
International Jola-nai of Computer and Information Sciences, Vol. 2, ~ . 3, 1973

Bitmaps and Filters for
Attribute-Oriented Searches

J. Michael Burke 1 and J. T. Rickman 1

Revised March 1973

This paper presents inverted file structures for attribute searches in the form
of bitmaps. It also presents techniques to reduce search lengths through
the use of blocking and block-filter records.

1. I N T R O D U C T I O N

The basic justification for using an inverted file in a data retrieval system is
to reduce the search lengths of specified data classes or individual records
which satisfy user requests. The additional complexity inherent in inverted
file structures is usually justified in on-line systems which require minimal
search lengths, or in systems which can use relatively small inverted files to
access large data bases.

The major drawback of inverted files is the storage required for the list
of record addresses corresponding to each particular key. Since one record
address can belong to many such lists, the size of an inverted file can grow
quite large. For systems requiring extremely short response times for every
request it may also become necessary to keep the inverted file in main core
since auxiliary storage access would cause severe degradation in total response
time.

It is the purpose of this paper to present alternative file structures
employing strings and arrays of bits which help to reduce these storage
requirements and at the same time facilitate rapid inverted file processing
for Boolean searches. One alternative structure which is presented reduced
search lengths by 78 ~ .

1 Computer Science Department, The Pennsylvania State University, University Park,
Pennsylvania.

187

�9 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1001 I.

188 Burke and Rickman

2. G E N E R A L O V E R V I E W

Some basic definitions are now given: A generalized file structure is one
in which every record is assigned a unique address. ~z) A collection of these
unique addresses is commonly known as a directory. Associated with each
record are keys or attributes. An inverted file differs from the generalized
file directory in the way it is constructed. The inverted file is built using the
keys or attributes rather than the record addresses. Each attribute or key has
a list of addresses of all records that pertain to that distinct key. The word
"inverted ''~2) evolves from the idea that an inverted file is one organized
(usually f rom an existing file) in such a manner as to facilitate the search
and/or retrieval of data based on an attribute or groups of attributes different
f rom those used to organize the original file.

In order to make the following more meaningful, it is necessary to
explicitly define three terms which are often confused.

(a) Key--A data item that serves to uniquely identify a data record.
The key may be embedded within the record, precede the record, or
be separated f rom the record as in an inverted file.

(b) Attribute--A characteristic defining or specifying something;
the range or characteristic that an item may acquire.

(c) Value--That quantity or quality assigned to an attribute.

Now it is possible to distinguish between a search conducted on a
generalized file using keys and a search conducted on an inverted file using
attribute keys constructed from data items in the records of the data set.
In an inverted file organization the attribute keys can acquire a value in a
range bounded by the possible values of the individual data items in the file.

The advantage of inverted file processing can be seen in the following
example.

Example. Given a general file F, locate a set of records E, generally
much smaller than F, having some common keys. The steps involved in this
type of file processing are: (1) Get the address of every record r(i) in F.
(2) Search r(i) for the common keys.

Now let r be the ratio of time and effort involved in obtaining E f rom F
versus the time needed to process every record in F. I t can readily be seen
that r = 1 in a generalized file organization. Using an inverted file organiza-
tion, the appropriate keys are looked up in the directory. The lists of records
containing the desired attributes comprise the set E.

As long as the size of E remains relatively small with respect to the size
of F the ratio r of time and effort to obtain E versus searching all records
contained in F remains small.

Bitmaps and Filters for Attribute-Oriented Searches 189

The above example further demonstrates what is meant by "inverted"
since using keys to obtain addresses is opposite from using addresses to find
keys.

The retrieval of groups of records containing sets of like characteristics
or qualities lends itself to a particular type of file organization which em-
phasizes retrieval through encoded attributes of records within an inverted
file rather than actual record inspection. The concept of an inverted file allows
multirecord retrieval at relatively low processing cost; however, the storage
requirements of the inverted file may limit, or even nullify, the effectiveness
of such a system.

Another method used to construct the inverted file is to encode each
attribute or key. Encoding normally permits the keys to be compressed and
thereby reduces storage requirements. An example of this would be the
simple ordering of the keys and their mapping onto the integers. Still another
variation uses the actual data of the record but codes it into a bit string in
which each attribute value is represented by a position in the bit string. I f a
particular bit is set (equal to one), then the record contains that attribute
value. When this method is used a one-to-one correspondence exists between
a bit string in the inverted file and a record of the data set. At first glance
this may not appear to save much; however, the pertinent attributes are now
positional and in binary coded form. One needs only to perform logical
operations (and, or, not) on either columns or rows of the inverted file to
obtain a desired set E of the original file F. A simple algorithm can convert
the directory entries into actual record addresses.

