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This paper introduces a new family of  languages which originated from a 

study of some mathematical models for the development of  biological 
organisms. Various properties of  this family are established and in particular 
it is proved that it forms a full abstract family of languages. It is compared 
with some other families of languages which have already been studied and 
which either originated from the study of  models for biological development 
or belong to the now standard Chomsky hierarchy. A characterization 
theorem for context-free languages is also established. 

1. I N T R O D U C T I O N  

In 1968 Lindenmayer ~ls~ proposed a theory for the development of filamen- 
tous organisms. During the last four years this theory (now called the theory 
of developmental or L-systems) turned out to be useful and interesting from 
both the biological and formal points of view. 

From the biological point of view L-systems have provided a useful 
theoretical framework within which the nature of cellular behavior in 
development can be discussed, computed, and compared. Their study has 
also provided a number of biologically interesting results. (1,~176 

Although L-systems were originally described in terms of linear arrays 
of automata, they were later reformulated in a more linguistic way using a 
grammarlike concept. In this way the theory of L-systems has moved closer 
to formal language theory and in fact has been found very interesting from 
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a formal language theory point of view. It has provided us with an alternative 
to the now standard Chomsky framework (see, e.g., Refs. 6 and 17) for 
defining languages. As a result of the different approach, the families of 
languages defined by L-systems are rather different from the more traditional 
families that have been studied (see, e.g., Refs. 11, 15, 19-21, 24, 25, 27, 
and 32-34). The novelty of this approach is also reflected by the fact that 
most standard proof techniques in formal language theory were found 
inapplicable to L-languages (languages defined by L-systems) and a set of 
new techniques had to be devised. Also, within the framework of L-systems 
one can discuss sequences as well as sets (/anguages) of strings, in contrast 
to the emphasis on languages within the Chomsky framework (for examples 
of such research see Refs. 5, 13, 16, 21, 22, 28, 29, and 35), Apart from the 
work mentioned above, L-systems have also been investigated in Refs. 3, 
4, 8, 15, 22, 26, 30, 31, and 36. 

An important subclass of L-systems are the so-called 0L-systems (see, 
e.g., Refs. 19 and 32), which are models for multicellular organisms in which 
there is no communication among contemporaneous cells. In such an 
organism each cell is an autonomous unit which behaves according to 
uniform rules, applicable to all cells in the organism. Each cell may be 
present in one of finite number of states, and whether it divides, dies, or 
change its state in a given time interval is determined solely by its current state. 

Thus a 0L-system has the following components: 

(a) A finite set of symbols Z the alphabet. 

(b) A starting string w, the axiom. 

(c) A finite set of productions which tell us by what strings in Z* a 
symbol may be replaced. The set of productions that may be 
applied to a certain symbol depends on the symbol only. In every 
step of a derivation all symbols in the string must be simultaneously 
replaced according to the production rules. 

The language of a system is defined as the set of all strings which can be 
derived from the axiom, including the axiom itself. 

Even within organisms where there is essentially no communication 
between cells one may observe synchronous behavior of different ceils 
positioned in different places in the organism. One such example is the 
behavior of the organism in the presence of the variable environment. An 
example of such behavior is described in Ref. 36. In fact, in Ref. 36 empirical 
results concerning effects of light and darkness on some of the filamentous 
fungi are presented, and then a conclusion reached that for those two differ- 
ent external conditions one needs two different sets of developmental rules 
which cannot be mixed up. 
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To allow the discussion of such phenomena within the framework of 
L-systems, the idea of a 0L-system was generalized in Ref. 24 to allow a 
finite number of sets of productions, rather than one, to be present in a 
system (each such set is called a table). The resulting construct is called a 
tabled 0L-system (or TOL system for short). In every step of a derivation 
all symbols in the string must be simultaneously replaced according to the 
production rules chosen from one single, arbitrarily chosen table of the 
system. Again, the language of a system is the set of all strings which can be 
derived from the axiom including the axiom itself. 

In this paper we generalize the notion of a TOL system by adding an 
extra component to the definition of a TOL system. This additional compo- 
nent (called the target alphabet) is the subset of a total alphabet of a system. 
The resulting construct is called an extended TOL system (or ETOL system 
for short). The only difference in defining languages by TOL and ETOL 
systems is that the language of a given ETOL system is defined as the set of 
all strings over the target alphabet which can be derived from the axiom. 

ETOL systems and languages (languages defined by ETOL systems) 
form a natural extension of TOL systems and languages from three points 
of view. 

First, the use of intersection of the set of all strings generated from an 
axiom with a "terminal" set to define a language is a standard device in 
formal language theory. 

Second, comparing the original systems of Lindenmayer with grammars 
within the Chomsky framework (for example, comparing 0L-systems with 
context-free grammars), we notice that the systems of Lindenmayer are 
different mainly in that they do not use "nonterminals," and at each step 
of a derivation in a given system one must rewrite all (rather than only one) 
symbols of a given string. Introducing symbols in the definition of a system 
which do not appear in the language of the system reduces the above-men- 
tioned difference to one point only. One obtains systems in which our 
parallel rewriting process (all letters rewritten at each step) can be directly 
compared with the serial rewriting (one letter rewritten at each step) which 
is used in the grammars of Chomsky hierarchy. 

Third, ETOL-languages are also useful from a biological point of view. 
This comes about as follows. When we make our observations of a particular 
organism and wish to describe it by strings of symbols we first of all associate 
a symbol to each particular cell. We divide the cells into a number of types, 
and we associate the same symbol with all the cells of the same type. It is 
possible that the development of the organism can be described by a TOL- 
system but the TOL-system which describes it uses a finer subdivision into 
types than we have decided upon. (This is often experimentally unavoid- 
able.) In this case the language of the organism using our subdivision into 
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types is a homomorphic image of a TOL-language. It will be shown that the 
homomorphic image of any TOL-language is an ETOL-language. 

This paper is divided into six sections. 
In the next section we define all necessary concepts and give some 

examples of ETOL-systems and languages. 
In Section 3 we investigate some basic properties of ETOL-systems and 

languages. Among the properties under consideration in this section are 
the role of erasing productions in ETOL-systems and the effect of codings 
on ETOL-languages. 

In Section 4 we are looking for subclasses of the class of ETOL-systems 
which are powerful enough to define the whole class of ETOL-languages, 
using, for example, a minimal number of tables or productions per letter. 
We also prove that for each ETOL-language there is an ETOL-system which 
generates the language in a way such that each string in the language derives 
itself and does not derive any other string. 

In Section 5 we consider closure properties of the class of ETOL-lan- 
guages. In particular we prove that the family of ETOL-languages forms a 
full abstract family of languages (see Ref. 7). This yields a number of inter- 
esting consequences and also provides a better link between this family of 
languages and some other families studied so far in formal language theory. 

In Section 6 we compare different subfamilies of the family of ETOL 
languages. Also, a characterization theorem for the class of context-flee 
languages is given. 

We assume the reader to be familiar with the basic theory of formal 
languages (e.g., in the scope of Ref. 17) and in Section 6 we assume some 
familiarity with the theory of abstract families of languages (e.g., in the 
scope of Ref. 7). 

