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Model 

Diagnosability and syndrome decoding of a self-diagnosis model is studied with 
a conditional fault set. The conditional fault set is a fault set which is induced 
under such a condition that some subset of units are faulty (or fault-free). 

The diagnosability defined on the model is generalized to include such 
information as (1) the maximum number of units to be identified as faulty; (2) 
the maximum number of units to be identified as fault-free; and (3) the 
maximum number of units whose states are definitely identified, when the upper 
bound on the number of faulty units is assumed. 

Furthermore, we discuss the problem of finding minimal fault set: This 
problem is formulated in mathematical programming with the conditional fault 
set. A syndrome decoding algorithm is also presented which uses the conditional 
fault set in a similar manner to Hamming distance used in syndrome decoding 
of error-correcting codes. 

KEY WORDS: Fault diagnosis; graph theory; self-diagnosis; diagnosability; 
syndrome decoding. 

1. I N T R O D U C T I O N  

The  concep t  of sys tem d iagnos i s  is b e c o m i n g  i m p o r t a n t  with the  develop-  
m e n t  of h igh ly  i n t eg ra t ed  digi ta l  systems a n d  com pl i ca t ed  c o m p u t e r  

ne tworks .  (1-~) Especial ly ,  self-diagnosis  mode l s  ( S D M )  have  been  s tud ied  
extensively.(5 8) S D M  consis ts  of n uni t s ,  each of which  can  test a n d  be 
tested by  o the r  uni ts .  This  S D M  can  be expressed by  a d i rec ted  g r aph  
G(V, E)  where  V is a set of  vertices {vi} c o r r e s p o n d i n g  to a set of  un i t s  of  
S D M ,  a n d  E is a set of  arcs  {ao } such tha t :  

{ a ~ E :  i f a  un i t  xi tests a un i t  xj  

a,~ r E:  o therwise  
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Each test (arc a~) of SDM of PMC-type (s) (BGM-type (6)) produces binary 
test outcomes tij: 

0: if both unit x; and xj are fault-free. 
1: if a unit xi is fault-free and a unit xj is 

tij = faulty. (if both a unit xi and xj is faulty.) 
d: otherwise, where dindicates that the test 

outcome can be either 1 or 0. 

For this SDM, many diagnosabilities such as t-fault diagnosability 
(t-fd), t-fault diagnosability with repair (t-fdwr), and t out of s 
diagnosability ( t / s -  d) have been proposed. (8-12) These diagnosabilities are 
defined under the common assumption that the number of faulty units does 
not exceed t. The algorithm for identifying the fault present is also studied 
under this assumption; a system is called t-fd iff all the faulty units are 
identified exactly, t-fdwr iff at least one faulty unit is identified, and t/s - d 
if all the faulty units are specified within a subset of units whose cardinality 
is not greater than s. (13) A generalized diagnosability introduced here 
totally expresses parameters which appear one by one in the previously 
mentioned diagnosabilities. 

Defini t ion.  A system is called t / s / r / w - d  iff the following con- 
ditions are satisfied provided the number of faulty units present does not 
exceed t. 

(1) 
(2) 

(3) 

All the faulty units are specified within a set of at most s units; 

All the fault-free units are specified within a set of at most r units 
whenever the number of fault-free units is not greater than r; 

The states of at least w units can be identified. 

When some of these parameters can not be specified, they are denoted 
by a dot ". With this generalized diagnosability, t-fd, t-fdwr, and t / s -  d are 
termed t / . / . / n  - d, t / . / (n  - 1 )/1 - d, and t / s / . / (n  - s) - d respectively where 
n is the number of units. 

In Section 2, we define a conditional fault set. Conditions for the 
generalized diagnosability are expressed with the conditional fault set. In 
Section 3, a graph-theoretical expression of the conditional fault set of 
SDM is discussed. The expression of only PMC-type is obtained. In Sec- 
tion 4, we consider the diagnostic problem of finding the minimal fault sets 
consistent with a given syndrome. This problem is formulated as a 
mathematical programming problem with constraints and objective 
functions expressed by the conditional fault set defined in Section 2. 
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Another syndrome decoding algorithm is also proposed which uses the 
conditional fault set in a similar manner to that of Hamming distance used 
in syndrome decoding of error-correcting codes. 

