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Abstract .  We present two stochastic models that describe the relationship between biomarker process values at 
random time points, event times, and a vector of covariates. In both models the biomarker processes are degradation 
processes that represent the decay of systems over time. In the first model the biomarker process is a Wiener 
process whose drift is a function of the covariate vector. In the second model the biomarker process is taken to be 
the difference between a stationary Gaussian process and a time drift whose drift parameter is a function of the 
covariates. For both models we present statistical methods for estimation of the regression coefficients. The first 
model is useful for predicting the residual time from study entry to the time a critical boundary is reached while 
the second model is useful for predicting the latency time from the infection until the time the presence of the 
infection is detected. We present our methods principally in the context of  conducting inference in a population 
of HIV infected individuals. 

Keywords:  Degradation processes, Gaussian process models, Inverse Gaussian distribution, regression models, 
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1. Introduction 

Biomarker series are important health indicators that represent the immunological pro- 
gression of a disease. For example, in HIV infected individuals, typical biomarkers will be 
immune system markers such as CD4 counts or CD8 counts measured repeatedly over time. 
A decrease in CD4 counts over time is an indicator of the immunological progression of 
HIV infection, and consequently, of declining health. In this paper we consider two models 
for biomarker series based on Gaussian processes. Both models we present incorporate 
covariates, such as age and sex, that may influence failure experience, but are not health 
status measurements that can be influenced by treatments or interventions. 

It is important to note that biomarker processes fall outside the usual regression paradigm 
because they can not be used as covariates if the response is life time and the main interest 
is in treatment efficacy. Thus, once a treatment has been assigned, it is not advisable 
to condition on biomarker process values because such conditioning can mask important 
health status differences. Consider, for example, the degradation of the immune system 
of HIV infected individuals. Data on such processes are available in numerous studies, 
including the San Francisco Mens Health Study (Winkelstein et al, 1987), the New York 
Blood Center Study (Cleary et al, 1988), the Multicenter AIDS Cohort Study (Kaslow et al, 
1987), the Multicenter Canadian AZT Trial (Montaner et al, 1993), and the Toronto Sexual 
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Contact Study (Calzavara et al, 1993). CD4 counts will tend to decline once the individual is 
infected with the HIV virus. Two treatment groups may exhibit the same survival experience 
when we condition on the CD4 values even though one group has average survival twice 
that of the other group. This could easily happen because an effective treatment would 
yield higher CD4 counts as well as longer survival than an unsuccessful one. However, 
comparing subjects with the same CD4 count from the two groups could hide improved 
survival experience. Thus it is important to use models that give joint distributions for the 
biomarker process values and event times. The Gaussian process approach provides such 
models. 

The question of how to model the joint distribution of event times and biomarker process 
values has recently been discussed by Lefkopoulou and Zelen (1995), Jewell and Kalbfleisch 
(1992), as well as by several of the authors in the volume AIDS Epidemiology edited by 
Jewell et al (1992). Our approach, where we model the biomarker process as a Gaussian 
process X (t) which is associated with the event time T, is similar to the approach presented 
in Berman (1990; 1994) and in Doksum and H6yland (1992). 

In this article we develop two stochastic models that connect biomoarker processes, event 
time, and covariates of interest. In Section 2 we ask: if somebody walks into a clinic today 
and discovers for the first time that he/she is HIV positive, then given todays biomarker 
value and other covariate values, what is the distribution of the time until that individual's 
biomarker reaches a critical value. We model the biomarker series of infected subjects as 
a Weiner process with a drift parameter which depends on time and covariates. We specify 
the likelihood function for the biomarker increments and derive the maximum likelihood 
estimators for the regression parameters as well as their standard errors. The maximum 
likelihood estimator of the expected time until the critical value is first reached is derived 
and its corresponding standard error is provided. 

In Section 3 we ask: if somebody walks into a clinic today and discovers for the first time 
that she/he is HIV positive, then given todays biomarker value and other covariate values, 
what is the distribution of the time from HIV infection. In Section 3, we develop a model 
for the biomarker values of infected subjects, which incorporates biomarker information 
from a group of uninfected individuals as well as covariate information. Unlike in Sec- 
tion 2, our model is based on a stationary Gaussian process and is. not conditional on the 
initial biomarker value. We define latency time as the time from HIV infection until the 
time infection is detected. By making use of Bayes' theorem, we derive the conditional 
distribution of the length of the latency time given the individual's biomarker and covariate 
information in Section 3.5. 

