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Onboard spacecraft computing system is a case of a functionally distributed 
system that requires continuous interaction among the nodes to control the 
operations at different nodes. A simple and reliable protocol is desired for such 
an application. This paper discusses a formal approach to specify the computing 
system with respect to some important issues encountered in the design and 
development of a protocol for the onboard distributed system. The issues con- 
sidered in this paper are concurrency, exclusiveness and sequencing 
relationships among the various processes at different nodes. A 6-tuple model is 
developed for the precise specification of the system. The model also enables us 
to check the consistency of specification and deadlock caused due to improper 
specification. An example is given to illustrate the use of the proposed 
methodology for a typical spacecraft configuration. Although the theory is 
motivated by a specific application the same may be applied to other distributed 
computing system such as those encountered in process control industries, 
power plant control and other similar environments. 

KEY WORDS:  Distributed computing systems; protocol design; onboard 
computers; formal specification. 

1. INTRODUCTION 

In a distributed computing system, as the complexity of the system 
increases with the number of nodes and need for continuous interaction 
among the nodes; there is a necessity for systematic communication 
procedures which every node of the distributed system must follow to have 
an error-free and efficient communication among the various nodes. The 
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distributed computing system considered in this paper is the one encoun- 
tered in the onboard system of a spacecraft. ~1) Such a system requires a 
simple protocol for a reliable communication among its processing nodes. 
This application being real-time in nature, ~2) its protocol has to satisfy the 
requirements of promptness, robustness, correctness and flexibility. ~3'4) 
Additionally, spacecraft application calls for high reliability and reduced 
weight, volume and power. Protocols applicable to a ground-based dis- 
tributed computing system may not be suitable for onboard applications 
because of these additional constraints. 

Although a spacecraft computing system falls under the category of 
loosely coupled system, in the sense that each of the nodes has its own 
processor, memory, peripherals etc., and communicates with other nodes 
via I/0 channels. The functions performed by each of the processors at a 
particular node are not independent of those performed at other nodes. ~2) 

Nodes are distinguished by their functions but are not fully autonomous. 
Most of the time the interaction among these nodes is limited to the 
exchange of only a few words of information, unlike the other cases where 
more frequent flow of information among the various nodes is a common 
feature. 

As the sophistication of the onboard system grows, the protocol 
demands complex interaction among the different computing nodes. Most 
of the existing protocols are designed for ground-based computer network 
and they meet some of the earlier requirements of the onboard system. But, 
it is difficult to provide the required hardware/software interfaces, for the 
implementation of these protocols, due to the limitations on weight, 
volume, and power of the onboard system. Therefore, the existing 
protocols are not considered to be ideally suitable for the spacecraft 
application and the task of design and development of a simple and easy- 
to-implement protocol for such an application is a significant one. 

The design and development of a protocol may be divided into five 
phases; (i) the specification of the system for which the protocol is to be 
designed; (ii) protocol requirements; (iii) protocol design/synthesis; (iv) 
unambiguous specification, and validation of the designed protocol and 
finally; (v) hardware implementation and performance evaluation of the 
protocol. This paper is concerned with the first of the these five phases of 
the design and development of a protocol. 

Most of the research efforts in the area of distributed system pertain to 
the control mechanism such as task allocation, 15) load balancing, ~6) 
synchronization, ~7) concurrency control, ~8) etc. Comparatively less efforts 
have been made in the area of formal specification/description of a dis- 
tributed computing system. Yau and Yang ~9) have described the need for 
such specification/description methodologies for the software design of dis- 
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tributed computing systems. Using attributed grammer, Lu and Yau (1~ 
have discussed an approach for this problem. Both these research efforts 
being meant for software design, do not consider the problem of protocols. 
However, they deal with the specification of features such as concurrency, 
sequencing and synchronization. For the protocol design application these 
features need to be specified in a more detailed manner as brought out in 
this paper. In view of this, we consider here a methodology to specify 
various detailed aspects (discussed later) of the important features such as 
concurrency, exclusiveness, and sequencing. The methodology presented 
here is simple to use and can be useful in other applications such as process 
control, etc. 

After describing the motivation of the specification methodology in the 
next section, we present in Section 3 the definitions and properties of 
various terms needed. In Section 4, we develop a 6-tuple model to specify a 
distributed computing system and methods are given to extract, from the 
model, the various properties of Section 3. It is shown that consistency of 
the specification and deadlock caused due to improper specification can be 
checked. 

2. M O T I V A T I O N  

The method of specification of a distributed computing system 
depends on the extent and type of details to be specified. Lu and Yau (1~ 
have developed a specification methodology for software design of dis- 
tributed computing systems, using attributed grammer. Though it may be 
possible to extend this approach to the specification of distributed systems 
for protocol design, it is difficult to follow such an approach; because of the 
complexity involved in the approach, when there are large number of 
processing nodes and processes assigned to these nodes. Even for the 
software design, the approach does not seem to be simple when there are 
large number of processes with complex interaction present among them. 
Also, in this approach, it is possible to check the consistency of design and 
implementation of the system, but this requires a special purpose program- 
ming language that recognizes attributed grammer. However, this work 
does not contain a method for checking the consistency of the specification. 
One should consider the following two aspects in much greater detail while 
using the formal specification method for protocol design. 

First is the inter-process relationship so that the protocol can accept 
or reject the request of process execution. The typical attributes or rela- 
tionship to be considered are concurrency, exclusiveness and sequencing 
among processes. Concurrency and exclusiveness are not two entirely 
independent attributes. Also we do not consider concurrency in the sense 
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that concurrent processes have to always run in an overlapping manner 
and for our discussion we consider two classes of concurrency. 

Second important aspect is that the attributes described previously are 
to be stored at all the nodes in some form or other to perform the protocol 
operations. Our specification methodology ensures easy computation of the 
different attributes from the information stored at each node. 

Like any other case, in the application considered here it is necessary 
to check the "consistency" of the specification i.e., whether there is any con- 
flicting specification among the various attributes. Also the most common 
problem associated with a distributed computing system is that of 
deadlock, especially when sequences of execution of the processes are to be 
maintained. There should be an easy way of detecting deadlocks arising out 
of improper sequencing specification. 

Considering these aspects of specification requirements, the approach 
based on formal language and graph theory are not very attractive because 
of their storage and computational complexities. Instead, we follow a set 
theoretic/matrix based approach for the specification which is more 
suitable from these two aspects. Further, it is easy to check consistency and 
deadlock in our approach. (11) 

In the next two sections, we present our specification methodology. 
First we formally define, using the set theoretic approach, the various terms 
needed to specify the system with respect to the attributes discussed and 
then, present a model to specify the system using a matrix-based approach. 

