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Abstract. Alternative methods are proposed for test of output feedback stabilizability and construction of a stable 
closed-loop polynomial for 2D systems. By the proposed methods, the problems can be generally reduced to 
the 1D case and solved by using 1D algorithms or Gr6bner basis approaches. Another feature of the methods 
is that their extension to certain special nD (n > 2) eases can be easily obtained. 

Moreover, the "Rabinowitsch trick" a technique ever used in showing the well-known Hilbert's Nullstellensatz, 
is generalized in some sense to the case of modules over polynomial ring. These results eventually lead to a 
new solution algorithm for the 2D polynomial matrix equation D(z, w)X(z, w) + N(z, w) Y(z, w) = V(z, w) 
with V(z, w) stable, which arises in the 2D feedback design problem. This algorithm shows that the equation 
can be effectively solved by transforming it to an equivalent Bezout equation so that the Grfbner basis approach 
for polynomial modules can be directly applied. 

Key Words: 2D system, polynomial matrices, unilateral equation, Bezout equation, Gr6bner basis, module, out- 
put feedback, stabilizability, stabilization 

Notation 

R 
C 

R[z, w] 
M(R[z, w]) 

R[z, w] n 
R[Z, w] n×m 

r 

~f2 

A r 

the field of real numbers 
the field of complex numbers 
commutative ring of 2D polynomials in z and w with coefficients in R 
set of matrices with appropriate dimensions with entries in R[z, w] 
module of ordered n-tuples in R[z, w] 
set of n × m matrices with entries in R[z, w] 
closed unit disc in C, i.e., {z E CI Izl -< 1} 
closed unit bidisc, i.e., {(z, w)~  C 2] Iz[ < 1, tw[ -< 1} 
transpose of matrix A 

1. Introduction 

The synthesis problem of stabilizing compensators for 2D linear feedback systems has been 
investigated by a number of researchers (see, e.g., [1]-[10] and the references therein). 
As in the 1D case, the synthesis procedure can be reduced to solving certain linear equa- 
tions for polynomial or polynomial matrices in two variables. In particular, it has been 
shown that a causal 2D multivariable plant given by a (left) matrix fraction description 
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(MFD) D-1 (z, w)N(z, w), with D(Z, w), N(Z, w) ~ M(R[z, w]) and det D(0, 0) # 0, 
is output feedback (structurally) stabilizable by a causal 2D compensator Y(z, w)X-l(z, w) 
if and only if the equation 

D(z, w)X(z, w) + N(Z, w)Y(z, w) = V(z, w) (1) 

holds, where X(z, w), Y(z, w), V(z, w) E M(R[z, w]), det X(0, 0) ~ 0, and det V(z, w) 
¢ 0 for any (z, w) ~ 0 2 [1, 3, 9]. Once Equation (1) is solved, the solution to the Bezout 
identity over the ring of 2D stable rational function can be directly obtained, and the class 
of all stabilizing compensators can be explicitly parameterized according to the MFD ap- 
proach [1, 11]. A well-known necessary and sufficient condition for Equation (1) to be 
solvable is that ~(5) A (]2 = 0 (see, e.g., [1, 3]), where ~(5) is the variety of the ideal 
5 generated by all the maximal order minors ai(z, w), i = 1, . . . ,  /3, of the matrix 
[D(z, w) N(Z, w)]. 

Several problems are naturally associated with the synthesis of 2D compensators. There 
is, first of all, the problem of testing the feedback stabilizability of a given system without 
explicit computation of ~(5) or direct solution of Equation (1). Then arises the problem 
of constructing a suitable stable polynomial matrix V(z, w) such that Equation (1) holds 
for some X(z, w) and Y(z, w), and the problem of computing such solution. 

Fornasini [10] and Bisiacco et al. [5] have recently shown a criterion and a linear test 
algorithm for stabilizability of 2D multivariable systems. By this method, the test can be 
reduced to the solution of a finite family of Lyapunov equations and thus can be accomplished 
in a finite number of steps. 

As for construction of a stable V(z, w) and solution of Equation (1), roughly speaking, 
two kinds of procedures have been developed up to now. The first kind is due to the re- 
searches of Guiver and Bose [1], Bisiacco et al. [2]-[7], and Fornasini [10] which can 
be recalled as follows. 

(i) Construct a stable 2D polynomial, say s(z, w), which vanishes on the variety "4(5). 
(ii) By employing Hilbert's Nullstellensatz, then, it can be shown that there exist xi(z, w) 

R[z, w], i = 1, . . . ,  /3, and some integer r such that 

Z ai(z, w)xi(z, w) = sr(z, W). 
i=1 

(2) 

(iii) Next, 2D polynomial matrices X(z, w), Y(z, w) such that 

D(Z, w)X(z, w) + N(z, w)Y(z, w) = s r ( z ,  W)I (3) 

can be computed from the results obtained in (ii) by the methods of [2, 12, 13]. 
For the purpose of (i), if "4(5) is explicitly known and ~(5) A (I 2 = 0, such s(z, w) 

can be directly constructed [1]-[3]. In general, however, the explicit computation of ~V(5) 
is not an easy job. To avoid this difficulty, attempts have been made (see, e.g., [4, 5, 10]), 
and eventually a linear algorithm without such requirement has been achieved in [5]. 
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To solve Equation (2), GriJbnor basis approach for polynomial ideal [14] or the method 
of [15] can be employed. However, since the bound of the degree r is not available in the 
above procedure, it would be a mere repetition to solve Equation (2) so that the computa- 
tion would be very costly [9]. 