2. D E F I N I T I O N S  

In this section we shall give formal definitions and examples of the 
systems and languages investigated in this paper. 

For the basic terms of formal language theory we shall use the notation 
and terminology from Ref. 17 (in Section 5 we shall also use some terminology 
from Ref. 7) with the following two additions. 

(i) If  x is a word over some alphabet V, then Min(x) is defined as 
the set of all the letters from V which occur in x. 

(ii) Let V and A be finite alphabets. A (partial) function from V into 
A is called a coding (from Vinto A), and it is extended to words and languages 
over V as follows: 

(1) f(A) = A. 
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(2) I f x  ~ V +, x = al  "'" an for  al  ,..., a~ ~ V, w h e r e f ( a j )  is defined for  

every j ~ {1,..., n}, then f ( x )  =f(al)f(a2) ""f(an). 

(3) I f  x ~ V +, x = al  "'" a~ for  a l , . . . ,  an E V, where for  some j in 
{1,..., n}, f(aj) is no t  defined, t h e n f ( x )  is not  defined. 

(4) I f  L _C V*, t h e n f ( g )  = U~Lf(L). 

Definition I. An  extended table L-system without interactions, abbre-  
viated as an ETOL-system, is defined as a four- tuple G = (V, ~ ,  co, 27) 
such that:  

(1) V is a finite set (called the alphabet of  G). 

(2) ~ is a finite set (called the set of tables of  G), N -= {P~ ..... Ps} 
for  s o m e f  ~> 1, each element  of  which is a finite subset o f  V • V*. 

satisfies the following (completeness) condition: 

(VP)~(Va)v(3~)v*((a, @ ~ P) 

(3) co ~ V + (called the axiom of  G). 

(4) 27 _ V (called the target alphabet of  G). 

We assume tha t  V, 27, and each P in ~ are nonempty  sets. The elements of  
V --  27 will be called auxiliary symbols. 

Definition 2. An ETOL-system G = (V, ~,  w, I )  is called: 

(1) Propagating if  for  each P in N we have P C V • V +. 

(2) Deterministic if for  each P in ~ and  each a in V there exists exactly 
one ~ in V* such tha t  (a ,  @ ~ P. 

(3) A TOL-system if  V = 27. 

(4) An  EOL-system if # - ~  = 1. 

(5) A OL-system if  V = 27 and  # ~  = 1. 

We  shall use letters P and  D to denote  the p ropaga t ing  or deterministic 
restrictions respectively. Thus,  for  example,  a PETOL-system will be an 
abbrevia t ion for  a "p ropaga t ing  ETOL system." 

Definition 3. Let  G = (V, ~ ,  co, 27) be an ETOL-system. Let  x ~ V +, 
x = al  "" a e ,  where each a j ,  1 ~< j ~< k, is an element o f  V, and  let y ~ V*. 
We  say tha t  x directly derives y in G(x =~a y) if, and only if, there exist P 
in N a n d p l  .... ,p~  in P such t h a t p l = ( a l , ~ l ) ,  P 2 = ( a 2 , ~ ) , - . - , P T ~ =  
( a k ,  ~ )  (for some 0t  I . . . . .  0~/~ ~ V*), and y = ~ . '- c~.  We say tha t  x derives 
y in G(x ~ y) if, and only if, either (i) there exists a sequence of  words  
x 0 , x z  .... , x , ~ i n  V * ( n > l )  s u c h t h a t x  0 = x , x , ~ = y ,  a n d x o = > c x z ~ a - . .  
~ c  x,~ ; or  (ii) x = y. 
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Here ~ simply denotes the transitive and reflexive closure of the 
relation ~ c  �9 =~+ shall denote the transitive closure of =>~. 

Definition 4. Let G ----- (V, ~ ,  co, Z )  be an ETOL-system. The language 
o f  G [denoted as ~a(G)] is defined as s = {x E X*: co = ~  x}. 

Definition 5. Let Z' be a finite alphabet and L C Z'*. L is called an 
ETOL (TOL, OL, EOL) language if, and only if, there exists an ETOL (TOL, 
OL, EOL) system G such that ~ (G)  = L. 

For the purpose of this paper we shall call two ETOL systems equivalent 
if their languages are identical. 

Notation. Let G = (V, .~, co, X)  be an ETOL-system. If  (a, @ is 
an element of  some P in ~ ,  then we call it a production (for a in P) and 
write a -+ a ~ P, or a -+e c~. a -+ a is called an identity production and a -+ A 
is called an erasing production. If  x ~ c  Y "using" an element P of ~ ,  then 
sometimes we shall write x ~ e  Y. By ~(G) we shall denote the set of all 
derivations in G. This means the set of all sequences (xo, xx .... , x,) ,  n >~ 1, 
such that x0 = co and xj ~ a  x~+l, for 0 ~<j ~< n -  1. Sometimes by a 
derivation we shall mean a sequence (Xo, xl  ,..., x~) together with the precise 
set of productions used in each derivation step but this will always be clear 
from the context and should not lead to confusion. If  ~ = {P1 ,-.., PI}, 
then we shall write sometimes G----(V; Pz .... , P 1 ; w ,  Z )  or in the case 
f = I, G = ( V, P~ , o~, Z ) .  

We end this section with some examples of ETOL-systems and languages. 

Example I. 

G1 = ({a, b, C, D}; {a -+ a, b --+ b, C -+ aCb, D -+ Da}, 

{a-+a,  b--> b, C -+ Cb, D -+ D}, {a-+a,  b -+ b, C -+ A,  D -+ A}; 

co,  {a, b}) 

is an ETOL-system which is not propagating. 

~(G1) = {anb~a": n >~ 0, m >~ n} 

Example 2. 

G~ = ({a, b}; {a --+ a 2, b -+ b}, {a -+ a, a -+ ab, a -+ ba, b --+ b}; a, {a, b}) 

is a PTOL-system. 

~(C~)  = {x e {a, b}+: 

the number of a's in x is 2" for some n ~ 0) 
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Example 3. 

G~ = <{a, S, A, F}, {S --~ a 3, S --~ A, A ~ A S, A --+ a, F --~ F, a -+ F}, S, {a}> 

is a PEOL-system. 

~ ( G 3 ) : { a  ~}U{aS": n >/0} 

Example 4. 

G, : ({a, b}, {a -+ (ab) ~, b --~ A}, ab, {a, b}> 

is a 0L-system which is not propagating. 

s : {(ab)~" : n ~ 1} 

3. BASIC PROPERTIES O F  ETOL-SYSTEMS 

In this section we shall investigate some basic properties of  ETOL 
systems and languages. Among the properties under consideration are the 
role of  erasing productions in ETOL-systems and effects of codings on 
ETOL-languages. 

First we shall state two useful results, the simple proofs of  which we 
leave to the reader. 

