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Abstract. The digital filters with adjustable frequency-domain characteristics are called variable filters. Variable 
filters are useful in the applications where the filter characteristics are needed to be changeable during the course 
of signal processing. In such cases, if the existing traditional constant filter design techniques are applied to 
the design of new filters to satisfy the new desired characteristics when necessary, it will take a huge amount of 
design time. So it is desirable to have an efficient method which can fast obtain the new desired frequency-domain 
characteristics. Generally speaking, the frequency-domain characteristics of variable filters are determined by 
a set of spectral parameters such as cutoff frequency, transition bandwidth and passband width. Therefore, the 
characteristics of variable filters are the multi-dimensional (M-D) functions of such spectral parameters. This 
paper proposes an efficient technique which simplifies the difficult problem of designing a 2-D variable filter with 
quadrantaUy symmetric magnitude characteristics as the simple one that only needs the normal one-dimensional 
(I-D) constant digital filter designs and 1-D polynomial approximations. In applying such 2-D variable filters, 
only varying the part of 1-D polynomials can easily obtain new desired frequency-domain characteristics. 

Key Words: variable digital filter, constant digital filter, 1-D polynomials, outer product expansion, quadrantal 
symmetries 

1. Introduction 

Variable digital filters have various potential applications in acoustic signal processing, im- 
age processing and communication systems [1], [2], [3], [4]. In such applications, variable 
filters are required to change their coefficients frequently to satisfy the new desired vari- 
able frequency-domain characteristics. If the conventional constant filter design techniques 
such as nonlinear optimization ones are utilized to update the variable filter coefficients 
whenever such needs arise, it will take long design time. Thus, the technique that can easily 
obtain new desired frequency-domain characteristics are necessary. 

Generally speaking, the frequency-domain characteristics of variable filters are deter- 
mined by a set of spectral parameters such as cutoff frequency, transition bandwidth and 
passband width. Different spectral parameter values specify different frequency-domain 
characteristics, and thus need different filter coefficients. Evidently, the coefficients of vari- 
able filters are the multi-dimensional (M-D) functions of the spectral parameters. From this 
viewpoint, Fahmy et al. proposed some techniques for designing recursive one-dimensional 
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(l-D) and two-dimensional (2-D) variable filters. The main objective of the techniques is 
to find the variable filter coefficients as the M-D polynomials of the spectral parameters. 
At first, the spectral parameters within specified ranges are uniformly san3pled. Then the 
normal 1-D or 2-D constant filters corresponding to the sampled spectral parameter values 
are designed. By this step, a set of coefficients of the normal constant filters are obtained. 
Next, the coefficients of a variable filter are assumed to be the form of M-D polynomials of 
the spectral parameters, and then they are determined one by one by using an M-D curve 
fitting technique to best fit the resulting constant filter coefficients. The techniques are 
flexible for designing variable filters with arbitrary desired variable characteristics, and the 
coefficients of the resulting variable filters can be easily obtained only by computing the 
M-D polynomial values. However, 

(1) Since many constant filters have to be designed first by using a nonlinear optimization 
method, and then a lot of M-D polynomials representing variable filter coefficients have to 
be determined, the technique is not computationally efficient. 

(2) Since the denominator coefficients of the designed variable filters are also M-D poly- 
nomials of a set of spectral parameters, and are varied in the signal processing applications, 
the stability of the variable filters cannot be guaranteed. 

This paper proposes a new technique for designing zero-phase recursive 2-D variable 
filters with quadrantally symmetric magnitude characteristics. The technique is based on 
the decomposition of the given 2-D variable magnitude specifications. At first, we uniformly 
sample the given 2-D variable magnitude specification. Using the samples, we construct an 
M-D array, which is the extended version of the normal matrix (2-D case). Then, an outer 
product expansion method is proposed for decomposing the M-D array into the sum of the 
outer products of vectors. The vectors are then regarded as the magnitude specifications 
of the 1-D normal constant filters and the specifications of 1-D polynomials. Finally, by 
performing the normal 1-D constant filter designs and 1-D polynomial approximations, 
we can easily obtain a 2-D variable filter. Since the normal 1-D constant filters are easy 
to design by using the existing conventional filter design techniques, and the optimal 1-D 
polynomials can be determined by solving linear equations, the proposed design technique 
simplifies the original 2-D variable filter design problem significantly. In applying the 
designed variable filters, since the part of the 1-D constant filters is fixed, and only the 
part of 1-D polynomials is varied, the stability of the resulting 2-D variable filters is always 
guaranteed so long as the 1-D constant filters are designed to be stable. Also, only adjusting 
the 1-D polynomials can easily obtain the new desired frequency-domain characteristics. 
Three design examples are given to illustrate the design technique. 