As essential steps of the procedure, all the maximal order minors ai(z, w), i = 1 . . . .  , 
/3, and the Gr~Sbner basis of 5 have to be calculated. It has been indicated, however, that 
this may not be an easy task due to the fact that the number of the maximal order minors 
of [D(z, w) N(z, w)] is rather large even when the dimensions of D(z, w) and N(z, w) 
are relatively small [9]. 

It has also been pointed out that the restricted form V(z, w) = sr(z, w)I in Equation 
(3) may result in a solution X(z, w), Y(z, w) with relatively high degree in z and w [97. 
This is due to the fact that this form constrains, in fact, all the diagonal polynomial entries 
of V(z, w) in 5. Lin [9], however, has shown an example for which V(z, w) indeed has 
entries not in 5 but such that Equation (3) admits a solution. 

Nevertheless, this procedure is attractive for the advantage that it is easy to be extended 
to n D (n > 2) cases. As a matter of fact, since Gr~bner basis approach is generally ap- 
plicable for multivariable polynomials, the procedure applies directly to nD (n > 2) cases 
as long as a suitable stable n D polynomial can be constructed. 

In contrast with the kind of procedure mentioned above, another kind of procedure was 
initiated by Raman and Liu [8] for SISO (single-input/single-output) 2D systems and later 
developed by Lin [9] to MIMO (multi-input/multi-output) case. According to the procedure 
of [9], a stable V(z, w) and a solution X(z, w), Y(z, w) can be constructed simultaneously 
without calculating the minors. Further, the obtained V(z, w) in [9] has a more general 
form which may lead to solution X(z, w), Y(z, w) having less degree in z and w than the 
solution obtained by the first kind of procedure. In this procedure, however, one has to 
compute explicitly all the (unstable) roots of the entries of a diagonal 1D polynomials matrix 
Q(z) which satisfies D(z, w)Xo(z, w) + N(z, w)Yo(z, w) = Q(z), and then, for every 
unstable root in every polynomial entry of Q (z), successively perform an elimination pro- 
cedure that involves in general Smith form transformation of certain 1D matrices. Therefore, 
the procedure may be computationally inefficient when the number of such roots and/or 
the dimension of Q(z) are relatively large. Furthermore, this approach reduces the con- 
sidered 2D problem to 1D case by substituting explicit value corresponding to a (unstable) 
zero into one of the two variables, so it is rather difficult, if not impossible, to be extended 
to nD (n > 2) cases. 

In view of the above discussions, the main concerns of this paper are as follows. In Sec- 
tion 2, alternative methods are proposed for test of output feedback stabilizability and con- 
struction of a closed-loop stable polynomial of 2D systems. By these methods, the con- 
sidered problems can be generally reduced to 1D case, and thus can be solved by using 
either 1D algorithms or GriJbner basis approaches. Although it is hard to say that the pro- 
posed methods provide computational advantage in general, they indeed exhibit some in- 
sights to the same problems of n D systems. In fact, the basic ideas adopted in Section 
2 can be applied to establish similar results, at least, for some simple nD (n > 2) cases. 
In Section 3, then, the "Rabinowitsch trick" (see, e.g., [16, 17]) is generalized in some 
senses to the case of modules over polynomial ring. Based on these results, a new solution 
algorithm for Equation (1) is proposed, which solves Equation (1) via the solution of an 
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equivalent Bezout equation over a polynomial overring of R[z, w] by means of the GriSbner 
basis approach for polynomial modules [18]-[20]. According to this algorithm, some 
problems of the existing methods, such as the unavailability of the degree r and the com- 
putation of minors or zeros, can be avoided. Nevertheless, a V(z, w) having the general 
form as shown in [9] can be obtained, and it is possible to extend the algorithm to nD 
(n > 2) cases without essential difficulty. 

2. Stabilizability and closed-loop stable polynomials 

Consider a MIMO 2D linear system given by a left MFD D -1 (z, w)N(z, w). Without 
loss of generality, we suppose that D(z, w) and N(z, w) are left factor coprime. In fact, 
if D(z, w) and N(z, w) are not left factor coprime, a left greatest common factor, say 
R(z, w), can be constructively computed and removed [21]-[23], and the stability of det 
R(z, w) can be checked (see, e.g., [24]). By the results of [21], then, we always have 
Xl(z, w), Yl(Z, w), X2(z, w) and Y2(z, w) ~ M(R[z, w]) such that 

D(z, w)Xl(z, w) + N(Z, w)Yl(z, w) = VI(z ), (4) 

D(Z, w)X2(z, w) + N(z, w)Y2(z, w) = V2(w), (5) 

where Vl(Z ) ~ M(R[z]), V2(w ) E M(R[w]) are diagonal 1D polynomial matrices with 
nonzero determinants. 

By employing the long division method, a 1D polynomial can be decomposed, without 
explicit computation of its roots, into a product of a stable polynomial and a completely 
unstable polynomial (having only unstable zeros) [25, 26]. We can, therefore, carry out 
the decompositions 

Vl(z) = V~u(z)V~s(Z), (6a) 

V2(w) = V2u(w) V2Aw), (6b) 

or alternatively, 

det VI(z ) = det Vlu(z ) det Vls(Z ), (7a) 

det V2(w) = det V2u(W) det V2~(w), (7b) 

such that det Vlu(~) and det V2u(~) are completely unstable, while det Vls(~) and det 
Vls (~) are stable. 