Lemma 1. I f  G = (V, ~ ,  oJ, Z> is an ETOL (EOL) system, then 
&a(G) = ~ a ( H ) n  Z*, where the TOL (OL) system H is defined as H = 
(V, ~ ,  o,, V). 

l.emma 2. There exists an algorithm which for every ETOL (EOL) 
system G constructs an equivalent ETOL (EOL) system H = (V, ~ ,  co, Z )  
such that co ~ V - -  Z. 

As a consequence of Lemma 2 we shall assume in the sequel (unless 
otherwise stated) that ETOL-systems we shall deal with have axioms which 
are auxiliary symbols. 

Now we shall prove that  it is decidable whether an arbitrary ETOL 
system can generate the empty word. 

Lemma 3. There exists an algorithm which for every ETOL-system G 
decides whether or not A ~ ~ (G) .  

Proof. Let G ~ <V, ~ ,  S, Z> be an ETOL-system. Let # V  = p and 
u = 2 ~. Let ~r ~r .... be a sequence of families of subsets of V, defined 
recursively as follows: 

(1) W~er if, and only if, there exists a table P in ~ such that 
W = {a: a --~v A}. 
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(2) For  i ~> 1, W e ~'+a if, and only if, W e ~r or there exist P in 
and Z in ~r such that W ----- {a: a --+p ~ for some ~ e Z+}. 

It is clear that for each i >~ 1, ~ is finite and its construction is effective. 
Note the following properties of the sequence ~r ~r ,...: 

(i) ~ C di+z and for every j >~ 2~, ~ = d~.+l. In particular, ~r C d ,  
for every i ~> 1. 

We leave the easy proof  of (i) to the reader. 

(ii) If  WE ~r for some i ~> 1, then for every x e W +, x =~ A for some 
k~<i .  

Proof of (ii). We shall prove (ii) by induction on i. 

(ii.1) The result is obvious for i = 1. 

(ii.2) Let us assume that the result holds for all j ~< i. 

(ii.3) Let W e ~ + I  and x e  W +. We have to consider two cases: 
(ii.3.1) I f  We~/~ ,  then the result holds by the inductive assumption. 
(ii.3.2) I f  W q!~r then there exist P in r and Z in ~ such that 
W = {a: a ---~p a for some ~ e Z+}. Thus if x e W +, then x ~ e  Y for some 

y e Z +. But by the inductive assumption y ~ A for some l ~< i, and so 
x ~ + z  A, where l § 1 ~< i § 1. This completes the induction on i. Hence 
(ii) holds. 

(iii) If  x e V  + and x ~ k A ,  then there exists W i n  d~ such that 
Min(x) _C W. 

Proof of (iii). We shall prove (iii) by induction on k. 

(iii.1) The result is obvious for k = 1. 

(iii.2) Let us assume that the result holds for all j ~< k. 

(iii.3) Let Min(x) = B and x =>k+z A. Thus x =~j, y ~ A for some P 
in ~ and y e V +. Let Min(y) ----- B. By the inductive assumption there exists 
C in ~r such that B _c C. Let W = {a: a ---~e ~ for some ~ in C+}. Then 
B _C W and, by definition, W s dk+l .  This completes the induction on k. 
Hence (iii) holds. 

(iv) For  any x in V +, x ~+  A if, and only if, there exists Win  d, ,  such 
that Min(x) _C W. 

Proof of (iv). This result follows directly from (i)-(iii). 

Now, Lemma 3 can be proved as follows: In order to determine whether 
A e ~g(G), construct the sequence d~ .... , ~r From (iv) it follows that 
A ~ La(G) if, and only if, there exists W in ~r such that S e W. 

Thus Lemma 3 holds. 

Next, we shall prove that if L is an ETOL-language, then so is L u {A}. 
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Lemma 4. There exists an algorithm which for every ETOL (EOL) 
system G constructs an ETOL (EOL) system H such that ~ ( H )  = ~ ( G )  w {A}. 

Proof. Let G = (V, N, S, Z> be an ETOL (EOL) system. If  A e S(G) ,  
then H = G satisfies the condition of the Lemma. 

Otherwise let H = (V t.) {~}, .~, ~, Z> be an ETOL (EOL) system such 
that S r  V and N = { P :  P e~} ,  where for P ~ ,  P is defined as 
P w {$ --~ A, g -+ S}. It is obvious that s = 5e(G) t_) {A}. 

Thus Lemma 4 holds. 

Remark. Note that the above result is not true if o n e  considers 0L 
systems only. For example, one may easily prove that {a2~: n >~ 0} is a 
0L language, whereas {a2": n ~> 0} u {A} is not. 

We now investigate the effects of (partial) codings on ETOL languages. 

/.emma 5. There exists an algorithm which for every ETOL (EOL) 
system G and every coding h produces an ETOL (EOL) system H such that 
~-q~(H) = h(~(G)). 

Proof. We shall consider separately cases of ETOL- and EOL-systems. 

(i) Let G = (V, ~ ,  S, Z> be an ETOL-system and h be a coding from 
Z into some alphabet A (we may obviously assume that V c~ A = z ) .  

Let H = (V w A k) {F}, ~ ,  S, A > be an ETOL-system such that F r V w A 
and ~ = Po w {fi: P e ~}, where we have the following: 

(1) P0 = {a -+ h(a): a e Z and h(a) is defined} 

w {a --~ F: (a ~ Z and h(a) is not defined) or (a ~ Z)} 

(2) F o r P ~ , P = P w { a - - ~ F : a ~ V } .  

We leave to the reader the easy proof  of the fact that ~ ( H )  = h(L.q~(G)). 

(ii) Let G = (V, P, S, Z> be an EOL-system and h be a coding from 
Z into some alphabet A. 

We shall use the following useful result, which was proved in Ref. 14, 
Theorem 7: There exists an algorithm which for every EOL-system G1 will 
produce a PEOL-system G~ such that ~q'(G2) = ~ (Gi )  -- {A}. 

Thus we may construct first a PEOL-system G = (~, P, S, Z> (we 
assume that A c~ ~ = ~ )  such that 5e(G) = ~ ( G )  -- {A}. 

Then we define an EOL-system H = (V~, Pz ,  Sa, Z> as follows: 

(1) Vi = V W Zl t.) {F, Si}, where F1Si ~i V W A. 

(2) P1 = P w {a --+ h(a): a ~ Z and h(a) is defined} 

w {a--+ F: a ~ A kJ {F}} LJ {S1---~ S} U X 
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where 

l ~  if A r 5e(G) 
X = {$1 --~ A} otherwise 

(Note that from Lemma 3 it follows that the construction of P1 
is effective.) 

We leave to the reader the easy proof  of the fact that ~ ( H )  = h(~(G)). 
Lemma 5 follows from (i) and (ii). 

Lemma 6. There exists an algorithm which, given an ETOL (EOL) 
system G, will produce a TOL (OL) system H and a coding h such that 
~f(G) = h(Lf(H)). 

Proof. Let G = (V, ~ ,  S, Z )  be an ETOL (EOL) system. 
Let h be a coding from V into 27 such that for a E V 

t a if a ~ 27 
h(a) 

not defined otherwise 

We leave to the reader the easy proof  of the fact that if we set H to 
be a TOL (OL) system such that H = < V, ~ ,  S, V), then ~f(G) = h(Lf(H)). 