2. CONDITIONS FOR THE GENERALIZED DIAGNOSABILITY 

A key concept of this paper is to define a conditional fault set. We 
discuss conditions for the generalized diagnosability in terms of the 
conditional fault set. Then, the generalized diagnosability of SDM is 
investigated as an example. We use the following notations. 

1 ) F( _ X) denotes a fault set: the subset of all units which are faulty 
and a denotes a syndrome: the subset of all the test arc which 
produces 1 as its test outcomes. We use o-(F) to denote a syn- 
drome which is consistent with the fault set F. If a fault pattern 
and syndrome is expressed in vector notation, we mention them 
fault pattern vector and syndrome vector respectively. 

2) We use ~ to denote a null set and P(X) to denote the power set 
of a set i7. ISt denotes the cardinality of a set S. 

Definition. The Conditional Fault Set of H(S, R,) is defined as 
follows: 

Ha(S, R) = m i n { F ~  X: ~r(F) = a such that F_~ S and F___ R} 

where F =  Z - F  and the minimum is taken with respect to the cardinality 
of a fault set F. [H~(S, R)[ denotes the cardinality of the minimal fault sets, 
whereas it is interpreted as if there is no consistent fault set. The con- 
ditional fault set H~(S, R) means the minimal fault sets consistent with a 
syndrome under condition that units in S are all faulty and those in R all 
fault-free. The conditional fault set with the restricted condition that a unit 
xi is faulty has already been proposed to express the condition for t- 
fdwr. (1~ Properties of the conditional fault set H~(S, R) are summarized 
Lemma 2 in the Appendix. With the conditional fault set, the generalized 
diagnosability t/s/r/w - d is expressed as follows: 

Proposition 1. A system is t /s/r/w-d iff 

(1) rain ISa(t,a)j >~n-s 
a~Y:A 

(2) rain fS~ 
(7 E ~ n - - r  

(3) min (IS~ ~)l + [S~( t, a)[)>~w 
a~A 
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where 
s'~ {x ex: tH~ x3t)>  t+ 1} 

and ZA is a set of all possible syndromes: XA is a set of all possible syn- 
dromes: SA = {a ~ E: ~r(F)= a for some Fc_ X}, S . _ r  is a set syndrome 
which is consistent with only fault sets whose cardinality is less than n -  r 
where n = [Xl. That is, L'._r = {a _~ E: a(F) = a for some F ~  X such that 
IFI <~n-r} .  

The conditions (t), (2), and (3) corresponds to the condition of t/s/./. 
- d, t/./r/. - d, and t / . / . /w - d respectively. Among these conditions, con- 
ditions (1) and (2) are expressed in a different form. The next conditions 
(1)' and (2)' is equivalent to (1) and (2) respectively by Lemma 3 in the 
Appendix. 

A system is t/s/r/w - d  iff 

(1)' rain ( max (rain In~(x , ,~) l ) )>~t+l  

(2)' rain ( max (minlH~(~,x~)l))>>.t+l 
~re,Un-r tStl ~ - n - r  x i~Si  

Conditions (t) and (2) show a convenient form to obtain parameters s 
and r of the generalized diagnosability for a certain t. On the other hand, 
conditions (t) '  and (2)' are used to investigate the permissible upper bound 
of t for given parameters s and r of the generalized diagnosability. The 
relation among these parameters of the generalized diagnosability, always 
hold that, w >~ 2n - s - r; since n - s units are known to be fault-free and at 
least n - r  units are known to be faulty by the definition of these 
parameters where, n = tXt. 

t/s/./. - d  is the same concept as t / s -  d, which was first proposed by 
Friedman about SDM. m) Necessary and sufficient condition for t / s -  d has 
not yet been obtained except for some special cases/n~ t/./r/. - d  is a new 
concept. However, the special case of this, when r = n -  1 is known as t- 
fdwr about SDM. The condition for t-fdwr will be obtained by substituting 
r = n - - I  in the condition (2), and this condition is the same as that 
proposed in Ref. 10. 

The concept of t/./r/. - d  also plays an important role in the situation 
of sequential diagnosis, which proceeds by replacing faulty units with fault- 
free units and diagnosing for the renewed syndromes iteratively. The 
diagnosis will terminate in this way as long as the graph of SDM is 
strongly connected, ~6~ The number of exchanged units in a step wilt 
increase as the number r of the generalized diagnosability decrease, and the 
number of steps of the sequential diagnosis will decrease as welt. 