2. Outer product expansion 

Assume that Hd Icy1, co2, • 1, ~2, • • " ,~ff]  is the given quadrantally symmetric 2-D variable 
magnitude specification, where w~ and a J2 are normalized frequencies. Since the specifi- 
cation Ha[col, a~2, ~l,  ~2," "", ~K] is quadrantally symmetric, we only need to consider it 
in the first quadrant. That is, 

co~ C [0, rr], i = 1, 2. (1) 
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In addition, { • 1, II/2, " ' " , /~JK } are the parameters that define the desired variable frequency- 
domain characteristics, we call them the spectral parameters. They are specified as 

tgi E [tgimin, ~irna~], i = 1, 2 , ' ' ' ,  K (2) 

where ~imin and g~ima~ are respectively the lower bound and upper bound of the spectral 
parameter tgi. 

Uniformly sampling the variable specification Hd [wl, ca2, • 2, t92,-. . ,  tgK], we can ob- 
tain the samples 

a(m, n, ll, 12,..., IK) = Hd[Wlm, W2n, ~1(ll), t)2(12),"'", Iuuuuuw K(IK )] (3) 

where 

wlm = 7c(m- 1 ) / ( M -  1), 1 < m _< M 

ca2n = 7r(n - 1) / (N - 1), 1 < n < N (4) 

= + - -  - -  - 1), 1 < _< 

Using the samples a(m,n, ll,12,...,1K), we can construct a (K + 2)-D array A c 
I ~ M x N x L 1  xL2 x . . .  XLK, where a(rn, n, ll, 12,..., lK) are its elements, i.e., 

A = [a(m, n, 11,12,..., lK)]. (5) 

2.1. Decomposition-based design 

In this section, we propose a method for decomposing the (K 4- 2)-D array A into the form 

F 

A ~ E Fi ® Gi ® Pil  ® P i 2  ® " • " ® PiX( 
i = 1  

(6) 

where the notation ® denotes the outer product of vectors {Fi,  Gi, Pil,  P i 2 , ' " ,  PiK }, 
and Fi E R Mxl, Gi E R Nxl, P i l c  R Llxl, Pi2 E R L2xl, ..., P i K E  R Lnxl 
[5], [6]. The outer product expansion (6) can also be represented by using an element 
expression as 

a(m, n, ll, 12,..., lK) ,.~ ~ Fi(m)Gi(n)Pil(l~)Pi2(12)'" Pit((1K) 
i = 1  

(7) 

w h e r e  { - P i ( ? ~ ) ,  Gi(Tb), Pil(ll), P i 2 ( / 2 ) , ' " ,  PiK(IK)} a r e  the elements o f  v e c t o r s  

{Fi, Gi, Pil ,  P i 2 , ' ,  PiK}. 
In 2-D case, using the existing conventional matrix decomposition methods such as the 

singular value decomposition (SVD) and the lower-upper (LU) triangular methods can 
obtain the decomposition (6), and it has been successfully applied to the designs and real- 
izations of 2-D constant digital filters [7], [8], [9], [10]. From the viewpoint of 2-D variable 
filter designs, we perform the outer product expansion (6) subject to the following two 
constraints. 
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(a) Overall squared decomposition error 

F 

E~ = II1 - ~ Fi ® Gi ® Nil @ Pi2 ®""  @ PiKN 2 
i=1 

M N L1 L2 LK 

m-----1 n=1/1=1/2=1 lK=l 

- ~ Fi(m)Gi(n)Pit(ll)Pi2(l~)... PiK(1K)] 2 
i=1 

is minimum. 

(b) Vectors F i  and Gi are non-negative because they will be regarded as the magnitude 
specifications of 1-D constant digital filters later. 

Once the decomposition (6) is obtained, the next task is to approximate the vectors 
{Fi, Gi, Pil, Pi2,'" ", P ig  }. From (7) we know that the non-negative vectors F i  and Gi 
are the functions of frequencies Wl and a J2, respectively, and the vectors {Pil,  P i2 , ' " ,  
PiK} are the functions of the spectral parameters { 9 1 , 9 2 , - . . ,  9K}. To obtain a 2-D 
variable filter, we use 1-D constant filter fi (Zl) with an arbitrary phase response to approx- 

imate the vector F~/2, and thus the magnitude specification vector F i  can be approximated 
by the zero-phase 1-D constant filter fi(za)fi(z~t). Similarly, we use 1-D constant filter 

gi(z2) with an arbitrary phase response to approximate the vector G~/2, and thus the mag- 
nitude specification vector Gi can be approximated by the zero-phase 1-D constant filter 
9i(z2)9i (z~- 1). Moreover, 1-D functions {Pil (91), pi2 (92), . . . ,  PiK ( ~ g )  } are used to ap- 
proximate the vectors {Pil, P~2," • •, PiN }. By cascading zero-phase 1-D constant filters 
{fi(z1)fi(zll),g~(z2)g~(z21)} with 1-D functions {pil(91),Pi2(92),..',Pii~(9K) } 
and then putting them together in parallel, we can obtain a zero-phase 2-D variable fil- 
ter 

