
International Journal o f Computer and Information Sciences, Vol, 2, No. 4, 1973

A Theory of Dynamic File Management
in a Multilevel Store

Lawrence L. Rose 1,~ and Malcolm H. Got terer 1,3

Revised June 1973

This paper describes the concept of dynamic file management. The objective
of the theoretical model defined is to minimize the throughput time of any
computer system with a multilevel store. A measure of throughput time is
derived to be a function of job run time, file movement time, and file con-
figuration choice time. This, plus locally imposed exogenous policies, provides
a basis for dynamically moving files within the multilevel store to minimize
throughput time.

1. I N T R O D U C T I O N

The workload for many computer systems is ever-changing and difficult to
predict far in advance. Yet secondary storage file allocation1 is static in
almost every computer system. By this we mean that file position does not
change with respect to changes in system or user demands. This results in a
slowing down of the system whenever the workload requires extensive use
of files in the lower levels of the multilevel store. It would be advantageous
to have a system which dynamically moves files within the multilevel store
to accommodate the current load. Denning 1 notes that "... a centralized
resource allocation method is necessary to monitor the entire system and
control resource usage to satisfy objectives both of good service and system
efficiency."

1 Department of Computer Sciences, Pennsylvania State University, University Park,
Pennsylvania.

2 Present address: School for Applied Technology, State University of New York at
Binghamton, Binghamton, New York.

3 Present address: Department of Mathematical Sciences, Florida International University,
Tamiami Trail, Miami, Florida.

249
�9 1973 Plenum Publishing Corporation, 227 West 17th Street, New- York, N.Y. 10011.

828/2[4-I

250 Rose and Gotterer

The model to be derived shall act as a guide for a Dynamic File Man-
ager (DFM) whose task is to keep the files under reference optimally located
at all times in the multilevel store. For the formal model, file position in the
multilevel store shall be considered optimal if it minimizes throughput time.
First we shall formally describe those portions of a computer system that
are relevant to dynamics secondary storage file management. Then we shall
derive a definition of throughput time. Finally, we shall derive the sequence
M* of file storage configurations which minimizes throughput time.

2. M O D E L D E F I N I T I O N

This model is applicable only to computers having multilevel secondary
storage. The basic theoretical model assumes a pure store: Each file in the
system resides on one and only one device in the multilevel store. This is in
no way a restriction; rather, it simplifies the basic definitions so they may
be more easily understood.

A Computer File System
f i , secondary storage devices

CFS

F

D

E

(CFS) shall consist of a finite number of files
dj , and jobs em:

= {F, D, E} given

= {f~ ,f~ , f~) (1)

= (d~, d2 dq}

= {el, e2 e~)

A Demand Set consists of the job file references placed upon CFS during
work period k: $I~ C F • E,

Sk -- {(fi, era): e~ references f i during work period k} (2)

Given a CFS, a Configuration Set is a snapshot of all files on the devices
at the start of work period k: CI~ C F • D,

Ck = {(f~, dj): f i is on dj at start of work period k} (3)

While the definitions of Sk and Ck are concise, it is not clear exactly what
a work period k constitutes. We assert that, given a CFS, one can start the
system processing the jobs in E (batch, multiprogramming, whatever) and
derive Sk and C1,_1 for k = 1, 2 until E is exhausted by the following
algorithm.

Demand-Configuration Algorithm (see Fig. 1). Let N denote the maximum
allowable size for any Se.

1. k ~ - - 1 ; (S t = A f o r t = l , 2,...).

2. C~_1 ~-- current file configuration [see (3)]; L = 0.

A Theory of Dynamic File Management in a Mul t i leve l Store 25t

+
current file]

I Ck-l+ configuration

<1__2 2

Fig. I. Flowchart of demand-configuration algorithm.

3. (a, b) + - next file reference [see (2)]; if no more activity, STOP.

4. I f (a, b) altered C~_ 1 , then L 4 - 1 and go to 6.

5. I f L =~ 0, then Sk+l + - {(a, b)} and go to 8.

6. s~ ~ - s ~ w {(a, b)}.
7. I f [S~ I < N, then go to 3.

8. k + - - k + 1; go to 2.

Using this procedure, one can construct two sets:

M = { C O , C z , C a , . . . , C~-1}, R = { S ~ , S 2 , S ~ ,S~} (4)

The subset of M • R consisting of the ordered pairs (Ci , St) such tha t
j ~ i + 1 can be -used to characterize the evolut ion of file p lacement in the

252 Rose and Gotterer

multilevel store with respect to the file demands of the job sets in a pairwise
sequential manner.

Let us examine the work processed by CFS during arbitrary period m.
I f (e~, fi) ~ St , then some portion of job ei was executed during period t.
Let w~,~ represent that portion of job e~ processed during period t. Then
the total amount of work done by CFS during period t is

W~={wm,~: Vi (e ~ , f i) ~ S t for some i} (5)

We can then redefine the set of work processed by CFS to be

B = {m~, m2, W~ , W ~ } ~ k = I M I (6)

Assertation. Given CFS, B ~ E.

