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Abstract. The digital filters with adjustable frequency-domain characteristics are called variable filters. Variable
filters are useful in the applications where the filter characteristics are needed to be changeable during the course
of signal processing. In such cases, if the existing traditional constant filter design techniques are applied to
the design of new filters to satisfy the new desired characteristics when necessary, it will take a huge amount of
design time. So it is desirable to have an efficient method which can fast obtain the new desired frequency-domain
characteristics. Generally speaking, the frequency-domain characteristics of variable filters are determined by
a set of spectral parameters such as cutoff frequency, transition bandwidth and passband width. Therefore, the
characteristics of variable filters are the multi-dimensional (M-D) functions of such spectral parameters. This
paper proposes an efficient technique which simplifies the difficult problem of designing a 2-D variable filter with
quadrantally symmetric magnitude characteristics as the simaple one that only needs the normal one-dimensional
(1-D) constant digital filter designs and 1-D polynomial approximations. In applying such 2-D variable filters,
only varying the part of 1-D polynomials can easily obtain new desired frequency-domain characteristics.

Key Words: variable digital filter, constant digital filter, 1-D polynomials, outer product expansion, quadrantal
symimetries

1. Introduction

Variable digital filters have various potential applications in acoustic signal processing, im-
age processing and communication systems [1], [2], [3], [4]. In such applications, variable
filters are required to change their coefficients frequently to satisfy the new desired vari-
able frequency-domain characteristics. If the conventional constant filter design techniques
such as nonlinear optimization ones are utilized to update the variable filter coefficients
whenever such needs arise, it will take long design time. Thus, the technique that can easily
obtain new desired frequency-domain characteristics are necessary.

Generally speaking, the frequency-domain characteristics of variable filters are deter-
mined by a set of spectral parameters such as cutoff frequency, transition bandwidth and
passband width. Different spectral parameter values specify different frequency-domain
characteristics, and thus need different filter coefficients. Evidently, the coefficients of vari-
able filters are the multi-dimensional (M-D) functions of the spectral parameters. From this
viewpoint, Fahmy et al. proposed some techniques for designing recursive one-dimensional
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(1-D) and two-dimensional (2-D) variable filters. The main objective of the techniques is
to find the variable filter coefficients as the M-D polynomials of the spectral parameters.
At first, the spectral parameters within specified ranges are uniformly sampled. Then the
normal 1-D or 2-D constant filters corresponding to the sampled spectral parameter values
are designed. By this step, a set of coefficients of the normal constant filters are obtained.
Next, the coefficients of a variable filter are assumed to be the form of M-D polynomials of
the spectral parameters, and then they are determined one by one by using an M-D curve
fitting technique to best fit the resulting constant filter coefficients. The techniques are
flexible for designing variable filters with arbitrary desired variable characteristics, and the
coefficients of the resulting variable filters can be easily obtained only by computing the
M-D polynomial values. However,

(1) Since many constant filters have to be designed first by using a nonlinear optimization
method, and then a lot of M-D polynomials representing variable filter coefficients have to
be determined, the technique is not computationally efficient.

(2) Since the denominator coefficients of the designed variable filters are also M-D poly-
nomials of a set of spectral parameters, and are varied in the signal processing applications,
the stability of the variable filters cannot be guaranteed.

This paper proposes a new technique for designing zero-phase recursive 2-D variable
filters with quadrantally symmetric magnitude characteristics. The technique is based on
the decomposition of the given 2-D variable magnitude specifications. Atfirst, we uniformly
sample the given 2-D variable magnitude specification. Using the samples, we construct an
M-D array, which is the extended version of the normal matrix (2-D case). Then, an outer
product expansion method is proposed for decomposing the M-D array into the sum of the
outer products of vectors. The vectors are then regarded as the magnitude specifications
of the 1-D normal constant filters and the specifications of 1-D polynomials. Finally, by
performing the normal 1-D constant filter designs and 1-D polynomial approximations,
we can easily obtain a 2-D variable filter. Since the normal 1-D constant filters are easy
to design by using the existing conventional filter design techniques, and the optimal 1-D
polynomials can be determined by solving linear equations, the proposed design technique
simplifies the original 2-D variable filter design problem significantly. In applying the
designed variable filters, since the part of the 1-D constant filters is fixed, and only the
part of 1-D polynomials is varied, the stability of the resulting 2-D variable filters is always
guaranteed so long as the 1-D constant filters are designed to be stable. Also, only adjusting
the 1-D polynomials can easily obtain the new desired frequency-domain characteristics.
Three design examples are given to illustrate the design technique.