For 1D polynomials gl(z) E R[z] and g2(w) E R[w], we define the notation 

r{ga(z), g2(w)} = {(Z, W) E C 2 I gl(z) = 0, g2(w) = 0}. (8) 

Then the following results can be given. 
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THEOREM 1. For given left factor coprime MFD D-I(z,  w)N(z, w) with D(z, w) 
R[z, w] nxn, and N(z, w) ~ R[z, w] n×m, define 

F(z, w) = [D(z, w) N(Z, w)] 

[ f1,1 "" fl,m+n ] 
f , ,1  . . .  L,m+  

= . . .  fm+n]  (9) 

i f =  [fl,j fz,j "'" f~,j]T ~ R[Z, w] n, j = 1, . . . , m  + n, 

where 

(10) 

and denote by 'V(5) the variety of the ideal 5 generated by all the nth-order minors of 
F(z, w), i.e., ai(z, w), i = t7 . . . ,  13, 13 = (m + n)!/(m!n!). 

Then the following statements are equivalent: 

(i) The 2D system given by D -1 (z, w)N(z, w) is output feedback stabilizabte; 
(ii) For any (Zo, Wo) ~ P{det Vlu(Z), det VE,(W)}, the matrix [D(zo, Wo) N(zo, Wo)] is 

full rank; 
(iii) A non-zero constant is an element (the only element) included in the GrSbner basis 

(the reduced GrSbner basis) of the ideal generated by det Vl,(z), det V2~(w), and 
ai(z, w), i = 1 . . . . .  t3; 

(iv) For i = 1 . . . . .  n, ~/is an element of the Gr~bner basis of the module generated by 

0 

0 
det VI,(Z ) 

0 

0 

O 

0 
det Vzu(W ) 

O 

0 

(11) 

where ~, denotes the n-tuple having 1 as the element at the ith position and zeros at the 
other positions, and * denotes the ith position of the related tuples. 

Proof (i) ¢~ (ii) As mentioned in the introduction, the output feedback stabilizability of 
2D system D-l(z ,  w)N(z, w) is equivalent to the solvability of Equation (1). By the 
Cauchy-Binet theorem and Equations (4) and (5), it is clear that if (Zo, Wo) is a common 
zero of ai(z, w), i = 1 . . . . .  /3, namely, (Zo, wo) E ~(9),  then det Vl(zo) = 0 and 
det Vz(wo) = 0 simultaneously. This fact obviously implies that 

~(5)  C F{det Vl(Z), det Vz(w)}. (12) 

By Equation (12) and the definitions of det Vlu(z) and det V2u(w), it is easy to see 
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~ ( ~ )  n ~f2 c I'{det Vlu(Z), det Vzu(W)} C ~j2. (13) 

On the other hand, it has been mentioned that 

V ( 5 )  n ~f2 = I~i (14) 

is a necessary and sufficient condition for (i) to be true. In view of this fact and Equation (13), 
then, one can readily conclude that (i), or equivalently, Equation (1) holds if  and only if 

"V(g) n P{det VI~(z), det V2,(w)} = 0, (15) 

or equivalently, (ii) is true. 
(ii) ~* (iii) As a matter of fact, Equation (15) implies, and is also implied by, the zero 

coprimeness of the polynomials det VI,(z), det V2~(w) and ai(z ,  w),  i = 1 . . . . .  /3. By 
the result of  [12], this is equivalent to the solvability of the equation 

ai(z, W).~i(Z , W) "}- Xl(Z, W) det Vlu(Z) + £2(Z, w) det V2,(w) = 1, 
i=1 

(16) 

where "~i, Xj ~ R[z, w], i = 1, . . . , / 3 ,  j = 1, 2. According to the properties of GriSbner 
basis Equation (16) holds if and only if (iii) is true [14]. 

(iii) ¢* (iv) Suppose that (iii) holds true, then we have the result of Equation (16), and 
we can rewrite it as 

~a ai(z, W)'~i(Z' W) 
i=1 

= 1 - Xl(Z, W) det Vlu(Z ) - .~z(z, w) det V2u(W). (17) 

By the methods of [2], [12], and [13], we can obtain Z(z, w) = [Xr(z, w) Yr(z, w)] r 
R[z, w] ~n+m)×n such that 

F(z, w)Z(z, w) = (1 - £t(z, w) det Vlu(z) - x2(z ,  W) det V2u(w)) In, (18) 

where I n is the n × n identity matrix. Obviously, this equation can also be written in the 
form 

Zl,i(Z , W) f l ' (Z  , W) -Jr " ' "  Jr" Zm+n,i(Z, W)fm+n(Z,  W) 

° 1 
0 

+ 21,i(z, w) det Vl.(Z ) • + 22,i(z, w) 
0 

0 

0 

0 
det V2u(W) 

0 

0 

_ 

0 
1 *, 
0 

_ 0 /  

i = 1 . . . . .  n, (19) 
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where Zl,i(Z, W),  . . . ,  Zm+n,i(Z, W) correspond to the entries of the ith column of Z(z, w), 
and 371,i (z, w) = 371 (z, w) and 372,i (z, w) = 3?2 (z, w). In view of the properties of Gr6bner 
basis for polynomial modules (see, e.g., [18]), the claim of (iv) is concluded. 