These are discussions about diagnosability. As for detectability, a 
similar discussion to that of diagnosability can be done with H~(x~, (g). A 
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system is said to be t-fault detectable (t-fdt); iff all the syndromes consistent 
with the null fault set ~b e P(X) (all units are fault-free) are distinguishable 
from those consistent with a fault set, F~P(X)  where, F # ~ .  The con- 
dition of t-fdt can also be characterized by H"(x~, ~) .  

Proposit ion 2. 

where 

A condition for t-fdt system is iff 

min [H~~ f2~)I >~ t + 1 
x i ~  X 

o0 = 0 - (~ ) ,  

i.e. syndrome produced when all the units are fault-free. 

Proof. tH~~ ~ ) l / >  t + 1 implies that 0-(F~) ~ 0-o for all Fi # ~ ,  and 
thus the formal diagnosis model is t-fdt. While, tH~~ ~)1 < t implies 
that the syndrome 0-0 is consistent with some fault set Fi such that Fi ~ xi, 
hence Ft ~ ~ .  II 

Furthermore, the condition for the state of at least one unit can be 
identified as characterized with respect to the syndrome 0-1, which is con- 
sistent with the fault set X e  P(X). 

T h e o r e m .  (See Theorem 7 in Ref. 6.) 
The state of at least one unit can be identified under the assumption 

that the number of faulty units present does not exceed t i f f  

(1) max (IH~I(~Zr xi)t, IH~ ~)!)>~ t +  1 where 0-1 =a(X).  
x i ~  X 

(2) 0-1 is the only syndrome with which all the units can be faulty or 
fault-free under the assumption. 

Proof. The condition (2) of the Theorem is automatically satisfied 
for SDM of BGM-type (6) and FDM. ~ For these models, only condition 
(1) is necessary and sufficient for the state where at least one unit can be 
identified. 

3. C H A R A C T E R I Z A T I O N  OF THE C O N D I T I O N A L  FAULT SET 

In the last section, the generalized diagnosability is expressed by the 
conditional fault set. Thus, if we can characterize the conditional fault set, 
these diagnosabilities are also characterized. In this section, we characterize 
the conditional fault set in graph-theoretical terms by using the recursive 
property of the conditional fault set. 
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By the definition of H~(S, R) and that of SDM, the next formulas 
follow: 

L e m m a  1. 

(1) For SDM of PMC-type (symmetric invalidation), 

H~(S, R)=H~(Su Fol(S)u FI(R)u F;-~(R), RW Fo(R)) 

(2) For SDM of BGM-type (asymmetric invalidation), 

H~(S, R) = H~(Sw Fz(R) w F~(R) ,  
R u Fo(R ) u Fo(S ) w r o ' ( S ) )  

where 

and 

FI(o)(S) = {xe ~ X: (xj, xi) e E and tj, = 1(0) for xj e S} - S 

F{(II(S ) = {xj e X: (xj, xi) ~ E and tji = 1(0) for xi e S} - S 

Proof. (1) By the definition of H~(S, R), the set of units S and R 
are assumed to be all faulty and fault-free, respectively. Since R is a set of 
fault-free units, a set of units F~(R) u F 1 I(R) are regarded as all faulty, and 
Fo(R ) as all fault-free by the definition of symmetric invalidation. Further, 
since S is a set of faulty units, it follows that Fo~(S) are also faulty again 
by the definition of symmetric invalidation. Thus, altogether 

Sw ro ~(S) u F~(R) u r i - ' ( R )  

and R ~ Fo(R ) are induced to be all faulty and fault-free, respectively from 
the assumption that S are all faulty and that R are all fault-free. 

The proof of condition (2) is done in a similar manner to that of con- 
dition (1) asing the definition of the conditional fault set H~(S, R) and that 
of asymmetric invalidation. | 

As for SDM of PMC-type, both H~(x~, ~ )  and H ~  xj) which are 
used to express the generalized diagnosability (the conditions (1), (2), and 
(3)) are characterized in graph-theoretical terms. 

T h e o r e m  1. For SDM of PMC-type, let Sk and Rk be the set of 
units induced to be all faulty and fault-free respectively by the k-th iteration 
of formula of Lemma 1 - condition (1). 