H(zt, z2, 91 ,92 , . . . ,  9K) 
F 

= E f i  (Zl) f i  (Z{- 1 )gi (z2)gi (Z 21)Pil (91 )Pi2 ( 9  2 ) ' ' "  PiK (~JK) (S) 
i=l 

which is shown in Figure 1. Since 1-D constant filters fi(zl)  and 9~(z2) are relatively 
easy to design, and the 1-D functions {Pi1(91),Pi2(92), ' ' ' ,  Pi/¢ (gK)} are easy to de- 
termine, this is shown in the next section, the original 2-D variable filter design prob- 
lem can be easily solved. In applying such a 2-D variable filter, by just varying the 1- 
D functions {Pil(91),Pi2(92), '" ' ,p iK(gK)}  we can obtain the new desired variable 
frequency-domain characteristics, but the zero-phase 1-D constant filters {f/(zl) f~ (z~- 1), 
9i(z2)9i(z;1)} are always fixed. So f/(zl),  gi(z2) may be designed to be recursive or 
nonrecursive. In any case, the resulting 2-D variable filter H(zl, z2, 91,92, . .  •, 9K) is 
always stable so long as the designed 1-D constant filters fi(zl) and 9~(z2) are stable. The 
above design approach is diagrammatized in Figure 2. 
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Input 
O-----~ --~ fl(zl)fl(z'l) ~-~qgl(z2)gl(z21) ~ .  • • ~ ~ put 

- ~  f2(z 1 )f2(z-11)}-~g2(z2)g2(z21)~ " ' ' ~  

i ! - !  : 
r Z1 r Z r Z2 r Z2 -1 

Figure 1. Zero-phase 2-D variable digital filter structure. 

IDecompose (K+2)-D Variable Magnitude Specification A ~ a y  1 
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Filter Design Filter Design 
[fi(zl)fi(z~-0] [gi(z2)g i(zz-1)] 

t Zero-Phase Z-D Variable Digital Filter I 

1-D Function Value Vectors I 

{Pil Pi2" " "  PiK} 

I 1-D Polynomial  Approximat ions I 

Figure 2. Efficient approach to 2-D variable filter design. 

2.2. Novel decomposition algorithm 

From above we can understand why the two constraints (a) and (b) are imposed on the 
outer product expansion (6). The constraint (a) is for reducing the number of parallel 
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channels in Figure 1. This will save hardware cost in implementation. That is to say, for a 
given decomposition error Er, the number r of the parallel channels is as small as possible. 
Conversely, for a given number r, the decomposition error E~ is as small as possible. On the 
other hand, the constraint (b) is necessary because the magnitude responses of digital filters 
are non-negative, and the vectors {Fi ,  Gi}  will be regarded as the magnitude specifications 
of the zero-phase 1-D constant filters { f i ( z l ) f i ( z f l ) ,  gi(z2)gi(z;1)} respectively. Below, 
we propose a method for obtaining the outer product expansion (6). The method finds the 
vectors { F~, Gi, P i l ,  Pi2, " " , P iK  }, i = 1, 2 , . . . ,  r, successively following the next 6 
steps, where i is the counter of the current decomposition stage, and r is a preset number 
of parallel channels. At first, we set i = 1. 

Step 1. Compute the error array E at the i-th decomposition stage as 

i--1 

E = A -  E F j  ® Gj  ® P j l  ® Pj2 N . . .  ® P jK .  (9) 
j = l  

But i f / =  1, we let E = A, where A is the constructed ( K  + 2)-D magnitude specification 
array in (5). The elements of E are e(m,  n, ll, 12,. . . ,  lK), i.e., 

E = [e(m, n, 11, 12,. . . ,  IK)]. (10) 

Convert the ( K  + 2)-D error array E to a 3-D array B = [b(m, n, q)] such that 

b(m,n,q)  = e(m,n,  l l ,12, . . .  ,lK) (11) 

where 

q = (ll - 1 ) L 2 L a . . . L ~ c  + (/2 - 1 ) L 3 L 4 . - . L K  + . . .  + (IK-1 -- 1)LK + lK. 