Conversely, if (iv) is true, then by using Gr/Sbner basis approach for polynomial modules 
we can find zt,i(z, w), . . . ,  Zm+n,i(Z, w), and 371,i, 372,i, i = 1, . . . ,  n, such that Equation 
(19) is satisfied, which can be written in the matrix form as 

vl,l(z, w) 0 . . -  0 ] 

F(z, w)Z(z, w) = 0 V2,2(Z, w) . . .  0 ! (20) 
: : - : 

0 0 . - .  v ,~ (z ,  w)  

where 

l~i,i(Z, W) : 1 -- 3?l,i(Z, W) det VI,(z) - 372,i(z, w) det V2u(W), 

i = 1, . . . , n .  (21.) 

Applying Cauchy-Binet theorem to Equation (20), we get 

ak(z, w);~(z, w) = r I  v~,i(z, w) 
k=l  i=1 

= f i  (1 - 21,i(z, w) det V1,(z ) - 372,i(z, w) det V2,(w)) 
i=1 

(22) 

where ak(Z, w), 3?k(Z, W) correspond to the n x n minors of F(z, w) and Z(z, w). Fur- 
ther, expanding the product on the right-hand side of Equation (22), we can have 

ak(z, w).;ck(z, w) 
k=l  

= 1 - 21(z, w) det Vlu(Z ) - 22(z, w) det V2u(w) (23) 

for some 21(z, w), x2(z, w) ~ R[z, w]. This is obviously identical to Equation (16) that 
implies (iii). [] 

THEOREM 2. Suppose that ~(5)  0 ~r2 = 0. Then the polynomial s(z, w) defined as 

s(z, w) = det V1s(z ) det V2,(w ) (24) 

vanishes on ~7(5) and is stable, namely, devoid of zeros in (1~. 

Proof. Suppose that (z0, Wo) e 'V(5). Since ~(9) f3 ~]2 = 0 b y  assumption, it follows that 
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Iz0[ > 1 and/or [w0[ > 1. (25) 

By using Equation (12) and taking into account the constraint of Equation (25), it can be 
concluded that det VI~ (z0) = 0 and/or det V2s (w0) = 0. In either case, however, 

S(Zo, Wo) = det Vl~(Zo) det V2s(w0) = 0, (26) 

which shows that s(z, w)  vanishes at every (z0, w0) fi ~(5). By the definitions ofdet Vls(Z ) 
and det V2s(W ), it is clear that s(z, w)  possesses no zeros in 02. [] 

Remark 1. It is noted that Theorem 1 provides three different approaches to test the 
stabilizability. In the statement (ii), it is possible to compute the zeros of det VI,(~) and 
det V2u (~) by using well-developed 1D algorithms. However, the computation may be in- 
efficient when the degrees of det Vlu(~) and/or det V2u(~ ) are high. The statement (iii) 
shows that by using GriSbner basis approach for polynomial ideal, one need not compute 
the above zeros. As mentioned earlier, however, it would be computationally demanding 
to calculate all the minors ai(z, w), i = 1 . . . . .  fl, and the GriSbner basis corresponding 
to these minors. In contrast with the above two, the statement (iv) reveals that the GriJbner 
basis approach for polynomial modules can be directly employed to solve the problem, 
without requiring computation of the zeros or minors. 

Remark 2. Since the decompositions of Equations (6) and (7) are in fact performed by 
an approximate method [25, 26], the above proposed approaches do not appear to provide 
particular advantage from a viewpoint of practical computation. But these results give a 
significant insight to some structural properties of the nD stabilizability problem. In other 
words, these results show a possible way to reduce the stabilizability test of nD systems 
to 1D case. In fact, based on some results obtained by GriSbner basis approach in [14], 
the basic ideas adopted in Theorem 1 and Theorem 2 can be directly employed to establish 
procedures for the stabilizability test and the construction of closed-loop stable polynomial 
of nD (n > 2) systems, provided that the ideal 5 is of zero dimension. 

3. Construction of 2D feedback compensator 

The purpose of this section is to develop a solution procedure of Equation (1) by applying 
the Griibner basis approach for modules over polynomial ring (see, e.g., [18]-[20]). In 
particular, we expect that the developed procedure should share the advantages, and at the 
same time, should not suffer from the disadvantages, which we discussed in the introduc- 
tion for the two kinds of known procedures. 

It is noted that, first of all, some results on estimation of the degree r in Equation (2) 
have been recently obtained (see, e.g., [16, [27-29]). More directly, the "Rabinowitsch 
trick" (see, e.g., [16, 17]) can be applied to solve Equation (2) without requiting any previous 
knowledge about r. Let t be a new indeterminate. Then it is evident that the polynomials 
(1 - ts(z, w)) and ai(z, w),  i = 1, . . . ,  13, share no common zeros. According to Hilbert's 
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Nullstellensatz, the ideal generated by these polynomials must be the unit ideal. This means 
that there exist Y(z, w, t), xi(z, w, t) ~ R[z, w, t],  i = 1 . . . .  , /3,  such that 

Z ai(z, w)xi(z, w, t) + (1 -- ts(z, w))Y(Z, w, t) = 1 
i=1 

(27) 

Then, substituting 1/s(z, w) for t and clearing out the denominators yield a relation of 
the form of Equation (2). By this method, however, we cannot yet remove the necessity 
of  computation of the minors ai(z, w), i = 1, . . . ,  /3, and the restriction of V(z, w) = 
st(z, w)l.  

In the following, therefore, we first extend the "Rabinowitsch trick" to the case of modules 
over polynomial ring in the sense of  Lemmas  1 and 2. Then, a general consequence from 
these results is summarized in Theorem 3. Based on these results, we will propose a solu- 
tion algorithm for Equation (1). 