(1) S n =  . - 1  = U~=o (Fok(Xi)) for $1 =xi  and R1 ~ .  

(2) S , =  U~-~ (Fo~(Q)) for $1 = ~ and RI =xj .  

where Q = FI(P) u FII(P),  P = U~-~ (Fog(Xj)), n = Ixt and 1~(1)(S ) = S. 
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ProoL The following recurrence formulas follow by Lemma 1 - ( 1 ) :  

S k  + 1 = S k  k.) 1" 0 l (Sk)  U 1"l (Rk)  k_) 1"1 l(~l~k) "'" (3.1) 

R k  + l = R k  U 1"o(Rk). . .  (3.2) 

Further, since the test graph is finite, Sk+~=Sk and R~+t=Rk for 
k = n ( =  IXI), and the next formulas follow: 

s . = s . ,  ro ' ( S . ) .  r ~ ( R . ) ,  r ; ' (R . )  ... (3.3) 

R, = R~ w Fo(R,)  ... (3.4) 

For S~ = x~, R~ = ~ ,  it is easily obtained that R,  = ~ by (3.2) and hence 
Sn n-- 1 = Uk=o (Fok(Xi)) by (3.1). In fact, these S~ and R,  satisfy (3.3) and 
(3.4). 

In case of $1 = ~ and R 1 = xj, first, R, is obtained by (3.2): 

n--1 
R.= U (ro~(~J)) 

k=O 

Since this R n is the set of all units induced to be fault-free, faulty units 
directly induced from these fault-free units are FI(Rn)uFxI(Rn)(=Q), 
and U~2-] (Fok(Q)) are also faulty units induced from these faulty units Q 
in turn. Thus, altogether, U2-~(Foe(Q)) are all units induced to be faulty. 
This S, also satisfy (3.3) with R, = U~-~ (F~(xj)). Thus, the expression (2) 
of this theorem is concluded. II 

As for SDM of BGM-type, S, for $1 = xi, R1 = ~ and $1 = ~ RI = xj 
cannot be expressed in a simple form due to the fact that S~ and Rk are 
dependent on each other as known by Lemma 1-condition (2). 

Example 1. Consider a system whose test graph is shown 
in Fig. 1. Let S~(S1, R1), R~(SI, R~) denote the converged set of Sk, 
Rk respectively, of the recurrence formulas for the initial set S~, R~. 
Suppose a given syndrome vector is (t12 t13 t23 t24t34t35 t45 t41 tsa t52) = 
(1 1 0 0 1 0 0 0 0 1). Then, for SDM of PMC-type some converged set 
are obtained as follows by Theorem 1: 

S~(x4,  ~ )  : {x2, x4} R~(x4,  ~ )  = 

s~(~, x.)= {x2, x3} R~(;~, x4)= {x,, x4, xs} 
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x I 

x 4 x 3 

Fig. 1. An example of the graph that expresses the 
test relation among units of Self-Diagnosis Model 
(SDM) known as 2-fd. 

whereas 

/4~(x4, ~ ) =  {x2, x3, x4} 

H~ x~): {x2, x3} 

As SDM of BGM-type with the same syndrome, these converged sets 
are obtained by Lemma 1-condition (2): 

Soy(x4, ~)= {x4} Roy(x4, ~)= {Xl, x2, x3, x4, x5} 

Since 
hand, 

Soo(x4, ~)~Rm(x4, ~):fi~, contradiction arises, On the other 

Sco(~, x4)~-- {x2, x3, x4), Roo(~, x4)~- {21, x2, 23, x4, Xs} 

Thus, again Soo(ffS, X4)O Roo(~ , x4)~ ~ and hence it is known that the 
syndrome is not possible syndrome as SDM of BGM-type. 

T h e o r e m  2. For  SDM of PMC-type,  let VC(a)  be a set of vertex 
covers of subgraph composed of all the arcs associated with test outcome 1. 
Then, 

H~(Soo(Sz, ~ ) ,  ~2~) = Soo(S1, ~ )  for all 31 ~ VC(a)  
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ProoL A fault set F is consistent with a syndrome a, if the next two 
requirements are satisfied: 

(i) Arcs from F to F produces test outcomes 1. 

(ii) Arcs of both initial vertex and terminal vertex is in F produces 
test outcomes 0. These requirements directly follow from the definition of 
SDM of PMC-type. 