Th6n, convert the 3-D array B to a 2-D array (matrix) C = [c(p, q)] such that 

c(p, q) = b(m, n, q) 

where 

(12) 

(13) 

p = (m - 1 )N  + n. (14) 

Next, separate the matrix C into the sum of the non-negative matrix C + = [c + (p, q)] and 
the non-positive matrix C -  = [c-  (p, q)] as 

C = C + + C -  (15) 

where 

c+(p,  q) = max[c(p, q), 0] 
e - ( p ,  q) = min[c(p, q), 0]. (16) 
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Step 2. Perform the SVD on matrices C + and C - .  From Perron's non-negative matrix 
theory, we know that the matrices C + and C -  can be best approximated by the outer 
products of the non-negative vector pairs { X  +, Y + }  and { X - ,  Y - }  as 

C + ~ X + ® Y+ 
C -  ~ - X -  ® Y - .  (17) 

Then restore the non-negative vector X + = [x+(p)] a n d X -  = [x-(p)] to the non-negative 
matrices D + = [d + (m, n)] and D -  = [d-(m,  n)], respectively, such that 

d+(.~, ~) = x+(;)  

d-(~ ,  ~) = x-(p) (18) 

where the relation between p and m, n is given in (14). Next, perform the SVD on the 
matrices D + and D - ,  and best approximate them as 

D +  ~ F~ + ® a~ + 

D -  ..~ F [  @ G [  (19) 

where vectors { F  +, a + } and {F~-, G~-} are non-negative. Thus the 3-D array B can be 
approximated by the outer product 

B ..~ F + @ G + @ Y +  (20) 

or 

B ~ -F~-  @ G [  @ Y - .  (21) 

Indeed, only one of the decompositions (20) and (21), which results in a smaller decom- 
position error, will be used, and the other one will be neglected. The way to determine 
which one should be remained is given in the next step. This implies that only part of the 
error array E will be approximated in this i-th decomposition stage. The approximation 
will successively improved by the succeeding decomposition stages. 

+ 
Step 3. Fix { F  +, G+},  and then find a new vector Y ~  such that 

E,-~o~+ liB F + ® C +  + 2 

M N Q 
= ~ ~ ~-'~[b(m,n,q)- F~+(m)a+(n)Y+~(q)] 2 

m=l n=l q=l 

M N Q 

rn=l n=l q=l 

+ is minimum, where Q = L1L2.  • • LK.  The optimal vector Y ~ w  is determined as follows. 
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Differentiating Error + with respect to the/-th element of the vector Y+e~, we obtain 

OError + 

o Y % ( z )  

M N 

- ~ ~2[F~+(.~)W(~)Y~(O - b(.~, ~, l)]. F?(.~)W(~). 
m = l  n = l  

OError + 
Equating O y +  (1) to zero, we get 

(22) 

M N 

• ~ow"%"' = m = l  ,~=1 
M N 

E E[F:('~)at(~)7 
m = l  n = l  

(23) 

where 1 = 1 , 2 , . . . , Q ,  but 

M N 

E EIF~+(-~)c:-(n)7 ~ o. 
r n = l  ~ = 1  

(24) 

In the same way, we can also find a new vector Y ~  such that 

E r r o r -  = l i B -  F~- ®C~- ® g ~ l l  2 

M N Q 

= E E E [b(m'n'q) - F[-(m)G:((n)Y,~(q)]2 
m = l  n = l  q = l  

M N Q 

= Z ~ ~[F~(~)aC(~)Y#~(q)- b ( ~ , ~ , q ) ]  2 
m = l  n = l  q = l  

is minimum. 
Next, compare Error + with Error-.  
If Error + < Error-,  we let 

F i  = F + 

G i  = G + 
+ 

Y l  = Ynew" 

(25) 

If Error + > Error-,  we let 

F i  = F~- 

Gi = G-( 

Y1 = Y ~ .  

(26) 
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As a result, we obtain 

B ~ F i  ® Gi  ® Y1. (27) 

Then, restore the vector Y t  = [Yl(q)] to a K-D array A1 = [al(/1, 12,..., 1K)] such that 

a l ( l l ,  12,'",  lK) = ]/1(@- (28) 

The relation between q and {&, 12,- . . ,  IK} is given in (12). Thus the error array E can be 
expressed by a generalized outer product of vectors {F i ,  Gi}  and the K-D array Az as 

E ~ F i  N Gi  N A 1  

which can also be represented using their elements as 

e(,~, ~, ll, 12,..., l~<) ~ F~(~)a~(~)al (11, ~2,..., ZK). 

