. 
The transfers are: 
IR ~ ACC; (R) Mask (offset) --+ ALU_2; (R) 
AND; (A) ALU_0 --+ ALU2;  (R) Dis top  ~ ACC; (R) 
ADD; (A) Display [ALU_0] --+ ALU_2; 2 (R) 
Stack-base ACC; (R) ADD; (A) A L U 0  ~ MAR; (R) 
READ; (M) MDR ~ PC; (R) 

(Note: The offset field was assumed to be right aligned; in cases of 
other fields e.g. Inst_reg. adr. Lex, the SHIFT operations required is 
counted as an average of one ALU transfer.) 
The RTC of the statement is: [9R3 A 1M] 
The RTCs for the other statements can be evaluated in a similar 
fashion. 

The real transfer complexity (RTC) and the Average RTC(ARTC) of 
components discussed earlier are as follows: 

la. RTC o f (MI"CR)=  [87R27AllM] + (n+ 1)[2R1AOM] 
+ n[10R3A1M] 

= [(79 + 126p)R(24 + 46p)(10 + 6p)M] 
.F79, 24A 10M] 

=[igp] [12R 4A IMJ 

The ARTC (M1.CR) is obtained by replacing 6p by Sp in the 
previous expression. 

lb. RTC(M~.BE) = [32R9A4M] =ARTC(M~-BE) 

2a. RTC(M 2 �9 CR) = [70R22A9M] = ARTC(M2" CR) 

2b. RTC(M2" BE) = [32R9A4M] = ARTC(M2' BE) 

.r63R 22A 8M] 
3a. RTC(M3"CR)= [1/~] [_13R 6A 2M 

The ARTC(M3"CR) is obtained by replacing /~ by fl in the a 
previous expression. 
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.[38 e 13. 6~1 
3b. RTC(M3"BE)= [1 v] [_15 R 7,  3~t 

The expression for ARTC(M 3 - BE) is obtained by replacing v by 
f in the expression for RTC(M 3 �9 BE). 

4a. RTC(M4'CR) = [57R17,7M] (if procedure identifier is a global 
variable) 

or 
= [60R17A7M] (if procedure identifier is local to the calling 
block) 

o r  

~70R 20. 8M] 
=[1O'p] [10e  3.  l x  

(if procedure identifier is an intermediate variable) 

I 4 9 R  16" 6 M I  
8R 1A 1M 

ARTC(M4" CR) = [l~pgqpt~pi ] I1R l ,  1M 

21+108p) R (4+38p) .  (2+Sp)M 

where ~lpg,~lpcrlpi, and ~; have their usual meanings as defined 
earlier. 

4b. RTC(M 4 .BE) = [30R9A5~t ] = ARTC(~I 4"BE) 

On comparing the ARTs of the CR and BE components of the three 
mechanisms M~, M 2, and M3, we come to the same conclusion, as in the 
previous section that is, in evaluating the average transfer cost of a 
program we need only consider the mechanisms M2 and m 4. 

5.1. Overall Performance 

As discussed earlier, in order to estimate the overall performance of an 
implementation technique for an "average" program it is essential to 
estimate the AVTC and ARTC of variable access. Furthermore, we need 
only compute these measures for the mechanisms M2 and M 4. 

The variable access (VARAC) component of a mechanism should be 
composed of two separate procedures for Read and Write access. As the 
ARTC/AVTC of both subcomponents are identical, we will only describe 
the procedure for Read access (RVAR) for the two mechanisms. The 
declarative part of M2 and M 4 will not be repeated. We assume one more 
(system) glovar declaration for the variable Read_Value. In the description 
of the real processor architecture, Read_Value maps onto MDR. 
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The procedure RVAR for M 2 �9 VARAC is as follows: 

Proc RVAR;/* for mech M2 */ 
Read_Value := Stack [Display [Inst_reg. Adr. Lexl  + Inst_reg. 
Adr. Offset] (6) 

endproc 

Thus: 
AVTC(M2 - VARAC) = 6; 
ARTC(M2 �9 VARAC) = [11R5 A 1M] 
The Procedure RVAR for M 4 �9 VARAC is as follows: 
Proc R V A R / *  for mech M4 */ 
I f  Inst_reg. adr. Dlex -- 'Global' (3) ~ Read_value := Stack 
[ G P  + offset]; (5) 
II Inst_reg. adr. Dlex = 0  (3) 
FI Read_value := Stack [ L P + o f f s e t l  (5) 
JI DO Chain := Inst_reg. adr. Dlex; (1) 