3. B A C K G R O U N D  FOR T H E  S P E C I F I C A T I O N  M E T H O D O L O G Y  

As mentioned earlier, the first phase of the design and development of 
a protocol is the specification of the system for which the protocol is to be 
designed. Lesser the ambiguities in the system specification, more is the 
correctness of the design. It is with this intention that we present a formal 
approach which specifies the distributed computing system with respect to 
interprocess relationship such as concurrency, exclusiveness and sequencing 
attributes discussed earlier. We refer the term "process" as the terminal 
process which cannot be subdivided further into smaller sub-processes. Any 
nonterminal process is a collection of such terminal processes. Each of the 
nodes of the computing system is assigned a set of terminal processes, 
hereafter referred simply as process. At any given time, a node can run a 
subset of these assigned processes. 

Let S Y  be a distributed computing system under consideration, and let 
it be defined by a set of its nodes. It is given by 

S Y =  {NI, N2,..., N.} 
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where Ni represents the ith system or node of the computing system and n 
is the total number of nodes in the system. 

Each of the node Ni is assigned a set of processes and the node is 
represented by 

Ni = {Pil, Pi2,-.., Pi, i} 

where Po's are the processes and ni is the total number of such processes 
assigned to node Ng. Such an assignment is done at a stage before the 
protocol is designed. 

In order to specify the distributed computing system with respect to 
the various attributes described earlier, we classify the processes into 
various groups. This classification can be seen from the Venn diagram 
given in Fig. 1. Formal definitions, their properties and interrelationships 
of the defined terms are given by the following. 

The set of processes in the system is divided into the sets of concurrent 
(C) and exclusive (E) processes. The set of concurrent processes (C) con- 

P-- = -qE'r OF" C-DNCURRENT PROCF-~S~qs 

E = 3"ET OF EXCLU.qlVF_ PRDC.EJ'SE~. 

L~C = ~ E T  OF" CO/VCU~RENT PRDCF--~S~F__.,S OF PU.  

hSE:'-,-~'E;T OF" EXCLU,SlYE. PtROCE~;E3 O~ PFj'. 

GS-" ,.r O F  ~,ET~eON6 CONCURRENT PRDs163 

GP= ~-CET OF PREORDER PRDCE~s OF P~'.  

Fig. 1. Classification of processes. 

OF P i j .  



282 Agrawal, Patnaik, and Goel 

tains all those processes in which any one process can run concurrently 
with at least another processes in the set. The set of exclusive processes (E) 
contains those processes which cannot run concurrently with any one of 
the processes in the set. Therefore, we have 

S = C u E  

where C = set of concurrent processes 
A 
= { c , ,  c2,..., c , }  

E = set of exclusive processes 
A 

= {El, E2,..., Em} 

and C~ ~ Ni; such that C; u Ei = N~ and 

Ei ~-Ni~ Cin Ei= (2~ 

At any instant t, a set of processes being executed in the system is 
given by 

R(t) =_ S 

such that 

and 

(1% e R(t)) ^ (eo e E) -~ R(t) = { Po} 

(PoeC)~ R(t)~C 

Now we define some terms that are used to describe the relationship 
among the processes in the computing system. Definitions are followed by 
some simple propositions. Some of these propositions are useful in verifying 
the consistency of the specifications and for detecting deadlocks arising due 
to improper sequencing specification. 

Def in i t i on  1. Global Concurrent (GC) Processes: A process 
Ptm ~ S is said to be global concurrent with another process P~ E S, iff both 
P~ and Ptm can run concurrently for a nonzero overlapping period, i.e., 
3tL(Pij, Ptm~R(t)). The global concurrency between P0 and Ptm is 
represented by 

/ ' x  

P~ GC Pzm 

We give the following propositions based on this definition. The proofs 
of these propositions are simple and therefore are not given here. 
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Proposit ion 1.1. 

Proposit ion 1.2. 

Proposit ion 1.3. 

Proposit ion 1.4. 

ix, 
Relation GC is commutative. 

A 
Pij GC Ptm ---r p~j, P~m ~ C 

Pij GC Pij, VPij E S. 

(Po e E) A (Pu GC Ptm) 

((i = l)/x (j  = m)). 

Def in i t ion  2. Global Exclusive (GE) Process: A process Ptm ~ S is 
said to be global exclusive with another process Po eS,  iff 

3tl (Po" Plm ~ R(t)). It is represented by 
/ x ,  

P,7 GE Plm" 
/ - x  

Proposition 2.1. Relation GE is commutative. 

/ x ,  

Proposition 2.2. P u e E ~ P ~ G E P l m  

VPlm~S and ( ( l r  v ( m r  

Proposition 2.3. PijeC ~ PijGE Pzm, VPimeE 

/ x  A 

Proposition 2.4. Pij GC Ptm ~-~ ~(Pu GE P~m) 

Based on these two definitions, the corresponding sets of the processes are 
defined by the following: 

Def in i t ion  3a. Global Concurrency (GC) Set. 
GC set of a process Po ~ S is given by 

GC(Pu) = {P,m I(P,m e S) A (P,j GC P/m)}' 

Def in i t ion  3b. Global Exclusive (GE) Set. 
GE set of a process Pij ~ S given by 

GE(P~) = {Plm [ (P,m e S) ^ (Pu GE Plm) }. 

Proposition 3.1. Po.e C--, IGC(Pg)[ > 1 

and P ~  E ~ [G(Po.)l = 1. 

Proposit ion 3.2. U p ~ s G C ( P ~ ) = S  

828,/14/5-4 
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Proposition 3.3. GE(Pu)= {S- {P0}},VPu�9 

_E,  VP~�9 C. 

Proposition 3.4. If (Pt,,,�9 A ((l#i)V(mr 
then 

i) GE(Ptm)___ { S -  {Po, P,m}) 
ii) IGf(Ptm)l/>2 

Proposition 3.5. GC(Pu) ~ GE(Pu) = S, VPu e S. 

The definition of concurrency does not impose the restriction that the 
concurrent processes have to run concurrently whenever they are invoked 
but they can run concurrently if the system demands. However, a process 
may have associated itself another set of processes, in which all the 
processes run concurrently whenever it is invoked. To characterise this, we 
define an additional class of concurrency which is a restricted form of the 
concurrency discussed previously. 