Moreover, since Lin [9] has shown that a strictly causal solution X(z, w), Y(z, w), namely 
which satisfy det X(0, 0) ~ 0 and N(0, 0) = 0, can always be obtained from any particular 
solution of Equation (1) whenever the plant D(z, w) -1 N(z, w) is causal, in what follows, 
we will assume the causality of D(z, w) -1 N(z, w) and only pursue a particular solution 
to Equation (1) without considering its causality. 

LEMMA 1. Define D(v, w), N(v, w), F(v, w) and a?(5) as in Theorem 1. Then there exist 
xi(z, w, ti) and ~.,j(z, w, ti) ~ R[z, w, ti], j = 1 . . . . .  m + n, such that 

Yi, (z, w, w)  + . . .  + w, w)  

+ xi(z, w, ti) 

0 

0 
1 - tis(z, w) 

0 

0 

0 

0 
1 *, 
0 

0 

i = 1, . . . ,  n, (28) 

holds for some stable 2D polynomial s(z, w) if  and only i f  

v ( 5 )  n 2 : o, (29) 

where t i are new indeterminates and * denotes the ith position of the related n-tuples. 

Proof Sufficiency: In view of the result of Theorem 2 or [5], a stable polynomial s(z, w) 
vanishing on ~ ( 5 )  can be constructed whenever the condition (29) is satisfied. Let t be 
a new interdeterminate. Then it is obvious that 1 - ts(z, w) and the maximal minors aj(z, 
w), j = 1 . . . . .  /3 of [D(z, w) N(z, w)] are zero coprime and thus the equation 
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3 
aj(z, w)xj(z, w, t) = 1 - x(z,  w, t)(1 - ts(z, w)) 

j=l 
(30) 

holds true. As we did in the proof of Theorem 1, by applying the methods of [2], [12], 
and [13], we can obtain x the solution for Equation (28) from the results of Equation (30). 
In particular, we have t i = t and xi(z, w, ti) = x(z, w, t). 

Necessity: Suppose that there is a stable s(z, w) such that Equation (28) holds. Then, 
the solutions Xi,l(Z, w, ti), . . . ,  -~i,m+n(Z, w~ ti) , x i ( z ,  w~ ti) can be obtained by using 
GriSbner basis approach for polynomial modules. Substituting ti = 1/s into Equation (28) 
and clearing out the denominators, we get 

Xi, l (Z  , W ) ~ I ( Z  , W )  + " ' "  + Xi,m+n(Z , W) im+n(•  , W )  = 

0 

0 
sri(z, w) 

0 

0 

i = 1, . . . ,  n, (31) 

where Xi. j(Z , W )  ER[~., w], j = 1 . . . . .  m + n, and r i are some positive integers. Equa- 
tion (31) can be rewritten in the matrix form of Equation (1), i.e., 

F Z =  [ D N ]  I X  l Y  

Srl(Z, W )  0 ' ' "  0 

0 sr2(z, w)  . . .  0 
• ~ " . .  : 

0 0 . . .  sty(z, w)  

(32) 

with Z = [X y]T = [xi , j (z ,  w)], i = 1, . . . ,  n, j = 1, . . . ,  m + n. By Cauchy-Binet 
theorem, the relation 

~_~ aj(z, w)zj(z ,  w)  
j = l  

= s r ( z ,  W), r = r 1 + . . .  + rn, (33) 

is obtained, where zj(z, w), j = 1, . . . ,  ~, are the maximal minors of Z. Therefore, s(z, 
w) have to vanish on ~ ( 5 )  and can never be stable if  ~ ( 5 )  N ~r2 # 0 []  

More generally, the following result can be given. 

LEMMA 2. Define D(z, w), N(z, w), F(z, w) and ~ ( 5 )  as in Theorem 1. Then, there exists 
-~i,j(Z, W, ti) E R[Z, w, ti], with ti = ( t i l ,  . . . ,  til), j = 1 , . , . ,  m + n, and xi,k(z, w, ti) 
E R[z,  w, t i] ,  k = 1, . . . ,  l, such that 
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£i,l(Z, w, ti)J~(Z, w) + . . "  + X~,m+n(Z, w ,  t i ) i fn+n(Z ,  W) 

+ 07i,1 (Z, w, ti) 

0 

0 
1 - til sl(z, w )  

0 

0 

* + " ' "  + X i , l ( Z ,  w ,  t i )  

0 

6 
1 - t i tSl(Z, w )  * --= 

0 
: i 

0 

1 *,  

i = 1 . . . . .  n, (34) 

for  some stable 2D polynomials sl(z, w),  . . . ,  Sl(Z, w) i f  and only if  

"~(~) o 02 = ~, (35) 

where tik, k = 1 . . . .  , l, are new indeterminates. (Here, again, * denotes the ith position 
o f  the related n-tuples.) 