3. S E A R C H T E C H N I Q U E S

There are two related search algorithms that lend themselves to an
inverted file: attribute-oriented searches and record-oriented searches. Both
of these methods can employ coded binary strings which are generated from
the attributes of each record in the data base. The logical collection of these
bit strings into a matrix form will be called a bitmap. In the bitmap there is a
one-to-one correspondence between the row entries of the inverted file and
the records in the data base. The method used to process this inverted file
now becomes dependent upon machine hardware, the length of the individual
bit strings, and the number of entries in the inverted file.

When using an attribute-oriented search the records are arranged in a
matrix in which each column represents a specific attribute A(j) and
each row represents the logical collection of attributes for a given record r(i).
This is shown in Fig. 1.

Attribute-oriented searches are extremely effective when the relative
number of attributes in r(i) is small. One has only to logically " A N D " the

190 Burke and Rickman

r l
r2
r3

r~

rs

A1

I f
I

CODED BIT MAP
Inverted File)

i i I i

II ii/
j ; II

_ _ RIBUTES

0

1

1

0

0

Aj = ATTRIBUTEj, j = l , k

Vii= VALUE i of Aj

r~ = RECORDs, ~=l,n

rn-I
r n

Fig. 1. Logical record of attribute-oriented search. Each 1 or "on" bit of
information of a given record r, signifies a given particular value V~j of attribute
Aj which is mutually exclusive of all other values of attribute A~ in (r,).

columns corresponding to the desired attributes to obtain an answer vector.
Since any " l ' s " propagated to the answer vector denote records that contain
the desired attribute values, the only remaining task involves the simple
t ransformat ion of " l ' s " in the answer vector to actual record addresses.
Logical " A N D i n g " proceeds rapidly in most computers because o f their
ability to " A N D " long bit strings in a few machine operations. However,
some hardware may require that all, or at least a large segment, o f the direc-
tory remain resident in core in order to operate efficiently.

Bitmaps and Filters for Attribute-Oriented Searches 191

RECORDS

r#.

r~

rn- 1
r n

CODED BIT MAP
(Inverted File)

A I A 2 ...
I

ATTRIBUTES

A 1 A 2 . . .

V I I V 2 I V 1 2 V 2 2 �9 . . V i i �9 . .

I1 I 01011folol01 1010Ill

IAkl
 -ili

Aj = ATTRIBUTEj, j=l',k

I I vii = VA,UE~ of A~

I ~ r~ = RECORDs, ~=l,n

 I OlOlWol
Fig. 2. Logical record of record-oriented search. Each 1 or "on" bit
signifies that record r~ contains the attribute values denoted by V~j of attribute
A~,.i = 1, k.

When a record-oriented search is used the records are again arranged in
matrix form, but logical operations are performed on each row (Fig. 2)
rather than each column. Record-oriented searches are most effective when
the number of records in a data base is not extremely large and when there
is a sufficient number of coded attributes contained in a record to permit
efficient machine operations on the bit strings. One has only to logically
" A N D " record r(i) of the directory with a target or request vector to im-
mediately determine if record r(i) contains the desired attribute values. The
two main advantages that result from this method are the immediate deter-
mination of a request match in the file and the ability to segment the directory,
keeping most of it in secondary storage without noticeably degrading per-
formance.

Because of the above-mentioned advantages and the additional ver-
satility inherent in a record-oriented search, experiments were conducted
to explore and define advanced techniques to improve the overall performance
and adaptability of these types of inverted files. Sequential record-oriented
searches within a bitmap provide the basis of this study.

192 Burke and Rickman

4. E X P E R I M E N T A L M O D E L

In order to investigate the type of data retrieval that results in multiple
record matches generated from a single request, the following data base was
defined. This data base contained records about humans and their physical
characteristics. In order to have the added ability of rapidly changing the
base, records of ten major attributes (each containing up to seven values)
were built, using a random number generator to formulate the values of the
individual attributes.

Each row in the bitmap was 48 bits long, one bit for each value. For
example, bit positions 1 and 2 are used for the SEX attribute, bit positions
3-7 for RACE, etc., as is shown in Fig. 3. No attempt was made to produce
minimum-length codes for the individual records (i.e., up to eight different
values could be coded in only three bits using binary coding). The space
saved by minimal coding would not have been appreciable since the attributes

SEX RACE

M F I 0 N W 0

Ir I ! I I

Unconcentrated

F I I I I I I
RELIGION

C P J 0

J l l l

Standard coding--one bit per attribute value.