Finally, in Section 4 we summarize our results and indicate how the models presented in 
Sections 2 and 3 are related. 

In a subsequent article (Part II), we apply our methods to the San Francisco Mens Health 
Study cohort (Winkelstein et al, 1987). This data set contains 381 HIV seroprevalent 
men, 549 HIV seronegative mean, and 44 men who seroconverted during the study period 
which spanned the interval between March 1, 1984 and March, 1991. We model the 
joint distribution of CD4 counts, covariates and event times, and we provide estimates of 
regression coefficients as well as their corresponding standard errors. Moreover, we employ 
model diagnostic techniques to check the appropriateness of the models. 
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2. The Wiener Process Approach. Predicting Residual Time 

2.1. The  Likel ihood.  Es t ima t ion  o f  Parameters  

Let Xo( t )  denote the value of  the biomarker process at time t > to, where to denotes the time 
the infection was detected. In many medical applications Xo( t )  is the level of  a biornarker 
process such as a CD4 blood cell count and to is the time HIV is first detected. Using these 
conventions, we may assume Xo(to) > 0. Also, because Xo(to) is the initial value, its level 
can not be affected by treatments and consequently Xo(to) is an ancillary covariate. Without 
loss of  generality we set to = 0. Our analysis will be conditional on the level X0(0) and 
will be based on the process 

X ( t )  = log[Xo( t ) /Xo(O)] ,  t > O. 

We assume that for a given individual in a sample of  n subjects we observe TI . . . . .  Tk, 
Xo(0), X(T1) . . . . .  X(Tk ) ,  Z,  where Tt . . . . .  Tk are observation times, X ( T j )  . . . .  , X ( T k )  

are the biomarker process values at these times, and Z is a (d × l) covariate vector consisting 
of  covariates such as age, sex, etc. 

We Write the joint density of  {(Tj, X(Tj)); j = I . . . . .  k} given X0(0) = Xo and the 
covariates Z = z as 

f o ( t !  . . . . .  tk, xl  . . . . .  xtc [ Xo, z) = f o ( x l  . . . . .  xk I xo, z, tl . . . . .  tk) 

× f ( t l  . . . . .  tk [ xo, z) 

where 0 is a parameter vector that determines the model. This notation implies that 
Ti . . . . .  Tk are uninformative; that is, their joint distribution does not depend on O. In 
fact, in many applications, Tl . . . . .  Tk are appointment times assigned by clinics. Our 
likelihood is now 

L(O)  = f o ( x l  . . . . .  xk [ x0, z, tl . . . . .  tk). 

We assume the model where, given X0(0) = xo > 0, X ( t )  is a Wiener process with drift 
- r / t  and diffusion constant 32. That is, X ( t ) ,  t >_ O, is an independent increment process 
with X(0) = 0, mean E ( X ( t ) )  = - q t ,  and each increment X ( t )  - X ( s ) ,  0 < s < t, 

has variance (t - s)32. Normand and Doksum (1994) show that a linear drift model is 
reasonable for calibrated log CD4 counts. We call the negative of  the slope of  the mean of  
the biomarker process, z~-dtE(X(t)) = r/, the degradation rate. 

To obtain a simple expression for the likelihood, we introduce the biomarker increments 

indep. 
Yi = X ( t j )  - X( t j_~)  ~ N((t j  - tj_~)0, (tj - tj_~)~ 2) 

for j = ! . . . . .  k and to = 0. Note that (Yj . . . . .  Yk) is a one-to-one function of  X(t l)  . . . . .  
X( tk ) .  