2. OQOuter product expansion

Assume that Hg[wy, w2, ¥1, ¥a, - - -, U k] is the given quadrantally symmetric 2-D variable
magnitude specification, where w; and wy are normalized frequencies. Since the specifi-
cation Hyfwy,ws, ¥y, o, - -+, Uk] is quadrantally symmetric, we only need to consider it
in the first quadrant. That is,

wi€0,n], i=1,2 (1)
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Inaddition, {U;, Uy, - - -, Uk } are the parameters that define the desired variable frequency-
domain characteristics, we call them the spectral parameters. They are specified as

\Iji S [\Iiimv}na \Pz’maaz]a 1= 1’ 27 Tt ,K (2)

where Wipin and Uy, are respectively the lower bound and upper bound of the spectral
parameter U,.

Uniformly sampling the variable specification Hy[wy, w2, ¥1, ¥a, - -+, Uk], we can ob-
tain the samples
a(lm,n,ly,la, -, lg) = Hglwim,wan, U1(l1), Y2(l2), -+, Ok (Ix)] (3)
where
wim =w(m—-1)/(M~-1), 1<m<M
wop =m(n—1)/(N~1), 1<n<N 4)
\I]z(lz) = \I/imin + (\I’imaz - \I/zmzn)(lz - 1)/(Ll - 1)7 1 S li S Lz
Using the samples a(m,n,ly,la, -+, lx), we can construct a (K + 2)-D array A €
RMXNxInxLax--xLk where a(m,n,ly,la, -+, k) are its elements, i.c.,
A = [a(m,n,l1,l2, -, 1K) 5)

2.1. Decomposition-based design

In this section, we propose a method for decomposing the (K -+ 2)-D array A into the form

.
A%ZFi@)Gi@Pil@P&@'“@PiK ©)

i=1

where the notation @ denotes the outer product of vectors {F;, G;, P;1, Pia, -+, Pix },
and F; € RM*', @; ¢ RV*Y, Py € RH*', P, € RI*¥1, ... P e RExXY
[51, [6]. The outer product expansion (6) can also be represented by using an element
expression as

a(m,n, b, b, lic) ~ ) Fy(m)Gi(n) P (1) Pa(lo) -+ Pirc (Ixc) (7
=1

where {F;(m),G;(n), Pa(li), Pia(l2), -, Pix(Ix)} are the elements of vectors
{Fs,Gi,Ps1,P3, -+, Pig}.

In 2-D case, using the existing conventional matrix decomposition methods such as the
singular value decomposition (SVD) and the lower-upper (LU) triangular methods can
obtain the decomposition (6), and it has been successfully applied to the designs and real-
izations of 2-D constant digital filters [7], [8], [9], [10]. From the viewpoint of 2-D variable
filter designs, we perform the outer product expansion (6) subject to the following two
constraints.
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(a) Overall squared decomposition error

.
E, = ”A_ZFi®G1®Pil®Pi2®"'®PiK“2
i=1
M N Li L

S 35 35 3D DD S TR NNAIPS

m.-ln—lll llz 1 lK 1

—ZF (m)Gi(n)Paa (h) Pa(la) -+~ Pirc (b )P

is minimum.

(b) Vectors F'; and G; are non-negative because they will be regarded as the magnitude
specifications of 1-D constant digital filters later.

