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Abstract. Winner-Take-All (WTA) or K-Winner-Take-All (KWTA) networks have been frequently used as the 
basic building blocks of complex neural networks. This paper introduces a new selection rule for network 
connections that implements stable KWTA networks. To widen the applications of WTA networks, a new class 
of WTA networks is proposed, and their efficient design methods are presented. We demonstrate the properties 
of the generalized class of WTA networks, through three application examples. 

1. Introduct ion  

In many neural network models, the selection of a node that encodes the best match of 
the testing pattern is an essential part of the processing. This selection process is usually 
implemented using a class of networks called the WTA (Winner-Take-All) network. Note- 
worthy systems that use the WTA network are the ART networks [1], [2], Kononen's self- 
organizing feature map and LVQ [3], the Lippmann's hamming net [4], and DBNN [5]. 

Due to the important role of the WTA network in the design of neural networks (especially 
for those networks that utilize competitive learning), the implementation of the WTA net- 
works using various types of node models has been studied [6], [7], [8], [9], [4]. Recently, 
the WTA network was extended to the K-Winner-Take-All (KWTA) network where the 
network allows multiple winners [i0], [I 1]. This relaxation in the number of winners is 
useful in a wider variety of applications. For example, Erlanson et al. [12] developed the 
analog decoding network of error correcting codes, where noisy vectors transmitted over 
are correctly decoded at the receiver using a KWTA network. 

In this paper we suggest two general design techniques for the KWTA network. The 
first one develops the design using the recurrent structure of the Hopfield-type network. 
Through this technique, we extend the work of Majani et al. [10] on the KWTA network 
to general network connections. More specifically, we develop recurrent networks for both 
inhibitory and excitatory connections. The second technique is based on a feedforward 
network structure, in which stability is of minor importance. 

Although the KWTA network relaxes the stringent requirement of the conventional WTA 
network on the number of winners, there is still a need to define other types of WTA 
networks that can be utilized in a variety of applications. Hereafter, we will refer to the 
conventional WTA as the pure-WTA network and the term WTA will be used to represent 
general classes of winner related networks. We introduce a generalized class that includes 
several new types of WTA networks. One of these networks is called the Kth-WTA (Kth- 
Winner-Take-ALL) network which identifies the Kth largest out of N values. Similarly, we 
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introduce the LTA (Looser-Take-All) network, which seeks the minimum of input values. 
The corresponding modification results in the KLTA and the Kth-LTA networks. We further 
develop the rank-range WTA (RRWTA) network that identifies any range of ranks from the 
given set of input values. This network structure defines the generalized class of networks 
that include all the above WTA and LTA structures. 

Based on the new class of WTA networks introduced, we demonstrate three application 
examples: the design of an analog sorting network, an order-statistics filter, and the design 
of an analog fault-tolerant system. All the networks proposed are readily implemented 
in hardware with basic electronic components (such as resistors, capacitors, and op amps, 
etc.), and thus they are attractive for real-time applications. 

This paper is organized as follows. Section 2 introduces a new parameter selection in 
the design of KWTA networks, discusses practical implementation issues, and proves the 
convergence of the K winners in the appendix. Section 3 introduces a generalized class of 
WTA networks and proposes a design method based on the KWTA networks developed in 
Section 2. Section 4 demonstrates three applications that utilize the general WTA networks. 
Section 5 concludes this paper. 

2. Design Methods of the KWTA Network 

Two design approaches for KWTA networks are presented in this section. The first one is 
developed based on a recurrent network structure (the Hopfield network model [13]), and 
the second one is established using a feedforward network. 

2.1. Recurrent KWTA Networks 

The development of a KWTA network using the Hopfield network is motivated by two 
reasons: i) the network is stable, and ii) it is easily implementable in hardware using basic 
electronic components. The continuous Hopfield network [13] is described by a system of 
first order differential equations given by 

c d u i  _ N 
dt )~iui + Z Ti.ig(uj) + Ii, for i = 1 . . . . .  N, (l) 

j =  1 

where 

1 N 
t . i=--+~-~tTi j l  and C > O .  

Pi j= l  

The function g(.) is non-linear and is defined as a sigmoid function, which is usually 
implemented by an op amp. The sigmoid transfer function we consider is expressed as 
g(ui) -~ tanh(/~ui), where ui is the input, g(ui) is the output of the amplifier, and/~ is the 
sigmoid gain that can be assumed very high (i.e./~ ~ ~ ) .  Each parameter T/j is a real 
number referred to as the connection strength between nodes i and j and is implemented 
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through a resistor. The current li is the total externaI input to node i, and Pi is interpreted 
as the input impedance of the amplifier i. Since the admittance 1/p~ is usually very small 
(especially for op amps), it is ignored in the subsequent analysis. 