For all the arcs ao., such that, both xi, xjsSoo(S1, ~ )  the test out- 
comes to=O, for suppose otherwise xir  $1 or xjr $1 by the hypothesis. 
Thus, the condition (i) is met for S~(S1, ~J). 

As to the condition (ii), since Soo(S~, ;g) is a converged solution of the 
recurrence formulas (3.1) and (3.2), S~(S1, ;g) includes all the units which 
test $1 with test outcome 0. Hence, t~=0,  for all, x i e S ~ ( S ~ , ~ ) ,  
x js  S~(S~, ~J). Thus, the condition (ii) is also met. | 

Theorem 2 together with the conditions (1), (2), and (3) (or (1)', (2)', 
and (3)') of the generalized diagnosability, the diagnosability of PMC-type 
is characterized in graph-theoretical terms. However, it is difficult to check 
them. This is because the domain of syndromes over which the minimum is 
taken is sizable for large-scale systems. The domain can be reduced to a 
great extent when the graph of SDM has symmericity. Permutation 

1, 2,..., j ] 
P = il, i2,..., ij/ 

is called possible permutation if some rotation (around axis or point) result 
in the same system as that whose suffix is permutated by P. Syndrome ai is 
regarded as equivalent to crj if a i is converted to a i by a possible per- 
mutation P. And the minimum of conditions of the generalized 
diagnosability are taken over the domain which consists of all the syn- 
dromes that are not equivalent with each other. The cardinality of this set 
of syndromes is obtained by Burnside's Theorem. (15) 

Example 2. Figure 2 shows the graph of an example of SDM of 
PMC-type. The number of the cardinality of a set of syndromes ~A over 
which conditions of Proposition 1 are checked is reduced to twenty four. 
This reduced set of syndromes is denoted b y / 7 .  min~z-, Sk(t, a), k = 0 ,  1 
are shown for several t in Table 1. It is known by the conditions (1), (2), 
and (3) of the Proposition 1 that this SDM is 1 /3/6/3-d ,  2 /4 /6 /3-d ,  and 
3/6/6/0-d. It is also known that this SDM is not even 1-fdt by 
Proposition 2. If we suppose the syndrome ao never occurs, then the 
parameter r of the generalized diagnosability becomes 5 when t = 1, 2. 
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X 

x 4 x 6 

x 2  x 3 

x 5 

Fig. 2. An example of the graph of Self-Diagnosis 
Model (SDM). 

4. SYNDROME DECODING BY THE CONDITIONAL FAULT SET 

As discussed in the previous sections, the conditional fault set 
H~(S, R) is used to characterize the generalized diagnosability. However, 
this conditional fault set is more suitably used for syndrome decoding. 
Finding fault set consistent with a given syndrome is called syndrome 
decoding. Most of syndrome decodings are carried out under t-fault 
assumption (i.e. the cardinality of a fault set present does not exceed t)J TM 

However, these algorithm fail to work if the system is not t-fd or if the car- 
dinality of the existing fault set exceeds t. 

In this section, we focus on finding minimal fault set so that systems 
are not required to be t-fd. A syndrome decoding algorithm is also presen- 
ted which utilizes the conditional fault set H~(S, R). The algorithm uses the 

Table I. Parameters of Generalized Diagnosabil ity for several t for the exam- 
ple of Self-Diagnosis Model (SDM) 

t rain (]Sl(t, a)l ) min (]S~ ~)1) rain (tSX(t, a)] + LS~ a)[) 
cruZ' a e Z '  z e X '  

1 3 0 3 
2 2 0 3 
3 6 6 0 
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cardinality of conditional fault set in a similar manner to Hamming dis- 
tance used in the syndrome decoding algorithm of error- 
correcting codes. We first formulate the problem as a mathematical 
programming. 