For the i th individual of  a sample o f n  subjects, we use the notation ti = (tii - t i o ,  ti2 - 
til . . . . .  tik, - t i k , - i ) '  for the vector of  observation time increments, Yi = (Yi 1, Yiz . . . . .  Yik~ )' 
for the vector of  biomarker increments, and Zi for the d × 1 vector of  patient covariates. We 
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assume that Oi depends linearly on the covariates and write rh = Zri/3 where/3 is a (d x 1) 
vector of  degradation regression coefficients. Then, the log-likelihood for 0 = (/3, 82) is 
proportional to 

N log 8 2 @ ~ (Yi --  gti/3)'D/--I(yi - -  Zti/3) 
82 

i=1 
(1) 

where N = Y~/it_l ki, Zti is the ki x d matrix formed by the product ti × Z'  i, and Di is a ki x ki 
diagonal matrix with the jth diagonal entry t i j  - -  t i j - 1 .  Note that (1) can be maximized 
explicitly and the maximum likelihood estimates are 

= Z; iD. 'Z t i  Z~iD~Yi  (2) 
\ i = 1  i=1 

~2 [ I}_~ ^ / -1 
= - (Yi - Zti/3) D i (Yi - Ztifl). (3) 

/3 and ~2 can be used to estimate and test effects of  covariates using 

-1 (e ^ ¢" --1 COV(/3) = ~  2 ZtiD i Zti 
\ i = l  I 

as an estimate of  the variance-covariance matrix of/}.  Of particular interest would be the 
case where one of  the covariates corresponds to a treatment variable, such as AZT. In this 
case our results provide an estimate (and corresponding standard error) of the treatment 
regression coefficient. 

2.2. Predicting Residual Time 

Suppose that interest centers on predicting the time from study entry to the time a boundary 
is crossed. Let Cr denote the (critical) boundary for the biomarker process. For example, if 
interest centers on estimating the time at which an HIV infected individual has AIDS, an 
important critical boundary for the CD4 process would be cr = 200 (see CDC (1993)). For 
the transformed process, X(t) = log[Xo(t)/Xo(O)], where Xo(t) is the biomarker count 
at time t, we let c = log[cr/Xo(O)]. Let T denote the (residual) time from zero until the 
process X(t) crosses c. In our model where, given Xo(0) = x0 > 0, X(t) is a Wiener 
process with drift - t i t ,  the conditional distribution of  T given X0 -- x0 is inverse Gaussian 
IG(t  [/x, )v) with parameters/_t = c/rl and ~. = c2/82. The density is 

f ( t  I xo) = exp ~ t > 0, /~ > O, L > O. 
2/z2 

This distribution has many nice properties; see Chhikara and Folks 0989) .  In particular, 
we have 
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Figure 1. Predicting Residual Time T. The y-axis represents X(t) = log[Xo(t)/Xo(O)] for an HIV positive 
individual, where the x-axis represents visit times (in days), Xo(t) = CD4(t), The solid horizontal line represents 
the critical boundary defined as c = Iog[200/Xo(0)] and the intersection of the dotted vertical line with the x-axis 
indicates the estimated expected time, E(T I X0(0)), until the CD4 count first crosses the boundary. 

PROPOSITION 1 For a subject with covariate vector Zi and initial marker value Xoi (0) = xoi, 
the conditional distribution of  the residual time Ti until the biomarker process crosses 
some boundary Cr is IG(ttlXi, Xi), where Izi = c i / o i ,  r]i : Z I ~ ,  )~i : c2/t~2, and ci = 
log[cr /Xoi]. 

Using  the results of  Section 2. l ,  the m a x i m u m  likelihood est imator  of  the expected t ime 

unti l  the b iomarker  process first crosses the boundary  Cr is 

= ci^ with Va~"~r(~i) ~- c/2Z~oov(/~)Zi 
/2i Z~/3 (Z~/~) 4 (4) 

A 

where Var(fti)  is derived using the delta-method. 
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3. The Stationary Gaussian Process Approach. Modeling Latency Time 

3.1. The Likelihood. Estimation of  Parameters 

In this section we will, in addition to the biomarker process Xo(t) for infected subjects, 
consider a process .~0(t) of individuals not (yet) infected. We assume a model where 
W(t) = log ~'0(t), t > 0, is a stationary Gaussian process with 

W(t) ~ N(I~, cr 2) and Cov(W(t ') ,  W(t)) = r(t - t')cr 2, t' < t 

for some unknown correlation function r (.). Because W (t) represents the biomarker process 
before infection, we assume this process is a random function subject to normal fluctuations 
around a constant level. This is in contrast to the biomarker process X(t) for the infected 
individuals (Section 2), in which we postulated that X (t) is the sample function of a Weiner 
process with a linear drift, - r / t .  In this section we denote log Xo(t) by V(t) and use a 
model in which V(t) is distributed as W(t) minus a drift. In Section 4 we relate the Wiener 
process model in Section 2 to the model of this section. 