The advantage of utilizing eqn. (1) is that the overall system is guaranteed to converge to a 
stable equilibrium state, provided that the matrix T = [T/j ] is symmetric [ 13]. Moreover, the 
dynamics of this model follow the dynamics of electronic circuits, implying that hardware 
implementation is always feasible. 

Traditionally, the WTA or KWTA networks have been designed with inhibitory connec- 
tions. However we also found that the WTA or KWTA networks can be readily designed 
using excitatory connections. Overall, networks for both types of connections are charac- 
terized by the following two lemmas. 

LEMMA 1 Consider the system given t)3, (1). I f  its parameters are chosen as 

Tij = - w  g i ¢ j ,  where w > O 
Tii = a ~' i, where - w < a < w 
li = w ( 2 K  - N) ,  

(2) 

then the system is a KWTA network. With this parameter selection, only K out o f  N nodes 
in the network converge to a positive equilibrium state, and the K nodes are the ones that 
have the K largest initial values. 

LEMMA 2 Consider the system characterized by (1). If  its parameters are chosen by 
negating w and li in (2), i.e. 

T i j ~ - t o > O  V i # j  
Tii = a ¥ i ,  where w < a < 3 w  (3) 
li = - w ( 2 K  - N) ,  

then the system is still a KWTA network. 

The proofs of both lemmas are similar, and thus we only show the proof ofLemma 2 in the 
Appendix. Lemmas 1 and 2 provide a selection of w which generalizes the consideration 
in ref. [10] that fixes w = 1. It is interesting to observe from Lemmas 1 and 2 that there 
exists a parametric duality between the two network structures. 

LEMMA 3 For every inhibitory design o f  the KWTA network in Lemma 1, there exists a 
unique excitatory design o f  the KWTA network as in Lemma 2. 

The proof is clear from Lemmas 1 and 2. 

In actual hardware implementation, we must consider the limitation on the slope of the 
sigmoid in the transition region. To analyze this aspect, we consider the relation (A.2) in 
the Appendix at the equilibrium state. By substituting the value of Ii from (3), we obtain 

a - t o  

luij = (N  - l)w + a "  (4) 
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Assuming that N is very large and a - w ~ w is selected, (4) is further simplified to 

l 
luil ~ - -  (5) 

N + I  

Hence if N is very large, lull could be very small and could fall within the high-slope 
region of the sigmoid, in which the dynamics of Lemma 1 and 2 networks fail. However 
the limit imposed on N by a practical op amp is not much restrictive. Indeed, consider a 
practical comparator (such as the LM 106). The output of a typical comparator changes its 
transition from 0 to 5 volt during the changes of differential inputs from about 0 millivolt 
to 0.2 millivolt. This means that ui must be greater than 0.2 x 10 -3 to maintain the proper 
KWTA dynamics, which yields a bound: 

1 
- -  > 0 . 2  × 10  - 3  ( 6 )  
N + I  

Thus, we should be able to consider up to N ~ 5,000 inputs for KWTA computation using 
typical comparators. This is usually more than sufficient condition for practical uses of 
KWTA networks. A more important problem in practical implementation, however, may 
occur due to the limitations on the fan-in and fan-out of the op-amps. Since such a problem 
is heavily dependent on the implementation, or on the device characteristics, it will not be 
discussed here. At this point, we show a SPICE simulation result of a KWTA network that 
is built using Lemma 1. The implemented prototype network is a 2-WTA network with 
N = 3 and the trajectories of three initial values IV, 2V, and 3V are shown in Fig. 1. We 
also constructed a KWTA network using discrete components and obtained the same result 
as the SPICE simulation. 