SEX RACE

fr
Concentrated

II I l l l }1111
RELIGION

II

Bit
Position

I

2-,4

n - l~

Binary Decimal
Attribute Values Code Equivalent

Sex Female 0 0
Male l 1

Race Indian 000 O
Oriental OOl l
Negro OlO 2
White 011 3
Other 100 4

Religion Catholic O0 0
Protestant Ol l
Jewish IO 2
Other II 3

Fig. 3. Minimization of code length.

Bitmaps and Filters for Attribute-Oriented Searches t93

of an entire record required only six bytes. Each record of the bitmap contains
exactly ten "l's" that completely describe the individual human corresponding
to that entry in the inverted file.

In order to examine the search lengths within the model, 41 requests
were generated manually. In these experiments a request was merely a string
of attribute and value pairs. As shown in Fig. 4, the requests in the experimen-
tal data had each attribute separated from its value by a period: Individual
pairs were separated by commas and/or one or more blanks. Individual
requests were delimited by semicolons. All individual pairs of a request were
automatically coded into a 48-bit request vector. When the complete request
string was coded the search lengths were measured for each search of the
inverted file.

First a request vector was passed over each record in the file. If the

V
INPUT REQUEST . SEX.MALE HAIR.BLONDE,EYES.BLUE

A t t r ibute
Array

At t r ibu te Values
: Range ~ 29 to 34 Array

Height 16

Hair 29
~ Index I = 29

Eyes 35 !-II ~ ~ ~ ~ ~ ~ 28
: ~ ~ ~II~29 Bald "Match"

~- 30 Black Index3 31

Blonde /

~ . _ L - ~ ~" 32 Brown

33 G.ray /
Index 2 : (35-I) = 34 ~ "iI~34 Red /

35 Blue /
KEY 36 Black ! /
- - Brown i / On = I 37

Off : ~ 38 G r a y . _ ~ I /
39

REQUEST VECTOR

1 48

Lo ,SoioIo otoFoi;ioloIololoIo1 !oioij
Fig. 4. Input request coding. The major attribute array gives an entry point
and a range of the search; the attribute values array then gives the actual index
into the request vector. When a match is found the corresponding bit in the
request vector is set.

8a8/a]3-3

194 B u r k e and R i c k m a n

result obtained by logically "ANDing" the request vector and an inverted
file record r(i) matched the request vector, then r(i) was a member of the
set of records requested, as shown in Fig. 5. Note that all the attributes of an
individual record r(i) are compared in one logical operation regardless of how
many attributes it contained. Once a match was found the actual data
record's address was computed using i.

The next step in the study was to investigate the effect of blocking the
inverted file's records. The records were combined into logical blocks of
from 2 to 30 records. Each block contained a block-filter record which was
merely an additional record having an "on" bit for any value "on" in any

RECORDS

r~ ~ [I J i

I0 1

Io o

I rl

I
i_LI

I I I I I I I I I I I T]
ATTRIBUTES

rn- 1
r n

Coded Bit Map
(Inverted File)

o o o l o l o i o I loloiIIofr

Request 0 0 0 I 0 1 0 0 0 I 0 I0 I I I 0 .Vector

I 0 0 1 0 0 0 I 0 1 0 0 0 'I 0 I0 I I I 0 'I Answer'Vector

Fig, 5. Inverted file processing. The "Answer" vector is the logical
product of r~ ANDed with the request vector. Note that a match occurred
because the answer vector is a duplicate of the request vector.

Bitmaps and Filters for Attribute-Oriented Searches t95

Block
Fi I ter
Record[l l I I 1 ~ I [1 I I I I_ O111 O111 !11012]

r~+ 1

rn- 2

rn- I

r n

~176176
211111o11 oo oo

0 0 0 0 0 1 0 0 010 1 0

0 0 1 0 1 0 0 0 0 1 0 0

o l l o o o o o o l o o lO

One Logical
BLOCK

Fig. 6. Block-filter record generation. By the process of "Oring"
records r~ through r, all attribute characteristics of the block are
propagated in the Block-Filter Record. Note, however, that a match
between the Block-Filter Record and a request vector does not
guarantee that a record(s) contained in the block will match the
request. The Block-Filter Record only eliminates the those blocks
that could not contain a desired record.

of the records of that block. The block-filter record is generated by logically
"ORing" all of the records in that block, as is shown in Figure 6.