Definition 4. Global Strong Concurrency (GS) Set of a process 
P;j ~ S is given by 

GS(Pij) = {P,m I (P,,, �9 S) ^ (POe R(t)  --' Plm �9 R(t)}.  

Proposition 4.1. GS(P0)~GC(P0) 

Proposition 4.2. GS(P0)= {Po}, VPo�9 

Proposition 4.3. ]GS(P0) I ~> 1, VPij~ C 

=I,P~�9 

These definitions are used to specify the concurrent and exclusive 
relationship of the processes. We now define the terms used to specify 
sequencing attribute of the process. For our discussion, sequencing of 
processes is with respect to the initiation of the processes and we are not 
concerned with the termination of the processes. We also discuss the con- 
dition for the existence of deadlock arising due to sequencing specifications. 

Definition 5. Global Preorder (GP) process: A process Plm E S is 
said to be a global preorder process of Pu�9  S; if the execution of Plm 
precedes the execution of P0" It is represented by 

/ x .  

Pt,, GP P0 
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Proposition 5.1. The relation GP is non commutative. 

Proposition 5.2. 

Ptm G P  P• --+ St1, tz(t 1 < t2) such tha t  

i) PtmsR(t~) and P~eR(t2) 
ii) Pij~R(t) for t~ <~t<t2 

iii) P+m q~ R(t) for t = tz - 

where tz-  represents the time instant just prior to tl. 

Definition 6. Global Preorder (GP) set. 
It is given by 

GP(P~) = {Plm I Pzm GP Pg, VPzm + S} 

Proposition 6.1. 

P~m ~ GP(P0) -~ P,j r GS(Ptm) 

Proposition 6.2. (Ptm~GP(Pij)) A (P~m6GE(P~)) 

P~m completes execution before P~j starts execution. 

Proposition 6.3. If there exists a sequence of processes 

P1, P2 ..... P,(Pi~ S, 1 <~ i <<. n) 

then /x ,  

PiGP Pi+I, l <~i<<.n-1 

Proposition 6.4. Pij~GP(Ptm ) and P+meGP(Po ) 

Processes Pu and P~m are in deadlock. 

To consider deadlock among n-processes, we define the following 
additional terms. 

Definition 7. Global nth Preorder Set of a process Po is defined as 

GP"(P~j) = {PIm [Pzm ~ GP(Ppq) A Ppq ~ GP" I(Po ) } 

for n~>2. 
Where, GpI(p0) = GP(P~). 



286 Agrawal, Patnaik, and Goel 

Definition 8. Global Cyclic order: Processes P~j and P+m are said 
to be in cyclic order if 3ha, n2~IN (IN is the set of nonzero positive 
integers) such that 

Ptm e GPnI(Pu) and Po e Gp"2(PI,.) 

Proposition 8.1. There exists a deadlock between two processes iff 
they are in a cyclic order. 

These definitions are given with respect to the entire computing system 
and so is the adjective "Global" for each of the terms. The definition can be 
restricted to span over only a single node. In such a case, the adjective 
"Global" is changed to "local" and the definitions are modified accordingly. 
For example, Definition 1 is changed to local concurrent (LC) process and 
is defined for the ith node as follows. 

A process Pc,. ~Ni is said to be local concurrent (LC) to Pij~Ni iff 
St l (Pij, Pin e Ri(t)) and this relationship is represented by 

/ x  

Po LC P~m 

4. A M O D E L  FOR A D I S T R I B U T E D  C O M P U T I N G  S Y S T E M  

Enumerating all the sets defined in the previous section is one way of 
describing a distributed computing system. When the distributed system 
has sufficiently large number of nodes, such an approach may lead to a 
conflicting or incorrect specification. In this section, we present a model for 
specifying a distributed system. The approach is a matrix-based one and 
various sets presented earlier can be easily derived from this model. Also it 
is easy to check the consistency of the specification and the presence of 
deadlocks. 

4.1. The System Model  

The distributed computing system (DCS) is given by a 6-tuple as 
follows 

D e  = (N, P, F, G, ST, Pr) 

where the various terms in the model are defined as follows: 

N =  set of nodes in the distributed computing system 
= {N1, N2 ..... Am} where n is the total number of nodes in the system. 

P = set of processes in the entire computing system 
= {PI, P2 ..... Pm} where m is the total number of processes in the system. 
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F is a function which specifies the processes assigned to different nodes of 
the system and is given by 

F: N ~  IP(P), where IP(P) denotes the power set of P. 

The function F can be represented by an n x m binary matrix, called F 
matrix, in which the n rows correspond to the nodes in the system and the 
m columns correspond to the processes in the system. 

The F matrix is given by 

F =  [ f i j ] ,  • where f,y ~ {0, 1 } 

such thatf~y -- 1 if Pj is assigned to node Ni 
= 0 otherwise 

G is a function that gives the set of processes which can run concurrently 
with a given process. It is given by 

G: P ~ IP(P) such that 
A 

Pi o(Pj) GC ej 

It may be noted that G(Pi) = GC(Pi). Further, G can be represented by an 
m x m binary matrix, called a G matrix, in which the rows and columns 
correspond to the processes in the system. The G matrix is given by 

G= [go']m• where g ~  {0, 1} 

such that gu = 1 if Pj E GC(p~) 
= 0 otherwise 

The G matrix is a symmetric matrix with diagonal elements equal to '1' 
(Proposition 1.3). 

ST is a function that specifies the strong concurrent set of a process in tile 
computing system. It is expressed by 

ST: P ~ IP(P) such that ST(P~) = GS(Pi). 

The function ST can be represented by an ST matrix which is given as 
follows: 

ST= [s~],,• where s~e {0, 1} 

suchtha t  

s7 = 1 if Pj E GS(Pi) 

= 0 otherwise 
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Pr is a function that specifies the set of preorder processes for each of the 
processes in the computing system. It is given by the following: 

Pr: P ~ IP(P), such that Pr(P~) = GP(Pi).  

The corresponding Pr matrix is given by 

Pr = [Pij]m • m where p~ ~ {0, 1 ) 

such that 
/ N  

P,7 = 1 if Pj GP P; 

= 0 otherwise 

4.2. Matrix Operations 

We define certain operations on all the binary matrices. These 
operations are essential for the subsequent discussions. 

i) Multiplication: 
Let A and B are two binary matrices given by 

A = [aij]m• 

B = [b~].  • q 

where a, 7, b0e {0, 1}. 