Thus Lemma 6 holds. 

We leave to the reader the easy proof  of our next result. 

Theorem 1. The following statements are equivalent: 

(1) L is an ETOL (EOL) language. 

(2) There exists a TOL (OL) language K and an alphabet such that 
L : K n  27". 

(3) There exists a TOL (OL) language K and a coding h such that 
L = h(K). 

Remark. Note that from Lemmas l, 5, and 6 (and their proofs) it 
follows that Theorem 1 is effective in the usual sense, meaning that, for 
example, given a TOL-system G and coding h, one may effectively construct 
an ETOL-system H such that L(H) ~- h(~f(G)). 

4. U N I V E R S A L  SUBCLASSES O F  T H E  CLASS O F  ETOL-SYSTEMS 

In this section we look for subclasses of the class of ETOL-systems 
powerful enough to generate the class of ETOL-languages. 

First we shall prove that for each ETOL-system one may produce an 
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equivalent one in which an erasing production (if any) can be applied in the 
first step of a derivation only. 

Theorem 2. There exists an algorithm which for every ETOL (EOL) 
system G produces an equivalent system H such that (1) If  A ~ ~L~~ then 
H is propagating. (2) If  A ~ ~(G) ,  then there exists only one table in H 
containing an erasing production, the table contains exactly one erasing 
production, and this unique erasing production is the form S --~ A, where S 
is the axiom of H and S does not appear in the right-hand side of  any 
production in any table of H. 

Proof. (i) If  G is an EOL-system, then we can use Theorem 7 from 
Ref. 14 (which was quoted already in the proof  of Lemma 5) to produce an 
EOL system G1 = (V1, P1,  $1,27)  such that ~ ( G I )  = ~~  - -  {A}. 

Then we construct an EOL-system H-----(V1 u {$2}, P2, $2, Y,) such 
that S~ q~ V1 and P2 = P1 u {$2 -+ $1} • X, where 

l;~ if A ~ 5e(G) 
X = {S~ --~ A} otherwise 

The effectiveness of this construction follows from Lemma 3. But it is 
obvious that 5r = ~ ( G )  and H satisfies conditions of Theorem 2, hence 
Theorem 2 holds in the case of an EOL-system. 

(ii) Let G = ~ V, g~, S, 2J) be an ETOL-system. 
In Ref. 24, Theorem 5 it was proved that there exists an algorithm 

which, given a TOL-system G, will produce a PTOL-system C and a coding 
h such that 5~ -- {A} = h(5~ 

Thus if G 1 = (V, ~ ,  S, V), we may construct a PTOL-system Gz and 
a coding h such that 5~(G~) --  {A} = h(d(Gz)). 

But then from Lemma 5 it follows that we can construct an ETOL- 
system G 3 = (V~, ~ 3 ,  $3 ,27)  such that 2,~ = h(~(G2)). 

Now let H be an ETOL system such that 

t G3 if A ~ s 
H = (V3 W {$4}, ~ 4 ,  $4,27) otherwise 

where $4 ~ Va and ~ = {P: P e ~ -- {P0}} w {P0}, where P0 is an arbitrary 
but fixed table from ~3 and (1) for P ~ ~ -- {P0}, P = P w {S 4 --~ $3}, and 
(2) Po = Po u {S4 -" A, $4--~ $3}. 

Note that the effectiveness of the construction of H follows from 
Lemma 3. 

We leave to the reader the easy proof  of  the fact that 

.LP(H) = I L~~ if A r ~ ( G )  
t~(G3) w {A} otherwise 
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But f rom the construction of the systems G 1 through G3 and f rom Lemma 1 
it follows that 5e(G) = ~a(H). 

Obviously H satisfies the conditions of  Theorem 2 and so this theorem 
holds also in the case of  an ETOL-system. 

Theorem 2 follows f rom (i) and (iii). 

We shall prove now the existence of a normal form for ETOL systems 
which will be of  particular importance later. 

Definition 6. An ETOL system G = <V, ~ ,  co, Z> is said to be in 
normal form if: 

(1) co s V --  Z and if co appears in some table at the right-hand side 
of  some production then this is an identity production. 

(2) There exists a unique table P1 in ~ (called the initial table) such 
that co -+ex ~ for some o~ ~ (V --  Z)*,  ~ =/= co, and if a =/= co, then 
the only production for a in PI  is a --~ a. 

3) There exists a unique table Pt in ~ (called the terminal table) 
different f rom Pz, such that if a ~ V --  Z - -  {co} and a --*e~ ~, then 

E Z u {F}, where F is a distinguished symbol in V --  Z such that  
F - +  F is the only production for F in every table of  G. (F is called 
the rejection symbol.) 

(4) I f  a---~eo~ for a E Z ,  P ~ ,  then o ~ = a ,  and if a - + p ~  for 
a ~ V --  2J, P e ~ - -  {P~, P~}, then ~ ~ (V --  Z)  +. 

Theorem 3. (Normal form theorem for ETOL-systems). There exists 
an algorithm which for every ETOL-system G produces an equivalent ETOL- 
system H such that H is in normal form. 

Proof. Let G = (V, ~ ,  co, Z> be an ETOL-system. By Theorem 2 we 
may assume that  either G is propagating or there exists exactly one table in 

which contains an erasing production which is of  the form co --~ A. 
Let G' = ( V u { S } , ~ ' , S , Z >  be an 

~ '  = {Po} ~) {P': P ~ ~}, where 

= 

and for P ~ 

p, t{s s} P 
= t{S -+  S} u (P - -  {co ~ A}) 

ETOL-system such that S ~ V, 

if  A ~ s 
otherwise 

if P is propagating 
otherwise 

It  is obvious that 5e(G') = s and by Lemma 2 the construction of G' 
is effective. 
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Let V1 = {g: a ~ V t3 {S}) u {F}, where F r  V ~A (S}. (2  will denote the 

set {8: a ~ Z}.) 
Let PI = {S --> ~: S --->e0 ~} u {a -+ a: aV1 u Z}, where if c~ = al "'" an 

for some n >~ 1, az ,..., an s V, then & = ~z "'" ~, and if ~ - A, then ~ = A. 
If  P s ~ ' ,  then 

P ={8 - -~&:  a--~e~ and ~ v a A } u { a ~ a :  a~27~J{f}} 

Let 

P ~ = { ~ - + a :  as27}u{a--~.a: as2}u{a--->F: a~2kJ27} 

Finally, let H = (V1 ~3 27, ~ ,  S, Z )  be an ETOL-system, where ~ = 
{P~, P,} u {P: P ~ ~'}. 

It is obvious that H satisfies all five conditions of Theorem 3 with P• 
being the initial table, P~ the terminal table, and F the rejection symbol. 

We leave to the reader the straightforward proof  of  the fact that ~q~ = 
of(G). Thus ~ ( H )  = ~ (G)  and Theorem 3 holds. 

ETOL-systems in normal form are important mainly because they 
satisfy the following result, the easy proof  of which we leave to the reader. 

