
International Journal of Computer and Information Sciences, Vol. 2, No. 4, 1973

Extension of

Tabled OL-Systems and
G rzego rz Roze n be rg 1,2

Revised June 1973

Languages

This paper introduces a new family of languages which originated from a

study of some mathematical models for the development of biological
organisms. Various properties of this family are established and in particular
it is proved that it forms a full abstract family of languages. It is compared
with some other families of languages which have already been studied and
which either originated from the study of models for biological development
or belong to the now standard Chomsky hierarchy. A characterization
theorem for context-free languages is also established.

1. I N T R O D U C T I O N

In 1968 Lindenmayer ~ls~ proposed a theory for the development of filamen-
tous organisms. During the last four years this theory (now called the theory
of developmental or L-systems) turned out to be useful and interesting from
both the biological and formal points of view.

From the biological point of view L-systems have provided a useful
theoretical framework within which the nature of cellular behavior in
development can be discussed, computed, and compared. Their study has
also provided a number of biologically interesting results. (1,~176

Although L-systems were originally described in terms of linear arrays
of automata, they were later reformulated in a more linguistic way using a
grammarlike concept. In this way the theory of L-systems has moved closer
to formal language theory and in fact has been found very interesting from

This research has been supported by NSF Grant GJ 998.

1 Department of Computer Science, State University of New York at Buffalo, Amherst,
New York.

.2 Mathematical Institute, Utrecht University, Utrecht-Uithof, Netherlands.

311
�9 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011.

312 Rozenberg

a formal language theory point of view. It has provided us with an alternative
to the now standard Chomsky framework (see, e.g., Refs. 6 and 17) for
defining languages. As a result of the different approach, the families of
languages defined by L-systems are rather different from the more traditional
families that have been studied (see, e.g., Refs. 11, 15, 19-21, 24, 25, 27,
and 32-34). The novelty of this approach is also reflected by the fact that
most standard proof techniques in formal language theory were found
inapplicable to L-languages (languages defined by L-systems) and a set of
new techniques had to be devised. Also, within the framework of L-systems
one can discuss sequences as well as sets (/anguages) of strings, in contrast
to the emphasis on languages within the Chomsky framework (for examples
of such research see Refs. 5, 13, 16, 21, 22, 28, 29, and 35), Apart from the
work mentioned above, L-systems have also been investigated in Refs. 3,
4, 8, 15, 22, 26, 30, 31, and 36.

An important subclass of L-systems are the so-called 0L-systems (see,
e.g., Refs. 19 and 32), which are models for multicellular organisms in which
there is no communication among contemporaneous cells. In such an
organism each cell is an autonomous unit which behaves according to
uniform rules, applicable to all cells in the organism. Each cell may be
present in one of finite number of states, and whether it divides, dies, or
change its state in a given time interval is determined solely by its current state.

Thus a 0L-system has the following components:

(a) A finite set of symbols Z the alphabet.

(b) A starting string w, the axiom.

(c) A finite set of productions which tell us by what strings in Z* a
symbol may be replaced. The set of productions that may be
applied to a certain symbol depends on the symbol only. In every
step of a derivation all symbols in the string must be simultaneously
replaced according to the production rules.

The language of a system is defined as the set of all strings which can be
derived from the axiom, including the axiom itself.

Even within organisms where there is essentially no communication
between cells one may observe synchronous behavior of different ceils
positioned in different places in the organism. One such example is the
behavior of the organism in the presence of the variable environment. An
example of such behavior is described in Ref. 36. In fact, in Ref. 36 empirical
results concerning effects of light and darkness on some of the filamentous
fungi are presented, and then a conclusion reached that for those two differ-
ent external conditions one needs two different sets of developmental rules
which cannot be mixed up.

Extension of Tabled 0L-Systems and Languages 313

To allow the discussion of such phenomena within the framework of
L-systems, the idea of a 0L-system was generalized in Ref. 24 to allow a
finite number of sets of productions, rather than one, to be present in a
system (each such set is called a table). The resulting construct is called a
tabled 0L-system (or TOL system for short). In every step of a derivation
all symbols in the string must be simultaneously replaced according to the
production rules chosen from one single, arbitrarily chosen table of the
system. Again, the language of a system is the set of all strings which can be
derived from the axiom including the axiom itself.

In this paper we generalize the notion of a TOL system by adding an
extra component to the definition of a TOL system. This additional compo-
nent (called the target alphabet) is the subset of a total alphabet of a system.
The resulting construct is called an extended TOL system (or ETOL system
for short). The only difference in defining languages by TOL and ETOL
systems is that the language of a given ETOL system is defined as the set of
all strings over the target alphabet which can be derived from the axiom.

ETOL systems and languages (languages defined by ETOL systems)
form a natural extension of TOL systems and languages from three points
of view.

First, the use of intersection of the set of all strings generated from an
axiom with a "terminal" set to define a language is a standard device in
formal language theory.

Second, comparing the original systems of Lindenmayer with grammars
within the Chomsky framework (for example, comparing 0L-systems with
context-free grammars), we notice that the systems of Lindenmayer are
different mainly in that they do not use "nonterminals," and at each step
of a derivation in a given system one must rewrite all (rather than only one)
symbols of a given string. Introducing symbols in the definition of a system
which do not appear in the language of the system reduces the above-men-
tioned difference to one point only. One obtains systems in which our
parallel rewriting process (all letters rewritten at each step) can be directly
compared with the serial rewriting (one letter rewritten at each step) which
is used in the grammars of Chomsky hierarchy.

Third, ETOL-languages are also useful from a biological point of view.
This comes about as follows. When we make our observations of a particular
organism and wish to describe it by strings of symbols we first of all associate
a symbol to each particular cell. We divide the cells into a number of types,
and we associate the same symbol with all the cells of the same type. It is
possible that the development of the organism can be described by a TOL-
system but the TOL-system which describes it uses a finer subdivision into
types than we have decided upon. (This is often experimentally unavoid-
able.) In this case the language of the organism using our subdivision into

8a8/2/4-5

314 Rozenberg

types is a homomorphic image of a TOL-language. It will be shown that the
homomorphic image of any TOL-language is an ETOL-language.

This paper is divided into six sections.
In the next section we define all necessary concepts and give some

examples of ETOL-systems and languages.
In Section 3 we investigate some basic properties of ETOL-systems and

languages. Among the properties under consideration in this section are
the role of erasing productions in ETOL-systems and the effect of codings
on ETOL-languages.

In Section 4 we are looking for subclasses of the class of ETOL-systems
which are powerful enough to define the whole class of ETOL-languages,
using, for example, a minimal number of tables or productions per letter.
We also prove that for each ETOL-language there is an ETOL-system which
generates the language in a way such that each string in the language derives
itself and does not derive any other string.

In Section 5 we consider closure properties of the class of ETOL-lan-
guages. In particular we prove that the family of ETOL-languages forms a
full abstract family of languages (see Ref. 7). This yields a number of inter-
esting consequences and also provides a better link between this family of
languages and some other families studied so far in formal language theory.

In Section 6 we compare different subfamilies of the family of ETOL
languages. Also, a characterization theorem for the class of context-flee
languages is given.

We assume the reader to be familiar with the basic theory of formal
languages (e.g., in the scope of Ref. 17) and in Section 6 we assume some
familiarity with the theory of abstract families of languages (e.g., in the
scope of Ref. 7).