Proof Without loss of generality, suppose that the stable polynomial s (z, w) obtained by 
the method of Theorem 2 or [5] under the condition (35) is represented in the decomposed 
form s(z, w) = sl(z, w) . . .  sl(z, w). Since s(z, w) vanishes on ~ (9 ) ,  for any (z0, w0) 
E ~ (~ )  we have that 

sl(zo, Wo) = 0 and/or S2(Z0, W0) = 0 " ' "  and/or sl(z o, Wo) = 0. (36) 

It is now obvious that for z, w and the newly introduced indeterminates fi, . . . ,  t I, the 
polynomials as(z, w), . . . ,  an(z, w) and 1 - q sl(z, w) . . . .  , 1 - t t sl(z, w) have no 
common zeros, namely, they are zero coprime on R[z, w, t] where t = (q, . . . ,  tt). By 
Hilbert 's Nullstellensatz, then, there exist Yi(Z, w, t), yj(z, w, t) E R[z, w, t], for i = 1, 
. . . ,  13 a n d j  = 1, . . . ,  I, such that 

/3 l 

~a  Yi(Z, w, t)ai(z, w) + ~a  yj(z, w, t)(1 - tj sj(z, w)) = 1. 
i=1 j = l  

(37) 

In view of this fact, we can show the proof  in the same way as for Lemma 1. [] 

Based on the above lemmas, the following theorem can be readily established. 

THEOREM 3. For given left factor coprime MFD D -1 (z, w)N(z ,  w) where D(z, w) C 
R [ z ,  w] n×n, N(z, w) E R[z, W] nxm, there exist X(z, w) E R[z, w] nxn and Y(z, w) E 
R[z, w] m×n such that 
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D(z, w)X(z,  w) + N(z, w)Y(Z, w) = 

Srl(Z, W) 0 " '"  0 -] 

0 sr2(z, w) . . .  0 j (38) 
: : " , .  : ' 

0 0 " ' "  srn(z, W) 

or more generally, 

D(z, w)X(z,  w) + N(z, w)Y(Z, w) = 

S f  1 S~ 12 ' ' "  S~ 11 0 
0 S~21 ~ 2 2  . . .  S~21 

0 0 

• -. 0 ] 
• • • 0 

• • . ." 

• . .  s f o l  4 . 2  . . .  s ? ,  

(39) 

if and only if 

v(5)  n 0 2 = 0 (40) 

where 

S(Z, W) "~- SI(Z, W)S2(Z, W) " '"  SI(Z, W) (41) 

is a stable polynomial vanishing on ~(~), and ri, rik are some positive integers for k = 
1, . . . , l , i  = 1, . . . , n .  

Proof Sufficiency: According to Lemmas 1 and 2, if the condition (40) is satisfied, Equa- 
tions (28) and (34) are solvable. Further, GriSbner basis approach for polynomial modules 
can be used to find the solutions to Equations (28) and (34). For i = 1, . . . ,  n, then, 
substituting ti = 1/s into Equation (28), or t U = 1/sj(z, w), j = 1, . . . ,  l, into Equation 
(34), clearing out all the denominators and writing the equation in matrix form, we obtain 
the results for Equations (38) and (39). 

Necessity: Simply follows from Cauchy-Binet theorem (see, e.g., [1]). [] 
The results of Lemmas 1, 2, and Theorem 3 strongly suggest that Gr~bner basis ap- 

proach for polynomial modules can be employed to solve Equation (1) effectively• A solu- 
tion algorithm can be stated as follows, provided that a stable polynomial s (z, w) vanishing 
on W(5) has been obtained by the methods proposed in Section 2 or [5]. 

A L G O R I T H M  1 

Input: 

Output: 
step 1. 

F(z, w) = [D(z, w) N(z, w)] E R[Z, w] "×(n+m), a stable polynomial s(z, 
w) E R[z, w] vanishing over a?(5). 
X(z, w), Y(z, w) and V(z, w) for Equation (1). 
Calculate a GriSbner basis G' = {~ ,  . . . ,  ~q0} for the module generated 
by j~, . . . ,  f~n+n that correspond to the columns of F(z, w). For this pur- 
pose, the algorithms proposed in [18, 19] can be applied• 
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For i = 1, . . . ,  n do step 2 - step 5. (Here we only consider the general situation when 
s(z ,  w )  is given as s(z ,  w)  = Sl(Z, w)  - . .  st(z, w) . )  
step 2. Add the n-tuples 

h~k = [0 . . .  0 1 - t i ~ s k ( z , w )  0 . . .  0] r, 

the ith position 

k = 1, . . . ,  l, 
(42) 

step 3. 

to G', then calculate a GriSbner basis Gi = {~1, . . . ,  ~qi} for the module 
generated by {g;, . . . ,  ~q0' ~1 . . . .  , h/t}. 
By tracing the construction procedure performed in steps 1 and 2, con- 
struct ui,j,k(z, w, t,) and ui,j,r(Z, w, ti) E R[Z, w, ti], with ti = (til . . . .  , 
t , ) ,  k = 1 . . . .  , m + n, r = 1, . . . ,  1, such that 

m+n l 

k=l r=l 

j = 1 . . . .  , qi. (43) 

step 4. 