The product of matrices A and B is given by 

C = A @ B  where C=[Cu]m• 

such that 
Cij = all "b v + ai2" b2j + "" " + aim" bmj 

The operations a '  b and a + b are the logical AND and logical 
OR operations respectively on a and b. 

ii) Transpose: The transpose of a binary matrix is in the same sense 
used for any general matrix. 

iii) Projection: Matrix A ([aij]p• can be projected over a matrix B 
([b~j]m• with the element alt of matrix A coinciding with the 
element brs of matrix B if p <<. m, q ~< n, 1 ~< r ~< (m -- p + 1 }, and 
1 ~< s ~< (n - q + 1 ). The resulting matrix obtained after the projec- 
tion of A over B is another matrix Crs ([Cu]m • whose elements 
are defined as follows. 

Crs = Proj(A, B) = [Cij]m • 
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such that 

iv) 

C ~  

b/j, for l <~i<r and l <<.j<s 

(a(i r+ 1),(j s+ 1))" (b/j), 

for r < . i < ( r + p )  and s<<. j<(s+q)  

b/j, for (r + p)<~i<~m 

and (s  + q) ~< j ~< n 

For the sake of simplicity, when the matrix A is projected 
over matrix B with the element all coinciding with the element 
bll ,  the resulting matrix Cu is written simply as C. 

Considering a special case where 

and 

A = [ a / j ] p •  

we have 

such that 

B = [ b / j ] p •  

C =  Proj(A, B) = Proj(B, A) 

= [ C u ] p •  ~ 

c/j = 1 if a/j = b/j = 1 
= 0 otherwise 

Complementation: The complementation operation of a matrix A 
flips all the '1' elements of A to '0' and all the '0' elements to '1'. 
It is a logical inversion of the elements of the matrix A. The 
complementation operation of a matrix A is represented by 
Comp(A). 

4.3. Computation of Attributes 

In this subsection, we demonstrate that from a given model of a dis- 
tributed computing system we can generate the various sets characterising 
the concurrent, exclusive and sequencing relationship of the processes 
described earlier. 
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4.3.1. Computation GC and GE Sets 

We can compute the GC of a process P~ ~ P from the given G matrix, 
as follows: 

GC(P,) = {PjI go = 1} 

Also using Proposition 3.5, the GE set of process P~ is given by 

GE(Pg) = { P -  GC(P,) } 

In the matrix representation, global exclusiveness is represented by a 
matrix G' given by 

G ' =  Comp(G) where G (~) G' is a null matrix 

The following lemma and theorem present a method to compute the 
set of nodes in which each node has at least one process that is exclusive to 
a specific process in the system. The knowledge of this set makes the 
protocol operation faster as in such an operation it is required to check the 
existence of an exclusive process running in the system before starting 
execution of a new process. 

Lemma. An element h~t of a matrix F @ G' is '1' iff 3i such that fki 
and g'it are equal to '1', where fk~ and g';t are the elements of F and G' matrix 
respectively. 

ProoL Referring to the definition of the multiplication of two 
matrices, an element hkt of F @ G' is given by 

h~ = ~ Efk," g'il] 
i = 1  

where ZEK] represents a logical ORing. 
Hence, it is clear that hkz = 1 iff 3i such that fke = 1 and g'~t = 1. | 

T h e o r e m  1. There exists a process PieF(Nk) which is global 
exclusive with another process P1 ~ P, iff the (k, l) element of the matrix 
F (~) G' is equal to '1'. 

Proof. The proof directly follows from the previous lemma. We have 
from the definitions of F and G' matrices. 

fki (an element of the F Matrix) 

=1 iff PieF(Nk) 

g'it (an element of the G' matrix) 
A 

=1 iff P i G E P t  
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From the lemma, 

hkt (an element of F @ G') = 1 

f ~ i = l  and g~+=l. 

Hence the theorem. 

iff 

Coro l l a ry  1.1. For each set of nodes that has at least one process 
exclusive to a process P te  P is equal to 

{ N ~ l h k , = l }  for l<~k<~n 

Proof. The proof is omitted. 

We now present a methodology to compute local concurrency and 
local exclusive sets of a process. This information is essential to enable the 
protocol to take decision with respect to the local environment. 

4.3.2. Computation of Local Concurrent (LC) and Local Exclusive (LE) 
Sets 

The LC set can be obtained in a manner similar to that of the GC set. 
For this, first we compute from the model an L matrix which is defined by 

where l o. = 1 iff 

(i) P~ LC Pj 

(ii) P~, P j e P  

(iii) Pi, Pj~  F(Nk), Nk + N 

T h e o r e m  2. The L matrix is a matrix obtained by the projection of 
(F r @ F) over G i.e., 

L = Proj(F r @ F, G) 

Proof. Without loss of generality, we assume that 

F(N+) -- {Px(i)+ l, Px(o + 2 ..... ex(o + 1~(o } 

where 
i - - 1  

x( i )  = y~ K(j) ,  for 2 ~< i ~< n 
j = l  

x ( l ) = o  
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and 

K ( j )  = I F ( ~ ) I  

Then we have the F matrix as follows 

K(1) K(2) 

J~ 

J2 

F=n 

Agrawal, Patnaik, and Goe! 

K(n) 

"~" J n  

where all the elements of Ji's are equal to '1'. 
Then F r @ F is given by 

K(1) K(2) K(n) 

F r @  F =  

K(1) l 

K(2) l 

K(n) I 

sl 

t 
Jn 

The matrix J~ has all its element s equal to '1'. In general, the elements (hjs)  
of F r @ F are expressed as 

h;~ = 1 if 

where m is such that 

K(I) <j<~( ~ K(l) 
I \ l = 1  

m + l  

l = 1  / = 1  

= 0 otherwise 
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In other words, 

hij= 1, if P~, PjeF(Nk)  where N k e N  

= 0 otherwise 

Now projecting the matrix F T @  F over G, we get a matrix 
Proj(F r @ F, G) whose elements are expressed by 

1 o. = if both h o. (an element of F r @ F) and g~ (an element of G) are equal 
to '1' 

/ , . ,  

+ P i ,  P jeF(Nk)  and P~GCPj  
I x ,  

Pi LC Pj, by definition local concurrency set. 

Recalling the definition of the L matrix we have 

L = Proj(F r @ F, G) 

Hence the theorem. 

Corollary 2.1. The LC set of a process P+~F(Nk) is given by 

LC(PI) = {P+I lu = 1} 

where l~/is an element of the L matrix. 