2. D E F I N I T I O N S

In this section we shall give formal definitions and examples of the
systems and languages investigated in this paper.

For the basic terms of formal language theory we shall use the notation
and terminology from Ref. 17 (in Section 5 we shall also use some terminology
from Ref. 7) with the following two additions.

(i) If x is a word over some alphabet V, then Min(x) is defined as
the set of all the letters from V which occur in x.

(ii) Let V and A be finite alphabets. A (partial) function from V into
A is called a coding (from Vinto A), and it is extended to words and languages
over V as follows:

(1) f(A) = A.

Extension of Tabled 0L-Systems and Languages 315

(2) I f x ~ V +, x = al "'" an for al ,..., a~ ~ V, w h e r e f (a j) is defined for

every j ~ {1,..., n}, then f (x) =f(al)f(a2) ""f(an).

(3) I f x ~ V +, x = al "'" a~ for a l , . . . , an E V, where for some j in
{1,..., n}, f(aj) is no t defined, t h e n f (x) is not defined.

(4) I f L _C V*, t h e n f (g) = U~Lf(L).

Definition I. An extended table L-system without interactions, abbre-
viated as an ETOL-system, is defined as a four- tuple G = (V, ~ , co, 27)
such that:

(1) V is a finite set (called the alphabet of G).

(2) ~ is a finite set (called the set of tables of G), N -= {P~ Ps}
for s o m e f ~> 1, each element of which is a finite subset o f V • V*.

satisfies the following (completeness) condition:

(VP)~(Va)v(3~)v*((a, @ ~ P)

(3) co ~ V + (called the axiom of G).

(4) 27 _ V (called the target alphabet of G).

We assume tha t V, 27, and each P in ~ are nonempty sets. The elements of
V -- 27 will be called auxiliary symbols.

Definition 2. An ETOL-system G = (V, ~, w, I) is called:

(1) Propagating if for each P in N we have P C V • V +.

(2) Deterministic if for each P in ~ and each a in V there exists exactly
one ~ in V* such tha t (a , @ ~ P.

(3) A TOL-system if V = 27.

(4) An EOL-system if # - ~ = 1.

(5) A OL-system if V = 27 and # ~ = 1.

We shall use letters P and D to denote the p ropaga t ing or deterministic
restrictions respectively. Thus, for example, a PETOL-system will be an
abbrevia t ion for a "p ropaga t ing ETOL system."

Definition 3. Let G = (V, ~ , co, 27) be an ETOL-system. Let x ~ V +,
x = al "" a e , where each a j , 1 ~< j ~< k, is an element o f V, and let y ~ V*.
We say tha t x directly derives y in G(x =~a y) if, and only if, there exist P
in N a n d p l ,p~ in P such t h a t p l = (a l , ~ l) , P 2 = (a 2 , ~) , - . - , P T ~ =
(a k , ~) (for some 0t I 0~/~ ~ V*), and y = ~ . '- c~. We say tha t x derives
y in G(x ~ y) if, and only if, either (i) there exists a sequence of words
x 0 , x z , x , ~ i n V * (n > l) s u c h t h a t x 0 = x , x , ~ = y , a n d x o = > c x z ~ a - . .
~ c x,~ ; or (ii) x = y.

316 Rozenberg

Here ~ simply denotes the transitive and reflexive closure of the
relation ~ c �9 =~+ shall denote the transitive closure of =>~.

Definition 4. Let G ----- (V, ~ , co, Z) be an ETOL-system. The language
o f G [denoted as ~a(G)] is defined as s = {x E X*: co = ~ x}.

Definition 5. Let Z' be a finite alphabet and L C Z'*. L is called an
ETOL (TOL, OL, EOL) language if, and only if, there exists an ETOL (TOL,
OL, EOL) system G such that ~ (G) = L.

For the purpose of this paper we shall call two ETOL systems equivalent
if their languages are identical.

Notation. Let G = (V, .~, co, X) be an ETOL-system. If (a, @ is
an element of some P in ~ , then we call it a production (for a in P) and
write a -+ a ~ P, or a -+e c~. a -+ a is called an identity production and a -+ A
is called an erasing production. If x ~ c Y "using" an element P of ~ , then
sometimes we shall write x ~ e Y. By ~(G) we shall denote the set of all
derivations in G. This means the set of all sequences (xo, xx , x,) , n >~ 1,
such that x0 = co and xj ~ a x~+l, for 0 ~<j ~< n - 1. Sometimes by a
derivation we shall mean a sequence (Xo, xl ,..., x~) together with the precise
set of productions used in each derivation step but this will always be clear
from the context and should not lead to confusion. If ~ = {P1 ,-.., PI},
then we shall write sometimes G----(V; Pz , P 1 ; w , Z) or in the case
f = I, G = (V, P~ , o~, Z) .

We end this section with some examples of ETOL-systems and languages.

Example I.

G1 = ({a, b, C, D}; {a -+ a, b --+ b, C -+ aCb, D -+ Da},

{a-+a, b--> b, C -+ Cb, D -+ D}, {a-+a, b -+ b, C -+ A, D -+ A};

co, {a, b})

is an ETOL-system which is not propagating.

~(G1) = {anb~a": n >~ 0, m >~ n}

Example 2.

G~ = ({a, b}; {a --+ a 2, b -+ b}, {a -+ a, a -+ ab, a -+ ba, b --+ b}; a, {a, b})

is a PTOL-system.

~(C~) = {x e {a, b}+:

the number of a's in x is 2" for some n ~ 0)

Extension o! Tabled 0L-Systems and Languages 3t7

Example 3.

G~ = <{a, S, A, F}, {S --~ a 3, S --~ A, A ~ A S, A --+ a, F --~ F, a -+ F}, S, {a}>

is a PEOL-system.

~ (G 3) : { a ~}U{aS": n >/0}

Example 4.

G, : ({a, b}, {a -+ (ab) ~, b --~ A}, ab, {a, b}>

is a 0L-system which is not propagating.

s : {(ab)~" : n ~ 1}

3. BASIC PROPERTIES O F ETOL-SYSTEMS

In this section we shall investigate some basic properties of ETOL
systems and languages. Among the properties under consideration are the
role of erasing productions in ETOL-systems and effects of codings on
ETOL-languages.

First we shall state two useful results, the simple proofs of which we
leave to the reader.

Lemma 1. I f G = (V, ~ , oJ, Z> is an ETOL (EOL) system, then
&a(G) = ~ a (H) n Z*, where the TOL (OL) system H is defined as H =
(V, ~ , o,, V).

l.emma 2. There exists an algorithm which for every ETOL (EOL)
system G constructs an equivalent ETOL (EOL) system H = (V, ~ , co, Z)
such that co ~ V - - Z.

As a consequence of Lemma 2 we shall assume in the sequel (unless
otherwise stated) that ETOL-systems we shall deal with have axioms which
are auxiliary symbols.

Now we shall prove that it is decidable whether an arbitrary ETOL
system can generate the empty word.

Lemma 3. There exists an algorithm which for every ETOL-system G
decides whether or not A ~ ~ (G) .

Proof. Let G ~ <V, ~ , S, Z> be an ETOL-system. Let # V = p and
u = 2 ~. Let ~r ~r be a sequence of families of subsets of V, defined
recursively as follows:

(1) W~er if, and only if, there exists a table P in ~ such that
W = {a: a --~v A}.