(29) 

(30) 

Step 4. Convert the K-D array a l  = [al ( /1 , /2 , ' "" ,  lK)] to a matrix B1 = [bl (11, q)] such 
that 

bl (li, q) = al (ll, 12,'", 1K) (31) 

where 

q = (/2 -- 1 ) L 3 L 4 ' ' '  LK + (/3 -- 1 )L4Ls- ' "  LK + " "  + (1K-1 -- 1)LK + lK. 
(32) 

Perform the SVD on the matrix B I  and best approximate it by the outer product of the 
vector pair {P~l,  Y2} as 

B1 ~ P i l  ® Y2. (33) 

Then restore the vector Yz = [Y2 (q)] to a (K  - 1)-D array A2 = [a2(12, 13,..., IK)] as 

a2(/2, 1 3 , . " ,  IK) = Y2(q) (34) 

where the relation between q and {12,13, . ' . ,  lK} is given in (32). As (29), we obtain 

E ,~ Fi ® Gi ® Pil  ® A2. (35) 

Step 5. Convert the ( K -  1)-D array A2 = [a2 (/2, 13, ' - . ,  lK)] to a matrix B2 = [bz (12, q)] 
such that 

b2(/2, q) =- a2(/2, /3,""",  1K) (36) 
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where 

q = (/3 - 1 ) L a L s . . .  LK + (/4 -- 1 ) L 5 L 6 . . .  LK + ' "  + (l~:-1 - 1)LK + lK. 

(37) 

Perform the SVD on the matrix B2 and best approximate it by the outer product of the 
vector pair {Pi2,  Y a }  as 

B2 ~ P i2  ® Y3. (38) 

Then restore the vector Y3 = [Ya(q)] to a ( K  - 2)-D array A3 = [aa(/a, 14 , . . . ,  lK)] as 

a3(13, 1 4 , ' ' ' ,  IK) = Ya(q) (39) 

where the relation between q and {13,14,. . . ,  IK} is given in (37). Thus we obtain 

E ,~ Fi ® Gi ® Pi l  ® Pi2 ® A3. (40) 

Repeating the same operations on the gradually reduced dimensional arrays A3, A4, . . . ,  
AK-1 as above, we can obtain the final outer product expansion of the ( K  + 2)-D error 
array E as 

E ~ Fi ® Gi ® Pi l  ® Pi2 ® "'" ® Pig .  (41) 

Let i = i + 1. I f  i < r,  return to Step 1. Otherwise, proceed to the next step. 

Step 6. Combining the results from Step 1 N Step 5, we yield 

A ~ E Fi ® Gi ® Pil  ® Pi2 ®" "" ® PiI~. (42) 
i=1 

At this point, the overall decomposition error 

r 

E~. = IIA - E Fi ® Gi ® e i l  ® Pi2 ®""  ® PiKH 2 (43) 
i = l  

is not minimum. Next, we choose the result (42) as a starting point, and utilize a nonlinear 
optimization method to minimize the overall decomposition error Er. At last, we can obtain 
the optimal outer product expansion (42). 

Here we should notice that although a nonlinear optimization method is used for mini- 
mizing the overall decomposition error Er ,  the computation time is not long because the 
result (42) is chosen as a starting point, and itself is usually a good approximation to the 
( K  + 2)-D array A. In addition, to evaluate the proposed decomposition method, we use 
the normalized root mean square (rms) error 

r 

IIA - E F i  ® Gi ® Pil  ® Pi2 ® "  ® PiKII 

i= t  x 100% (44) llAII 
as the evaluation criterion. 



TWO-DIMENSIONAL VARIABLE FILTERS 147 

3. 2-D variable filter design 

Once the optimal outer product expansion (42) is determined, the next job is to approximate 
the non-negative vectors { F i ,  Gi } by using zero-phase 1-D constant filters { fi (zl) fi (z~- 1 ), 
gi(zz)9i (z21)}, and the real-valued vectors {Pil, Pi2, '" ,  Piff } by using 1-D functions 
{Pil (01), Pi2 (02),..., PiK (OK) }. Since any 1-D functions can be approximated by using 
1-D polynomials, and 1-D polynomials are mathematically tractable, in this section, we 
choose the 1-D functions {P~I (O 1 ), Pi2 (O2), • - -, PiK (O K) } to be 1-D polynomials. This 
section formulates the 1-D constant filter designs and 1-D polynomial approximations 
separately. 