Proof. The proof follows from the precious theorem and definition of 
local concurrency set. 

4.3.3. 

Also 

Local Exclusive (LE) Set LE set of P+ is given by 

LE(Pi) = {F(Nk) - LC(Pi)}, P~ + F(Nk) 

! 
LE(P~) = {Pj[ lo~ = 1 } 

where l} is an element of the matrix Proj(F r @ F, G'). 

4.3.4. Computation of  largest GS Set  From the given G matrix, it is 
possible to find the largest possible GS set for each of the processes in the 
system. Such a set is necessary for checking the consistency of the 
specification of the concurrency discussed later. 
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T h e o r e m  3. Let Row (A~) represents the ith row of any matrix A. 
A process Pj can be strong concurrent process of P~ iff the j th  element of 
the row Proj(Row (G~), Row (Gk)Vklg~k=l) ,  obtained by projection 
operation is equal to '1'. 

Proof. The element h~j (j th element) of the row given by Proj (Row 
(Gi), Row (Gk)) is equal to '1' iff g# = 1 and gkj--- 1, where g~j and gkj are 
the elements of the G matrix 

, /N  

--, (i) (P~GCPj)  

(ii) (Pj GC Pk) 

Therefore, after projecting all Row (Gk)S (Vgik = 1) over Row (Gi), the 
element h o. of the resulting row will be equal to 1 iff 

, /x ,  /%. 

(P~ GC Pj) and (Pj GC Pk), Vg;k = 1 

--* Pj ~ GS(Pi), Vh/j = 1 

Hence the theorem. 

C o r o l l a r y  3.1. The matrix GS' whose rows are given by 
ROW(GS~) = Proj(ROW(G~), ROW(Gk) Vklgik = 1) represents the largest 
strong concurrency set. 

ProoL Extending Theorem 3 to all rows of G; where each row 
corresponds to one of the processes, we obtain the matrix GS'. Since each 
of the rows represents the largest strong concurrency set of a process, the 
whole matrix represents the strong concurrent sets of the processes in the 
system. | 

4.3.5. Computation of  GP Set  The GP set is computed from the Pr 
matrix and for a process Pi, it is given by 

GP(P~) = {P,[pij = 1} 

where Po is an element of the Pr matrix. 

4.3.6, Consistency of Specification of Concurrency By consistency of 
specification of concurrency we mean that the specification of stror~gcon- 
currency and the specification of concurrency expressed by the function G 
should not be conflicting. The condition for consistency of specification of 
concurrency is given by the following theorem. 
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Theorem 4. If Proj(GS', ST)= ST, then the specification of con- 
currency is consistent. 

Proof. Simple and is left to the reader. 

4.3.7. Consistency of Specification of Sequencing 

We observe from Proposition 6.1 that not all sequences of processes 
are permissible. The processes that are in strong concurrency with a specific 
process can not be preorder processes of the particular process. The 
following theorem presents a general condition for checking consistency of 
specification of sequencing. By the consistency of specification of 
sequencing we mean that the specifications of sequencing and strong 
concurrency should not be conflicting to each other. 

Theorem 5. The specifications of strong concurrency and sequenc- 
ing for a distributed system given by the 6-tuple model are consistent iff 
Proj(P T, ST)= 0 where 0 is a null matrix. 

Proof. Let hij be an element of Proj(P f, ST) then 

h u = l  

~-~ pij(an element of P~) = 1 

and s o, (an element of ST) = 1 
/ x ,  

+ (i) P iGPP+ 

(ii) Pj~ GS(P~) 

The conditions (i) and (ii) cannot be true simultaneously (Proposition 6.1) 
and hence hgy # 1. Therefore no element of Proj(P~, ST) can be equal to 1. 
Thus we have Proj(P~, ST)= 0. Hence the theorem. | 

Deadlock Freeness 

According to Proposition 8.1 two processes can be in deadlock, if they 
are in a cyclic order. To ensure that the sequencing specification is 
deadlock-free, we can follow the graphical approach. The circles in the 
graph represent the processes and the directed arc from process Pi to Pj 
represents that Pi is a preorder of Pj. 

In this section, we have presented a model for specifying a distributed 
computing system and methods are given to compute the various attributes 
of the system. A summary of these and other additional attributes for local 
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as well as global environments is given in Appendix A. Algorithms for 
computation of the various attributes are simple enough and hence are 
omitted. The next section present an example to illustrate the application of 
the developed methodology. 

5. AN EXAMPLE 

Before going through the details of an illustrative example, we first 
briefly discuss the application environment to which the methodology of 
specification is applied. 

A block schematic of a spacecraft onboard computing system is shown 
in Fig. 2. It consists of various systems such as Attitude and Orbit Control 
System (AOCS), Sensor System (SS), Telecommand System (TCS), 
Telemetry System (TMS), Power System (PS) and Payload System (PLS). 
Significant functions of each of the these systems are summarized in 
Table I. A more detailed description of the same can be found in Ref. 1. 
Each of these systems has its own processor to carry out the functions 
assigned to it and all the systems are interconnected through a common 
communication net with a suitable topology. 

Now we consider an example of a representative configuration of a 
spacecraft computing system. The list of processes assigned to the different 
nodes of the system is given in Table II. The processes are numbered in a 

I rELECO~AN~ I reLE~LT/~Y-I 

~ ' p o w s  x y s r ~ M  

. . . .  (ps) 

ATTITLIDF 
DR~ IT  (~DNTF~DL~,~ ~ 

l I pAYZOA~ svsre;~l 
l I .................. ............... 1 

l3s X~'JTEM"I 
Css) I I . . . . . . . . . . . .  

Fig. 2. A typical distributed computing system of a spacecraft. 
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Table I. Functions of an Onboard Spacecraft Computing System 

Systems Functions 

1) Telecommand System (TCS) 
�9 Information exchange is limited to 

few words only. 
�9 Receives coded message from ground station 

via RF/microwave link. 
�9 Decodes the message and generates command 

messages for other systems of the spacecraft. 
�9 Performs thermal control operations. 

2) Attitude and Orbit Control System (AOCS) 
�9 Computationally most complex �9 Information exchange is limited to few words 

system in the spacecraft, only. 
�9 Executes control algorithms to maintain the 

attitude and orbit of the spacecraft within the 
desired limits, in different phases of operation 
as controlled by the TCS. 

�9 Interacts with all other sys~tems. 