Once the decomposition (6) is obtained, the next task is to approximate the vectors
{F,G;,Pi1, Py, -, Pix}. From (7) we know that the non-negative vectors F'; and G;
are the functions of frequencies w; and wa, respectively, and the vectors {P;y, Pia, - - -,
P} are the functions of the spectral parameters {¥, ¥o,---, ¥ }. To obtain a 2-D
variable filter, we use 1-D constant filter f;(z;) with an arbitrary phase response to approx-
imate the vector Fz/ %, and thus the magnitude specification vector F'; can be approximated
by the zero-phase 1-D constant filter f;(z1) fi(2] 1). Similarly, we use 1-D constant filter
gi(z2) with an arbitrary phase response to approximate the vector G,} / ? and thus the mag-
nitude specification vector G; can be approximated by the zero-phase 1-D constant filter
9i(22)9i(25 ). Moreover, 1-D functions {p;1(¥1), pi2(¥2), - - -, pirc (Vi) } are used to ap-
proximate the vectors { P;1, Pia, - - -, P;x }. By cascading zero-phase 1-D constant filters
{fi(21) £:(271), 9i(z2)gi(z3 1)} with 1-D functions {pix(¥1),pi2(¥a), -, pir (¥x)}
and then putting them together in parallel, we can obtain a zero-phase 2-D variable fil-
ter

H(Zl,ZQ, \Illa\IIQa T 7qlK)
=Y filz1) filzr V) gi(22)gi (25 i (W1)pia(¥a) - - pirc (Vi) ®)

which is shown in Figure 1. Since 1-D constant filters f;(z1) and g;(22) are relatively
casy to design, and the 1-D functions {p;1(¥1),pi2(U3), -, pix (Uk)} are easy to de-
termine, this is shown in the next section, the original 2-D variable filter design prob-
lem can be easily solved. In applying such a 2-D variable filter, by just varying the 1-
D functions {p;1(¥1),pi2(¥2), -, pix(Pk)} we can obtain the new desired variable
frequency- domaln characteristics, but the zero-phase 1-D constant filters { f;(z1) fi(z7),
9:(22)gi(23 1)} are always fixed. So fi(z1), gi(22) may be designed to be recursive or
nonrecursive. In any case, the resulting 2-D variable filter H (21, 22, U1, ¥o, -+, U ) is
always stable so long as the designed 1-D constant filters f;(z;) and g;(22) are stable. The
above design approach is diagrammatized in Figure 2.
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Figure 1. Zero-phase 2-D variable digital filter structure.
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Figure 2. Efficient approach to 2-D variable filter design.
2.2.  Novel decomposition algorithm

From above we can understand why the two constraints (a) and (b) are imposed on the
outer product expansion (6). The constraint (a) is for reducing the number of parallel
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channels in Figure 1. This will save hardware cost in implementation. That is to say, for a
given decomposition error E,, the number r of the parallel channels is as small as possible.
Conversely, for a given number 7, the decomposition error E,. is as small as possible. On the
other hand, the constraint (b) is necessary because the magnitude responses of digital filters
are non-negative, and the vectors { F';, G;} will be regarded as the magnitude specifications
of the zero-phase 1-D constant filters { f; (z1) fi(27 1), gs(22)9: (25 1)} respectively. Below,
we propose a method for obtaining the outer product expansion (6). The method finds the
vectors {F;, Gy, Pi1, Pia, -+, Pix}, i = 1,2,- -, r, successively following the next 6
steps, where { is the counter of the current decomposition stage, and r is a preset number
of parallel channels. At first, we set i = 1.

Step 1. Compute the error array E at the i-th decomposition stage as

-1
E=A-) F;8G;®P;;®9P;p® - ® Pk 9)

j=1

Butif{ = 1, welet E = A, where A is the constructed (K + 2)-D magnitude specification
array in (5). The elements of E are e(m,n,l1,la,- -+, lx), Le.,

E = [e(m,n,ly,la, -, k)] (10)
Convert the (K + 2)-D error atray E to a 3-D array B = [b(m, n, ¢)] such that
b(m,n,q) = e(m,n,l1,la, -, k) (11)

where

q= (ll — 1)L2L3---LK+(l2 -1)L3L4-~-LK + -4 (lK—l — 1)LK—|—lK.
(12)