3|8 Rozenberg

(2) For i ~> 1, W e ~'+a if, and only if, W e ~r or there exist P in
and Z in ~r such that W ----- {a: a --+p ~ for some ~ e Z+}.

It is clear that for each i >~ 1, ~ is finite and its construction is effective.
Note the following properties of the sequence ~r ~r ,...:

(i) ~ C di+z and for every j >~ 2~, ~ = d~.+l. In particular, ~r C d ,
for every i ~> 1.

We leave the easy proof of (i) to the reader.

(ii) If WE ~r for some i ~> 1, then for every x e W +, x =~ A for some
k~<i .

Proof of (ii). We shall prove (ii) by induction on i.

(ii.1) The result is obvious for i = 1.

(ii.2) Let us assume that the result holds for all j ~< i.

(ii.3) Let W e ~ + I and x e W +. We have to consider two cases:
(ii.3.1) I f We~/~ , then the result holds by the inductive assumption.
(ii.3.2) I f W q!~r then there exist P in r and Z in ~ such that
W = {a: a ---~p a for some ~ e Z+}. Thus if x e W +, then x ~ e Y for some

y e Z +. But by the inductive assumption y ~ A for some l ~< i, and so
x ~ + z A, where l § 1 ~< i § 1. This completes the induction on i. Hence
(ii) holds.

(iii) If x e V + and x ~ k A , then there exists W i n d~ such that
Min(x) _C W.

Proof of (iii). We shall prove (iii) by induction on k.

(iii.1) The result is obvious for k = 1.

(iii.2) Let us assume that the result holds for all j ~< k.

(iii.3) Let Min(x) = B and x =>k+z A. Thus x =~j, y ~ A for some P
in ~ and y e V +. Let Min(y) ----- B. By the inductive assumption there exists
C in ~r such that B _c C. Let W = {a: a ---~e ~ for some ~ in C+}. Then
B _C W and, by definition, W s dk+l . This completes the induction on k.
Hence (iii) holds.

(iv) For any x in V +, x ~+ A if, and only if, there exists Win d, , such
that Min(x) _C W.

Proof of (iv). This result follows directly from (i)-(iii).

Now, Lemma 3 can be proved as follows: In order to determine whether
A e ~g(G), construct the sequence d~ , ~r From (iv) it follows that
A ~ La(G) if, and only if, there exists W in ~r such that S e W.

Thus Lemma 3 holds.

Next, we shall prove that if L is an ETOL-language, then so is L u {A}.

Extension of Tabled 0L-Systems and Languages 319

Lemma 4. There exists an algorithm which for every ETOL (EOL)
system G constructs an ETOL (EOL) system H such that ~ (H) = ~ (G) w {A}.

Proof. Let G = (V, N, S, Z> be an ETOL (EOL) system. If A e S(G) ,
then H = G satisfies the condition of the Lemma.

Otherwise let H = (V t.) {~}, .~, ~, Z> be an ETOL (EOL) system such
that S r V and N = { P : P e~} , where for P ~ , P is defined as
P w {$ --~ A, g -+ S}. It is obvious that s = 5e(G) t_) {A}.

Thus Lemma 4 holds.

Remark. Note that the above result is not true if o n e considers 0L
systems only. For example, one may easily prove that {a2~: n >~ 0} is a
0L language, whereas {a2": n ~> 0} u {A} is not.

We now investigate the effects of (partial) codings on ETOL languages.

/.emma 5. There exists an algorithm which for every ETOL (EOL)
system G and every coding h produces an ETOL (EOL) system H such that
~-q~(H) = h(~(G)).

Proof. We shall consider separately cases of ETOL- and EOL-systems.

(i) Let G = (V, ~ , S, Z> be an ETOL-system and h be a coding from
Z into some alphabet A (we may obviously assume that V c~ A = z) .

Let H = (V w A k) {F}, ~ , S, A > be an ETOL-system such that F r V w A
and ~ = Po w {fi: P e ~}, where we have the following:

(1) P0 = {a -+ h(a): a e Z and h(a) is defined}

w {a --~ F: (a ~ Z and h(a) is not defined) or (a ~ Z)}

(2) F o r P ~ , P = P w { a - - ~ F : a ~ V } .

We leave to the reader the easy proof of the fact that ~ (H) = h(L.q~(G)).

(ii) Let G = (V, P, S, Z> be an EOL-system and h be a coding from
Z into some alphabet A.

We shall use the following useful result, which was proved in Ref. 14,
Theorem 7: There exists an algorithm which for every EOL-system G1 will
produce a PEOL-system G~ such that ~q'(G2) = ~ (Gi) -- {A}.

Thus we may construct first a PEOL-system G = (~, P, S, Z> (we
assume that A c~ ~ = ~) such that 5e(G) = ~ (G) -- {A}.

Then we define an EOL-system H = (V~, Pz , Sa, Z> as follows:

(1) Vi = V W Zl t.) {F, Si}, where F1Si ~i V W A.

(2) P1 = P w {a --+ h(a): a ~ Z and h(a) is defined}

w {a--+ F: a ~ A kJ {F}} LJ {S1---~ S} U X

320 Rozenberg

where

l ~ if A r 5e(G)
X = {$1 --~ A} otherwise

(Note that from Lemma 3 it follows that the construction of P1
is effective.)

We leave to the reader the easy proof of the fact that ~ (H) = h(~(G)).
Lemma 5 follows from (i) and (ii).

Lemma 6. There exists an algorithm which, given an ETOL (EOL)
system G, will produce a TOL (OL) system H and a coding h such that
~f(G) = h(Lf(H)).

Proof. Let G = (V, ~ , S, Z) be an ETOL (EOL) system.
Let h be a coding from V into 27 such that for a E V

t a if a ~ 27
h(a)

not defined otherwise

We leave to the reader the easy proof of the fact that if we set H to
be a TOL (OL) system such that H = < V, ~ , S, V), then ~f(G) = h(Lf(H)).

Thus Lemma 6 holds.

We leave to the reader the easy proof of our next result.

Theorem 1. The following statements are equivalent:

(1) L is an ETOL (EOL) language.

(2) There exists a TOL (OL) language K and an alphabet such that
L : K n 27".

(3) There exists a TOL (OL) language K and a coding h such that
L = h(K).

Remark. Note that from Lemmas l, 5, and 6 (and their proofs) it
follows that Theorem 1 is effective in the usual sense, meaning that, for
example, given a TOL-system G and coding h, one may effectively construct
an ETOL-system H such that L(H) ~- h(~f(G)).

4. U N I V E R S A L SUBCLASSES O F T H E CLASS O F ETOL-SYSTEMS

In this section we look for subclasses of the class of ETOL-systems
powerful enough to generate the class of ETOL-languages.

First we shall prove that for each ETOL-system one may produce an

Extension o! Tabled 0L-Systems and Languages 321

equivalent one in which an erasing production (if any) can be applied in the
first step of a derivation only.

Theorem 2. There exists an algorithm which for every ETOL (EOL)
system G produces an equivalent system H such that (1) If A ~ ~L~~ then
H is propagating. (2) If A ~ ~(G) , then there exists only one table in H
containing an erasing production, the table contains exactly one erasing
production, and this unique erasing production is the form S --~ A, where S
is the axiom of H and S does not appear in the right-hand side of any
production in any table of H.