3) Telemetry System (TMS) 
�9 Has few words of information �9 Acquires housekeeping information from 

exchange with most of the systems various other systems. 
except the PLS which sends bulk 
data to TMS. 

4) Sensor System (SS) 
�9 Communication with other systems 

is limited to only few words. 

5) Power System (PS) 
�9 Message transfer with all other 

systems is limited to few words. 

6) Payload System (PLS) 
�9 Large data transfer between PLS 

and TMS. 

Transmits status information via com- 
munication link to ground station, after 
suitable encoding. 

�9 Measures attitude errors. 
�9 Supplies processed attitude errors to the 

AOCS. 

�9 Supplies regulated power to pther systems. 
�9 Controls the solar panels for optimum power 

tracking. 
�9 Activates emergency mode of operation when 

the power level falls below a threshold. 

�9 Performs application oriented functions. 
�9 Process the relevant data. 
�9 Interacts with other systems. 
�9 Imposes constraints on the operation of the 

AOCS and PS. 
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Table II. A Configuration of a Typical Spacecraft Computing System 

Node Process 

No. No. Function 

N1 

(AOCS) 

N2 

(TCS) 

N3 

(TMS) 

N~ 

(SS) 

N5 

(PS) 

N6 
(PLS) 

el 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

elo 

P12 

P13 

P14 

P15 

el6 

P17 

P18 

el9 
P2o 

P21 

3-Axis controller using reaction wheels 

State estimation process 

Housekeeping process 

Command reception and processing 

Orbit control operation 

Safe mode operation 

Ground Command processing 

Status transfer operation 

Operational mode and parameter commanding 

Status acquisition 

Formatting 

Data processing and analysis 

Roll and pitch error computations 

Star sensor processing 

Yaw computation (using sun sensor) 

Housekeeping operation 

Optimum power tracking 

Emergency mode operation 

Payload operation 

Data processing 

Image information transfer 
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particular order for the sake of simplicity. However, the relative order is 
not important  in our model. The computing system considered here is 
given by 

DC = < N, P, F, G, ST, Pr > 

where 

and 

N =  {NI, N2, N3, N4, Ns, N6} 

P =  {P1, P2 ..... P21} 

Functions F, G, ST and Pr are given in Figs. 3-6 in matrix form. 
From the F and G matrices we can compute the L matrix using 

Theorem 2. The computed L matrix is given in Fig. 7. 
Using this given model and the L matrix, the various sets (defined 

earlier) for a typical process P8 can be computed and they are given by 

GC(Ps)  = {P1, P2, P4, Ps, P6, PT, Ps, Plo, P13, P14, P15, P17, P18, P19, e2o} 

G E ( P s ) =  {P3, eg, P u  P12, P16, P21} 

LC(Ps) = {P7, Ps} 

LE(Ps)  = {Pg} 

I 

2 

3 

4 

5 

6 

I 2 3 4 5 6 7 8 9 I0 ii 12 13 14 15 16 17 18 19 20 21 

1- I ! - !  
I 1 1 1 1 1 1 I l T 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . .  l . . . . . . . . .  ! . . . . . . . . .  i 
I 1 i 1 1 ! ! 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . . . . . . . . .  ! . . . . . . . . .  ! 
! 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

! 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
! 

I A O C S  T C S  

1 1 t i l ! 
. . . . . . . . . . . . . . . . . .  I . . . . . . . . .  1 . . . . . . . . .  ! 

1 1  1 1  ! ! 
. . . . . . . . . . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! 

!l I I! ! 
. . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! 

1 ! ! 1  I I! 
I ! l ! 

TMS 1 , SS ! PS l PLS ! 

(Blank indicates '0' value) 

Fig. 3. F matrix. 

8 2 8 / 1 4 / 5 - 5  



3 0 0  A g r a w a l ,  P a t n a i k ,  a n d  G o e l  

p• I 2 3 4 5 6 7 8 9 i0 II 12 13 14 15 16 17 18 '19 20 21 

1 }- I i I i { i i I I 1 I i I I ! 1 I I 1 1 - !  
2 ! 1 1 1 1 I 1 1 1 ! 1 1 1 1 1 ! ] 1 1 1 1 ! 
3 ! l i I i i 1 I 1 I I i 1 I I I ] 1 1 1 I 
4 ! ] ] 1 1 1 ii 1 i!i 1 1 1 1 II] 1 1 1 1 i,! 
5 ! I i I ! I i i ! i i I 1 I I I ! 
6 ! i I i ! i i i ! i i 1 ! I 1 l 

! . . . . . . . . . . . . . . . . . . .  { . . . . . . . . .  { . . . . . . . . . . . . . . . . . .  { . . . . . . . . .  . . . . . . . . . .  I 

7 ! 1 l 1 1 1 ! 1 1 !<1 1 1 1 1 1 I l 1 1 ! 1 1 1 ! 
8 ! 1 1 1 1 1 ! 1 1 ! 1 1 1 1 ! 1 1 ! 1 1 ! 
9 ! 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 ! 1 1 1 ! 1 1 1 ! 

{ . . . . . . . . . . . . . . . . .  : - I  . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! 
1 0 !  1 1 1 1 1 1 1 1  1 1 1  1 1 1 1 1  ] 1 1 ! 1  1 ! 
11 ! ] 1 1 1 1 ! 1 1 1 1 1 1 1 ! ] l 1 1 ! 
12 ! I I 1 i i ! 1 1 ! i 1 l 1 I l ] I i ! 

{ . . . . . . . . . . . . . . . . . . .  { . . . . . . . . .  { . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  ! 

13 ! I I 1 1 i I I I l ! i I 1 ] i I I 1 i I i 1 ! 
] 4  ! 1 1 1 1 ! 1 1 1 ! 1 1 1 1 1 ! 1 ] 1 1 ] ! 
15 ! 1 1 i I I 1 i I I i 1 1 I I I i ! 

�9 - . . . . . . . . . . . . . . . . . .  l . . . . . . . . .  } . . . . . . . . .  . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  ! 

1 6 !  t 1 1 1 1 ! 1  1 !  1 ! 1 1 1 !  l ] 1 ! 1 1 ! 
17 ! 1 1 1 1 I i 1 1 ! 1 l 1 ! 1 1 ! I I ! 
18 L 1 1 I ! 1 I i ! i i l ! ! i i ! 

! . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  ! 

19 ! 1 I i 1. ! i i i ! i i i ! I l ! 1 1 ! 
2 0  ! t 1 1 1 I 1 1 1 ! 1 1 1 ! 1 l ! 1 1 l 
21 ! I I I ! 1 1 ! ! I I ! i l 

! ! I ! ! ! 