Ptr :=Stack [ L P -  11; (4) 
WHILE Chain r 0 (3 [p  + 11 ) 
DO Ptr :=Stack [ P t r -  11; (4) 

Chain := Chain - 1; (3) 
O D / * p  = lex. level difference between the level of declaration and 
access of the intermediate vat. */fi'; 

endproc 

The AVTC(M4 - VARAC) = 5 + r/g- 8 + t/l" 11 + t / i l l4 + 10~] ,  where ~g, t/l , 
and t/i are relative frequencies of global, local, and intermediate variable 
access respectively. 8~ = The mean lex.lev, difference between the level of 
declaration and level of access of an intermediate variable computed over a 
large number of sample programs. 

ARTC(M4. VARAC) = [lr/gt/F/i I 

4e 2A 0M 

10R 3 A la,t  

13e 3A 1M 

(22 + 10~'v)R (5 + 38~)~ (2 + 8~) 

For comparing the two mechanisms, as far as variable access is concerned, 
we use the preliminary statistics in Ref. 5. The statistics are: 

r/g ~ 0 . 3 8 ,  ql-~ 0.28, t/i-~ 0.34, 8v-~ 1.0 

On substituting, ARTC(M4. VARAC ) = [22.3 R 6.5A 1.7~t] 

AVTC(M4 - VARAC) = 13.77 
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We use De Prycker's "program activity characterization" model ~1"5) to 
evaluate the average cost of using an implementation technique. 

The average VTC of a block structured program using the technique 
proposed by Rohl is represented as: 

where: 

AVTC(P(M2)) = n b �9 24 + np. 57 q -  r t  v �9 6 

nb = mean number of block ENTRY/EXIT's in a program 

np = mean number of procedure CALL/RETURN's 

n~ = mean number of variable accesses. 

Similarly, for Tanenbaum's technique we obtain 

AVTC(P(M2) ) = n b �9 24 + np(35 + 7.5 + 41.5qp;) + 13.77n~ 

Thus, 

AVTC(P(M2)) < AVTC(P(M4)) 

provided that 

24n b + 57np -k- 6n~ < 24n b + (42.5 + 41.5qpi) np + 13.77n~ 

or, considering n~/np to be a small positive quantity 

~pi ~ 0.35 

(Note: The preliminary statistics obtained in Ref. 1 from nine numerical 
programs for digital filtering and speech recognition is used for these 
evaluations.) 

So we see that our earlier observation regarding the effectiveness of 
using either of these implementation techniques remains unaltered. It is, 
however, extremely difficult to predict the effectiveness of either of the 
techniques in terms of ARTC unless some reliable statistics are available 
r e g a r d i n g  n p ,  rtv, rib, and ~/pi- We can only note that 

ARTC(P(M4)) - ARTC(P(M2)) 

= np[(31,5rlpi- l l .5)R(9qpi--  5)a(5t/pi-- 2)M] 

+ nb[--2ROA1M] +nv[IO.2R--O.8AO,7M] 
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6. CONCLUSIONS 

In this paper we have suggested a method for selecting the 
hardware/firmware support for the addressing mechanism in block-struc- 
tured HLL environments. This method can obviously be applied to other 
architectural components. 

The original problem that prompted this particular investigation was 
the choice of one of these four addressing techniques as part of the design 
of a machine directed towards the programming language Ada. (17) In the 
absence of usage statistics for an Ada environment, available data on Algol 
60 was used. We were surprised to discover the effectiveness of the 
relatively less known technique suggested by Rohl. It might be noted that 
Rohl's technique is suitable as long as formal procedure parameters are not 
taken into consideration. It can be considered almost as good as Tanen- 
baum's technique for the Ada environment as Ada does not allow formal 
procedure parameters. In the absence of any reliable statistics for r/pl we 
could not come to a definite conclusion regarding the choice between 
Tanenbaum's and Rohl's techniques. But considering some of the available 
statistics, e.g.,/~ = 1, ~ = 2, we may reasonably assume that the probability 
that ~pi ~ 0.5 is quite high. In such a case, Rohl's technique appears to be 
superior. The analysis clearly demonstrates that either Dijkstra's 
mechanism or the "local display" method is not suitable for adoption in 
designing the architectural support for variable-addressing of an architec- 
ture directed towards Ada. 
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