Lemmo 7. Let G = (V, ~ ,  S, Z )  be an ETOL-system in normal form. 

(1) If  x ~ ~r then in each derivation of x in G the first table used 
is the initial table and the last table used is the terminal table. Furthermore, 
there exists a derivation of x in V such that both the initial and the terminal 
tables are used in this derivation exactly once. 

(2) Let x ~ V + and (S, x~ ..... xn = x) be a derivation of x in V. Let 
i 0 be the minimal element from {1 ..... n} (if such exist) such that X~o contains 
an occurrence of a symbol from 27. Then for every j ~> l"o, xj = x~ ~ and 
either xi ~ ~ 27+ or xio ~ (Z ~9 {F}*{F}(27 u {F})* where F is the rejection 
symbol of G. 

Next we generalize to ETOL-systems the notion of  a synchronization 
introduced in Ref. 11 for EOL-systems. 

Definition 7. If  G = (V, ~ ,  co, 2J) is an ETOL-system, then it is called 
synchronized if for every x, y such that x ~ V*27V*, y ~ V +, and x ~ +  y 
we have y e V*(V -- 27) V*. 

Theorem 4. For every ETOL-system there exists an equivalent syn- 
chronized ETOL-system. 

Proof. (outline). Let G = (V, ~ ,  S, 27) be an ETOL-system. By Theo- 
rem 3 we may assume that G is in normal form. It is obvious that if we 
change each table in G in such a way that each production a - +  a, where 
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a is in 27, is replaced by a production a --+ F, where F is the rejecting symbol 
from G, then the EOL-system obtained in this way is synchronized. 

Hence Theorem 4 follows now from Theorem 3. 
Note the duality between ETOL-systems in normal form and synchron- 

ized ETOL-systems: If  an ETOL-system G ~-- (V, ~ ,  S, Z )  is synchronized 
and D =-(xl  ,..., xn) is a derivation in G such that x~0 ~ Z + for some 
i0 E {1,..., n}, then for every j  > io, xj ~ V*(V -- Z) V* u {A}. 

On the other hand, if an ETOL-system G ~ (V, ~ ,  co, Z )  is in normal 
form and D = (xl .... , xn) is a derivation in G such that x~ ~ ~ Z + for some 
io e { 1,..., n}, then for every j > i0, xj ~ Z +. 

It was proved in Ref. 24 that the minimal number of tables needed to 
define a language by a TOL-system is a good measure of complexity, giving 
rise to an infinite hierarchy of TOL-languages. 

We shall prove now that this result does not carry over to ETOL-systems 
and languages. In fact, every ETOL-language may be defined by an ETOL- 
system having at most two tables. 

Theorem 5. There exists an algorithm which for every ETOL-system G 
constructs an equivalent ETOL-system H -- (V, ~ ,  w, Z )  such that # ~  ~ 2. 

Proof. Let G = (V, ~ ,  S, Z )  be an ETOL-system. Let G1 be the TOL- 
system defined as G1 = (V, g ,  S, V). 

It was proved in Ref. 24 that there exists an algorithm which for every 
TOL-system G constructs a TOL-system G and a (total) coding h such that 
the number of tables in G is not greater than two and 5r = h(5r 

Hence we can construct a TOL-system G~ and a coding h such that 
~ e ( 6 0  = h(~(6~)) .  

The rest of the proof  follows now from Lemma 1, Lemma 5 and its 
proof, Theorem 1, and the remark following it. 

In fact, the above result is the best one in the sense that one cannot 
reduce the number of tables needed to define an arbitrary ETOL language 
to one. This is proved as our next result. 

Theorem 6. There exists an ETOL-language such that every ETOL- 
system generating it contains at least two tables. 

Proof. Let G~ be the TOL-system defined in Example 2. 
It was proved in Ref. 11, Theorem 4 that ~~ cannot be defined by 

an EOL-system. Thus ~(G2) is an example of an ETOL-language satisfying 
the conditions of Theorem 6. 

Another natural measure of complexity of a TOL-language (in the frame- 
work of defining TOL-languages by TOL-systems) is the least number of  
productions for some symbol which must appear in some table in any TOL- 
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system generating the given language. It was proved in Ref. 24 that this is 
a good measure of complexity giving rise to an infinite hierarchy of TOL- 
languages. 

We shall prove now that the situation is quite different for ETOL- 
languages and systems. Every ETOL-language may be defined by an ETOL- 
system in which for every letter no table specifies more than two productions. 

First let us introduce some auxiliary notation. If  G = (V, ~ ,  S, Z') is 
an ETOL-system, then (1) for a e V, P ~ ~ ,  s(a, P)  = #{~: a ---~e ~}, (2) for 
a e V, t(a) = maxp~{s(a, P)}, (3) Det G = max~v{t(a)}. 

Theorem 7. 
constructs an 
Det H ~ 2. 

There exists an algorithm which for every ETOL-system G 
equivalent ETOL-system H = (V, ~ ,  co, S )  such that 

Proof. Let G = (V, ~ ,  S, Z:) be an ETOL-system. Let G1 be the 
TOL-system defined as G 1 = (V, ~ ,  S, V). 

It was proved in Ref. 24, Theorem 5 that there exists an algorithm which 
for every TOL-system G constructs a TOL-system ~ and a (total) coding h 
such that Det G ~< 2. Hence we can construct a TOL-system G~ and a coding 
h such that ~(G1) = h(~(G~)). 

The rest of the proof  follows now from Lemma I, Lemma 5 and its 
proof, Theorem 1, and the remark following it. 

We leave as an important open problem to investigate whether every 
ETOL-language can be generated by a DETOL-system. Although we con- 
jecture that this is not the case, we have not been able to prove it. 

As for the subclasses of ETOL-systems which we investigate in this 
paper, the following result clarifies the picture. 

Theorem 8. There exists a OL-language which cannot be generated by 
a DEOL-system. 

Proof. Let L = {c} k9 {b ~, b 4} u {an: n >/- 1}. 
L is a OL-language, since it is generated by the OL-system 

({a, b, c}, {a-+a,  a--+ a 2, b -+ b, c--+ b 2, c--~ b 4, e - *  a}, c, {a, b, c}) 

We shall show now that the assumption that L is a DEOL-language leads 
to a contradiction. 

Let us assume that there exists a DEOL-system G = (V,  ~ ,  S, X )  such 
that oW(G) = L. Then either b ~ ~+  b 4 or b 4 ~+  b 2. But then either 5r 
then either ~9~ contains infinitely many strings from {b} + or s176 contains 
b, both cases leading to a contradiction. 

Thus L is not a DEOL-language and Theorem 8 holds. 

8z8/z/4-6 
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Remark. Note that L can be generated by the DETOL-system 

({a, b, e, A}: {a --. a, b -~ b, c --~ b ~, A --~ Aa}, {a ~ a, b --~ b, c --~ b 4, A 

--~ A},{a--~a,  b--~b, c - + A a ,  A --- A}; c, {a, b, c}) 

5. C L O S U R E  PROPERTIES  O F  TI- IE CLASS O F  
ETOL-LANGUAGES 

In this section we consider a number of  operations on languages and 
we show that the class of  ETOL-languages is closed with respect to all of 
them. 