2.2. Feedforward Network Design 

It is also possible to design the KWTA network using a feedforward network. Let us define 
a two-input neural node with a hard-limiter activation, or simply a comparator, as 

1 x >__ y (7) 
h(x, y) = 0 otherwise 

The rank of a value r i out of N values is then readily obtained by 

N 

rank(r/) = ~ h(ri, rj) 
j= l  

(8) 

Thus, if rank(ri) = K, there must exist K comparators that are in "on" states. This design 
is illustrated in Fig. 2. The input values are multiplexed until the sum of comparators become 
equal to K. In actual implementation, a small bias may be added to the comparator to safely 
derive h(x, y) = 1 when x ~ y. This design is less noble than the recurrent designs shown 
in the previous subsection, but derives an efficient sorting-network described in Section 4.1. 
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Figure 1. Trajectory of ul(t) ,  u2(t), and u3(t) with initial values: ut(O) = k u2(0) = 2, u3(0) = 3. 
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Figure 2, A KWTA network design using a feedforward network. 
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3. A Generalized Class of  WTA Networks 

In this section, we develop a new class of WTA networks to generalize the design and 
broaden the application range of the existing WTA network family. Design examples are 
provided. 

Definition 1. The Kth-WTA network is defined as the network that identifies the Kth 
largest (Kth winner) from N input values. 

The Kth-WTA network includes N nodes that represent the state of input signals. At 
convergence, the node that corresponds to the Kth ranked value (or the Kth winner) is 
represented by the on-state of the node model while all other nodes are set to off-states. 
Notice that the pure-WTA network is a special case of this network, where K is equal to one. 
Using the KWTA networks developed in Section 2, we can readily design the Kth-WTA 
network. One particular design technique is presented in the following. 

Design 1 (Kth-WTA). The network constructed by the XOR (exculsive or) connection of 
a KWTA and a (K - 1)-WTA network is a Kth-WTA network. 

Next we define a variation of the KWTA network, which is referred to as the KLTA 
(K-Losers-Take-All) network. 

Definition 2. The KLTA network is a network that identifies the K smallest (losers) out of 
N values. 

The design of the KLTA network is simple. Since the (N-K)-WTA network has K loosers 
represented by off-states, the KLTA network can be obtained by inverting the (N - K)- 
WTA network. The Kth-LTA network is defined similar to the Kth-WTA network with the 
appropriate operational modification. 

In Design 1, the Kth-WTA network was designed using XOR connections. We can now 
present its design based on the KLTA network, where AND connections are used. 

Design 2. The network that is constructed by the AND connection of the node outputs of 
a KWTA and a (N - K + I)-LTA networks is a Kth-WTA network. 

In certain applications, we need to identify the values within a specific range of ranks. For 
example, in signal processing, the a-trimmed mean (TM) filter averages a certain number 
of signal values around the median [17]. This filter is efficient in removing mixed Gaussian 
and impulsive noise processes. In order to represent structures similar to the a-TM filter, we 
introduce a generalization of the WTA network that defines the class of rank-range WTA 
(RRWTA) networks. 

Definition 3. The (K : L)-RRWTA network is defined as the network that can identify 
rank K (Kth largest) through rank L (Lth largest) values where K < L. 
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Figure 3. A general class of WTA networks. 

It is noteworthy that the RRWTA network generalizes Kth-WTA, which is obtained in 
the special case that K = L. The RRWTA networks can be efficiently implemented using 
KWTA networks as shown in the following design. 

Design 3 ((K:L)-RRWTA). The network constructed by the XOR connection of a (K - I)- 
WTA and a L-WTA network is a (K " L)-RRWTA network. 

The generalized class of RRWTA networks includes all the previous WTA and LTA 
structures. A classification of such networks is presented in Fig. 3, where each level 
represents a subset of its parent level. A related generalization of order statistic filters is 
presented in [ 18]. 

4. Applications of WTA Networks 

This section demonstrates three application examples using the proposed WTA networks. 

4.1. Analog Sorting Network 

Three design approaches are presented here. 

Design 4. One of the simplest way of designing an analog sorting network comprises 
sequential applications of data to a pure-WTA network. The largest value is identified by 
the first pass of the N data to the pure-WTA network, then the largest value is removed 
from the N values, and the remaining (N - 1) values are passed through the same network 
again, in which step the second largest value is identified. Performing these steps (N - 1) 
times in total provides a complete set of sorted data. This approach was used in ARTI and 
ART2 networks [t], [2]. However, due to the nature of sequential search, this approach 
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requires additional processing time and control circuits to monitor both the state of the WTA 
network and the selection of input values. 