4.1. Syndrome Decoding as a Mathemat ica l  Programming 

Syndrome decoding is formulated as a mathematical programming 
using the conditional fault set in both an objective function and a con- 
straint. Dual problem is also formulated using the dual feature of the con- 
ditional fault set. Obviously, the problem of finding the minimal fault set 
consistent with a syndrome is induced into the next two mathematical 
programming problems dual to each other. And the minimal fault set is 
given by solving either of these mathematical programming problems. 

a. Problem 

min IS~(Sj, ~)l 
Sje P(X) 

under constraint that 

w(s~(sj, ~), ;3)= s~(sj, ;~) 

b. Dual Problem 

max iRoo(~, Sk)[ 
sk e P( X) 

under constraint that 

H~(R~(~,  Sk), ~ ) =  R ~ ( ~ ,  Sk) 

Example 3. For the same SDM of PMC-type as that of Example 1 
with the same syndrome, we solve the problem minsj~ e(x)S~o(Sj, ~) under 
constraint H~(S~, ~)= S~. Fault sets which satisfy H'~(S~, ~)= S~ can 
be obtained by Theorem 2. First, the vertex cover of the subgraph com- 
posed of the arcs associated with the test outcome 1 is obtained by the 
Boolean function (X1 + X2)(~'l q- X3)(X2 -[- X5)(X 3 q- ~(4). Since it is 
developed to the form 

X2X 3 "~ X I X 2 X  4 ~- X 1 X 3 X  5 -[- X1X4X5, 

VC(o') = {{x2, x3}{xl, x2, x4}{Xl, x3, x5}{Xl, x4, x5) } 
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Using these vertex cover as the initial fault set S 1 and R1 = ~ ,  the 
converged sets are 

s ({x2, x,}, {x2, 
Soo({Xl, X2, X4}, ~ ) =  {Xl, X2, X3, X4, X5} 
Soo({X1, X3, X,}, ~ ) =  {Xl, X2, X3, X4, X5} 
Soo({X1, x4, x,}, ~ ) =  {Xl, x2, x3, x4, x5} 

These converged sets satisfy H'~(Soo, ~ ) = S o o ,  however {x2, x3} is the 
minimal set among them. Thus the minimal fault set consistent with the 
syndrome is {x2, x3}. 

4.2. Syndrome Decoding Algor i thms w i t h  a Measure 

Syndrome decoding is carried out with such a measure that one can 
indicate how close some fault pattern is to the fault pattern present whose 
syndrome is only known. In syndrome decoding of error-correcting codes, 
Hamming distance is used as such a measure. Here, we present a measure 
for syndrome decoding of SDM and also a syndrome decoding algorithm 
using the measure. It is shown that the conditional fault set H~(S, R) dis- 
cussed so far can be used as such a measure. We present another measure 
of syndrome difference which is a similar concept to Hamming distance. 

If a system has the measure m(x ,  or) as stated below, consistent fault 
set will be specified for a given syndrome a. 

Def in i t ion .  If a system has such a measure m(x ,  a), the measure is 
called syndrome decoding measure of the system. 

m(xi, a) < m(Xg, a) 

for all the units xi, xj ~ X such that xi e Fc and xj r  where Fc is the fault 
set consistent with a. 

The next algorithm which is similar to syndrome decoding algorithm 
in coding theory can find consistent fault sets for all syndromes 
a ~ P(Et) = {a ~ E: a(F) = a, 0 < IF[ ~ t}. If syndrome decoding is carried 
out for t-fd systems over the domain P(Et) then syndrome decoding is done 
correctly, since F~ is equal to the present fault set. Measure m(x~, a) plays 
the same role in the algorithm as Hamming distance in coding theory. 

Algor i thm 1. Let a0 be a given syndrome vector 

0":= frO 
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Step 1. Find x~ such that m(xi, ~) < m(xj, ~) for all other single fault 
xj. And add the unit x; to the set variable X; X := X +  xz. If 
m(xi, a ) =  0 then STOP else proceed to the next step 2. 

Step 2. Update the syndrome vector a to ~' supposing the unit x~ is 
fault-free, a :-- ~'. In this updating, the notation d(xi) is used 
which means that d(xi) = 1 if x~ is faulty and 0 otherwise. If 
the updated syndrome vector does not include 1 (i.e., all 0 
and d(x~)) then STOP else go back to Step 1. 

This algorithm actually terminates, since at least one unit is assumed 
to be fault-free in every execution of Step 2. The next theorem states what 
measures are available as a syndrome decoding measure. 

Theorem 3. 

(1) IH~ ~)1 is the syndrome decoding measure if the system is t-fd. 