Proof. Let em ~ E; then e~ ~ - { w ~ . h , w~,~ ,..., w~,k,} for some finite
n. By definition of W~, each wm,k~ ~ Wk~ ; hence em ~ B. Thus E _C B. Let
w,~,e ~ B ~ (e f i) ~ Se -~ w~,e ~ e~ C E. Hence B = E. QED

Now we can look at the subset M • B consisting of the ordered pairs
(C~, W~.)~j = i + 1 which characterize the stepwise processing by the
system CFS of the workload E. Thus set B identifies the manner in which
the set of jobs E is processed.

Definition 1. The time function N(a, b) computes how long it takes
to process workset b under initial configuration a.

Now we can initially define the throughput time of system CFS to process
workload B under the configuration sequence M:

TPT(B, M, k) = Z N(C,_a, W,) (7)
i = 1

This sets the stage for the basic theoretical model. Given a CFS, how does
one optimize M = {Co, C~, C2 , Ck_~} to minimize the run time for
each W~ s B which in turn will minimize throughput time for B ?

3. A P P R O A C H I N G T H E P R O B L E M

Let us first isolate the jobset B from all else. This set represents the
work to be done. Given B, then ~M' ~ {A1, A2 Ak} of configurations
defined as was M [Eq. (4)] that is optimal with respect to processing each
W~ ~ B. In other words,

k

TTk = ~ N (A k , Wi) is minimal (8)
i = 1

A Theory of Dynamic File Management in a Multilevel Store 253

In Eq. (7) the configuration transformations Co to C1 to C2, etc., were as
a result of doing required work in B, so no extra time was required or
requested to produce M. At first glance it may appear that TT~ constitues a
valid definition of TPT(B, M', k). However, M' is not necessarily the natural
set of configurations and TPT(B, M', k) must take this into consideration.
Only for the trivial case where Ai = C~_1 V~, 1 ~ i ~< k, is TT~ equal to
TPT(B, M', k). Otherwise let t be the least i ~ Ct-1 =/= A~. Then in order to
process W~ against A~, we must first transform the memory config~aration
from Ct_~ to At �9 We thus have an additional time requirement to transform
C~-I to A t .

Definition 2. The time function U(a, b) computes how long it takes to
transform files in the multilevel store from file configuration a to file con-
figuration b.

Then U(C~_~, At) shall denote the time required to leave the Ct-1 con-
figuration to go into the A~ configuration. Certainly TPT(B, M', k) must
take this time into consideration.

In addition, from periods t + 1 throughk we shall also have the additional
time requirement of U(A~_ 1 , Ai), t < i ~< k, to achieve the next Ai needed
to process W~. Now a proper definition for TPT under M' can be made:

/e

TPT(B, M', k) = ~ U(A~_x, A~) q- TTk ~ Ao = Co (9)
i = l

Note that if M' = M, then U(Ai_z, A~) = 0 for i = 1, 2,..., k. Thus Eq. (9)
is consistent with TPT as previously defined [Eq. (7)]. Let us retain only
Eq. (9) for the definition of TPT since Eq. (7) holds just for the trivial case
of M, the natural sequence of configurations.

Now let us examine Eq. (9). By assumption, M' is the optimal sequence
to reduce the second term of TPT(B, M', k). What about the first term, the
time required between each jobset to readjust the file configuration? Since
M' did not take the function U into consideration, we cannot assume any
longer that TPT(B, M', k) is minimal.

Again, given B and Co, then 3 set M* = {Qa, Q2 , Q~} such that
Q1 ~- Co and TPT(B, M*, k) is minimized.

How does one, in practice or in theory, find this set M* that minimizes
TPT for jobset B ? The thesis of dynamic secondary storage file management
is that one can, through a heuristic model, closely approximate this sequence
of optimal configurations M*.

We have tried to lay a foundation to fully describe the problem to be
solved. Also, it is clear that, for a given solution M, TPT will measure the
goodness of that solution by accurately determining the throughput time
required to process jobset B under configuration sequence M.

254 Rose and Gotterer

4. S O L U T I O N T O T H E P R O B L E M

Unfortunately, the fact that there exists an optimal sequence M* which,
given B, minimizes TPT(B, M*, k) gives no insight into how one might find
this sequence M*. It is clear that function TPT consists of two components:
file move time U and jobset process time N. How can we minimize both of
these functions simultaneously for all Q~ ~ M* ?

Let us first decide upon an optimization strategy. What assumptions
are to be made about B, the set of work demands to the system? In pure
theory we may assume that we know (or the Oracle can tell us) all of B.
Under this assumption then 3 a set M* of optimal configurations such that
TPT(B, M*, k) is minimal.

Note that k is arbitrarily large, but certainly finite, if we consider the
set B to terminate when the input to our system CFS stops or the system
halts itself for one reason or another. We might try to characterize the input
stream B and use queueing theory to optimize M to produce or derive
M*, using a model such as Shedler's. t~)

Consider now that we wish to design a practical model to simulate the
mathematical solution to our problem. Our problem then should have
practical assumptions or it shall be unusable. We do not wish to impose
any restrictions upon this problem that would remove it from reality. There-
fore we shall not assume any knowledge of any input stream whatsoever.
The DF M must react to what happens, not what it knows will happen.