Let so be the time of infection and let S denote the latency time, that is, the time from so until 
thetimes0+Swhentheinfectionisdetected. SisassumedtobeindependentofW(t). Using 
the stationarity assumption we can show that, without loss of generality, we can assume 
So = 0. Our model for the biomarker process Xo(t) assumes that V(t) = log Xo(t), t >. O, 
has the same distribution as W(t) - At, t >_ 0. In this model we refer to -~tE(V(t)) = A 
as the degradation rate. 

In the remainder of this Section we focus on the HIV example where W (t) and V (t) repre- 
sent the logarithm of the CD4 counts of HIV negative and positive individuals respectively 
(recall from Section 2 that a linear drift model is reasonable for calibrated CD4 counts). 

For each of ne HIV positive individuals we observe {V(sj + S); j = 0, 1 . . . . .  k} and 
Zp,  where {sj + S} are the observation times, {V(sj + S)} are the CD4 values at these 
times, with So = 0, and Zp is a (dp x 1) covariate vector. In addition, for each member of 
an independent sample of nN HIV negative subjects from the same population we observe 
{W(ui); j = 1 . . . . .  k'}, and ZN, where uj and W(uj) are, respectively, the observation 
time and the (nondegraded) CD4 value at the j th time, and ZN is a (dN x 1) covariate 
vector. 

The likelihood of the data (V, W) = {(V(S + sj), W(ui,) } is 

I-IF[ fw(wlzN) fo fV( l,p,s)1s(s)ds, (5) 
/'t N n p  

where the product is taken over all nN HIV negative individuals and np HIV positive indi- 
viduals. In (5), fw(wlzN) is the multivariate Normal density with mean/z and covariance 
matrix r(luj -u t l )a  z, {j, l = 0, 1 . . . .  k}; f v  (vlze, s) is a multivariate Normal density with 
mean/z - (sj + s)A, and covariance matrix r(Is i - sll)cr 2, {j, I = 0, 1 . . . .  k}; and fs(s) is 
the latency time probability density function. 

In order to model the dependence of the biomarker series on the covariates, we introduce 
the parameterization A = Z~/3 and/z = Z~v ~ where/3 and ~ are the regression parameters 
for the HIV positive and HIV negative individuals respectively. One approach to obtaining 
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Figure 2. Modeling Latency Time. The y-axis represents V(I) = IogXo(t) and the x-axis represents time. The 
solid line in the figure indicates the logarithm of the observed CD4 counts from the first visit to the kth visit for an 
infected subject. The dashed line represents the unobserved portion of the series from time of infection (st~ = 0) 
to the time when infection is detected (so + S = S). 

estimators of A and # is to parameterize f s  (s) and r (t), and then maximize the likelihood in 

(5). Possible parameterization choices for the latency density, fs(s), and for the correlation 
function, r(t), are fs(s) = ~ - t  exp{_~- l s}  where ~ is the mean of the latency time S (see 

Berman, 1990), and r(t) as a first order auto-regressive correlation function, exp{- r [ t l}  
where r > 0. 

3.2. Ad Hoc Estimates for a Semiparametric Model 

Alternatively, to maximize the likelihood, consistent "ad hoc" estimates of the regression 
coefficients are available which can be used on their own without specifying a parametric 
form of the correlation function r(t), or as a first step in an iteration procedure to find the 

maximum likelihood estimate. Because of independence across subjects, if we consider 
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only the first observation of the HIV negative subjects (j = l), then the maximum likelihood 
estimator of c~ based on (W1, ZN) is the least squares estimator 

&, = (Z '~ZN)- '  Z '~W, (6) 

where Zu is the niv × dN matrix of covariates for the HIV negative group and W1 is the 
rtN X 1 vector of log CD4 counts at time j = 1. 