In particular we shall prove that the class of  ETOL-languages forms a 
full abstract family of  languages, m This result is important  since it distin- 
guishes the class of  ETOL-languages as the first subfamily of developmental 
languages studied so far which forms an abstract family of  languages. This 
result also gives a stronger link between developmental languages and other 
families of languages considered in formal language theory. 

Theorem 9. There exists an algorithm which, given two (arbitrary) 
ETOL-systems GI,  G2, will produce an ETOL-system H such that ~q~(H) = 

~'~ u ~-~~ 

Proof. Let G1 = (V1, ~ 1 ,  $1, ~1) and G2 = (V2, ~ ,  S~, Z2) be 
ETOL-systems. According to Theorem 4, we may assume that both Gz and 
G2 are in normal form. Also, without loss of generality, we may assume that 
(V 1 -- (~ ('~ &)) (~ (V 2 -- (~ (~ &)) = ~. 

Let S be a new symbol, S ~ V~ u //2 �9 Let 

Po = {a ~ a: for every a e Va u V2} u {S ~ $1, S --+ S~} 

I f  P ~ ~ 1  , then let P = P u {a -+ a: for every a ~ V2 u {S}}. I f  P ~ ~ ,  
then let P = P u {a --* a: for every a E V1 u {S}}. 

Finally, let H = (I11 u V2 u {S}, ~ z ,  S, Z 1 u Z2) be an ETOL-system 
such that ~8  = {P0} u {P: P e ~}. 

We leave to the reader the easy proof  of the fact that  s176 
~~ k.) ~~ This completes the proof  of Theorem 9. 

Theorem 10. There exists an algorithm which, given an arbitrary ETOL- 
system G and an arbitrary substitution f into ETOL-languages, will produce 
an ETOL-system H such that 5e(H) = f (S~  

Proof. Let G = (V, ~ ,  S, Z )  be an ETOL-system such that 5r = L, 
and let f be a substitution from ~ into some alphabet A, such that for each 
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a in 2J, f(a) = L~, where L~ is an ETOL-language generated by an ETOL- 
system Ga = ( I r a ,  # ~ ,  S~, 27~). We assume that  

V n ( ?  Va) = ~ and ( v ~ - U x ~ ) n ( v ~ - U 2 ~ ) =  ; ~ ~  ~ 

for every a, b in X such that  a v ~ b. We also assume that  the ETOL-systems 
G, Ga for a in X are in normal  form. 

I f  P is a table in G, then P is defined as follows: a ~ ~ is in P if, and 
only if, (i) a G [.)b~z V6 and c~ = a, or  (ii) a ~ V, c~ ~ (V - -  2 )* ,  and a --+ 
is in P, or (iii) a ~ V, ~ = Sb for  some b in 2J, and a -+ b is in P. 

I f  P is a table in Gb for some b in Z, then P is defined as follows: a --~ 
is in P if, and only if, (i) a = ~ = S~, or  (ii) a -+  ~ is in P, or  (iii) o: = a 
and a ~ V w U~z-{~} V~. 

Finally, let H = ( V , ~ ,  S, 2 )  be an ETOL-system such that  
(1) V =  V u  ( J ~ z V ~ ,  (2) S = S ,  (3) 2 = U ~ z 2 7 ~ ,  (4) ~ = 

{P ~ ~ u U o~ ~ ) .  
We shall outline now the p roo f  that  ~~ =f(~~ 

(i) f(oLf(G)) C_ ~f(H). 

I f  x Ef(SC(G)), then for some z in s x = f ( z ) .  Let  z = a: "" a ,  
for  some n >~ 1, a:,.. . ,a, EX [if z = A ,  then S--~pA for some P in -~, 
hence, by construct ion o f  H, S - ~ :  A for some P in ~ and consequently 
x -~f(A) = A ~ o.W(H)]. 

Since G is in normal  form, there exists (see L e m m a  8) a derivation 
(Zl ,..., zm) of  z in G where zz -~ S and the terminal table of  G is applied 
only once (in deriving z = z~ f rom z~_a). Hence by the construct ion o f  
there exists a derivation (~: ,..., 5,,) in H such that  5~ = S and ~ = 
s% ... s % .  

But by the construct ion of  H, (1) each table in ~ contains a product ion  
S~-+ Sa for  every a in 27, (2) if a ~= 27 and P ~ ~ ,  then, if a--->l, % then 

= a, (3) for every a in 27 and P in "~a there exists a table P in ~ such tha t  
P C p o  

Thus if x = o~: "" a~ for ~: 

5m = S~ 1 "'" S~, 

+ 

s162 c% G oLf(G%), then 

~ l S a , ' " S o ,  

+ + 

~:c~S~ 3 " ' S a .  ~I~ "'" ~ ~: "'" ~" 

and consequently c~: ... ~ ~ ~~ 
Hence f (~(G)) C_ 5e(H). 

(ii) ~Cf(H) C_f(oLf(a)). 
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I f  S - -~  A for some i v in ~ and x = A, then f rom the construction of 
H it follows that S - ~ e  A for some P in ~ and consequently f ( x ) =  
A ~f(SO(G)).  

Thus let us assume that  S -~ A is not in iv for any iv in ~ .  
From the fact that the ETOL-sys tems  G and G~ for a e Z' are in normal 

forms and from the construction of H [see similar arguments in part  (i) of 
this proof] it follows that there exists a derivation (of x in G) 

(X1 ~...~ X m  o ~...~ Xrn 1 , . . .~  Xrn 2 ~...~ X m ~ )  

where 1 < m 0 < "" < my ,  p ~> 1, such that (1) x% = S,~ " -S% for some 
a~ .... , a~  in Z such that  a l " " a ~ S O ( G ) ,  and (2) for 1 ~<i~<p,  X~n~---- 
Cr "'" e~iS,~+~ "'" S % ,  where 09 E S O ( G , ) = f ( a j )  for 1 ~<j ~<i and all the 
productions used in each step of the derivation (xm,_~ ,..., x,,~) are f rom the 
set ~,~ <) (S,--+ S ,  : a ~ Z}.  

Thus it easily follows that  x = f ( a 0  "" f (a~)  for some az ' "  a~ ~ La(G) 
and so x ~ f(SO(G)). 

Hence SO(H) _C f(SO(G)). 
From (i) and (ii) it follows that SO(H) ----f(SO(G)) and this completes 

the proof  of  Theorem 10. 

Theorem 1 1. There exists an algorithm which, given arbitrary ETOL- 
systems G1 and G~, will produce an ETOL-sys tem H such that SO(H) --- 
SO(G0 ~(G~). 

Proof. Let G 1 = (V1, ~ 1 ,  $1, ~ ' 1 )  and G 2 = (V~, ~ 2 ,  $2, Z~) be 
ETOL-systems.  We assume that (V1 --  (Z1 n 272)) n (V~ --  (271 n Z~)) = 
and Gz and G2 are in the normal form. 