3.1. Zero-phase 1-D constant filter designs 

Zero-phase 1-D constant filters {fi(zz)fi(z~l), 9~(z2)gi(z~l)} are designed by best ap- 
proximating the 1-D magnitude specification vectors {Fi, Gi}. To do this, we just need to 

.rE1~2 G1/21 approximate the vectors t i , i J by 1-D constant filters {fi(zl),gi(z2)} with arbi- 
trary phase characteristics. Let 1-D constant filter f~(zl) to be of the form 

M1/2 

A. H (1 q- ak, lZl  1 -4- ak,2Zl 2) 

f/(Zl) = k=l (45) 
M1/2 

1-I (1 + c<lz  1 + c k,2zf 2) 
k=l 

The optimal filter coefficient vector 

1' 1 = [ A ak,1 ak,2 tlk,10!k,2 ] (46) 

is determined by minimizing the squared error function 

ef(1"1) = IIF- F~]I 2 

M 
= ~ [F(m) - F~(m)] 2 (47) 

m=l 

using the Davidon-Fletcher-Powell (DFP) nonlinear minimization method. In (47), F is the 
magnitude response vector of the zero-phase 1-D constant filter fi(zl)fi(z~l), and F(m) 
is its m-th element, and Fi(rn) is the m-th element of the non-negative vector Fi ,  i.e., 

F = [F(1) F(2) --. F(M)] ~ 
F i  = [F~(1) F i ( 2 ) . . .  Fi(M)] t. (48) 

It should be mentioned that if no constraints are imposed on the denominator coefficients 
{c~<1, c~k,2} in the nonlinear minimization (47), the resulting 1-D filter fi(zl) may be 
unstable. 
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It is known that the 1-D filter fi(zl) is stable if and only if 

lak,i[ < 1 +ak,2 
(49) 

I~k,21 < 1. 

So in our design, we first perform the denominator coefficient transformations 

{ C~k, 1 = sin0k,l(1 + sin0k,2) 
c~k,2 = sin0k,2 (50) 

where 

Ok,1 ¢ zc /2 + pTc 
(51) 

0k,2 7 ~ 7r/2 + qTc 

and p, q are any integers. Then the optimal coefficient vector 

/"2 = [A ak,1 ak,2 0k,1 0k,2] (52) 

is found by minimizing the error function (47). Once the vector 1"2 is obtained, the opti- 
mal coefficient vector/"1 can be easily calculated from/"2 by using the transformations 
(50). Here we should emphasize that the conditions (51) are always satisfied in the prac- 
tical nonlinear minimization process, thus the designed 1-D filter fi(zt) is always stable. 
Also, the zero-phase 1-D constant filter gi(z2)gi(z~ 1) is designed in the same way. Af- 
ter the zero-phase 1-D constant filters {fi(zt)f~(z~l),gi(z2)gi(zil)} are obtained, the 
next job is to approximate the vectors {Pil ,  P i 2 , ' " ,  PiK} by using 1-D polynomials 
{Pil (~1), p i2(~2) , ' ' " ,  PiK(~K)}. Assume that the magnitude response vectors of the 
designed zero-phase 1-D constant filters {fi(zl)fi(z11),gi(z2)gi(z~l)} are {F'i, G'i}. 
Evidently, 

F '  i ~ F i  

G~ ~ Gi. (53) 

Since the real-valued vectors {g i l ,  Pi2, "" ",PiK } can be exactly approximated by using 
1-D polynomials {pil (~1), Pi2 (g!2),..., PiK (~K) }, which will be shown below, we know 
that the final squared approximation error of the designed zero-phase 2-D variable filter is 

Sir =- HA - ~ F~ ® Gti ® Ni l  ® Pi2 @""  @ PiKH 2. (54) 
i = i  

F '  From (54) it is known that if we hold the resulting vectors { i, G~} constant, and choose 
the vectors {Pil,  Pi2,'" ", PiK} as initial values, and then further minimize the error E~, 
the final design error of the zero-phase 2-D variable filter can be further reduced. So before 
approximating the vectors {Pil ,  Pi2, " • ", P iK }, we first reoptimize them by minimizing 
the error E~, and then approximate the new updated vectors {Pi l ,  Pi2 ,"" ,  P ig  }. 



TWO-DIMENSIONAL VARIABLE FILTERS 149 

3.2. 1-D polynomial approximations 

As stated above, to approximate the real-valued vectors {Pil,  Pi2," • •, P iK }, the functions 
{pil(~1),p~2(~2)," "',PiK(ggK)} may be arbitrary 1-D functions such as exponential 
functions, trigonometric functions and polynomials• Among them, 1-D polynomials are 
most computationally efficient. In addition, from the Weierstrass approximation theorem 
it is known that 1-D polynomials can be used to approximate arbitrary 1-D functions with 
any desired approximation accuracy, so we choose {Pil ( ~  1 ), Pi2 ( t i t2) , ' "  ' ,  PiK ( ~ K ) }  to be 
1-D polynomials in this paper. Below, we consider the problem of using the 1-D polynomial 

N~ 

P(~) = E ci~i 
i=0 

(55) 

to approximate a real-valued specification vector P C n Lp x 1, where Np is the order of 
p(~). The squared approximation error is 