To estimate/3, we use the following result:~ 

PROPOSITION 2 The distribution of  Yj = V (s) + S) - V (sj-1 + S) is Normal with mean 
(sj - sj_l ) A and variance 20-211 - r(sj - s j-l)].  

Proof Condition on S = s, and note that because S is independent of W, the conditional 
distribution of 

Yj = W ( s j  + s )  - W(s~_~ + s)  - (sj - s j _ j ) A  

is the stated Normal distribution. Because the conditional distribution is the same for all s, 
this is also the unconditional distribution by the iterated expectation theorem. 

Using Proposition 2, if we set ~ = ~ then E(I))) = Z~,/3. Because the I~)'s (sj-sj_l)' 
are independent across individuals, then if we consider only the first increment, a natural 
estimator of/3 is 

[31 = (Z 'eZe)  -1Z'e~Ii (7) 

where Zp is the np × dp matrix of covariates for the HIV positive group and ~'1 is the 
n e × 1 vector of log CD4 process increment slopes, r ~ ,  between visit times 0 and 1. (st-s0) 

Remark I. The estimator for ~ specified in equation (6) based on the log CD4 values at the 
first visit is ~ consistent. We can get another estimator for a using the log CD4 values 
at the second visit, &2, and generally, for the j th  visit, &j. A natural weighted estimator 
for c~ is then ~ ' = ,  nNj&j/~7=1 nNj where nNj is the number of HIV negative subjects 
contributing an observation at visit j and m is the number of visits at which we can compute 
&. 

The estimator for/3 is ~ consistent provided the correlation function r( t )  is bounded 
away from one for t bounded away from zero, and provided the between-visit times, sj - s  j_ 1, 

are bounded away from zero. The estimator/31 specified in equation (7) is obtained from 
the increment in CD4 values between the first and second visit times. We can also use the 
increments in CD4 values between the (j  - 1)st and j th  visit times, thereby obtaining/3j. 

As with a ,  a natural weighted estimator for/3 is then Z j  npj~j/~.j nej, where npj is the 
number of HIV positive subjects contributing observations at visit times j - 1 and j .  

Remark 2. 

~ 2  - -  

An ad hoc estimate of 0 -2 is 

1 ~ ( W i l  , ^ 2 
n N  - -  2 i = l  - -  Z N i / 3 )  
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where Wil is the log CD4 count at time j = 1 for the i th subject and ZNi is the djv × l 
vector of covariates for the i th subject. 

R e m a r k  3. The advantage of this "ad hoc" approach, over maximizing the likelihood in 
(5), is that it does not depend on specifying a parametric form for the covariance function 
r. Thus this approach is semiparametric. 

3.3. Es t ima t ing  M e a n  La tency  Time 

Our approach to modeling latency time is a modification and extension to include covariates 
of the method proposed by Berman (1990). In the previous subsection, we saw how 
to estimate the parameters ~ and/3 in the stationary process model using independent 
samples of HIV negative and positive subjects. Here we focus on the distribution of the 
latency time S for HIV positive individuals. We will consider a model in which # = Z~v a 
represents the mean log CD4 process level of an uninfected subject with covariate vector 
ZN, while A = Z~/3 represents the rate of decline in the mean log CD4 process of an 
infected individual with covariate vector Ze. In what follows, we assume Zp contains Zlv 
in addition to one or more treatment variables. 

Our unconditional (before conditioning on (ZN, Zp)) model is 

V (sj + S) ~- Wo(sj %- S) %- Z~N OL --(sj  %- S)Z%/3, j = 0 . . . . .  k (8) 

where Wo(t)  = W ( t )  - # is a stationary Gaussian process with mean zero and covariance 
function r( l t  - sl)cr 2. Moreover, we assume that W0(t), t > 0, and (S, Zu,  Ze)  are 
independent. In the model specified in (8), S denotes ~he unconditional latency time for a 
subject drawn from the population. 

Rearranging (8) to form an equation for the latency time S and introducing the subscript i 
for the itn HIV positive subject with covariate vectors ZNi,  Ze i ,  we can write our conditional 
model for Si given Z~vi, Zpi  as 

Si = Ai - l [Wi (s i j  + Si) - V~(s o + S+) - Ais i f l .  