Proof. (i) If G is an EOL-system, then we can use Theorem 7 from
Ref. 14 (which was quoted already in the proof of Lemma 5) to produce an
EOL system G1 = (V1, P1, $1,27) such that ~ (G I) = ~~ - - {A}.

Then we construct an EOL-system H-----(V1 u {$2}, P2, $2, Y,) such
that S~ q~ V1 and P2 = P1 u {$2 -+ $1} • X, where

l;~ if A ~ 5e(G)
X = {S~ --~ A} otherwise

The effectiveness of this construction follows from Lemma 3. But it is
obvious that 5r = ~ (G) and H satisfies conditions of Theorem 2, hence
Theorem 2 holds in the case of an EOL-system.

(ii) Let G = ~ V, g~, S, 2J) be an ETOL-system.
In Ref. 24, Theorem 5 it was proved that there exists an algorithm

which, given a TOL-system G, will produce a PTOL-system C and a coding
h such that 5~ -- {A} = h(5~

Thus if G 1 = (V, ~ , S, V), we may construct a PTOL-system Gz and
a coding h such that 5~(G~) -- {A} = h(d(Gz)).

But then from Lemma 5 it follows that we can construct an ETOL-
system G 3 = (V~, ~ 3 , $3 ,27) such that 2,~ = h(~(G2)).

Now let H be an ETOL system such that

t G3 if A ~ s
H = (V3 W {$4}, ~ 4 , $4,27) otherwise

where $4 ~ Va and ~ = {P: P e ~ -- {P0}} w {P0}, where P0 is an arbitrary
but fixed table from ~3 and (1) for P ~ ~ -- {P0}, P = P w {S 4 --~ $3}, and
(2) Po = Po u {S4 -" A, $4--~ $3}.

Note that the effectiveness of the construction of H follows from
Lemma 3.

We leave to the reader the easy proof of the fact that

.LP(H) = I L~~ if A r ~ (G)
t~(G3) w {A} otherwise

322 Rozenberg

But f rom the construction of the systems G 1 through G3 and f rom Lemma 1
it follows that 5e(G) = ~a(H).

Obviously H satisfies the conditions of Theorem 2 and so this theorem
holds also in the case of an ETOL-system.

Theorem 2 follows f rom (i) and (iii).

We shall prove now the existence of a normal form for ETOL systems
which will be of particular importance later.

Definition 6. An ETOL system G = <V, ~ , co, Z> is said to be in
normal form if:

(1) co s V -- Z and if co appears in some table at the right-hand side
of some production then this is an identity production.

(2) There exists a unique table P1 in ~ (called the initial table) such
that co -+ex ~ for some o~ ~ (V -- Z)*, ~ =/= co, and if a =/= co, then
the only production for a in PI is a --~ a.

3) There exists a unique table Pt in ~ (called the terminal table)
different f rom Pz, such that if a ~ V -- Z - - {co} and a --*e~ ~, then

E Z u {F}, where F is a distinguished symbol in V -- Z such that
F - + F is the only production for F in every table of G. (F is called
the rejection symbol.)

(4) I f a---~eo~ for a E Z , P ~ , then o ~ = a , and if a - + p ~ for
a ~ V -- 2J, P e ~ - - {P~, P~}, then ~ ~ (V -- Z) +.

Theorem 3. (Normal form theorem for ETOL-systems). There exists
an algorithm which for every ETOL-system G produces an equivalent ETOL-
system H such that H is in normal form.

Proof. Let G = (V, ~ , co, Z> be an ETOL-system. By Theorem 2 we
may assume that either G is propagating or there exists exactly one table in

which contains an erasing production which is of the form co --~ A.
Let G' = (V u { S } , ~ ' , S , Z > be an

~ ' = {Po} ~) {P': P ~ ~}, where

=

and for P ~

p, t{s s} P
= t{S -+ S} u (P - - {co ~ A})

ETOL-system such that S ~ V,

if A ~ s
otherwise

if P is propagating
otherwise

It is obvious that 5e(G') = s and by Lemma 2 the construction of G'
is effective.

Extension o! Tabled 0L-Systems and Languages 323

Let V1 = {g: a ~ V t3 {S}) u {F}, where F r V ~A (S}. (2 will denote the

set {8: a ~ Z}.)
Let PI = {S --> ~: S --->e0 ~} u {a -+ a: aV1 u Z}, where if c~ = al "'" an

for some n >~ 1, az ,..., an s V, then & = ~z "'" ~, and if ~ - A, then ~ = A.
If P s ~ ' , then

P ={8 - -~&: a--~e~ and ~ v a A } u { a ~ a : a~27~J{f}}

Let

P ~ = { ~ - + a : as27}u{a--~.a: as2}u{a--->F: a~2kJ27}

Finally, let H = (V1 ~3 27, ~ , S, Z) be an ETOL-system, where ~ =
{P~, P,} u {P: P ~ ~'}.

It is obvious that H satisfies all five conditions of Theorem 3 with P•
being the initial table, P~ the terminal table, and F the rejection symbol.

We leave to the reader the straightforward proof of the fact that ~q~ =
of(G). Thus ~ (H) = ~ (G) and Theorem 3 holds.

ETOL-systems in normal form are important mainly because they
satisfy the following result, the easy proof of which we leave to the reader.

Lemmo 7. Let G = (V, ~ , S, Z) be an ETOL-system in normal form.

(1) If x ~ ~r then in each derivation of x in G the first table used
is the initial table and the last table used is the terminal table. Furthermore,
there exists a derivation of x in V such that both the initial and the terminal
tables are used in this derivation exactly once.

(2) Let x ~ V + and (S, x~ xn = x) be a derivation of x in V. Let
i 0 be the minimal element from {1 n} (if such exist) such that X~o contains
an occurrence of a symbol from 27. Then for every j ~> l"o, xj = x~ ~ and
either xi ~ ~ 27+ or xio ~ (Z ~9 {F}*{F}(27 u {F})* where F is the rejection
symbol of G.

Next we generalize to ETOL-systems the notion of a synchronization
introduced in Ref. 11 for EOL-systems.

Definition 7. If G = (V, ~ , co, 2J) is an ETOL-system, then it is called
synchronized if for every x, y such that x ~ V*27V*, y ~ V +, and x ~ + y
we have y e V*(V -- 27) V*.

Theorem 4. For every ETOL-system there exists an equivalent syn-
chronized ETOL-system.

Proof. (outline). Let G = (V, ~ , S, 27) be an ETOL-system. By Theo-
rem 3 we may assume that G is in normal form. It is obvious that if we
change each table in G in such a way that each production a - + a, where

324 Rozenberg

a is in 27, is replaced by a production a --+ F, where F is the rejecting symbol
from G, then the EOL-system obtained in this way is synchronized.

Hence Theorem 4 follows now from Theorem 3.
Note the duality between ETOL-systems in normal form and synchron-

ized ETOL-systems: If an ETOL-system G ~-- (V, ~ , S, Z) is synchronized
and D =-(xl ,..., xn) is a derivation in G such that x~0 ~ Z + for some
i0 E {1,..., n}, then for every j > io, xj ~ V*(V -- Z) V* u {A}.

On the other hand, if an ETOL-system G ~ (V, ~ , co, Z) is in normal
form and D = (xl , xn) is a derivation in G such that x~ ~ ~ Z + for some
io e { 1,..., n}, then for every j > i0, xj ~ Z +.

It was proved in Ref. 24 that the minimal number of tables needed to
define a language by a TOL-system is a good measure of complexity, giving
rise to an infinite hierarchy of TOL-languages.