Design 5. We propose a different design, which sorts all input values in parallel. In 
this design, the data is presented to the sorting network once, and the sorted values are 
simultaneously derived. The information of N sorted outputs is represented by an N × N 
two-dimensional array of nodes. Suppose that the five real values {1"1, r2, r3, r4, rs} are 
sorted through a network with 5 × 5 nodes. The network may represent the sorted result as: 

1st 2nd 3rd 4th 5th 

rl 0 0 0 0 1 
r2 1 0 0 0 0 
r3 0 1 0 0 0 
r4 0 0 0 1 0 
r5 0 0 1 0 0 

(9) 

where the node's values 0 and I represent off- and on-states of the nodes, respectively. The 
on state node of the Kth column represents the Kth largest value (or the Kth winner) out of 
N real values. Thus the sorted order of the above example can be read from left to right as 
r2 > r3 > r5 > r4 > rl. With this two-dimensional representation, the states of the Kth- 
column in (9) are equivalent to the states of the Kth-WTA network. Therefore, a general 
sorting network can be designed by arranging the Kth-WTA networks in parallel from left 
to right, lst-WTA to Nth-WTA network, for sorting N values. Notice that the Kth-WTA 
network shown in Design 1 uses a KWTA and a (K - I)-WTA (except for K = 1). From 
those components, the (K - 1)-WTA network can be shared by the K th-WTA network and 
the (K - 1)th-WTA network. Thus, for sorting N real numbers, only N KWTA networks 
(K = 1 . . . . .  N) are required. 

Design 6. An efficient parallel sorting network can be derived using the feedforward 
structure of the KWTA network in Section 2.2. This KWTA network utilizes a sequential 
multiplexing of each input to a row of N comparators. Due to the relation in (8), the 
multiplexing of each value derives the rank information of the value. Hence, allocating N 
values to the N rows of N-comparators (N × N comparator matrix) derives a parallel sorting 
network that sorts N values. For instance, considering the five values used in Design 5, the 
resulting output of 5 × 5 comparators would be 

rl r2 r3 r4 r5 

rl 1 1 1 1 1 5 
r2 0 l 0 0 0 1 
r3 0 1 0 1 0 2 
r4 0 1 1 1 1 4 
rs 0 1 1 0 1 3 

(10) 

The summation of bits in each row represents the rank of the value fed in that row. For 
example, rank(r1) = 5, rank(r2) = 1, etc. Note also that the summation of the bits in each 
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column exactly represents the reverse order of the sorted result. To decode the sorted analog 
values, this approach requires a little more complicated decoding circuitry than Design 5. 
This type of design appears in [16]. 

Now we evaluate each design in terms of its complexity. The connection complexity of 
the recurrent KWTA networks designed based on the Hopfield network model is O (N2), if 
a completely connected feedback architecture is used. However, using a slight modification 
on the connection structure by replacing S --- ~m=l Tijg(u)) ¥ i with a single node as 
suggested in [10], the connection complexity can be reduced down to O(N). Hence, the 
connections required in Design 4 are O(N). In Design 5, since N KWTA networks are 
required for sorting N real values, the connection complexity of this network is O(N2). 
On the other hand, if the sorting network is designed using an N × N feedback network 
(similarly to the Hopfield and Tank's traveling-salesman network [14]), the connection 
complexity increases to O(N4). Clearly, such a design is too expensive and impractical. 
The connection complexity of Design 6 is O(N), the same as Design 5, but this design 
requires more complicated decoding circuit. 

In addition to the connection complexity, we consider the computational time in each 
design. The network in Design 4 requires O (N) time due to its sequential search, while 
those of the Design 5 and 6 require only a single time unit, i.e. O(1). Considering that the 
best computation time for a digital parallel computer to sort N values is O(N log N) [15], 
the sorting networks by Design 5 and 6 present a significant advantage in computational 
time. Moreover, such networks are devoided of A/D and D/A conversion processing, which 
requires additional hardware and computing time. 