Block-filters should enhance the search procedure because any time a
block-filter record fails to match the request vector the search length is
reduced by the number of records in the block by excluding them from the
search. If, however, a block-filter record gave a positive match, then each
record of that block had to be checked as in normal sequential processing.

The technique of blocks was again modified through the use of sorting.
All the records in the inverted file were sorted before blocking. Here the
ordering of the physical attributes played an important role. In the experi-
ments an attempt was made to place the most discriminating and most
queried physical attributes (major attributes) in the high-order sorting
positions of the bit strings so that after sorting these attributes would be least
likely to change within a block. In other words, it would enable the filter to
represent a larger number of records in a block and still retain its ability to
discriminate. For any given data set the choice and positioning of the more
important characteristics will greatly affect the expected search lengths. For
the same reason it was thought unwise to use minimum-length binary codes
for values because most filters would become all " t ' s . "

The technique of blocking the inverted file's records and creating a
block-filter record for every block was also used to separate the directory
into easily managed segments. I t also allowed the entire inverted file to
reside on a secondary storage medium and to be sequentially processed in

196 Burke and Rickman

terms of blocks. Since the use of blocks and filterrecords decreases search
lengths, the inverted file may no longer need to remain in core. With this
technique almost any small computing system with tape storage would have
the ability to process a relatively large inverted file data base.

This type of blocking also offers a simple solution to the problem of
updating the inverted file with new record insertions and old record deletions.
A block can be constructed to contain more record locations than necessary;
in the event an insertion is required the new record's attribute bit string is
"ORed" with the block-filter record and placed in the first available position.
Deletion of an existing entry requires only that the record's values be set to
"off" since no request will match a null set of attributes. When the blocks
become laced with these null records a simple update which deletes all null
entries and compresses the remaining entries of each block could be per-
formed. When the effectiveness of the block filters is sufficiently degraded
through many deletions the updating routine should reconstruct blocks and
block-filter records from the remaining entries.

5. A N A L Y S I S

As was the intent of this study, it has been shown that some storage and
processing techniques exist which can lower the normally high storage
requirements and search lengths of an inverted file. If inverted files are
required, it should be obvious that the bitmap structure presented here
reduces storage requirements. Therefore this analysis will concentrate on
search lengths.

Since the experimental data base of human physical attributes was
generated using random numbers, it does not reflect the true nature of an
actual identification file. It does, however, illustrate that a data base with
similar qualities can be processed efficiently with minimum storage allocation.

For a more detailed analysis the requests were categorized as follows,
where "major" implies an attribute which is more often used in a request
(i.e., sex, race, etc.), and is more discriminating (i.e., fewer degrees of
freedom):

(1) Many descriptors (7-10 attributes).

(2) Average number of discriptors (4-7 attributes).

(3) Few descriptors (1-3 attributes).
(4) Many major descriptors (four or more attributes).

(5) Average number of major descriptors (3-4 attributes).

(6) Few major descriptors (1-2 attributes).

(7) Typical requests for the given data set.

Bitmaps and Filters for Attribute-Oriented Searches t97

The purpose of these groupings was to show the various behaviors of the
search algorithm under different request conditions and blocking factors.

Since the data used in this experiment were of human physical attributes,
it is obvious that major attributes such as sex, race, weight, etc., are more
discriminatory than others. With this in mind the attributes were ordered so
that attributes of decreasing discriminating power were placed at the low-
order end of the request vector. (3)

In the real world it is true that some attributes are known or requested
more often than others. For example, it is much easier to determine an
individual's sex than his age. Therefore, sex would be placed in a higher-
ordered sort position than age. The construction of the inverted file should
be dictated by the environment of its usage.

The request vectors for the seven groups were passed over the file
several times while varying the number of records per block from 2 through
30. The search ratio r of the number of comparisons required for a request to
be satisfied versus the total number of comparisons required to satisfy the
request if no blocking was used was calculated for each request. Search
lengths with reductions of up to 50 ~ were measured. An average for each
group was also calculated and this is shown in Table I.

Although the effect of blocking the inverted file records resulted in a
marked increase in processing effectiveness, even better results were achieved
by sorting the inverted file records. After sorting the directory all the records
in a sufficiently small contiguous group contained similar higher-order
attributes. This produced an additional advantage since the groups of con-
tiguous records were similar, a block could become much larger without
degrading its filter.