Because E(Wi( s i r  + Si)) = #i  = ZtNi ~, it follows that 

E ( S i )  = zS~ 1 [tzi - E(Vi(s ir  %- Si)) - -  l ~ i S i j ]  (9) 

= A ~ - l [ E [ V i ( s i r ) ] - E [ V i ( s i j + S i ) ] ] ,  j = 0  . . . . .  ki. (10) 

Note that (10) represents the expected latency time as the expected drop in the log CD4 
level from time sir to time sir + Si, divided by the degradation rate, Ai. This gives a very 
appealing geometric interpretation (see Figure 3). Using equation (9), a natural estimator 
of the mean latency time IXs, = E (S i )  is 

= / k i - I  - s=o 
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Figure 3. Estimating Mean Latency Time S. The y-axis represents V(t) - log Xo(t) for an infected subject and 
the x-axis represents time, t. S is predicted as the drop in V(t) from time st to time s# + S, divided by the rate of 
decline, A. 

where sij = Y~,{=I (ti.l+l -- ti.#)' the time from the first to ( j  + 1)st visit, and Sio = 0. This 
is an estimator for the conditional mean latency time for the i th individual given his/her 
covariate vectors. An estimator of the population mean latency t ime,/Zs = E(S) ,  where S 
is the unconditional latency time for an individual selected at random from the population 
of  infected HIV individuals, is 

fits = l ~"2_, f z - -  S i .  

n p  i=1 

3.4. A Consistent Estimator of Mean Latency Time 

/2si is not a very efficient estimator of  E ( S  i ] Zp i ,  ZNi)  because it is only based on ki + 1 
observations. It is possible to develop a more efficient and consistent estimator of  ~si by 
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noting that under the model assumptions specified in equation (8), #si is a function of the 
covariate vector Zpi through Ai = Z~, i/3 and/zi = Z~v iot only. Thus we can write 

IZsi = g (Ai ,  #i) ,  i = l, 2 . . . . .  ne 

for some function g. Note that the distribution of the latency time depends on the level/zi 
that the individual would have had if the individual was not infected. This function g, and 
thus #s,, can be estimated by computing a nonparametric estimator from {(A:, /2;, /2s,); i = 
1, 2 . . . . .  np }. For example, let K be the Epanechnikov kernel 

K(u) = I(lul < 1)(1 - u2)0.75 

where I (.) is the indicator function. Then, an estimator of/Zse is 

t2s ,= ,,N ,p / ' ~ ' ~  { ~ ' ~  (12) 
~i,=T K K 

where he and hN are the bandwidths which determine the index set over which the local 
weighted average of the/2s~, estimates is taken. Here he and h jr tend to zero as np and 
nN tend to infinity. Alternatively, more efficient locally linear nonparametric regression 
estimators could be employed (for example, see Cleveland and Devlin (1988), Fan (1993), 
and Ruppert and Wand (1994)). Note that from Figure 3 it is clear that the consistency 
of/2si is not dependent on the normality assumption of V(t); however, the consistency is 
dependent on the linearity assumption, E(V( t )  I Zei ,  Z:v.i) = ~i -- Ai  t in t. 

3.5. The Distribution o f  Latency Time Given the Initial CD4 Value 

Let Si denote the latency time for an individual with covariate vectors {Zm, ZNi} and 
assume that conditional on {Zei, Z N i } ,  model (8) holds. To obtain the distribution of Si 
given the marker value Vi (Si) at the first visit time, it is convenient to rescale by setting 

Vi:(t) = ~-)[Vi( t )  - #i] and S: = a -1AiS  i. 