4.2. A Noise Filtering Example 

We consider the cameraman image that consists of 256 × 256 pixels with 8-bit resolution per 
pixel. This image is contaminated by 20 dB of white Gaussian noise and 5% of impulsive 
noise. The result is shown in Fig. 4.a. The variance of the total noise and the Root Mean 
Square Error (RMSE) of this image from the original image are 286 and 21.8, respectively. 
For comparison purposes, we first process the image using the conventional Wiener filter 
implemented in DFT domain with a noise variance of 286. This result is depicted in Fig. 4.b. 
The RMSE of this estimate is reduced to 12.7, but the Wiener filter is not able to remove 
the impulsive noise. To reduce the effect of the impulsive noise, the same data is processed 
using the Wiener filter with a noise variance of 2,860 (10 times larger than the previous 
case). This estimate yields RMSE equals 15.21 and is depicted in Fig. 4.c. Although 
the RMSE is increased, the setting of high noise variance in the Winner filter results in a 
smoother estimate improving the visual quality from the previous case. 

Finally, we consider the restoration of the contaminated data in Fig. 4.a using a (K:L)- 
RRWTA network. For each pixel p(i, j), the 3 × 3 neighborhood pixels are processed 
using a (K:L)-RRWTA network with K = 4 and L = 6, by which the three pixel values 
having ranks 4 to 6 are selected. Let the intensity of these pixels be denoted by Prank4 (i, j), 
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Figure 4. Image restoration example: (a) degraded image by 20 db Gaussian noise and 5% impulsive noise 
(upper left); (b) DFT Wiener estimate using noise variance 286 (upper right); (c) DFT Wiener estimate using noise 
variance 2,860 (lower left); (d) estimate of the (K:L)-RRWTA network (lower right). 

Prank5 (i, j) ,  and Prank6 (i, j).  The filtering is performed by averaging these values: 

prank4(i, j )  + Pra,,k,(i, j )  -t- Prank6(i, j )  
p(i, j )  = 3 (11) 

for all i and j .  
The result of this filtering is depicted in Fig. 4d which has the RMSE equal to 13.19. Notice 

that the impulsive noise is almost completely removed, presenting a drastic improvement of  
the visual quality from the estimates of  the conventional Wiener filter. This (K:L)-RRWTA 
network actually implements the so called a -TM filter [17], which is one of the most useful 
robust L-estimators. Under the influence of impulsive noise processes, the a -TM filter 
usually works efficiently outperforming conventional filters. 

This application on image restoration simply illustrates one example of  the proposed WTA 
networks. Due to the sorting capability of the WTA, the proposed network can implement 
all  types of order statistics filters. 



KWTA NETWORKS AND THEIR APPLICATIONS 343  

S e n s o r  
v a l u e s  

Selection 
d langes  

r Fault r e e  

signals 

sigllalslgnal ' I Selected signal 
I signal i 

Selected 
I signal 
! 
, i 

Faulty 

I i 
! 

T i m e  

Figure 5. The mid-value select technique 

4.3. Design of an Analog Fault-Tolerant System 

We consider the design of an analog fault tolerant system based on the analog Tripple- 
Modular Redundancy (TMR). The TMR approach is a frequently used design technique 
in fault tolerant systems, especially for critical-computation applications [19]. The basic 
concept of TMR is to triplicate the hardware and perform a majority vote to determine 
the output of the system. If one of the module becomes faulty, two-remaining fault-free 
modules mask the result of the faulty module. One major problem arizes if the result of each 
module is an analog signal. In such cases, the three signals may not completely agree in 
value even if the system functions with no-fault. One technique that alleviates this problem 
is the mid-value select technique l19], which selects the middle value of each triplet. This 
selection technique is illustrated in Fig. 5. Obviously, a 3-input 2nd-WTA network perfectly 
matches this selection method and thus can be directly used for this application. 

5. Conclusion 

The main goal of this paper is to generalize WTA networks into a new class of networks that 
broadens the range of WTA applications. Therefore, several new types of WTA networks 
and their designs are developed and organized into a general framework of WTA networks. 
We also explore three possible applications using the proposed WTA networks, which 
include designs of an analog sorting network, an order-statistics filter, and an analog fault- 
tolerant system. One of the most attractive features of the proposed WTA networks is the 
easy and efficient way of implementing them in hardware, which provides a powerful means 
for real-time signal processing. 
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Appendix 

Proof  o f  L e m m a  2. The  selection of parameters in (3) derives 

L i = X = ( N - 1 ) w + a  > 0 ,  Vi. (A.1) 