Table I. Average Search Ratios per Request Group (Without Sorting) ~

Range of Best blocking
Group search ratio factor ~

Many random attributes
Average number of attributes
Few random attributes
Many major attributes
Average number of attributes
Few number of attributes
Typical requests

0.2450-1.0005 5
0.3560.1.0260 5
0.7876-1.0454 2
0.3264-1.0083 5
0.4905-1.0283 5
0.4406-1.0333 4
0.5706-1.0290 6

When all the requests were taken as a single group the best ratio resulted with
a blocking factor of five records per block.

b Records per block.

198 Burke and Rickman

The results of using blocked records with sorting were analyzed in a
manner analogous to the unsorted blocks. The individual requests, as well
as the request groupings, remained constant and the blocking factor again
varied from 2 to 30.

The effect of blocking and sorting resulted in a further marked increase
in processing effectiveness, bringing the average percentage of compares per
request versus straight sequential processing to 22 ~ . A comparison of the
relative effectiveness of blocking with and without sorting can be seen in the
graph in Fig. 7 and in Table II.

It must be stressed that overall effectiveness of blocking an inverted file
directory, with or without a sort, is completely dependent upon the data set
under investigation; its organization, the attributes, the inherent hierarchical
qualities of these attributes, and most of all, the request environment in
which it will be used.

It should also be noted that an alternate inverted file organization is a
tree structure. A tree can be designed so that every progressive step down
from the root defines a larger set of attributes which the records below the
current node have in common. Thus in the extreme case one only has to trace

1.2

I . I

1 . 0

0 .9

0 .8

~ o 0.7

~ 0.6

0.5

0 , 4 -

0 ,3

0 .2

0.1

0 .0

/
J

f /

/

/
/

k /

~ X

• ~ #< ~ ..~ -X

/ 7r -/.-

. J

' d I~ IB ~o 2~ Jo

BLOCKING FACTOR

Fig. 7. Search ratios of sorted () vs. unsorted (- - -) bitmap. The search ratio
is the search length with block filters divided by the sequential search length.

Bitmaps and Filters for Attribute-Oriented Searches 199

Table II. Average Search Ratios per Request Group (with Sorting) ~

Range of Best blocking
Group search ratio factor

Many random attributes
Average number of attributes
Few number of attributes
Many major attributes
Average number of major attributes
Few number of major attributes
Typical request

0.1078-0.5001 17
0.2368-0.5041 19
0.5840-0.7198 15
0.0700~).5014 23
0.1192-0.5113 19
0.2089-0.5160 17
0.2199-0.5402 22

When all the requests were taken as a single group the best ratio resulted
with a blocking factor of 17 records per block.

down the proper nodes (attributes) in order to obtain the record, or records,
with all the required attributes. The nodes crossed by the path to the desired
records are merely a collection of all the attributes which those records
contain. It can be seen that for any request the path to the desired records is
quite short, thereby ensuring that the amount of time and effort expended to
find the set of records (E) that satisfy the request versus the time and effort
required to search the entire file (F) is very small.

Hence the inverted file structure studied does not have minimal search
length but it can be easily implemented using common sequential data
structures, and it can even be used on tape files where the directory shares a
physical record with its corresponding data records. Such a tape file would
have additional advantages when output is required of records which satisfy
search requests.

6. C O N C L U S I O N S

This work has investigated several advanced techniques in inverted file
organization which greatly reduce the normally high storage requirements.
Blocking of directory records for record-oriented searches offers a greater
range of versatility in processing and at the same time it is an easy structure
to implement. The simple blocking of the directory records provided up to a
50 ~ reduction in search lengths, while blocking with sorting reduced search
lengths to a mere 22-27 ~ of normal sequential directory processing. A
possible improvement is now under study which uses multilevel (tree struc-
tured) block-filters which assume a different sorting order on specific attri-
butes within a block.

200 Burke and Rickman

R E F E R E N C E S

1. D. Hsiao and F. Harary, "A formal system for information retrieval from files,"
Commun. ACM 13(2):69 (1970).

2. Philip B, Jordian, Condensed Computer Encyclopedia (McGraw-Hill, New York, 1969).
3. D. A. Huffman, A method for the construction of minimum redundancy codes," Proe.

IRE 40(10):1098-1101 (1952).
4. Ivan Flores, Data Structures and Management (Prentice-Hall, 1970), Chapter 14, pp.

318-335.
5. R. C. Brill, "The TAX1R Primer, "Occasional Paper No. 1, Institute of Artic and

Alpine Research, University of Colorado, Boulder, Colorado, 1971.
6. L. Hudson, R. Dutton, M. Reynolds, and W. E. Walden, "TAXIR, A biologically

oriented information retrieval system as an aid to plant introduction," Econ. Botany
25(4):401-406 (1971).