We shall prove now that this result does not carry over to ETOL-systems
and languages. In fact, every ETOL-language may be defined by an ETOL-
system having at most two tables.

Theorem 5. There exists an algorithm which for every ETOL-system G
constructs an equivalent ETOL-system H -- (V, ~ , w, Z) such that # ~ ~ 2.

Proof. Let G = (V, ~ , S, Z) be an ETOL-system. Let G1 be the TOL-
system defined as G1 = (V, g , S, V).

It was proved in Ref. 24 that there exists an algorithm which for every
TOL-system G constructs a TOL-system G and a (total) coding h such that
the number of tables in G is not greater than two and 5r = h(5r

Hence we can construct a TOL-system G~ and a coding h such that
~ e (6 0 = h(~(6~)) .

The rest of the proof follows now from Lemma 1, Lemma 5 and its
proof, Theorem 1, and the remark following it.

In fact, the above result is the best one in the sense that one cannot
reduce the number of tables needed to define an arbitrary ETOL language
to one. This is proved as our next result.

Theorem 6. There exists an ETOL-language such that every ETOL-
system generating it contains at least two tables.

Proof. Let G~ be the TOL-system defined in Example 2.
It was proved in Ref. 11, Theorem 4 that ~~ cannot be defined by

an EOL-system. Thus ~(G2) is an example of an ETOL-language satisfying
the conditions of Theorem 6.

Another natural measure of complexity of a TOL-language (in the frame-
work of defining TOL-languages by TOL-systems) is the least number of
productions for some symbol which must appear in some table in any TOL-

Extension of Tabled 0L-Systems and Languages 325

system generating the given language. It was proved in Ref. 24 that this is
a good measure of complexity giving rise to an infinite hierarchy of TOL-
languages.

We shall prove now that the situation is quite different for ETOL-
languages and systems. Every ETOL-language may be defined by an ETOL-
system in which for every letter no table specifies more than two productions.

First let us introduce some auxiliary notation. If G = (V, ~ , S, Z') is
an ETOL-system, then (1) for a e V, P ~ ~ , s(a, P) = #{~: a ---~e ~}, (2) for
a e V, t(a) = maxp~{s(a, P)}, (3) Det G = max~v{t(a)}.

Theorem 7.
constructs an
Det H ~ 2.

There exists an algorithm which for every ETOL-system G
equivalent ETOL-system H = (V, ~ , co, S) such that

Proof. Let G = (V, ~ , S, Z:) be an ETOL-system. Let G1 be the
TOL-system defined as G 1 = (V, ~ , S, V).

It was proved in Ref. 24, Theorem 5 that there exists an algorithm which
for every TOL-system G constructs a TOL-system ~ and a (total) coding h
such that Det G ~< 2. Hence we can construct a TOL-system G~ and a coding
h such that ~(G1) = h(~(G~)).

The rest of the proof follows now from Lemma I, Lemma 5 and its
proof, Theorem 1, and the remark following it.

We leave as an important open problem to investigate whether every
ETOL-language can be generated by a DETOL-system. Although we con-
jecture that this is not the case, we have not been able to prove it.

As for the subclasses of ETOL-systems which we investigate in this
paper, the following result clarifies the picture.

Theorem 8. There exists a OL-language which cannot be generated by
a DEOL-system.

Proof. Let L = {c} k9 {b ~, b 4} u {an: n >/- 1}.
L is a OL-language, since it is generated by the OL-system

({a, b, c}, {a-+a, a--+ a 2, b -+ b, c--+ b 2, c--~ b 4, e - * a}, c, {a, b, c})

We shall show now that the assumption that L is a DEOL-language leads
to a contradiction.

Let us assume that there exists a DEOL-system G = (V, ~ , S, X) such
that oW(G) = L. Then either b ~ ~+ b 4 or b 4 ~+ b 2. But then either 5r
then either ~9~ contains infinitely many strings from {b} + or s176 contains
b, both cases leading to a contradiction.

Thus L is not a DEOL-language and Theorem 8 holds.

8z8/z/4-6

326 Rozenberg

Remark. Note that L can be generated by the DETOL-system

({a, b, e, A}: {a --. a, b -~ b, c --~ b ~, A --~ Aa}, {a ~ a, b --~ b, c --~ b 4, A

--~ A},{a--~a, b--~b, c - + A a , A --- A}; c, {a, b, c})

5. C L O S U R E PROPERTIES O F TI- IE CLASS O F
ETOL-LANGUAGES

In this section we consider a number of operations on languages and
we show that the class of ETOL-languages is closed with respect to all of
them.

In particular we shall prove that the class of ETOL-languages forms a
full abstract family of languages, m This result is important since it distin-
guishes the class of ETOL-languages as the first subfamily of developmental
languages studied so far which forms an abstract family of languages. This
result also gives a stronger link between developmental languages and other
families of languages considered in formal language theory.

Theorem 9. There exists an algorithm which, given two (arbitrary)
ETOL-systems GI, G2, will produce an ETOL-system H such that ~q~(H) =

~'~ u ~-~~

Proof. Let G1 = (V1, ~ 1 , $1, ~1) and G2 = (V2, ~ , S~, Z2) be
ETOL-systems. According to Theorem 4, we may assume that both Gz and
G2 are in normal form. Also, without loss of generality, we may assume that
(V 1 -- (~ ('~ &)) (~ (V 2 -- (~ (~ &)) = ~.

Let S be a new symbol, S ~ V~ u //2 �9 Let

Po = {a ~ a: for every a e Va u V2} u {S ~ $1, S --+ S~}

I f P ~ ~ 1 , then let P = P u {a -+ a: for every a ~ V2 u {S}}. I f P ~ ~ ,
then let P = P u {a --* a: for every a E V1 u {S}}.

Finally, let H = (I11 u V2 u {S}, ~ z , S, Z 1 u Z2) be an ETOL-system
such that ~8 = {P0} u {P: P e ~}.

We leave to the reader the easy proof of the fact that s176
~~ k.) ~~ This completes the proof of Theorem 9.

Theorem 10. There exists an algorithm which, given an arbitrary ETOL-
system G and an arbitrary substitution f into ETOL-languages, will produce
an ETOL-system H such that 5e(H) = f (S~

Proof. Let G = (V, ~ , S, Z) be an ETOL-system such that 5r = L,
and let f be a substitution from ~ into some alphabet A, such that for each

Extension of Tabled 0L-Systems and Languages 327

a in 2J, f(a) = L~, where L~ is an ETOL-language generated by an ETOL-
system Ga = (I r a , # ~ , S~, 27~). We assume that

V n (? Va) = ~ and (v ~ - U x ~) n (v ~ - U 2 ~) = ; ~ ~ ~

for every a, b in X such that a v ~ b. We also assume that the ETOL-systems
G, Ga for a in X are in normal form.

I f P is a table in G, then P is defined as follows: a ~ ~ is in P if, and
only if, (i) a G [.)b~z V6 and c~ = a, or (ii) a ~ V, c~ ~ (V - - 2)* , and a --+
is in P, or (iii) a ~ V, ~ = Sb for some b in 2J, and a -+ b is in P.

I f P is a table in Gb for some b in Z, then P is defined as follows: a --~
is in P if, and only if, (i) a = ~ = S~, or (ii) a -+ ~ is in P, or (iii) o: = a
and a ~ V w U~z-{~} V~.