(2) ms(a(xi), a ) =  minx,~x w(tT(xi)�9 a) is the syndrome decoding measure 
if 

max {IQ(R, {x,  x j } ) l -  ]Q(F,, {xi, x j } ) l -  IQ(xj, F~-xi)] ) >10 
xi  E Fi 

for all F~ such that 0 <  ]F~[ ~<t where Q(X, Y)= {(x~, yj )~E:x~X,  yje Y) 
and the system is t-fd. Here, w(x), O) denotes the weight of the Boolean 
vector x, element-wise exclusive or operation, respectively. 

Proof. (See the Appendix) 
The measure stated in condition (2); minx,~xw(a(xi)| is called 

syndrome difference. It is needed to catalog all syndromes corresponding to 
all single faults for the syndrome decoding with the measure. Using 
]H~(xi, ~)l as a syndrome decoding measure, at least one of the minimal 
fault sets consistent with a given syndrome is obtained even if the system is 
not t-fd. The next examples show how this algorithm works for diagnosable 
systems. 

Example 4. It is known that the SDM shown in Fig. 1 is 2-fd. Syn- 
drome vectors catalogued are: 

~ ( x l ) = ( d d 0 0 0 0 0 1 1 0 )  

G ( x 2 ) = ( 1 0 d d 0 0 0 0 0 1 )  

O'(X3) = (0 1 1 0 d d 0 0 0 O) 

o-(x4)=(O 0 0 1 1 0 d dO O) 

a(xs)=(O 0 0 0 0 1 1 0 d d )  
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Suppose the same syndrome vector as that of Example 1, 
ao= (1 1 0 0 1 0 0 0 0 1) is obtained, then the fault unit x2 is chosen in 
Step 1, for m,(cr(x2), ao) realizes the minimum. In Step 2, syndrome vector 
ao is updated to 0-' = (0 1 d(x3) d(x4) 0 0 0 0 0 0) where d(xi) = 1 if xi is 
faulty, and 0 otherwise. For this updated syndrome, Step 1 is executed 
again. Then, x3 realizes the minimum of syndrome difference. And further, 
since ms(a(x3), a') = d(x4) which is equal to 0 when the unit x4 is fault-free, 
the fault pattern vector (0 1 1 0 0) is concluded. 

Using [H"(xi, ~) l  as a syndrome decoding measure, the minimal fault 
set consistent with the syndrome is obtained by one execution of Steps 1 
and 2, for 

Ig~(Xl, ~)1 = I{Xl, x2, x3, X4, X5}l = 5 

IH~(x2, ~)1 = I{x2, x3}l = 2  

[Ha(x3, ~)1-~ I{x2, 23}1 = 2  

IHer(X4, ~ ) i  = I{X2, X3, x4}l = 3 

Ig~(x5, ~)1 = I{xl, x2, X3, X4} I = 4  

C O N C L U S I O N  

Properties of the conditional fault set are mainly discussed. It is used 
for both characterizing the generalized diagnosability and syndrome 
decoding. The generalized diagnosability is an extension of the 
diagnosabilities incorporating most of the diagnosabilities so far proposed. 
A detailed diagnosis is possible by the generalized diagnosability, since this 
diagnosability incorporates information expressed in t-fault diagnosability, 
t-fault diagnosability with repair, and t out of s diagnosability. 

Conditions for the generalized diagnosability are discussed with a con- 
cept of conditional fault set. Although these conditions are difficult to 
check, for they must be checked all over the possible syndromes, this 
domain will be reduced in some cases. By the conditional fault set, an 
algorithm for finding the minimal fault set consistent with a given syn- 
drome is obtained as well. This problem is formulated as a mathematical 
programming problem with a conditional fault set. 

As a result, once these conditional fault sets are obtained, the 
generalized diagnosability as well as the minimal fault set consistent with a 
syndrome is given. 

Problem left for future study is to develop a heuristic algorithm for the 
calculation of these conditional fault sets efficiently. Expressing the con- 
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ditional fault set of other diagnosis models such as probabilistic self- 
diagnosis model and self-diagnosis with incomplete test are also interesting 
problems. 

APPENDIX 

L e m m a  2. (Properties of the conditional fault set) 

(1) (i) If H~162 then H~(Si ,~)~Si  where equality 
holds when a(Si)= a. 

(ii) H~(~ ,  Si) --- S~ where equality holds when S~ is the minimal 
fault set consistent with a syndrome a. 

(iii) A fault set Fi~ P(X) is the minimal fault set consistent with 
a syndrome a iff 
H~(~, F~)= H~(F~, ~ )  where F~= X -  F~. 