Thén, convert the 3-D array B to a 2-D array (matrix) C = [¢(p, ¢)] such that

c(p; @) = b(m,n,q) (13)
where

p=(m—1)N +n. (14)

Next, separate the matrix C into the sum of the non-negative matrix C* = [¢* (p, q)] and
the non-positive matrix C~ = [¢™ (p, ¢)] as

cC=C"+cC~ (15)
where

ct(p,q) = mazlc(p, 9),0]

¢ (p, q) = min[c(p, 9),0]. (16)
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Step 2. Perform the SVD on matrices C* and C'~. From Perron’s non-negative matrix
theory, we know that the matrices C* and C~ can be best approximated by the outer
products of the non-negative vector pairs {X*, ¥ *}and {X~,Y "} as

Ct=XtevY"t

- - - an
C ~-X"QY".
Then restore the non-negative vector X+ = [z (p)]and X~ = [z~ (p)] to the non-negative
matrices DT = [d¥(m,n)] and D™ = [d~(m,n)], respectively, such that
d*(m,n) =z (p)
d~(m,n) =z~ (p) (18)

where the relation between p and m, n is given in (14). Next, perform the SVD on the
matrices D' and D™, and best approximate them as

Dt~ FFoGf
D™ ~=F; G, (19)

where vectors { F'}', G } and {F, G; } are non-negative. Thus the 3-D array B can be
approximated by the outer product

B~Ff oG oY* (20)
or
Bx-F;®G; @Y . (21)

Indeed, only one of the decompositions (20) and (21) , which results in a smaller decom-
position error, will be used, and the other one will be neglected. The way to determine
which one should be remained is given in the next step. This implies that only part of the
error array E will be approximated in this i-th decomposition stage. The approximation
will successively improved by the succeeding decomposition stages.

Step 3. Fix {F}, G/}, and then find a new vector Y}, such that
Errort = |B-F; @G/ oY}, ,I?

= ZZDb(myn,q)wﬂm)G ()Y, (q))?

M N
= Z Z G+(n new( )-b(m,n,q)]Z

is minimum, where Q = Ly Ly - - Lg. The optimal vector Y}, is determined as follows.
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Differentiating Error™ with respect to the I-th element of the vector Y, we obtain

M

8Errort N
Tl 2 A MGT (YD) — blmn, 1] F (mG ()

m:

22)

. OEr
Equating to zero, we get

ror™
3Y7;|;w( )

() === (23)

M N
>SN IFEFm)GEm)? £ 0. (24)

In the same way, we can also find a new vector Y., , such that

Error— = |B-F;  G; <X>Ym3w||2

M N Q
= SN N blmn,q) — Fy (m)GF ()Y, (@)

m=1n=1¢g=

M N Q
= SN N IET ()G ()Y (q) — b(m,n, )]

m=1n=1¢=

sy

iy

is minimum.
Next, compare Errort with Error™.
If Errort < Error—, we let

Fle:—
G, =G} (25)
Y, =Y}

new:*
If Error™ > Error—, we let
F;=F;

G, =G/ (26)
Yl YT:ew
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As aresult, we obtain
BrF,G;QY;. @27
Then, restore the vector Y'; = [Y1(q)] to a K-D array Ay = [a1(l1, [, - -, [x)] such that
a1(l1, la, -+, Ix) = Yi(q). (28)

The relation between g and {{1,la,-- -, [k} is given in (12). Thus the error array E can be
expressed by a generalized outer product of vectors {F';, G;} and the K-D array A; as

ExF, G, A (29)
which can also be represented using their elements as
e(m7 n, ll? 127 Ty lK) ~ F’i(m)Gi(n)al(lh l27 Ty lK) (30)

Step 4. Convert the K-D array A; = [a1(l1, 2, - -+, k)] to amatrix By = [b1(l1, q)] such
that

bl(ZI’Q>:al(ZI’ZZ"-'JlK) (31}
where

q= (lz — 1)L3L4---LK+(Z3 — 1)L4L5-'-LK+"'+ (ZK_l — 1)LK +lg.
(32)