Finally, let H = (V , ~ , S, 2) be an ETOL-system such that
(1) V = V u (J ~ z V ~ , (2) S = S , (3) 2 = U ~ z 2 7 ~ , (4) ~ =

{P ~ ~ u U o~ ~) .
We shall outline now the p roo f that ~~ =f(~~

(i) f(oLf(G)) C_ ~f(H).

I f x Ef(SC(G)), then for some z in s x = f (z) . Let z = a: "" a ,
for some n >~ 1, a:,.. . ,a, EX [if z = A , then S--~pA for some P in -~,
hence, by construct ion o f H, S - ~ : A for some P in ~ and consequently
x -~f(A) = A ~ o.W(H)].

Since G is in normal form, there exists (see L e m m a 8) a derivation
(Zl ,..., zm) of z in G where zz -~ S and the terminal table of G is applied
only once (in deriving z = z~ f rom z~_a). Hence by the construct ion o f
there exists a derivation (~: ,..., 5,,) in H such that 5~ = S and ~ =
s% ... s % .

But by the construct ion of H, (1) each table in ~ contains a product ion
S~-+ Sa for every a in 27, (2) if a ~= 27 and P ~ ~ , then, if a--->l, % then

= a, (3) for every a in 27 and P in "~a there exists a table P in ~ such tha t
P C p o

Thus if x = o~: "" a~ for ~:

5m = S~ 1 "'" S~,

+

s162 c% G oLf(G%), then

~ l S a , ' " S o ,

+ +

~:c~S~ 3 " ' S a . ~I~ "'" ~ ~: "'" ~"

and consequently c~: ... ~ ~ ~~
Hence f (~(G)) C_ 5e(H).

(ii) ~Cf(H) C_f(oLf(a)).

328 Rozenberg

I f S - -~ A for some i v in ~ and x = A, then f rom the construction of
H it follows that S - ~ e A for some P in ~ and consequently f (x) =
A ~f(SO(G)).

Thus let us assume that S -~ A is not in iv for any iv in ~ .
From the fact that the ETOL-sys tems G and G~ for a e Z' are in normal

forms and from the construction of H [see similar arguments in part (i) of
this proof] it follows that there exists a derivation (of x in G)

(X1 ~...~ X m o ~...~ Xrn 1 , . . .~ Xrn 2 ~...~ X m ~)

where 1 < m 0 < "" < my , p ~> 1, such that (1) x% = S,~ " -S% for some
a~ , a~ in Z such that a l " " a ~ S O (G) , and (2) for 1 ~<i~<p, X~n~----
Cr "'" e~iS,~+~ "'" S % , where 09 E S O (G ,) = f (a j) for 1 ~<j ~<i and all the
productions used in each step of the derivation (xm,_~ ,..., x,,~) are f rom the
set ~,~ <) (S,--+ S , : a ~ Z}.

Thus it easily follows that x = f (a 0 "" f (a~) for some az ' " a~ ~ La(G)
and so x ~ f(SO(G)).

Hence SO(H) _C f(SO(G)).
From (i) and (ii) it follows that SO(H) ----f(SO(G)) and this completes

the proof of Theorem 10.

Theorem 1 1. There exists an algorithm which, given arbitrary ETOL-
systems G1 and G~, will produce an ETOL-sys tem H such that SO(H) ---
SO(G0 ~(G~).

Proof. Let G 1 = (V1, ~ 1 , $1, ~ ' 1) and G 2 = (V~, ~ 2 , $2, Z~) be
ETOL-systems. We assume that (V1 -- (Z1 n 272)) n (V~ -- (271 n Z~)) =
and Gz and G2 are in the normal form.

Let Po = {S --~ S1S2}{a --+ a: for every a E V1 w Vz}, where S is a new
symbol, S ~ 1 7 1 u V~. I f P ~ I , then let P = P c J { a - - ~ a : for every
a ~ V2 w {S}}. I f P ~ ~ , then let P = P u {a -+ a: for every a ~ V1 u {S}}.

Finally, let G = (V, ~ , S, Z') be an ETOL-sys tem such that (1) V =
V1 U V~ U {S}, (2) Z = 27z u Z2, and (3) ~ = {P0} u {P: P ~ ~1 u ~2}-

We leave to the reader the easy proof of the fact that S ~
SO(Gz) SO(G~). Thus Theorem 11 holds.

Theorem 12. There exists
ETOL-sys tem G, will produce
(SO(G)) +.

an algorithm which, given an arbitrary
an ETOL-sys tem H such that SO(H)----

Proof. Let G = (V, ~ , S, 2J) be an ETOL-system. We assume that G
is in normal form. Let Po = {S --~ S, S -+ SS, S -+ S} u {a -~ a: a ~ V},
where S is a new symbol, S ~ V. For every P in ~ let P = {S -+ ~} u P.

Extension o! Tabled 0L-Systems and Languages 329

Finally, let H = (V u {S}, ~ , 5;, 2) be an ETOL-system, where ~ =

{P0} u {P: P + ~}.
We leave to the reader the easy proof of the fact that ~ (H) - - (~e(G)) +.

Thus Theorem 12 holds.

Theorem 13. There exists an algorithm which, given an ETOL-system
G, will produce an ETOL-system H such that ~,e(H) = (~(G))*.

Proof. This result follows directly from Theorem 12 and Lemma 3.

Theorem 14. There exists an algorithm which, given an ETOL-system
G and a finite automaton A, will produce an ETOL-system H such that
5r = 2-C-~(G) n ~f(A).

Proof. Let G =- (V, ~ , S, Z) be an ETOL-system and A =
(Q, U, 8, qo, F) be a finite automaton. We shall assume that G is in normal
form. Let Vl -~ {[q, a, ?1]: q, ?1s Q, a ~ v} be a new alphabet and
D(:- Va u Z u { S } .

I f Po is the initial table of G, then we define To as follows:

To = { a - - ~ a : a ~ V1 u Z u {D}}

w (S ~ X : X = A if A ~ 2~q(A) and X = S otherwise}

u {S-+ [q0, a l , qil][qq, a2, qiJ "'" [qi,_~, a , _ l , qi,_l][qi,_l, a , , q]:

S - + al "'" a , , q ~ F, qil ,..., qi,_l ~ Q}
Po

Let

TI = {a -~ a: a ~ {D, S} w 2} w {[q, a, ?1] ~ a:

a ~ Z and 71 ~ 8(q, a)} u {[q, a, 71] -~ D: 71 ~ 8(q, a)}

I f P is a table in ~ such that P is neither initial nor terminal, then we
define P as follows:

P = {a--~a : a ~ { S , D } w Z }

w {[q, a, 71] --~ [q, a l , qh][q~, a2, q j "'" [qr a , , r/]:

a -+ al ... a , qq qi,_z ~ Q} p

Finally, let H = (V~, ~ , S, Z') be an ETOL-system such that (1) V2 =
V1 w 27 u {D, S} and (2) ~ = {To, TI} u {P: P is neither initial nor terminal
table in ~}.

Since the presented construction is rather standard in formal language

330 Rozenberg

theory (see, e.g., Ref. 6, Theorem 3.2.1), we leave to the reader the formal
proof of the fact that 5e(H) = ~ (G) n s176

Thus Theorem 14 holds.

Theorem 15. There exists an algorithm which, given an ETOL-system
G and a generalized sequential machine A, will produce an ETOL-system H
such that L,e(H) = A(LP(G)).