L~ 

j = l  i=0 
(56) 

where ~sj is the j-th sample of the variable ~. 
Differentiating ep with respect to cq, q = O, 1 , . . . ,  Np, and setting it to zero, we obtain 

N~p Lp Lp 
i q 

i=0 j = l  j = l  
(57) 

The Eq. (57) can be represented in the matrix form as 

• ¢ t C  = ~ P  (58) 

where 

= 

• " " ~LpO 

C~ 1 
Lp 

~Np 
Lp 

(59) 

c =  [co (60) 

P =  [P(1)  P(2) . . .  P(Lp)]t .  (61) 

Solving the simultaneous linear Eq. (58) can obtain the optimal coefficient vector C. 
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4. Design examples 

This section presents three design examples to show the usefulness of the proposed zero- 
phase 2-D variable filter design technique. 

Lowpass Filter. A 2-D variable lowpass magnitude design specification is given by 

where 

1 R<_Rp 
Hd(a~l,co~,91) = 0 R_> R~ 

R --- + 

Rp = 0.22 + 91 

R~ = 0.40 + 91 

91 E [--0.08, 0.08]. 

(62) 

(63) 

The spectral parameter 91 controls the variable position of the transition band, but the 
transition bandwidth is constant [4]. To construct a 3-D magnitude specification array A, 
we assume that the variable magnitude specification in the transition band varies linearly 
from the passband to stopband. In this example, we take M = N = 21, L1 = 9, and 
thus a 3-D magnitude specification array A E /g21x~lx9 is constructed. Performing the 
outer product expansion on the 3-D array A, we can obtain the decomposition errors shown 
in Table 1. Observing the Table 1, we know that the greater the number r of parallel 
channels, the smaller the normalized rms decomposition error. If r = 4, the normalized 
rms decomposition error is 4.35%. Thus in our designs, we only approximate the vectors 
{Fi ,  G~, P i l} ,  i =- 1, 2, 3, 4, and ignore the others. This is because taking more parallel 
channels will need extra hardware cost in implementation but hardly improve the design 
accuracy of the final resulting zero-phase 2-D variable filter. 

Table 2 shows the normalized rms errors of the designed (4,4)-order zero-phase 2-D 
variable lowpass filter for some 91 samples. The order of 1-D polynomials pil('IJl) is 8. 
Figure 3 and Figure 4 illustrate the magnitude responses of the designed variable filter for 
91 = -0.08 and 91 = 0, respectively. The design results are relatively satisfactory to 
some extent. 

Compared with the Fahmy's technique, our proposed technique is more computationally 
efficient because it only needs 1-D constant filter designs and 1-D polynomial linear ap- 
proximations. Especially, the stability of the resulting variable filters is always guaranteed, 
and their parallel structures are suitable for high speed signal processing. Also, the designed 
2-D variable filters are zero-phase, so they are particularly important in image processing 
applications. 
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Figure 4. Variable magnitude response for ~1 = O, 
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Table 1. Decomposition errors of lowpass filter 

Channel number Normalized rms error 
[r] [~] 

1 25.11 
2 14.62 

3 8.10 

4 4.35 
5 3.60 
6 3.08 

Z 

Table 2. Design errors of lowpass filter. 

Sampled Normalized rms error 
grl [%] 

-0.08 9.99 
-0.06 9.26 
-0.04 9.29 

o 
-0.02 8.62 

0 7.34 

0.02 7.06 
0.04 6.61 

0.06 8.34 
0.08 11.75 

Fan Filter. The variable magnitude design specification of a 2-D variable fan filter is given 
by 

1 w2 _> ~1Wl 
Hd(C01, w2,/I/l) = 0 t.o 2 < lI/ltO 1 -- 0.57i- (64) 

where ~ 1  @ [1, 2]. The spectral parameter ~1 controls the variable passband angle. The 
transition bandwidth is constant, and the specification in the transition band varies linearly. 
For constructing a 3-D array A, we take M = N = 21, and L 1 = 11. Thus a 3-D magnitude 
specification array A E /~21× 21 x 11 is obtained. Performing the outer product expansion 
on the 3-D array A, we obtain the decomposition errors given in Table 3. In variable filter 
design, we only approximate the vectors {F~, Gi ,  P i l } ,  i = 1, 2,. - •, 6, and ignore the 
others. Thus r = 6. In this case, the normalized rms error from the decomposition stage is 
5.96%. Table 4 shows the final normalized rms errors of the designed (2,2)-order variable 
fan filter, the order of 1-D polynomials pil  (~1) is chosen to be 5. 

Figure 5 and Figure 6 illustrate the magnitude responses of the designed (2,2)-order 
variable fan filter for ~1 = 1.5 and ~1 = 2, respectively. From the design results we know 
that although the filter order is just only (2,2), extremely good results have been obtained. 
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Figure 6. Variable magnitude response for ~1 = 2. 
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Table 3. Decomposition errors of fan filter. 