Eqn. (1) for the ith node becomes 

c d u i  N 
d t  -- - , ku i  + (a - w ) g ( u i )  + (li + w ~ g (u j ) ) .  

j = l  
(A.2) 

Since the connection matrix imposed by (3) is symmetric, we already know that a system 
characterized by (A.2) converges to a stable equilibrium state. Let the equilibrium state 
vector be u e, which satisfies the condition: 

due = 0  V i. (A.3) 
dt  

By applying this equilibrium condition to (A.2), we obtain: 

N 

Xu~i = (a - w)g(u~i) + (li + w ~_, g(u~j)). 
j = l  

(A.4) 

Since L > 0, the following inequalities are derived: 

N 

E e Ii + w g(u~) > - ( a  - w)g(ue ) ,  for u i > 0 
i = 1  

(A.5) 

and 

N 

li + w Z g(u.~) < - ( a  - w)g(t{ i ) ,  for u~ < 0 
j = l  

(A.6) 

Due to the monotonously increasing characteristic of the sigmoid g (.), u~ and g (u e) always 
have the same sign. Assuming that the sigmoid function has a very high gain (fi --+ oo), 

e e the nonlinearity is approximated by g(u  e) ~- +1 or - 1  for u i > 0 or u i < 0, respectively. 
Since Ii is a constant value independent of i, imposing the combined constraint (A.5) and 
(A.6) gives 

N 

- ( a  - w)  < li + w ~_ag(ue  j )  < (a - w).  
j = l  

(A.7) 

Let the number of nodes that have g(u e) ~ +1 be K +. Then, (A.7) can be expressed a 

--(a - w)  < li Jr- w(2K + - N) < (a - w). (A.8) 
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Substituting the value of li given in (3) into (A.8) gives: 

a - - w  a - - w  
- - - + K  < K + < - - + K .  (A.9) 

2w 2w 

Following the constraint w < a < 3w from (3), one can readily prove that an integer 
solution for K + is unique and K + = K. This proves that there exist exactly K out of  N 
nodes on equilibrium state which are in on-states ( u e > 0 ) under the constraints in (3). 

Next, it is necessary to prove that the K on-states of the network correspond to its K 
largest initial values. From (A.2), and for i ¢ j ,  we can write: 

c d ( U i  - u j )  
- )~(ui - u j )  + (a - w ) ( g ( u i )  - g ( u j ) ) .  (A.10) 

d t  

Since [ui (0) - uj  (0)] = 0 ~ [ui (t)  - uj (t)] = 0 for all t, the order of  initial values at each 
node can not be reversed for all t. Hence there exist exactly K nodes with output 1 that are 
the K largest initial values. 

Finally we show that the output of  each node at equilibrium is located in the region near 
the upper or lower bound of the sigmoid, which also justifies the assumption used in (A.7). 
I f  we rewrite (A.2) near an equilibrium point of node i, then 

C d(u i  - ue) --  )~(Ui - - U  e) -I- (a -- w ) [ g ( u i )  - - g ( u e ) ] .  (A.11) 
d t  

According to the mean-value theorem, there exists x that satisfies 

g ( u i )  - g (u~)  =- g~(x) (u i  - ue),  (A.12) 

where ui < x < u~.. Since ui and u~ can be very close (in the region of equilibrium), we 
carl approximate (A. 11) as: 

C d ( u i  - ue) ~ [-)~ + (a - w ) g ' ( u ~ ) ] ( u i  - ue).  (A. 13) 
d t  

Therefore, we obtain the stability condition of an equilibrium state as 

g ' ( S i )  < - - .  (A.14) 
a - - w  

Substituting the value of i. in (A.1) yields that the slope of the sigmoid at an equilibrium 
point is bounded by: 

(N - l )w + a 
g ' (u~)  < (A.15) 

a - - w  

Since we assumed that/3 -+ ec, (A. 15) indicates that all the equilibrium points are located 
in the level regions of  the sigmoid (i.e., the region that [g(ue)] ~ 1). This condition is 
always satisfied for all N :~ e~ in theory. In practice, however, the slope of the sigmoid at its 
transition region is limited, so the number of  inputs that can be processed is also limited. This 
bound is discussed in Section 2. In fact for implementation with commercial  comparators, 
up to N ~ 5 ,000  is satisfied, which is far more than adequate in most practical applications. 

[] 
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