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Abstract. Two-dimensional (2D) finite codes are defined as families of compact support sequences indexed in 
Z x Z and taking values in F n, F a Galois field. Several properties of encoders, decoders and syndrome decod- 
ers are discussed under different hypotheses on the code structure, and related to the injecfivity and primeness 
of the corresponding polynomial matrices in two variables. Dual codes are finally introduced as families of parity 
checks on a given modular code, and related to the standard theory of 2D behaviors. 
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1. Introduction 

Since the early seventies, the pioneering work of Forney [1, 2] made it quite clear that 
the theory of discrete-time multidimensional linear systems over a finite field provides a 
very convenient setting for the analysis of convolutional codes. On the other hand, in the 
algebraic context many questions concerning convolutional codes proved to have answers 
that seem quite illuminating and useful for systems and control applications. However, even 
if both fields exhibit some common research directions and resort to similar mathematical 
tools, the coding point of view is somewhat different from that of linear systems. Actually, 
in system theory the interest centers around input-output relations, while in coding theory 
what is most important is the set of output sequences of the encoder, i.e., the internal struc- 
ture of the code. 

Quite recently, the behavioral approach, developed by J.C. WiUems [3] for the analysis 
of dynamical systems, has been applied to the investigation of 1D and 2D convolutional 
codes [4-6]. This new framework seems to be quite effective in the 2D case, since it allows 
us to investigate the internal properties of the code without explicitly referring to the machin- 
ery which underlies the codeword generation and, in particular, without making any assump- 
tion on the ordering of two-dimensional data. So, in principle, no artificial notion of causality 
in Z × Z, and, consequently, no a priori restriction on the supports of the signals are 
needed. Indeed, the finite-support constraint we shall introduce in a while on two- 
dimensional codewords does not follow from causality considerations, but corresponds to 
the fact that most of 2D information sequences encountered in the applications do not infi- 
nitely extend in Z × Z. 



232 M.E. VALCHER AND E. FORNASINI 

In this communication we aim to analyze the algebraic properties of 2D convolutional 
codes whose codewords have finite support, and discuss how they are related with more 
general classes of 2D codes, that have been modeled in [6] as 2D complete behaviors. 

The paper is organized as follows: in the next section, 2D modular codes are defined 
and some fundamental requirements on the encoding and the decoding maps, which translate 
into specific constraints on the algebraic structure of the code, are introduced. As any code 
can be generated by different encoders, in Section 3 we discuss different sets of necessary 
and sufficient conditions, which guarantee the equivalence of two encoders. The analysis 
is carried out both in the general case and for specific classes of 2D codes, such as free 
modular, finite convolutional and finite basic codes. In the last section, we introduce 2D 
codes with infinite support (unrestricted 2D behaviors) as suitable algebraic duals of mod- 
ular codes. In this context, a dual code can be viewed as the space of all parity checks 
that can be applied to a received sequence to decide whether it belongs to the code. 

The existence of a finite set of finite support parity checks a syndrome decoder for a 
code C, which allows for an unambiguous identification of its codewords, is shown to depend 
on both the structure of the dual code and the algebraic properties of the encoders of E. 

2. Finite convolutional codes 

Let F be a finite field and denote by 5:~ the set of the sequences indexed on the discrete 
plane Z x Z and taking values in F n. In the sequel, it will be convenient to represent 
the elements of 5:~ via formal power series, by associating any sequence w := {w(h, k)} 
with the series 

E w(h, k)zhz~. (1) 
h,kEZ 

To avoid cumbersome notations, we will adopt the same symbol both for a sequence and 
for the associated power series, and denote the coefficient of zhz k in series w 1 2 anY as 
(W, h k  Zl z2). The main advantage in using formal power series is that many linear operators 
can be represented by appropriate matrices with elements in if+ := F[Zl, z2, z{ 1, z21], 
the ring of 2D Laurent polynomials (L-polynomials). This way the fundamental operator 
properties find an immediate counterpart in terms of the structure of the corresponding 
matrices and, in particular, of their factors. 

DEFINITION. A matrix G(Zl, z2) E ~kxn is 

• ~Y+-unimodular, if k = n and det G is a unit in 5:+; 
• left factor prime (gFP), if for every factorization G = TG, with T(zl, Z2) E ~k×k, T is 

5:+-unimodular; 
• left zero prime (eZP), if the ideal generated by the maximal order minors of G is the 

ring 5:+ itself. 

A 2D code of length n over F is any subset of ~Y~. In this paper we will mostly deal 
withfinite codes, i.e., subsets of 5 :n whose elements have finite support. By the bijective 
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correspondence between sequences indexed in Z x Z and formal power series, we identify 
each compact support sequence with an element of 5:~, the 5:±-module of n-dimensional 
row vectors with entries in 5:+. Accordingly, a 2D finite code e of length n is defined 
as a subset of 5:~:. 