Notice: Denote by ~//the n-tuple having 1 as the element at the ith posi- 
tion and zeros at the other positions. Then, by the properties of  GriSbner 
basis for modules, Equation (34) is solvable if and only if g /can  be re- 
duced to zero with respect to Gi. According to this fact and Theorem 1, 
therefore, when Equation (1) is solvable, there must be a ~y for certain 
j such that gO = 3,~/with 3' ~ R. Without loss of generality, we assume 
that 3' = 1. I f  this is not true, then Equation (1) has no solution. This can 
also serve as an alternative test for the stabilizability. Further, the explicit 
calculation of Ui,j,r(Z, W, t i )  is in fact not necessary for obtaining the solu- 
tion to Equation (1). 
Pick out from G i = { gil . . . .  , ~qi } the element, say gib, b ~ {1 . . . . .  
qi} ,  that satisfies 

m+n l 

k=l  r = l  

(44) 

then by comparing Equations (44) and (34), we have 

Xi,j(Z, w, ti) = tti,b,j(Z, W, ti) , j = 1, . . . ,  m + n, (45) 

2i,k(z, w, t i )  = ~i,b,k(Z, w, [ i ) ,  /,C : 1 . . . .  , l. (46) 

step 5. Substituting tij = 1/sj(z, w ) ,  j = 1 . . . .  , l, into Equation (34) and clear- 
ing out the denominators, we obtain the solution xij(z, w ) ,  j = 1 . . . . .  
m + n, such that 
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X~,I(Z, W).~(Z, W) + • . .  + xi,,,+,(z, W)fm+,,(Z, W) = 

0 

0 
sf'~(z, w)  . . .  sF(z ,  w )  

0 

0 
47) 

step 6. 
where rik , k = 1, . . . ,  l, are some positive integers. 
Finally, from the resultsxi,j(z, w),  i = 1 . . . .  , n , j  = 1 . . . .  , m + n, ob- 
tained in Equation (-;7), we have a solution X(z, w),  Y(z, w) to Equation 
(1) a s  

[Xr(z, w) Yr(z, w)] = [xi,j(Z, w)], 

i = 1, . . . , n ,  j = 1 . . . .  , m  + n ,  (48) 

and a stable V(z, w) in the form of the right-hand side of Equation (39). 

Remark 3. According to the above results, we see that Equation (1) can be equivalently 
transformed to a Bezout equation, and consequently its solution can be obtained by nothing 
else than finding the GriJbner bases of certain polynomial modules. In this way, we can 
obviously avoid estimation of any degree (e.g., r) and computation of any minors or zeros 
which are required in the two existing methods discussed previously. 

Remark 4. By comparing Equations (3), (38), and (39), it is easy to see that Equations 
(38) and (39) give less restrictive forms for the stable matrix V(z, w) of Equation (1), 
for the constraint V(z, w) = s(z, w) r I is no longer necessary. In [13], it has been shown 
that when Equation (3) holds, a general V(z, w) with entries in 5 can also be constructed 
by using the result of Equation (2). It is worth noting, however, that Theorem 3 does not 
demand the entries of V(z, w) in Equations (38) or (39) to be necessarily in 5. This feature 
is of significance because there indeed exists V(z, w) which has entries not belonging to 
5 but such that Equation (1) admits a solution [9]. In fact, it is possible to obtain such 
a solution by using Algorithm 1 but impossible by the algorithm of [13]. Further, in view 
of the fact that exponents of some factors may be zero, the form for V(z, w) given in Equa- 
tion (39) is essentially identical to the one obtained in [9]. As mentioned earlier, this form 
may give solution X(z, w),  Y(z, w) to Equation (1) with relatively lower degree in z and 
w. Since an s(z, w) constructed by the method of Theorem 2 is in the separated form, 
i.e., a product of two 1D polynomials in z and w respectively, further decompositions are 
always possible by 1D approaches if it is required. 
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4.  E x a m p l e  

Consider the 2D system 

P(z, w) = 

I w - 3z 2z - 5 
2 z -  5 3 ( 2 z -  1) 

2z - 1 w z 
8w + 6z - 15 2z - 1 

(49) 

We can represent P(z, w) by the left factor coprime MFD 

P(Z, w) = D-I ( z ,  w)N(z, w) (50) 

where 

D(z, w) = 

I 3(2z - 1)(2z - 5) 0 
16 

_ - --3w2(2w - 3)(2z - 5) 2(8w + 6z - 15) 
2 

N(z, w) = 

3(2Z -- 1)(w -- 3Z) 
16 

6w 4 -- 18w3z - 9w 3 + 27w2z + 8Z -- 4 
2 

(2z 16- 5)2 

wZ((2W -- 3)(2Z -- 5) -- 8W) , 
-- 2 ~t 

First, by using the results given in Section 2, we investigate the stabilizability of P (z, w) 
and construct a stable polynomial s (z, w) vanishing on "4(5). Applying the method of [21] 
to the above D(z, w) and N(z, w), the solutions to Equations (4) and (5) can be obtained 
with the following VI(z) and V2(w). (For brevity, the results for Xa(z, w), Yl(Z, w), X2(z, 
w), and Yz(Z, w) are omitted here.) 

V 3(2z - 1)2(2z - 5) 0 
Vl(Z) "l J 0 6(2z - t)a(2z - 5) 

V2(w) = 
I 96(2w - 3)(2w - 15)w 0 1 

J 
i 

0 64(2w - 3)(2w - 15)w 
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Then, Vl(Z) and V2(w) can be decomposed as in Equations (6) with 

Vx.(Z) = 

3(2z - 1) 2 0 ] , 

0 6 ( 2 z -  1) 2 

Vl~ (z ) = I (2z - 5) 0 I ' 

0 (2z - 5) 

Vzu(W) = I 96w 0 I ' 

0 64w 

VzAw) = I 
(2w - 3)(2w - 15) 

0 
o 1. 

(2w - 3)(2w - 15) 

It is easy to see 

r{det Vlu(Z), det Vzu(W)} = {(1/2, 0)} (51) 

By checking 

rank [D(1/2, 0) N(1/2, 0)] = 2, (52) 

we conclude that (1/2, 0) is not a common zero of all the 2 × 2 minors of [D(z, w) 
N(z, w)], and according to Theorem 1, P(z, w) is stabilizable. 