Let Po = {S --~ S1S2}{a --+ a: for every a E V1 w Vz}, where S is a new 
symbol, S ~ 1 7 1 u  V~. I f  P ~ I ,  then let P = P c J { a - - ~ a :  for every 
a ~ V2 w {S}}. I f  P ~ ~ ,  then let P = P u {a -+ a: for every a ~ V1 u {S}}. 

Finally, let G = (V, ~ ,  S, Z')  be an ETOL-sys tem such that  (1) V = 
V1 U V~ U {S}, (2) Z = 27z u Z2,  and (3) ~ = {P0} u {P: P ~ ~1 u ~2}- 

We leave to the reader the easy proof  of  the fact that S ~  
SO(Gz) SO(G~). Thus Theorem 11 holds. 

Theorem 12. There exists 
ETOL-sys tem G, will produce 
(SO(G)) +. 

an algorithm which, given an arbitrary 
an ETOL-sys tem H such that SO(H)---- 

Proof. Let G = (V, ~ ,  S, 2J) be an ETOL-system.  We assume that G 
is in normal form. Let Po = {S --~ S, S -+ SS,  S -+ S} u {a -~  a: a ~ V}, 
where S is a new symbol, S ~ V. For every P in ~ let P = {S -+ ~} u P. 
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Finally, let H = ( V u  {S}, ~ ,  5;, 2 )  be an ETOL-system, where ~ = 

{P0} u {P: P + ~}. 
We leave to the reader the easy proof  of the fact that ~ ( H )  - -  (~e(G)) +. 

Thus Theorem 12 holds. 

Theorem 13. There exists an algorithm which, given an ETOL-system 
G, will produce an ETOL-system H such that  ~,e(H) = (~(G))*.  

Proof. This result follows directly from Theorem 12 and Lemma 3. 

Theorem 14. There exists an algorithm which, given an ETOL-system 
G and a finite automaton A, will produce an ETOL-system H such that 
5r = 2-C-~(G) n ~f(A). 

Proof. Let G =- (V, ~ ,  S, Z )  be an ETOL-system and A = 
(Q, U, 8, qo, F )  be a finite automaton.  We shall assume that G is in normal 
form. Let Vl -~ {[q, a, ?1]: q, ?1s Q, a ~  v} be a new alphabet and 
D(:- Va u Z u { S } .  

I f  Po is the initial table of G, then we define To as follows: 

To = { a - - ~ a : a ~  V1 u Z  u {D}} 

w (S ~ X : X = A if A ~ 2~q(A) and X = S otherwise} 

u {S-+ [q0, a l ,  qil][qq, a2, qiJ "'" [qi,_~, a , _ l ,  qi,_l][qi,_l, a , ,  q]: 

S - +  al "'" a ,  , q ~ F, qil ,..., qi,_l ~ Q} 
Po 

Let 

TI = {a -~ a: a ~ {D, S} w 2} w {[q, a, ?1] ~ a: 

a ~ Z and 71 ~ 8(q, a)} u {[q, a, 71] -~ D: 71 ~ 8(q, a)} 

I f  P is a table in ~ such that P is neither initial nor  terminal, then we 
define P as follows: 

P = {a--~a : a ~ { S , D }  w Z }  

w {[q, a, 71] --~ [q, a l ,  qh][q~, a2, q j  "'" [qr a , ,  r/]: 

a -+ al ... a ,  qq ..... qi,_z ~ Q} p 

Finally, let H = (V~, ~ ,  S, Z')  be an ETOL-system such that (1) V2 = 
V1 w 27 u {D, S} and (2) ~ = {To, TI} u {P: P is neither initial nor terminal 
table in ~}. 

Since the presented construction is rather standard in formal language 
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theory (see, e.g., Ref. 6, Theorem 3.2.1), we leave to the reader the formal 
proof  of the fact that 5e(H) = ~ (G)  n s176 

Thus Theorem 14 holds. 

Theorem 15. There exists an algorithm which, given an ETOL-system 
G and a generalized sequential machine A, will produce an ETOL-system H 
such that L,e(H) = A(LP(G)). 

Proof. Theorem 15 follows from Theorem 10, Theorem 14, and a well- 
known result (see, e.g., Lemma 9.3 and its proof  in Ref. 17) which says that 
if C is the class of languages which is effectively dosed under finite substitu- 
tion and intersection with a regular set, then C is effectively closed under 
gsm mappings. 

Theorem 16. There is an algorithm which, given an ETOL-system G 
and a generalized sequential machine A, will produce an ETOL-system H 
such that 5e(H) = A-I(Le(G)). 

Proof. Theorem 16 follows from Theorems 9, 10, 14, and 15 and a 
well-known result (see, e.g., Lemma 9.4 and its proof  in Ref. 17) which says 
that if C is the class of languages which is effectively closed under union, 
A-free substitution, k-limited erasing, and intersection with regular sets, 
then C is effectively closed under inverse gsm mappings. 

As a straightforward corollary from Theorems 9-16 we have the follow- 
ing results. 

Theorem 17. The class of ETOL-languages is closed with respect to the 
following operations: (i) union, (ii) substitution, (iii) product, (iv) the cross 
operator, (v) the star operator, (vi) intersection with a regular set, (vii) gsm 
mapping, (viii) inverse gsm mapping. 

An important corollary of  Theorem 17 is the following result. 

Theorem 18. The family of ETOL-languages forms a full abstract 
family of  languages. This result is quite important for the following reasons. 

(1) It puts the family of ETOL-languages in a better perspective. 

(2) It distinguishes the family of ETOL-languages as the first subfamily 
of developmental languages which has been studied which is a full AFL 
(in fact none of the families of developmental languages studies so far was 
even a pre-AFL). 

(3) It gives a stronger link between developmental languages and 
other families of languages studied in formal language theory. 

(4) As a corollary of this result, we get the closure of  the family of 
ETOL-languages with respect to quite a number of other operations. 
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As an illustration of point 4, we shall state some simple results which 
are corollaries from Theorem 18 and appropriate results from the theory of 
abstract families of languages. 

Corollary 1. (follows from Theorem 18 and Theorem 2.1 in Ref. 7). The 
family of ETOL-languages is closed under arbitrary a-transducers. 

Corollary 2. (follows from Theorem 18 and Corollary 2 in Ref. 7). If 
L is an ETOLqanguage and R is a regular language, then 

L/R ={w: w y ~ L  for s o m e y i n R }  

and 

R\L ---= {w: yw ~ L for somey inR}  

are both ETOL-languages. 

Corollary 3. (from Theorem 18 and Corollary 3 in Ref. 7). If L is an 
ETOL-language, then 

Init(L) = {w ~ A: 

Fin(L) = {w =/= A: 

and 
Sub(L) = {w v ~ A: 

are ETOL-languages. 

w y ~ L  for somey} 

y w ~ L  for somey} 

uwv ~ L for some u, v} 

6. I N T E R R E L A T I O N S  A M O N G  S O M E  FAMIL IES 
O F  L A N G U A G E S  

In this section we shall compare the generative power of different sub- 
families of the family of ETOL-languages. We shall also compare these 
families with the languages in the Chomsky hierarchy and with the context- 
free programmed languages of Rosenkrantz. 123~ 

Also, at the end of this section we give a necessary and sufficient condi- 
tion for an ETOL-system to generate a context-free language. 