Perform the SVD on the matrix B; and best approximate it by the outer product of the
vector pair {P;1,Y 5} as

B~ P;1 QY. (33)

Then restore the vector Yo = [Y2(g)] to a (K — 1)-D array Ay = [az(l2, 3, -, k)] as

a’2(l27l3>"'7lK) :}/2((]) (34)
where the relation between ¢ and {l2, 3, - -, lx } is given in (32). As (29), we obtain
ExF,9G;®P;® A, (35)

Step 5. Convertthe (K —1)-D array Ay = [as(l2,13, - -, Ix)] to amatrix B, = [ba(la, ¢)]
such that

ba(l2,q) = ax(l2, 13, -+, k) (36)
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where
q= (l3 ——1)L4L5'--LK+(l4—1)L5L6---LK+"'+ (lK—l -~ 1)LK + k.
37

Perform the SVD on the matrix By and best approximate it by the outer product of the
vector pair {P;2,Y 3} as

By~ P;sYs3. (38)
Then restore the vector Y3 = [Y3(q)] to a (K — 2)-D array Az = [a3z(l3,lg, -+, lx)] as

0‘3(l33l47"'7lK) :Y3(Q) (39)
where the relation between g and {l3,14,- - -, 5} is given in (37). Thus we obtain
ExF,G;P;; @ P;s® As. (40)

Repeating the same operations on the gradually reduced dimensional arrays Ag, Ay, - -+,
Aj 1 as above, we can obtain the final outer product expansion of the (K + 2)-D error
array E as

E~F,QG,®P;; P& - ®Pg. (41)

Leti =i+ 1. If ¢ < r, return to Step 1. Otherwise, proceed to the next step.

Step 6. Combining the results from Step 1 ~ Step 5, we yield

ARﬁZFi@)Gi@Pu®P¢2®---®Pik- (42)

i=1

At this point, the overall decomposition error

r
E.=|A-) Fi®G;@P1®Pp® - @ Pl (43)
i=1
is not minimum. Next, we choose the result (42) as a starting point, and utilize a nonlinear
optimization method to minimize the overall decomposition error F,.. Atlast, we can obtain
the optimal outer product expansion (42).

Here we should notice that although a nonlinear optimization method is used for mini-
mizing the overall decomposition error E,., the computation time is not long because the
result (42) is chosen as a starting point, and itself is usually a good approximation to the
(K + 2)-D array A. In addition, to evaluate the proposed decomposition method, we use
the normalized root mean square (rms) error

|IA-> Fi®Gi®Pu®Pin®- - ® Pl

=1 AT x 100% (44)

as the evaluation criterion.
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3. 2-D variable filter design

Once the optimal outer product expansion (42) is determined, the next job is to approximate
the non-negative vectors { F';, G; } by using zero-phase 1-D constant filters { f;(21) fi (271,
9i(22)9i(25 1)}, and the real-valued vectors { Pi1, Pya, - - -, Py } by using 1-D functions
{pi1(¥1),pi2(¥2), -, pix (¥ i) }. Since any 1-D functions can be approximated by using
1-D polynomials, and 1-D polynomials are mathematically tractable, in this section, we
choose the 1-D functions {p;1{¥1), pia(T2), -+, pix (¥ )} to be 1-D polynomials. This
section formulates the 1-D constant filter designs and 1-D polynomial approximations
separately.

3.1. Zero-phase 1-D constant filter designs

Zero-phase 1-D constant filters {fi(z1) fi(271), 9i (22)g: (25 *)} are designed by best ap-
proximating the 1-D magnitude specification vectors {F';, G;}. To do this, we just need to
approximate the vectors {F, 2 G; /2} by 1-D constant filters { f; (1), gi(22)} with arbi-
trary phase characteristics. Let 1-D constant filter f;(z1) to be of the form

M1/2
A. H (14 ag 127t + ag oz ?)

Filen) = i - @3)

My/2

H (1+ap1z; + aro2r?)
k=1

The optimal filter coefficient vector

Iy=[4 ar1 ak2 k1 ok (46)
is determined by minimizing the squared error function

ef(I1) = |F - Fi|?