On the other hand, the stable polynomial s(z, w) can be constructed by using all the 
mutually coprime factors in det V~(z) and det Vzs(w) as 

s(z, w) --- (2z - 5)(2w - 3)(2w - 15). (53) 

Now, following Algorithm 1, we can solve Equation (1) by using the GriSbner basis ap- 
proach for polynomial modules. Let 

F(z, w) = [D(z, w) N(z, w)], (54) 

so we have 

7" = V 3(2z - 1)(2z - 5) 
d l  L 16 

3wZ(2w - 3)(2z - 5) 7 r 
2 J 

j~ = [0 2(8w + 6z - 15)] r, 
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f3,-= I 3(2Z-1)(w-3z)6w4- 18w3z-9w3 +27w2z + 8z-41r 
16 2 ' 

~ 4 =  [ (2z -5 )21 -6  w2((2w-3)(2z-5)- 8w) I r 2  

In addition, let 

h2 ~ 
= l_ o 1 - , .~s(z, w )  

By the method of, for example, [25], we can find the Griibner bases G~ and G2 for the 
modules  generated by {)~, 3~, J~, J~, ~ } and { 3~, 3~, 3~', J~,/~2} respectively as 

°,:(I:l, I:l), (55) 

2 ~ ~ 

o j o 1 
(56) 

and obtain the results 

[1] 4 
o = ~ ;is(z ,  w, t l )~(z ,  w) + i l (z ,  w, ti) ~)(z, w, t~) 

k=l 

(57) 

[o I 4 1 = ~ ;2s(z, w, t2)~(z, w) + ;2(z, w, t2) ~(z ,  w, t2), 
k=l 

(58) 

where 

x1,1 = (1 - 12(2w - 15)(2z - 5) t l ) (27w 3 - 81w2z + 32w + 24z - 108) 

(2w - 3)t l /12,  

;71,2 = (1 - 12(2w - 15)(2z - 5) t l ) (8w - 6z + 15)(2w - 3)WZtl/4, 

xl,3 = 9(1 - 12(2w - 15)(2z - 5 )q ) (2w - 3)(2z - 5)w2tj4, 

3~1, 4 ~--- - ( 1  - 12(2w - 15)(2z - 5 )q ) (8w + 6z - 15)(2w - 3)t l ,  
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3~ 1 : 1 - -  12(2w - 3)(2Z - 5 ) tb  

22,~ = 9(1 - 12(2w - 15)(2Z - 5)t2)(w - 3Z)(2z - 1)t2/32, 

~2,2 = (1 - 12(2w - 15)(2Z - 5)t2)(8w - 6Z - 9)(2z - 5)tz/32, 

:~2,3 = 9(1 - 12(2w - 15)(2Z - 5)t2)(2Z - 1)(2z - 5)t2/32, 

3~2,4 = 0, 

2z = 1 - 12(2w - 3)(2z - 5)t2. 

By substituting ti = 1/s, i = 1, 2 into Equations (57) and (58) and clearing out the 
denominators,  we can get the solution to Equation (1), i.e., 

D(z, w)X(z, w) + N(z, w)Y(z, w) = V(z, w) 

with 

X(z, w) = I 

Y(z, w) = I 

V(z, w) = [ 

27w 3 - 81w2z + 32w + 24z - 108 

3(8w -- 6Z + 15)w 2 

9(w - 3z)(2z - 1) 1 

/ (8w - 6z - 9)(2z - 5) 

27wZ(2z - 5) 9(2z - 1)(2z - 15) 1 

- 1 2 ( 8 w  + 6z - 15) 0 

o 1 
32(2w - 3)2(2Z - 5) 

12(2w - 3)(2z - 5) 

0 

5. Conclusions 

Some alternative methods have been proposed for testing the 2D output feedback stabiliz- 
ability and constructing a 2D stable closed-loop polynomial .  By these methods, the prob- 
lems can be reduced to the 1D case and solved by using 1D algorithms or GriJbner basis 
approaches. The idea adopted here can be applied to establish similar procedures for n D  
(n > 2) cases under certain conditions. 

Moreover, some generalizations for the "Rabinowitsch tr ick" have been obtained in the 
senses of  Lemmas 1 and 2. These results lead to a new solution algorithm for Equation 
(1). According to the proposed procedure,  it is possible to solve Equation (1) by trans- 
forming it to an equivalent Bezout equation so that GriSbner basis approach for polynomial  
modules can be directly applied. In consequence, some questions of the existing methods 
can be avoided and yet a general form for V(z, w) as shown in [9] can be achieved. 
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Recently, Shankar and Sule [30], have developed a general theory of feedback stabiliza- 

tion for systems described by transfer functions over a general integral domain, which ex- 

tends the well-known coprime factorization approach. By using this theory, then, they 

clarified necessary and sufficient condition for the solvability of n D  stabilization problem 
in terms of affine varieties. It seems, however, that the task remains to find some construc- 
tive and effective algorithms to test the conditions and to construct the stabilizing compen- 

sators. Since the approaches proposed in this paper have good potentiality for extension 
to nD (n > 2) cases, we believe that it would be easy to generalize these approaches without 

essential difficulties. 

Note 

1. One of the anonymous reviewers has also indicated a different simple method in terms of the "Rabinowitsch" 
identification, by which the result of Equation (28) can easily be derived from Equation (3). 
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