This means that we cannot minimize TPT to a global optimum. The
only way TPT can be optimized globally is in a nondeterministic manner
and the D F M model must be deterministic to be practically implemented.
We must do our best, using heuristics, to derive the locally optimal set of
configurations as B is processed, workset by workset.

Let us examine the recursive definition of TPT:

TPT(B, M, k) = TPT(B, M, k -- 1) -}- U(C~_~, Ck) --]- N(Ck, Wk) (10)

Between work sets W~_I and W~ in B we must alter configuration
C~_1 to Ck and then process file work Wk. Note the dilemma here. One
cannot assume that minimizing U and N for each W~ will minimize TPT.
For example, say the system CFS is at configuration Q . The Oracle sees
that work set W~+n for arbitrary n will be most time consuming, thus
C~ = C~, k ~ t ~< k q- n, is the optimal sequence of configurations. How
can we know that without an n-lookahead potential? Clearly we cannot;
thus set n = 0 for the D F M model for a look ahead of n ~-- 1 or 2 or k
does us no good for n > k. Given no look ahead, there the DFM's job
shall be to predict what configuration should be best, based upon past
demands to the system.

A Theory of Dynamic File Management in a Multilevel Store 255

5. DFM D E C I S I O N T I M E

Looking at definition (10) of throughput time, let it be clear that the
DFM is charged with choosing and constructing C~ from Q-1 Vk �9 We must
consider this DFM overhead: the time required at each step to choose C~
given C~_z. This should be reflected in TPT if it is to be a true measure of
our efforts since the DFM needs CPU time.

Two further definitions are necessary. First let us define the function R,
short for the DFM decision function:

R(Ck) = C/e+1 (11)

Second, this decision must be timed, so define function Z as the timer func-
tion as follows.

Definition 3. Z(k) is the time required for the DFM function R to
choose C~+:.

Now we can make the final adjustment to TPT so that it properly
measures the time required to process jobsets under DFM management:

TPT(M, B, k + 1)

-~ TPT(M, B, k) + Z(k) + U(Q, R(Q)) § N(R(C~), Wk+l) (12)

At each stage the DFM must choose the next configuration, produce it,
and then process the next jobset under the new configuration. This entire
process, over arbitrary jobsets, is to be minimized.

For any system, given CFS, we can compute its basic throughput time
TPT(M, B, k). The objective of the DFM is to minimize TPT(M*, B, k)'Ok
by deriving the set M*, element by element for each time period.

A simulation model (the DFM) is necessary in order to exemplify the
heuristics for deriving a close approximation to M*. Also, it was found that
TPT(M*, B, k) ~ TPT(M, B, k), thus showing the feasibility and usefulness
of such a model.

6. T H E DFM S I M U L A T O R

The DFM decision function R(Q) as defined in Eq. (11) has no know-
ledge of any future jobsets We V t > k. Thus the configuration Q+I = R(Q)
chosen may very well not minimize N(C~+I, Wk+O. Not only is this detri-
mental to the minimization of TPT(B, M*, k), but the time spent choosing
Q+I, Z(k), and the time spent proceeding to Q , U(Q, Ck+O, are all for
naught. In other words, DFM decision errors can be very costly with respect
to the throughput time function (12).

256 Rose and Gotterer

Let us assume that at time period k the DFM evaluates the entire
system; i.e., the decision function R takes configurations Co ,..., C~_1 and
jobsets Wz ,..., W~ into consideration to determine the next configuration
Ck. Then at time period k -k 1 must the DFM decision function R consider
the total past history again ? Clearly, the further back toward Co and Wz
the decision function looks, the better its final decision should be. Also,
however, the further back R looks, the longer the time spent making the
decision (Z).

The DFM model must exhibit balance between U and N while keeping
Z to a minimum if TPT is to be minimized. If Z(k) is large for all k, then
R(C~) will have to be correct to minimize N. Looking at the three components
of TPT, Z and U represent DFM work time. The time the DFM is trying
to save is the difference between running jobset Wk+l under configuration
C~ ; or choosing a new configuration C~+1, moving memory files from C~
to Ck+z, and then running Wk+l under C~+1 ; i.e. all the DFM activity must
be justified by shortened run times for W~+i under the new configuration
Ck+l �9

Equation (12) provides a basis for the physical movement of files in
a multilevel store. Local policies, as they effect both the set of users and
the system itself, must form an integral part of the implementation of the
DFM model. The better the DFM strategies, the closer its set of chosen
configurations will approach the optimal configuration sequence.

REFERENCES

1. Peter J. Denning, "Third generation systems," ACM Computing Surveys 3(4):178 (1971).
2. G. S. Shedler, "A queueing model of a multiprogrammed computer with a two-level

storage system," CACM 16(2):3-10 (1973).