Then Vi'(t) has a N ( - ~ - l A i t ,  1) distribution and the distribution of Vi'(Si ) given S: = s' 
is N ( - s ' ,  1). Let qi(s') denote the marginal (prior) distribution of S:, then, by Bayes 
Theorem, the (posterior) density of S: given V/(Si) ----- v: is 

q i ( s , l v ,  ) = 4)(V' + s ' ) q i ( s ' )  " s: ~ O  
f o  4) (v' + s')q: (s') ds" 

where 4) is the standard Normal density. In the special case where qi is the Exponential 
density, qi(t) --1 -~-~t =g i  e , , t > 0 ( s e e B e r m a n ,  1990), 

q i ( s ' l v ' )  = 4)(V: + S' -1- ~/-1) S' _> 0. 

f o  4)(v' + s' + ~Tt)ds '' 
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This is a truncated Normal density. The mean ~i of the exponential distribution can be 
estimated as ~i = 6-1 ~t~s,  ~" '* where/x}i can be either/2s~ of (11) or/2s~ of (12), depending 
on the model chosen. Thus we have estimates of all the parameters appearing in the posterior 
distribution of Si given Vi(Si). 

Remark 4. These results could be extended from conditioning only on the initial CD4 
process values to conditioning on all the CD4 process values. This is accomplished in the 
case of no covariates by Berman (1994, Theorem 4.1 with v = 0, r 2 = 0). Conditioning 
on the covariates only changes the mean of Si; the shape of the posterior distribution of Si 

given the CD4 process values V (Sij -[- S i), j = 1, 2 . . . . .  ki does not change and will be as 
in Berman (1994). In this case, an estimate of the correlation function, r( t ) ,  will be needed. 
Estimation of the correlation function could be computed using nonparametric methods or 
by introducing a parametric form for the correlation function, r(t),  such as the first order 
autoregressive function, r (t) = e x p ( - r  I t I). r can be estimated as indicated in Section 3.1. 

4. Discussion 

In this paper we described two stochastic models which give joint distributions of biomarker 
processes, event times, and covariates of particular relevance in monitoring HIV infected 
individuals. We introduced a Weiner process model to predict residual time in Section 2 
and a stationary Gaussian process model to model latency time in Section 3. There is 
a simple connection between the Weiner process model and the more general Gaussian 
process model which we have proposed. To establish this connection, first transform the 
time scale to the unit interval. This could be_accomplished by dividing time the by the 
length of the study or by using a nonlinear transformation, such as t -+ 1 - e x p ( - t )  = u. 
The distributional results of Section 2 are invariant to a time scale transformation (Doksum 
and H6yland (1992)). 

Note that the process X( t )  of Section 2 can be written using the notation in Section 3 as 

X ( t )  = g ( t )  - V(O), 0 < t < l.  

Thus, E ( X ( t ) )  = --At,  and we can identify A with 7. The covariance function of V( t )  - 

V(0) is 

a 2 [ r ( t - s ) - r ( t ) - r ( s ) + l ] ,  0 < s < t  < 1. 

This reduces to the covariance function, Cov(X(t),  X ( s ) )  = 32s of Section 2 by setting 
~2 = 52/2 and r( t )  = l - t ,  0 < t < 1. An interesting question that needs to be 
addressed empirically is when the simple correlation structure of the Weiner process model 
is appropriate. Finally note that in Section 3 notation, tij -~- Sij -~Si, Thus, the model process 
described in Section 2 is a special case of the process presented in Section 3. Because the 
event time in Section 2 was "residual time" and was "latency time" in Section 3, it was 
convenient to use different notation in the two sections. 

In addition to providing methods for the analysis of events time, our methods make it 
possible to study the effects of covariates, such as sociodemographic factors, risk exposure, 
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and treatment, by providing estimators and standard errors of regression coefficients. We 

presented our methods in the context of CD4 counts for HIV infected individuals in which 

interest was centered on predicting residual time or estimating latency time of the disease. 
However, we note that our methods are applicable in a broad range of problems in which 
interest centers on examining event times when biomarker information is available. 

Berman (1990) conducted a data analysis of CD4 counts in HIV infected individuals but 
did not incorporate covariate information. In Part II, we analyze CD4 counts using data from 
the San Francisco Mens Health Study (Winkelstein et al, 1987) when covariate information 
is available. We employ model diagnostics to check the assumptions of normality and 

linearity, and we examine the correlation structure of the CD4 process. Of the assumptions 
listed above, the most crucial assumption is that of linearity, We demonstrate, that after 

calibrating for changes in immunological techniques for measuring CD4 counts, the linearity 

assumption is appropriate. 
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