Proof. Theorem 15 follows from Theorem 10, Theorem 14, and a well-
known result (see, e.g., Lemma 9.3 and its proof in Ref. 17) which says that
if C is the class of languages which is effectively dosed under finite substitu-
tion and intersection with a regular set, then C is effectively closed under
gsm mappings.

Theorem 16. There is an algorithm which, given an ETOL-system G
and a generalized sequential machine A, will produce an ETOL-system H
such that 5e(H) = A-I(Le(G)).

Proof. Theorem 16 follows from Theorems 9, 10, 14, and 15 and a
well-known result (see, e.g., Lemma 9.4 and its proof in Ref. 17) which says
that if C is the class of languages which is effectively closed under union,
A-free substitution, k-limited erasing, and intersection with regular sets,
then C is effectively closed under inverse gsm mappings.

As a straightforward corollary from Theorems 9-16 we have the follow-
ing results.

Theorem 17. The class of ETOL-languages is closed with respect to the
following operations: (i) union, (ii) substitution, (iii) product, (iv) the cross
operator, (v) the star operator, (vi) intersection with a regular set, (vii) gsm
mapping, (viii) inverse gsm mapping.

An important corollary of Theorem 17 is the following result.

Theorem 18. The family of ETOL-languages forms a full abstract
family of languages. This result is quite important for the following reasons.

(1) It puts the family of ETOL-languages in a better perspective.

(2) It distinguishes the family of ETOL-languages as the first subfamily
of developmental languages which has been studied which is a full AFL
(in fact none of the families of developmental languages studies so far was
even a pre-AFL).

(3) It gives a stronger link between developmental languages and
other families of languages studied in formal language theory.

(4) As a corollary of this result, we get the closure of the family of
ETOL-languages with respect to quite a number of other operations.

Extension of Tabled 0L-Systems and Languages 331

As an illustration of point 4, we shall state some simple results which
are corollaries from Theorem 18 and appropriate results from the theory of
abstract families of languages.

Corollary 1. (follows from Theorem 18 and Theorem 2.1 in Ref. 7). The
family of ETOL-languages is closed under arbitrary a-transducers.

Corollary 2. (follows from Theorem 18 and Corollary 2 in Ref. 7). If
L is an ETOLqanguage and R is a regular language, then

L/R ={w: w y ~ L for s o m e y i n R }

and

R\L ---= {w: yw ~ L for somey inR}

are both ETOL-languages.

Corollary 3. (from Theorem 18 and Corollary 3 in Ref. 7). If L is an
ETOL-language, then

Init(L) = {w ~ A:

Fin(L) = {w =/= A:

and
Sub(L) = {w v ~ A:

are ETOL-languages.

w y ~ L for somey}

y w ~ L for somey}

uwv ~ L for some u, v}

6. I N T E R R E L A T I O N S A M O N G S O M E FAMIL IES
O F L A N G U A G E S

In this section we shall compare the generative power of different sub-
families of the family of ETOL-languages. We shall also compare these
families with the languages in the Chomsky hierarchy and with the context-
free programmed languages of Rosenkrantz. 123~

Also, at the end of this section we give a necessary and sufficient condi-
tion for an ETOL-system to generate a context-free language.

Let us first introduce notation for different classes of languages to be
considered.

NEN denotes
~S denotes

denotes
denotes

C~F denotes
~EG denotes

the class of recursively enumerable languages
the class of context-sensitive languages
the class of context-free programmed languages
the class of A-free context-free programmed languages
the class of context-free languages
the class of regular languages

332 Rozenberg

r denotes the class of ETOL languages
~"0L denotes the class of TOL languages
~0L denotes the class of EOL languages
eL denotes the class of 0L languages

For the notion of a (A-free) context-free programmed grammar and
language we refer the reader to Ref. 23.

Theorem 19. The following diagram holds:

EEN=P

CS

P

ETOL

TOL ~ CF

OL I ;~EG

where a solid line denotes the strict inclusion (in the direction indicated)
and when two classes are not connected by a directed path in this diagram
it means that they are incomparable but not disjoint.

Proof.
(i) It was proved in Ref. 23, Theorems 4 and 6 that ~ ---- ~ E N and

~ c ~ s .
(ii) It was proved in Ref. 24, Theorem 6 that 3-0L C ~. In fact one

can apply almost the same proof to show that ~TOL C_ ~ .

(iii) Using a standard method in formal language theory, one may
easily prove (we leave this proof to the reader) that from ~ = ~ E N and

C c~S it follows that the class of A-free context-free programmed lan-
guages is not closed with respect to (erasing) homomorphic mappings.

Thus from (ii) and the fact that the class of ETOL-languages is closed
with respect to an arbitrary homomorphism it follows that @TOL C ~ .

(iv) By definition OL C__ ~-OL C_C_ o~TOL and OL C C. @OL C_ o~TOL.

Extension of Tabled 0L-Systems and Languages 333

(v) It was proved in Ref. 24, Theorem 2 that {a ~} ~A {a2~: n / > 0} is not
a TOL-language, whereas (see Example 3) it is an EOL-language.

(vi) It was proved in Ref. 11, Theorem 4 that the language {x ~ {a, b}+:
the number of a's in x is 2 ~ for some n ~> 0} is not an EOL-language, whereas
(see Example 2) it is a TOL-language.

(vii) It is known (see, e.g., Ref. 32, Corollary 4.5) that c~FC #0L and
it was proved in Ref. 24, Section 2(iv) that there exist regular languages which
are not in ~-0L.

(viii) The well-known fact that ~EG C CgF completes the proof of
Theorem 19.

Now we shall investigate the effect of identity productions in ETOL-
systems.

Lemma 8. There exists an algorithm which, given an arbitrary context-
free grammar G, will produce an EOL-system H = (V, P, S, Z) such that
S~ = ~ (G) and a --~p a for every a in V.

Proof. This result follows from Theorem 1 and Theorem 4.2 in Ref. 24
which, together with its proof, says that there exists an algorithm which,
given an arbitrary context-free grammar G = (Vz, Tz, P~, $1), will produce
a 0L-system H = (V~, P~, $2, V2) such that a --*e~ a for every a in V2 and
SO(G) ~ ,~ (H) f") TI*.

Lemma 9. There exists an algorithm which, given an ETOL-system
G = (V, ~ , S, 27) such that a --*p a for every a in V and every P in ~ , wil
produce a context-free grammar H such that s = 5r

Proof. Let G = (V, ~ , S, 27) be an ETOL-system such that a -+e a for
every a in V a n d every P i n ~ . Let V ~ = { 8 : a s V } and if c ~ V +, ~ =
al "'" as for ai ~ V for 1 <~ i ~< n, then & = ~ ... ~ (also zI = A). Let H =
(V1,27, R, S) be a context-free grammar such that

R = {~--~ ~: a--~e~}u{~--~a: a~27}.

The proof of the fact that s = SO(G) may be done similarly to the
proof of Theorem 4.2 in Ref. 24, and so we leave it to the reader.

Thus Lemma 9 holds.

Lemma 10. If G = (V , P , S , X) is an EOL-system such that a-+pa
for every a in 2J, and H = (V, P, S, ~) is an ETOL-system such that
P = P u {a --~ a: a ~ V -- 27}, then ~ (G) ~ SO(H).