1 
2 
3 
4 
5 
6 

I0 
Ii 
12 

13 
14 
15 

16 
17 
18 

19 
20 
21 

( B l a n k  i n d i c a t e s  ' 0 '  v a ] u e )  

F i g .  4 .  G m a t r i x .  

1 2 3 4 5 6 7 8 9 i0 Ii 12 13 ]4 15 16 17 18 19 20 21 

l 1 { { 1 ] { 
1 1 ! { 1 1 ! 

1 { { I ! 
1 ! { ! 

1 ! ! 1 1 ! 
1 ! I ! ] 

. . . . . . . . . . . . . . . . . . .  ! . . . . . . . . .  } . . . . . . . . .  . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . .  . 

! 1 ! ! 
! i I 1 ! 

1 ! 1 I ! 
................... ! ......... ! ......... ! ......... ! .................. . 

! 1 1 ! 
L l I v ! 

! ! 1 ! 
. . . . . . . . . . . . . . . . . . .  l . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  ! . . . . . . . . .  . . . . . . . . . .  . 

! ! ! 1 { 
i i ! { ! i 1 ! 

i ! { ! l  i! 
................... ! ......... ! ......... ! ......... ! ......... ! ......... . 

! I I ! ! 1 
! ! ! ! ] 

1 { { ! { 1 . 
................... ! ......... ! ......... ! ......... ! ......... . ......... . 

i 1 ! 1 ! i i ! I 
{ l ! ! ] 
! { ! ! l . 
! { l ! 

( B l a n k  i n d i c a t e s  ' 0 '  v a l u e )  

F i g .  5. S T  m a t r i x .  
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I 
2 
3 
4 
5 
6 

i0 
II 
12 

13 
14 
15 

16 
17 
18 

19 
20 
21 

I 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 18 19 20 21 

- i! ! 

1 ! ! 
! ! 
! ! 

i! ! 

................... F ......... ! .................. ! ......... ! ......... 

r ! ! ! 
i I T ! ! ! 

1 l ! ! 
................... T ......... ! ......... '- ........ ! ......... ! ......... 

T ! T ! ! 
' I 1 ! ! 

! i ! ! 
................... l ......... I ......... I ......... ! ......... ! ......... 

! i I I ! I 
! I I ! ! ! 
I i I I ! ! 

................... ! ......... I ......... I ......... ! ......... ! ......... 

I i I l ! ] 

I i I I I ! 

I I I ! ! 
................... ! ......... ! ......... I ......... ! ......... I ......... 

! I I I ! ! 
I ! I ! ! I 
! I I ! ! 1 

! ! I ! ! 

( B l a n k  i n d i c a t e s  ' 0 '  v a l u e )  

F i g .  6. Pr m a t r i x .  

pNNP 1 2 3 4 5 6 7 8 9 10 1 t  12 13 14 t 5  ] 6  I 7  18 19 20  21  

1 I - 1  1 1 1 ! l ! ! ! - 
2 1 1 1 1 1 I ! ! ! ! 
3 I 1 i I i 1 i ! ! I ! ! 
4 I I I i I 1 i ! l I ! ! 
5 ! 1 1 1 ! ! I ! ! 
6 l I i 1 ! 1 I ! ! 

! ................... l ......... ! ......... . ......... ! ......... !- ........ 

7 1 I 1 1 l I ! ! 
8 ! ! 1 1 l ! ! ! 
9 I 1 i ! ! ! ! 

I ................... ! ......... I ......... l ......... ! ......... ! ......... , 

I01 ! !I I ! ! 
II I ! ! I I ! ! 

121 ! ! I I ! 
I . . . . . . . . . . . . . . . . . . .  T . . . . . . . . .  . . . . . . . . . .  I . . . . . . . . .  . . . . . . . . . .  �9 . . . . . . . . .  . 

131 ! ! II 1 I! ! 
1 4 !  ! ! l l  I ! ! 
1 5 1  I 1 1 1 1 !  ! 

I ................... ! ......... I ......... I ......... ! ......... ! ......... 
1 6 1  ! 1 ! 1 1 1 !  T 
171 l ! ! 1  ] ! 
1 8 I  l l ! 1  I! 

! ................... I ......... ! .................. !-- ....... ! ......... 
1 9 1  1 ! ! ! 1  
20  I l ! ! ! 1 
21 1 I I ! ! I . 

l 1 ! ! ! 

( B l a n k  i n d i c a t e s  ' 0 '  v a l u e )  

F i g .  7. L m a t r i x .  
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Further, in order to obtain the largest possible strong concurrency 
sets, we have to compute the GS' matrix first. Using Theorem 3 and its 
corollary, we obtain the GS' matrix and the same is given in Fig. 8. 

From the GS' matrix, we have 

G S ( P s ) -  {Pa, P,0} 

Also LS(Pa)__ {PT, Ps} (with respect to node N~) 
The preorder sets of P8 can be obtained from Pr matrix and are given by 

GP(P,) = {P3} 

and LP(Ps)=  ~ (with respect to node N 2 ) .  

5.1, Consistency of  Specif ications 

As discussed in Section 4, there are two consistency conditions for the 
specification of the distributed system. These conditions are again given 

i) Condition for the consistency of specification of concurrency 
(Theorem 4) 

1 2 3 4 5  

l!-ll 
2 1 1 1  
3t I 
4~ i 
5! I 
6 !  I 

! ................... 

7! 
8! 
9! i 

Proj(GS', ST) = ST 

i0 ! 

II ! 

12 ! 

13 ! 
]4il 1 
15 ! 1 

16 ! 
17!I 1 
18 ! 1 

! ...... - ............ 

19!1 1 
20!1 1 
21!1 1 

6 7 8 9 101112 131415 16 ]7 18 t92 ( )  21 

! I I l ! ! ! 
[ 1 1 t 1 ! t 
i ! 1 ! ! 
! ! ! t ! 
!I i! ! ! ! 

......... ! ......... ! ......... ! ......... ! ......... ! 

I ! ! ! ! ! 
i I ] ! ! ! ! 

1 1  ! ! ! ! 
v ......... i ......... ! ......... ! ......... ! ......... t 

! I ! ! ! 

t I I! ! ! ! 
! i ! ! ! ! 

......... ! ......... ! ......... i ......... ! ......... i 
! ! I ! ! ! 
l i I I ! ! ! 
l !l ig ! ! 