M

> [F(m) - Fi(m)]? (47)

m=1

using the Davidon-Fletcher-Powell (DFP) nonlinear minimization method. In (47), F is the
magnitude response vector of the zero-phase 1-D constant filter f;(21) fi(z; %), and F(m)
is its m-th element, and F; () is the m-th element of the non-negative vector F';, i.e.,

F= [F(1) F@2) - F(M)]

(48)

F;= [Fi(1) F(2) - F(M)]".
It should be mentioned that if no constraints are imposed on the denominator coefficients
{ak,1, a2} in the nonlinear minimization (47), the resulting 1-D filter f;(21) may be
unstable.
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It is known that the 1-D filter f;(2) is stable if and only if

o <l+a«a
{1 k1l k,2 49)

Iak12| < 1.
So in our design, we first perform the denominator coefficient transformations

Qg1 sin 9k,1<1 + sin Gk’z) (50)
opg = sinfy s

where

Ok1 #m/2+pr
Gk,g ;é 7r/2—|—qw

I

(G

and p, ¢ are any integers. Then the optimal coefficient vector
Iy=[A apy ak2 k1 Ok ) (52)

is found by minimizing the error function (47). Once the vector I'y is obtained, the opti-
mal coefficient vector I'y can be easily calculated from I'y by using the transformations
(50). Here we should emphasize that the conditions (51) are always satisfied in the prac-
tical nonlinear minimization process, thus the designed 1-D filter f;(z1) is always stable.
Also, the zero-phase 1-D constant filter g;(22)g;(z5 ") is designed in the same way. Af-
ter the zero-phase 1-D constant filters {f;(z1)fi(27!), 9i(22)gi(27 1)} are obtained, the
next job is to approximate the vectors {P;1, P2, -+, P;x} by using 1-D polynomials
{pin(¥1),pia(T2), -, pi (U )}. Assume that the magnitude response vectors of the
designed zero-phase 1-D constant filters {f;(z1) fi(27 1), gi(22)g:(25 1)} are {F’, GL}.
Evidently,

G, = G;. (53)
Since the real-valued vectors {P;1, Pia, - -, Pix } can be exactly approximated by using

1-D polynomials {p;1(¥1), pia(U3), - - -, pire (¥ x) }, which will be shown below, we know
that the final squared approximation error of the designed zero-phase 2-D variable filter is

E =[[A-> Fi®G@P1®Pip® - ® Pl (54)

i=1

From (54) it is known that if we hold the resulting vectors {F";, G} constant, and choose
the vectors {P;1, P;a,- - -, Pk} as initial values, and then further minimize the error E,
the final design error of the zero-phase 2-D variable filter can be further reduced. So before
approximating the vectors { Py, Pya, - - -, P;x }, we first reoptimize them by minimizing
the error £, and then approximate the new updated vectors {P;1, Pio,- -, Pix }.
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3.2. I-D polynomial approximations

As stated above, to approximate the real-valued vectors { P;1, Pg, - - -, P;ix }, the functions
{pi1(¥1),pia(¥2), - -, pix(¥k)} may be arbitrary 1-D functions such as exponential
functions, trigonometric functions and polynomials. Among them, 1-D polynomials are
most computationally efficient. In addition, from the Weierstrass approximation theorem
it is known that 1-D polynomials can be used to approximate arbitrary 1-D functions with
any desired approximation accuracy, so we choose {pi1(¥1), piz(¥2), -+, pix (Uk) } tobe
1-D polynomials in this paper. Below, we consider the problem of using the 1-D polynomial

NP
=) ¢ (55)
i=0

to approximate a real-valued specification vector P € RE»*! where N,, is the order of
p(®). The squared approximation error is

L, N,
ep =Y > ad; - P (56)

=1 i=0

where ®; is the j-th sample of the variable ®.
Differentiating e, with respectto ¢q, ¢ = 0,1, -- -, N, and setting it to zero, we obtain

Ly

Z Z@ZCD" :ZP( 7)®4. (57)

1=

The Eq. (57) can be represented in the matrix form as
SP'C = P (58)
where

0 0 0

o o) ... o)

o o1 ... ol

b = . : . (59)

C:[co cl oo ch]t (60)

P=[P() P2 - P(Ly]". (61)

Solving the simultaneous linear Eq. (58) can obtain the optimal coefficient vector C'.
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4. Design examples

This section presents three design examples to show the usefulness of the proposed zero-
phase 2-D variable filter design technique.