Proof. Let G and H satisfy conditions of Lemma 10.

334 Rozenberg

Obviously 5V(G) _C ~c,q(H) and so it is enough to prove that s162 _C La(G).
To this aim, we shall prove the following claim: For a e V, a E 2J*,

k >~ 1, if a =~r ~, then a = ~ c~.
The proof goes by induction on k as follows.

k = l . I f a ~ / ~ and a ~ X * , then obviously a--+ec~ and so (1)
a ::> a o~.

(2)
(3)

Let us assume that the claim holds for all l ~< k.

I f a ~ / + i c~, then a :>/t/3 =>~ ~ for some/3 e V +.

I f a ~ / 3 is in P, then a ~a /3 , which together with the inductive hypoth-
esis implies that a ~G/3 ~ c~.

I f a -+/3 is not in P, then (by the construction of H) a e V -- Z and
/3 = a. Hence a ='n a =>~ ~. But then by the inductive hypothesis a = ~

k and (because b -- 'e b for every b in Z) ~ ~ a ~- Thus a =~a ~ =~G ~ and so
a :::>~+1 o~.

This completes the proof of our claim.
In particular, f rom the claim it follows that for every ~ in Z* if

S ~ ~, then S 3 + a and so Ga(H) _C ~(G) , which completes the proof of
Lemma 10.

Remark. It is interesting to note that the above result is not true in the
case when one considers ETOL- rather than EOL-systems. Thus, for example,

G = ({A, a}; {A ~ A s, a --~ a}, {A --+ a, a ~ a}; A, {a})

is an ETOL-system containing two tables only. I f we augment either of the
tables of G by the production A --+ A, then the new ETOL-system generates
the language {a} + whereas 5e(G) = {a : : n / > 0}.

Finally we have the following characterization of context-free languages.

Theorem 20. A language is context-free if, and only if, it can be gener-
ated by an EOL-system G where a ~ a is a production for every letter a in
the target alphabet of G.

Proof. This result follows directly f rom Lemmas 8-10.

Remark. Note that the above result does not hold for ETOL-systems.
To the contrary, every ETOL-language can be generated by an ETOL-
system in normal form which is of such a nature that a production a --~ a
is included in every table for every target symbol a. Still (see Theorem 19)
the class of context-free languages is strictly included in the class of ETOL-
languages.

Extension of Tabled 0L-Systems and Languages 335

A C K N O W L E D G M E N T S

The author is grateful to Dr. G. T. Herman and Messrs. K. P. Lee
and A. Walker for corrections to the original manuscript.

REFERENCES

1. R. Baker and G. T. Herman, "Simulation of organisms using a developmental model,
Parts I and II," Int. J. Bio-Med. Comp., to appear.

2. E. F. Codd, Cellular Automata (Academic Press, New York, 1968).
3. D. van Dalen, "A note on some systems of Lindenmayer," Math. Systems Theory

5:128-140 (1971).
4. P. Doucet, "On the membership question in some Lindenmayer systems," Indag.

Math. 34:45-52 (1972).
5. H. Feliciangeli and G. T. Herman, "Algorithms for producing grammars from sample

derivations," J. Comp. Syst. Sci., to appear.
6. S. Ginsburg, The Mathematical Theory of Context-Free Languages (McGraw-Hill,

New York, 1966).
7. S. Ginsburg and S. Greibach, "Abstract families of languages," Mem. Am. Math.

Soc. 87:1-32 (1969).
8. G. T. Herman, "The computing ability of a developmental model for filamentous

organisms," J. Theoret. Biol. 25:421-435 (1969).
9. G. T. Herman, "The role of environment in developmental models," Y. Theoret.

Biol. 29:329-341 (1970.
10. G. T. Herman, "Models for cellular interactions in development without polarity of

individual cells, Parts I and I I ." Int. J. Systems Sci. 2:271-289 (1971) ; 3:149-175 (1972).
11. G. T. Herman, "Closure properties of families of languages associated with biological

systems," submitted to a technical journal, abstract in Proe. 5th Annual Princeton
Conf. Inf. Sciences Syst., 1971.

12. G. T. Herman, "Polar organisms with apolar individual cells," in Proc. Int. Congr.
on Logic, Math. and Phil. o f Science, 1971.

13. G. T. Herman, "The syntactic inference problem as applied to biological systems,"
to appear in Machine Intelligence 7.

14. G. T. Herman, "A biologically motivated extension of Algol-like languages," to appear
in Information and Control.

15. G. T. Herman, K. P. Lee, J. van Leeuwen, and G. Rozenberg, "Characterization of
unary developmental languages," to appear in Discrete Mathematics.

16. G. T. Herman, A. Lindenmayer, and G. Rozenberg, "Description of developmental
systems using recurrence systems," submitted to a technical journal.

17. J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata
(Addison-Wesley, Reading, Mass., 1969).

18. A. Lindenmayer, "Mathematical models for cellular interactions in development,
Parts I and II," J. Theoret. Biol. 18:280-315 (1968).

19. A. Lindenmayer, "Developmental systems without cellular interactions, their languages
and grammars," J. Theoret. Biol. 30:455-484 (1971).

20. A. Lindenmayer, "Cellular automata, formal languages and developmental systems,"
in Proc. Int. Congr. on Logic, Math. and Phil. o f Science, 1971.

21. A. Lindenmayer and G. Rozenberg, "Developmental systems and languages," in
Proc. 4th A C M Symp. Theory Comp. (1972), pp. 214-221.

336 Rozenberg

22. A. Paz and A. Salomaa, "Integral sequential word functions and growth equivalence
of Lindenmayer systems," submitted to a technical journal.

23. D. J. Rosenkrantz, "Programmed grammars and classes of formal languages,"
J. Assoc. Comp. Maeh. 16:107-131 (1969).

24. G. Rozenberg, "TOL systems and languages," to appear in Information and Control.
25. G. Rozenberg, "On 0L languages with restricted use of productions," to appear in

J. Comp. Syst. Sei.
26. G. Rozenberg, "The equivalence problem for deterministic TOL-systems is unde-

cidable," Inf. Processing Letters, 1:201-204 (1972).
27. G. Rozenberg, "L-systems with interactions," to appear in J. Comp. Syst. Sei.
28. G. Rozenberg, "DOL sequences," submitted to a technical journal.
29. G. Rozenberg, "Circularities in DOL sequences," to appear in Revue Roum. de Math.

lures et AppL
30. G. Rozenberg, "Direct proofs of the unsolvability of the equivalence problem for

sentential forms of context-free grammars and the equivalence problem for 0L systems,"
to appear in Inf. Processing Letters.

31. G. Rozenberg, "On a machine model for L-systems without interactions," submitted
to a technical journal.

32. G. Rozenberg and P. Doucet, "On 0L languages," Information and Control 19:302-318
(1971).

33. G. Rozenberg and K. P. Lee, "Some properties of the class of L-languages with
interactions," submitted to a technical journal.

34. G. Rozenberg and K. P. Lee, "Developmental systems with finite axiom sets, Parts I
and II," submitted to a technical journal.

35. G. Rozenberg and A. Lindenmayer, "Developmental systems with locally catenative
formulas," submitted to a technical journal.

36. V. Surapipith and A. Lindenmayer, "Thioquanine-dependent light sensitivity of
Perithecial initiation in Sordia fimicola," J. Gen. Mierob. 57:227-237 (1969).

Printed in Belgium