Let us first introduce notation for different classes of languages to be 
considered. 

NEN denotes 
~S denotes 

denotes 
denotes 

C~F denotes 
~EG denotes 

the class of recursively enumerable languages 
the class of context-sensitive languages 
the class of context-free programmed languages 
the class of A-free context-free programmed languages 
the class of context-free languages 
the class of regular languages 



332 Rozenberg 

r denotes the class of ETOL languages 
~"0L denotes the class of TOL languages 
~0L denotes the class of EOL languages 
eL denotes the class of 0L languages 

For the notion of a (A-free) context-free programmed grammar and 
language we refer the reader to Ref. 23. 

Theorem 19. The following diagram holds: 

EEN=P 

CS 

P 

ETOL 

TOL ~ CF 

OL I ;~EG 

where a solid line denotes the strict inclusion (in the direction indicated) 
and when two classes are not connected by a directed path in this diagram 
it means that they are incomparable but not disjoint. 

Proof. 
(i) It was proved in Ref. 23, Theorems 4 and 6 that ~ ---- ~ E N  and 

~ c ~ s .  
(ii) It was proved in Ref. 24, Theorem 6 that 3-0L C ~.  In fact one 

can apply almost the same proof to show that ~TOL C_ ~ .  

(iii) Using a standard method in formal language theory, one may 
easily prove (we leave this proof to the reader) that from ~ = ~ E N  and 

C c~S it follows that the class of A-free context-free programmed lan- 
guages is not closed with respect to (erasing) homomorphic mappings. 

Thus from (ii) and the fact that the class of ETOL-languages is closed 
with respect to an arbitrary homomorphism it follows that @TOL C ~ .  

(iv) By definition OL C__ ~-OL C_C_ o~TOL and OL C C. @OL C_ o~TOL. 
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(v) It was proved in Ref. 24, Theorem 2 that {a ~} ~A {a2~: n / >  0} is not 
a TOL-language, whereas (see Example 3) it is an EOL-language. 

(vi) It was proved in Ref. 11, Theorem 4 that the language {x ~ {a, b}+: 
the number of a's in x is 2 ~ for some n ~> 0} is not an EOL-language, whereas 
(see Example 2) it is a TOL-language. 

(vii) It is known (see, e.g., Ref. 32, Corollary 4.5) that c~FC #0L and 
it was proved in Ref. 24, Section 2(iv) that there exist regular languages which 
are not in ~-0L. 

(viii) The well-known fact that ~EG C CgF completes the proof  of 
Theorem 19. 

Now we shall investigate the effect of identity productions in ETOL- 
systems. 

Lemma 8. There exists an algorithm which, given an arbitrary context- 
free grammar G, will produce an EOL-system H = (V, P, S, Z )  such that 
S~ = ~ ( G )  and a --~p a for every a in V. 

Proof. This result follows from Theorem 1 and Theorem 4.2 in Ref. 24 
which, together with its proof, says that there exists an algorithm which, 
given an arbitrary context-free grammar G = (Vz,  Tz, P~, $1), will produce 
a 0L-system H = (V~, P~, $2, V2) such that a --*e~ a for every a in V2 and 
SO(G) ~ ,~ (H)  f") TI*. 

Lemma 9. There exists an algorithm which, given an ETOL-system 
G = ( V, ~ ,  S, 27) such that a --*p a for every a in V and every P in ~ ,  wil 
produce a context-free grammar H such that s = 5r 

Proof. Let G = ( V, ~ ,  S, 27) be an ETOL-system such that a -+e a for 
every a in V a n d  every P i n  ~ .  Let V ~ = { 8 : a s V }  and if c ~ V  +, ~ =  
al "'" as for ai ~ V for 1 <~ i ~< n, then & = ~ ... ~ (also zI = A). Let H = 
(V1,27, R, S )  be a context-free grammar such that 

R = {~--~ ~: a--~e~}u{~--~a: a~27}. 

The proof  of the fact that s = SO(G) may be done similarly to the 
proof  of Theorem 4.2 in Ref. 24, and so we leave it to the reader. 

Thus Lemma 9 holds. 

Lemma 10. If  G = ( V , P , S , X )  is an EOL-system such that a-+pa 
for every a in 2J, and H = (V, P, S, ~ )  is an ETOL-system such that 
P = P u {a --~ a: a ~ V -- 27}, then ~ ( G )  ~ SO(H). 

Proof. Let G and H satisfy conditions of Lemma 10. 
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Obviously 5V(G) _C ~c,q(H) and so it is enough to prove that s162 _C La(G). 
To this aim, we shall prove the following claim: For  a e V, a E 2J*, 

k >~ 1, if a =~r ~, then a = ~  c~. 
The proof  goes by induction on k as follows. 

k = l .  I f  a ~ / ~  and a ~ X * ,  then obviously a--+ec~ and so (1) 
a ::> a o~. 

(2) 
(3) 

Let us assume that the claim holds for all l ~< k. 

I f  a ~ / + i  c~, then a :>/t/3 =>~ ~ for some/3 e V +. 

I f  a ~ / 3  is in P, then a ~a /3 ,  which together with the inductive hypoth- 
esis implies that a ~G/3 ~ c~. 

I f  a -+/3 is not in P, then (by the construction of H)  a e V --  Z and 
/3 = a. Hence a ='n a =>~ ~. But then by the inductive hypothesis a = ~  

k and (because b -- 'e b for every b in Z)  ~ ~ a  ~- Thus a =~a ~ =~G ~ and so 
a :::>~+1 o~. 

This completes the proof  of  our claim. 
In particular, f rom the claim it follows that for every ~ in Z*  if 

S ~ ~, then S 3 + a and so Ga(H) _C ~(G) ,  which completes the proof  of 
Lemma 10. 

Remark. It  is interesting to note that the above result is not true in the 
case when one considers ETOL- rather than EOL-systems. Thus, for example, 

G = ({A, a}; {A ~ A s, a --~ a}, {A --+ a, a ~ a}; A, {a}) 

is an ETOL-system containing two tables only. I f  we augment either of  the 
tables of G by the production A --+ A, then the new ETOL-system generates 
the language {a} + whereas 5e(G) = {a : :  n / >  0}. 

Finally we have the following characterization of context-free languages. 

Theorem 20. A language is context-free if, and only if, it can be gener- 
ated by an EOL-system G where a ~ a is a production for every letter a in 
the target alphabet of G. 

Proof. This result follows directly f rom Lemmas 8-10. 

Remark. Note that the above result does not hold for ETOL-systems. 
To the contrary, every ETOL-language can be generated by an ETOL- 
system in normal form which is of  such a nature that a production a --~ a 
is included in every table for every target symbol a. Still (see Theorem 19) 
the class of  context-free languages is strictly included in the class of  ETOL- 
languages. 
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