Lowpass Filter. A 2-D variable lowpass magnitude design specification is given by

Hy( ) = LR Ry 62
dlwy,w2,¥1) = 0 R>R, (62)
where

R=wi+wi/r

R, =022+, )

R. =040+ T,

¥, € [~0.08,0.08].

The spectral parameter ¥ controls the variable position of the transition band, but the
transition bandwidth is constant [4]. To construct a 3-D magnitude specification array A,
we assume that the variable magnitude specification in the transition band varies linearly
from the passband to stopband. In this example, we take M = N = 21, L; = 9, and
thus a 3-D magnitude specification array A € R***2'9 j5 constructed. Performing the
outer product cxpansion on the 3-D array A, we can obtain the decomposition errors shown
in Table 1. Observing the Table 1, we know that the greater the number r of parallel
channels, the smaller the normalized rms decomposition error. If r = 4, the normalized
rms decomposition error is 4.35%. Thus in our designs, we only approximate the vectors
{F;,G;, P;1}, 1 =1,2,3,4, and ignore the others. This is because taking more parallel
channels will need extra hardware cost in implementation but hardly improve the design
accuracy of the final resulting zero-phase 2-D variable filter.

Table 2 shows the normalized rms errors of the designed (4,4)-order zero-phase 2-D
variable lowpass filter for some ¥ samples. The order of 1-D polynomials p;; (1) is 8.
Figure 3 and Figure 4 illustrate the magnitude responses of the designed variable filter for
¥y = —0.08 and ¥; = 0, respectively. The design results are relatively satisfactory to
some extent.

Compared with the Fahmy’s technique, our proposed technique is more computationally
efficient because it only needs 1-D constant filter designs and 1-D polynomial linear ap-
proximations. Especially, the stability of the resulting variable filters is always guaranteed,
and their parallel structures are suitable for high speed signal processing. Also, the designed
2-D variable filters are zero-phase, so they are particularly important in image processing
applications.
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Table 1. Decomposition errors of lowpass filter

Channel number Normalized rms error

[r] [%]

25.11
14.62
8.10
435
3.60
3.08

[= Y R N T S

Table 2. Design errors of lowpass filter.

Sampled Normalized rms error
g [%]

-0.08 9.99
-0.06 9.26
-0.04 ° 9.29
-0.02 8.62

0 7.34
0.02 7.06
0.04 6.61
0.06 8.34
0.08 11.75

Fan Filter. The variable magnitude design specification of a 2-D variable fan filter is given
by

1 (7)) Z \Iflwl

Hd(wl,LU%\Ifl) = { 0 wy < Tywy — 0.57 v

where ¥y € [1,2]. The spectral parameter U controls the variable passband angle. The
transition bandwidth is constant, and the specification in the transition band varies linearly.
For constructing a 3-D array A, wetake M = N = 21,and L; = 11. Thus a 3-D magnitude
specification array A € R*1X21X1 g obtained. Performing the outer product expansion
on the 3-D array A, we obtain the decomposition errors given in Table 3. In variable filter
design, we only approximate the vectors {F;, G;, P;1}, i = 1,2,---,6, and ignore the
others. Thus r = 6. In this case, the normalized rms error from the decomposition stage is
5.96%. Table 4 shows the final normalized rms errors of the designed (2,2)-order variable
fan filter, the order of 1-D polynomials p;1 (¥1) is chosen to be 5.