......... t ......... t ......... ! ......... ! ......... t 

l l ,  t ! 1  ! ! 
1 ! i I ! I ! ! 

1 ! ! ] ! ! 
......... ! ......... ! ......... ! ......... ! ......... ! 

1 ! 1  1 ! ! I  +. 
1 t ! I I ! ! I I 

1 ! 1  I t ! i I  
1 l t ! ! 

(Blank indicates '0' value) 

Fig. 8. G S  ~ matrix. 
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ii) Condition for the consistency of specification of sequencing 
(Theorem 5) 

Proj(ST, p r )  = 

It can be easily verified that the given model satisfies both of these 
conditions and hence the specification of concurrency and sequencing are 
consistent. 

5.2. Deadlock-freeness 

Proceeding with the graphical approach as mentioned earlier, we draw 
a graph representing the preorder relationship obtained from the Pr matrix 
and the graph is shown in Fig. 9. It can be easily seen that there are no 
cycles in the graph, hence the specifications are deadlock-free 
(Proposition 8.1 ). 

Discussion. Let us see how the developed model is useful for the protocol 
design for the example considered. Suppose TCS (node N2) receives a 
request from TMS (Node N3) for the execution of Status Transfer 

| | @ 
Fig. 9. Graphical representation of the preorder relationship corresponding to the 

Pr matrix. 
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Operation (Ps)- Then in order to find out whether the request is acceptable 
or not at node N2, the protocol has to respond to the following queries. 

Q -  1. Does any process running in the system conflict with the 
requested process P8? 

Q -  2. Whether all those processes which should run concurrently 
with P8 are already running? 

Q - 3 .  Whether all those processes, need to be initiated prior to the 
execution of P8 have been initiated already or not? 

It can be easily seen that using the formal language or attributed 
grammar based approach of specification, such queries are difficult to 
answer in real-time. On the other hand, the methodology developed in this 
paper provides an easy way of carrying out the same operation. The 
corresponding conditions for favorable response of the queries are given 
by: 

i) The set of processes running on the system should be a subset of 
GC(P8). 

ii) The ST(P8) should be a subset of the processes running in the 
system. 

iii) Pr(P8) should be a subset of the set of processes that have been 
initiated prior to the request of P8. 

Verification of these three conditions yields that for the acceptance of 
the request for Ps, the processes P3, P9, Pll, P12, P16 and P21 should not 
be running in the system. And Plo must be running in the system and P3 
should have completed execution before the arrival of the request for P8. 

We examine another case. Suppose AOCS is required to run the 3-axis 
control process (P1) by TCS. Then for the satisfaction of the condition (ii) 
mentioned previously for process P~, P2, P13 and P14 have to run con- 
currently with P~, so the latter three processes should be already running 
in the system. But P2 required that P~ should be running in the system 
because of their strong concurrency. 

Therefore query Q - 2  mentioned earlier will always end in a 
unfavorable response. There are two possible ways to come up with a 
favorable response, either PI, P2, P13, and P14 are initiated at the same 
time (Pl3 can be initiated earlier too) or processes P~, P2, P13, and P14 are 
initiated as soon as all their requests, which come one at a time have 
arrived. Arriving at such a solution is very difficult in case of formal 
language or attributed grammar based approach, whereas in our 
methodology this solution can be obtained by examining the various 
attributes. 
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Thus, we observe from this example, that the methodology given in 
this paper gives more insight of the system and facilitates in carrying out 
the protocol design. 

CONCLUSION 

To provide an unambiguous specification of concurrent, exclusive and 
sequencing behavior of a distributed computing system, a theory is 
developed in this paper. A model given here precisely describes the dis- 
tributed computing system from these aspects. From the given model, it is 
easy to generate the various relationships needed for the protocol 
operation. Also it is easy to check the consistency of the specifications. 
Finally, an example of a practical system, a spacecraft computing system, 
illustrates the applicability of the developed theory. The prime motivation 
of the development of this theory is towards the design of a protocol for 
spacecraft computing systems. However, the same concepts can be used for 
other applications as well. The manner in which inconsistency in the 
specification of execution sequence is detected by the ordering of the 
initialization of the processes may give an impression that the technique is 
applicable only to the detection of deadlock during the initialization of 
processes. However the way the concurrency (G), strong concurrency (ST) 
and preorder (Pr) matrices are defined over the entire span of operation it 
can be seen that the deadlock detection is taken care of throughout the 
active period of the processes. 
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APPENDIX A 

Summary of the relations for computing the various attributes of the 
processes from the given 6-tuple model, both in global and local environ- 
ments, is as follows. 
(In the following 'Ele' stands for 'Elements of'). 

1) C =  {P,.[ (3j such that go.= 1) ^ (i:~j)} where 1 -N< i<~m, 1 ~j<~m. 
2) E =  {ei[ (Vj, gi j=0) A ( i r  where 1 <~i<~m, 1 <<.j<<.m. 
3) C~ = {/'jr h,j = 1 } where h~je Ele(Proj(F, F @ G). 
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7) GE(P~) = 
8) LE(P, )  = 
9) GS(P , )  _~ 

given by 

4) E i =  {Psi ho = 1 } where h~s~ Ele(Proj(F,  C o m p ( F  @ G)). 
5) G C ( P i ) =  {Pj[ go.= 1} where go.~Ele(G). 
6) L C ( P i ) =  {Pj] l~j= 1 } where lo.E Ele(L) and L = P ro j (F  T (~ F, G), 

{Pj[ g~ = 1 } where g~6 Ele(G')  and G ' - -  Comp(G) .  
{Pj] l~=  1} w h e r e / ~ 6  Ele(L ' )  and L ' =  Proj (FT @ F, G'). 
{P~[h,y= 1} where h u 6 E l e ( G S '  ) and the ith row of GS '  is 

10) LS(P~) __ 
given by 

R O W ( G S ; )  = P ro j (ROW(G;) ,  ROW(Gj )  Vjl g~j = 1). 

{Pjlho.=l } where h~EIe(LS') and the ith row of LS'  is 

ROW(LS; )  = P ro j (ROW(Li ) ,  R O W ( L j )  V j l l  o = 1) 

where l~j ~ Ele(L). 

11) G P ( P i ) =  {Pjl P ~ =  1 } where pis~ Ele(Pr).  
12) LP(P~) = {Pi[ h~j = 1 } where hij~ E le (Pro j (F  y @ F, Pr)). 
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