Channel number Normalized rms error. 

It] [%1 

1 34.43 
2 21.73 

3 13.65 
4 10.28 
5 7.94 
6 5.96 

7 5.13 

Table 4. Design errors of fan filter. 

Sampled Normalized rms error 

qgi [%] 

1.0 12.14 

1.1 10.88 
1.2 9.52 
1.3 9.11 
1.4 8.93 
1.5 8.81 

1.6 8.90 
1.7 9.10 

1.8 9.80 

1.9 11.20 
2.0 12.43 

Highpass Filter. A 2-D variable highpass magnitude design specification is given by 

0 R < _ ~ I  
Ha (co l , co2 ,~ l ,~2 )=  1 R _ > ~ l + ~ z  (65) 

~/1 C [0 .3 ,0 .5 ]  (66 )  

% c [0.2,0.3]. 

The spectral parameter ~1 controls the variable stopband width, and ~2 controls the tran- 
sition bandwidth. Therefore, the stopband width and transition bandwidth can be indepen- 
dently adjusted. In addition, the specification in the transition band varies linearly. 

As in the above two examples, we take M = N = 21, and L1 = 11, L2 = 6. Performing 
the outer product expansion on the 4-D specification array A E R 21 × 21 x 11 × 6, we obtain the 
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Table 5. Decomposition errors of highpass filter. 

Channel number Normalized rms error 
Er] [%] 

1 30.36 
2 11.28 
3 6.66 
4 5.92 

Table 6. Design errors of highpass filter. 

Sampled Sampled Normalized rms error 
~I'1 ~P2 [%] 

0.30 0.20 6.61 
0.30 5.37 

0.32 0.20 6.53 
0.30 5.24 

0.34 0.20 6.35 
0.30 5.08 

0.36 0.20 6.47 
0.30 5.18 

0.38 0.20 6.22 
0.30 5.35 

0.40 0.20 6.58 
0.30 6.09 

0.42 0.20 6.59 
0.30 7.16 

0.44 0.20 7.08 
0.30 8.66 

0.46 0.20 8.50 
0.30 10.71 

0.48 0.20 9.91 
0.30 12.77 

0.50 0.20 11.10 
0.30 14.75 

decompos i t ion  errors in Table 5. In variable filter design, the vectors {Fi,  Gi, P i l ,  P i 2 } ,  

i = 1, 2, 3, are approximated,  i.e., r = 3. In this case, the normal ized rms error f rom the 

decompos i t ion  stage is 6.66%. Table 6 gives the final normal ized rms errors o f  the des igned 

(2,2)-order variable highpass filter. The orders of  1-D polynomia ls  Pil(~'l) and Pi~ (~92) 
are respect ively  5 and 3. 

F igure  7 illustrates the magni tude  response o f  the designed (2,2)-order variable highpass 

fil ter for ffd 1 = 0.3 and ffJz = 0.2. F igure  8 illustrates that for • 1 = 0.5 and ~I'~ = 0.3. F r o m  
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Figure 7. Variable magnitude response for qgl = 0.3, 92 ---- 0.2. 
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Figure 8. Variable magnitude response for gtl = 0.5, ~z  ---- 0.3. 
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the design results we know that although the filter order is just only (2,2), very satisfactory 
variable characteristics have been obtained. 

5. Conclusions 

This paper has proposed an efficient technique for designing zero-phase 2-D variable digital 
filters with quadrantally symmetric magnitude characteristics. The technique is based on 
the decomposition of  the given 2-D variable magnitude specifications. At first, we pro- 
posed a new outer product expansion method for decomposing the 2-D variable magnitude 
specifications into the magnitude specifications of the normal 1-D constant filters and the 
specifications of  1-D functions. Then the resulting 1-D magnitude specifications are ap- 
proximated by using zero-phase 1-D constant filters, and the specifications of  1-D functions 
are approximated by using 1-D polynomials. At last, by interconnecting the obtained zero- 
phase 1-D constant filters and 1-D polynomials, we can easily obtain a zero-phase 2-D 
variable filter. The design technique is computationally efficient. In addition, since the part 
of  the zero-phase 1-D constant filters is always fixed in signal processing applications, the 
resulting zero-phase 2-D variable filters are always stable so long as the zero-phase 1-D 
constant filters are designed to be stable. Moreover, the coefficients of the resulting 2-D 
variable filters can be easily obtained by computing the 1-D polynomials. However, the 
proposed technique can only design 2-D variable filters with quadrantally symmetric mag- 
nitude characteristics. The one for approximating arbitrary 2-D magnitude characteristics 
is under investigation. 
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