Figure 5 and Figure 6 illustrate the magnitude responses of the designed (2,2)-order
variable fan filter for ¥; = 1.5 and ¥; = 2, respectively. From the design results we know
that although the filter order is just only (2,2), extremely good results have been obtained.
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Table 3. Decomposition errors of fan filter.

Channel number Normalized rms error.

[r] [%]

3443
21.73
13.65
10.28
7.94
5.96
5.13

NN R W N

Table 4. Design errors of fan filter.

Sampled Normalized rms error
Uy (%]
1.0 12.14
11 10.88
12 9.52
1.3 9.11
14 8.93
1.5 8.81
1.6 8.90
1.7 9.10
1.8 9.80
1.9 11.20
2.0 1243

Highpass Filter. A 2-D variable highpass magnitude design specification is given by

Hyl S 65
e T S (65)
R = JJw?+uwi/x

¥, € [0.3,0.5] (66)
U, € [02,03]

The spectral parameter ¥ controls the variable stopband width, and U5 controls the tran-
sition bandwidth. Therefore, the stopband width and transition bandwidth can be indepen-
dently adjusted. In addition, the specification in the transition band varies linearly.

As in the above two examples, we take M = N = 21,and L; = 11, Ly = 6. Performing
the outer product expansion on the 4-D specification array A € R2IX2IXIIXE e obtain the
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Table 5. Decomposition errors of highpass filter.

Channel number

Normalized rms error

[%]
1 30.36
2 11.28
3 6.66
4 5.92

Table 6. Design errors of highpass filter.

Sampled Sampled Normalized rms error

Uy Ty [%]
0.30 0.20 6.61
0.30 5.37

0.32 0.20 6.53
0.30 524

0.34 0.20 6.35
0.30 5.08

0.36 0.20 6.47
0.30 5.18

0.38 0.20 6.22
0.30 5.35

0.40 0.20 6.58
0.30 6.09

0.42 0.20 6.59
0.30 7.16

0.44 0.20 7.08
0.30 8.66

0.46 0.20 8.50
0.30 10.71

0.48 0.20 9.91
0.30 12.77
0.50 0.20 11.10
0.30 14.75
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decomposition errors in Table 5. In variable filter design, the vectors {F;, G, Pi1, Pia},
i = 1,2, 3, are approximated, i.e., 7 = 3. In this case, the normalized rms error from the
decomposition stage is 6.66%. Table 6 gives the final normalized rms errors of the designed
(2,2)-order variable highpass filter. The orders of 1-D polynomials p;;(¥1) and p;2(Us)

are respectively 5 and 3.

Figure 7 illustrates the magnitude response of the designed (2,2)-order variable highpass
filter for ¥; = 0.3 and W5 = 0.2. Figure § illustrates that for ¥; = 0.5and ¥, = 0.3. From
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the design results we know that although the filter order is just only (2,2), very satisfactory
variable characteristics have been obtained.

5. Conclusions

This paper has proposed an efficient technique for designing zero-phase 2-D variable digital
filters with quadrantally symmetric magnitude characteristics. The technique is based on
the decomposition of the given 2-D variable magnitude specifications. At first, we pro-
posed a new outer product expansion method for decomposing the 2-D variable magnitude
specifications into the magnitude specifications of the normal 1-D constant filters and the
specifications of 1-D functions. Then the resulting 1-D magnitude specifications are ap-
proximated by using zero-phase 1-D constant filters, and the specifications of 1-D functions
are approximated by using 1-D polynomials. At last, by interconnecting the obtained zero-
phase 1-D constant filters and 1-D polynomials, we can easily obtain a zero-phase 2-D
variable filter. The design technique is computationally efficient. In addition, since the part
of the zero-phase 1-D constant filters is always fixed in signal processing applications, the
resulting zero-phase 2-D variable filters are always stable so long as the zero-phase 1-D
constant filters are designed to be stable. Moreover, the coefficients of the resulting 2-D
variable filters can be easily obtained by computing the 1-D polynomials. However, the
proposed technique can only design 2-D variable filters with quadrantally symmetric mag-
nitude characteristics. The one for approximating arbitrary 2-D magnitude characteristics
is under investigation.
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