(2) If {S~} i =  1...q is a set of units such that, (a) ISil ~<t 
i =  1...q; (b) a=a(S1)=a(S2) . . . .  =a(Sq)  and a(Sj)r 
for all Sjr  {S~}, then 

(i) IH~(xk, ~) r  ~>t+ 1 for all xk in (0q=l Si) 

(ii) IH~(~,  xk)l ~> t + 1 for all xk in ( 0  q_ 1 Si) 

Proof. In Lemma 2 condition (1) (i) and (ii) is straightforward from 
the definition of H~ R). Hence, we prove (iii). 

Sufficiency: By the property of the conditional fault set in Lemma 2 
condition (1) it follows that H~ ~3) ~- S~ ~ H~(~5, S~). Thus, 
H~(~5, P~) = H~(F~, ~ )  implies that H ~  ff~) = H~(F~, ~ )  = Fi. 

Necessity: If a fault set F~ is consistent with a syndrome a, then 
H~(F~, ~ ) = F i  and H~(~ ,  P~)_~F~. Furthermore, since F~ is the minimum 
fault set, there is no other fault set Fj such that H ~  F~) = Fj ~ F~. 

(2) For the proof in Lemma 2 of condition (2)-(i), suppose there 
exists the unit xk such that [H~(xk, ~3~)1 ~< t and x k s (~q= ~ S~). This implies 
that there exist a fault set S which is consistent with the syndrome a and 
that S~r {S~}. This fact contradicts (b). In the same manner, the existence 
of x~ such that [H~(~Z~, xe)] < t +  1 and x~s  (0%1 Si) also violates the 
hypothesis (b). II 

Lemma 3. Relationship between Sk(t, ~) and H~ R), k = 1, O. 

(1) max ( m i n l H ~ ( x i , ~ ) l ) > ~ t + l i f f I S l ( t , a ) t > > . n - s  
I S i l = n - s  x i ~ S i  

(2) max (rain ]H~(fg, xi)l)>>.t+l iff [S~ >~n-r 
ISi[=n r x i E S  i 
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Proof. minx,~s, H~(S~, ~ )  indicates all the fault sets consistent with 
the syndrome a and satisfy the constraint that at least one unit is faulty in 
S~. Therefore, the condition 

max (min IH~(x~, ~ ) [ ) ) ~ t +  1 
ISil=n--s xiESi 

is equivalent to that all the fault sets consistent with the syndrome a and 
whose cardinality is less than t + 1 must satisfy the constraint that all the 
subsets of units whose cardinality is greater than n - s consist of only fault- 
free units. And this fact is equivalent to the condition ISl(t, a)l >~ n -  s. The 
proof of condition (2) is done in the same manner as this. | 

Proof of Theorem 3. 

(1) Suppose the system under consideration is t-fd and that there exist 
x~ e F ,  xj r F /such that 

IH~(xi, ~) l  ~ IH~(xj, ~)1 

for some F+(O< IF~l ~<t) which is consistent with the syndrome a. 
Since x~EF~ and a(F+)=a, it follows that H~(xi,~)c_F~ by the 
definition of the conditional fault set. However, H~(x/, (,~) is also a 
fault set which is consistent with a and that 

(2) 

IH~(xj, ~) l  ~< IH~(xi, ~) [  ~ IF+l ~ t 

Thus, it contradicts the fact that the system is t-fd, since H~(xj, ~ )  is 
another fault set consistent with a. 

Graph-theoretically, the syndrome difference of the SDM of PMC- 
type can be written as: 

ms(a(F,), a(Fj))= IQ(F,• Fj, F i - (Fic~Fj))l 

+ [Q(F, wFj, 6 -  (F,.~ Fj))[ 

where 

Q(x, x ' ) =  {(xi, x / )e  E: x i e X  and x /e  X'} 

Condition (2) describes the condition ms(a(x), a ( x ' ) ) > 0  in vector 
notation. This condition is obtained by substituting the syndrome dif- 
ference of SDM expressed by graph-theoretical notations the 
definition of syndrome decoding measure: For all fault sets F~ g S, 
there exists a unit xi ~/7/that ms(a(xi), a(Fi))< ms(a(xj), a(Fi)) for all 
other unit x /such that xj r Fi. | 
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