In order to introduce a convolutional structure on e ,  the set of its sequences has to be 
endowed with some properties, which constitute the mathematical formalization of very 
natural requirements. The most common ones are linearity and shifi-invariance, i.e., the 
closure of e under shift and superposition. 

(a) [Linearity] If w 1 and w2 belong to C, then ogw 1 -~ ~W 2 belongs to e for every o~ 
and/~ in F. 

Co) [Shift-invariance] w E C implies that v = zhlzkw E C for every h, k E Z, i.e., e 
is invariant w.r.t, the shifts in Z × Z along the coordinate axes. 

Codes with properties (a) and (b) can be characterized as $+-submodules of 5:~: and will 
be called modular codes. Moreover, as $~: is an 5::L-Noetherian module [7], C is finitely 
generated, i.e., there exists a finite set of row vectors g~, g2, . . . ,  gk in 5:~ such that 

(~ = uig i : U i e ~ = {uG: u E 5:~} =: Ira+ G, 
i=1 

(2) 

where G(zl, z2) denotes the L-polynomial matrix G = col{g 1, g2, . . . ,  gk}. 
Once a family of generators has been chosen, the matrix G constitutes an encoder which 

generates all the codewords of e as the information sequence u varies over 5 :k. It may 
happen, however, that different information sequences in 5 :k produce the same codeword, 
and consequently turn out to be indistinguishable at the decoding stage. Such a drawback 
can be avoided if and only if G induces an injective map or, equivalently, has full row 
rank over the field of rational functions F(zl, z2). Since there exist submodules of 5:~ 
which are not free, not every modular code admits an injective encoder. Finite codes which 
are free 5:+-modules are called free modular codes. 

Example. Let F = GF(2) and consider the modular codes generated by the following 
encoders: 

I 1 zl Z2] 
Gl(zt, z2) :=  zi-1 1 z2 ' 

I 1 z 1 z2 1 
G2(Zl, z2) :=  zl z2 + zl 1 , 

Zl + 1 z2 z2 + 1 

I (zl -4- 1)(z2 + 1) (zl "q- 1)ZlZ21 q 
a3(zl, z2) :~  (z 1 or_ Z21)(Z2 q_ 1) (Zl q- Z21) ZlZ21 J " 

As G 1 is full row rank, the code generated by G1 is a free module. 
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Even though G 2 is not full rank, the code it generates is free, because the sum of the 
first two rows of G2 gives the third one. 

Finally, Im+ G3 is not free. Actually, G3 is not full rank, so if there were a basis, it would 
consist of a single row vector p E ~F2~. The rows of G 3, being elements of the module 
generated by p, should be L-polynomial multiples of p, and this requirement determines 
p as p = [z2 - 1 ZlZ-1], modulo a unit factor z~z~', n, m e Z. Such a vector, however, 
does not belong to Im± G3. 

To 
tions 

further constrain the structure of C, we can require that its codewords be the solu- 
of an autoregressive system of equations, i.e., there exists a finite set of matrices 
F q×n, such that w = Eh,ke z w(h, k)zhz k belongs to e if and only if 

Z w ( h  - i , k - j ) H  [ =  O, ¥ (h,k)  E Z × Z. (3) 
i,j 

Thus, letting HT(zl, Z2):= El, j Hijz~zJ2 = [hT(zl, Z2) T • • • hq(Zl, z2)], w is in e if and only if 

wHT(Zl, Z2) --  O. (4)  

Each column of H T provides a parity check, which can be applied to a received sequence 
for testing whether it belongs to the code, and the representation 

C = ker±H r :=  {w E ~ : writ(z1, z2) = 0} 

shows that a finite number of parity checks is sufficient for a complete characterization 
of e .  The matrix HT(zl, z2) will be referred to as a syndrome decoder of e ,  and the cor- 
responding codes are called finite convolutional codes. Their structure is characterized by 
the following proposition. 

PROPOSITION 1. A free modular code C admits a syndrome decoder if and only if e has 
a eFP encoder G(zl, z2). 

kxn Proof Let ~ = Im+G, where G E ~:+ is eFP, and consider a full column rank matrix 
HT(Zl, Z2) ~ 5:~: ×(n-k), such that GH r = 0. Clearly, if w E C, then w = uG, for some 

k T T T T u ~ ~ ± , a n d w H  = (uG)H = u ( O H )  = 0, s o w  ~ k e r ± H . O n t h e o t h e r h a n d ,  if 
w ~ 5:~ is in ker± H T, it belongs to the subspace of F(zl, z2)" orthogonal to the columns of 
H T, and spanned by the rows of G. Then there exists a row vector f E F(zb z2) k such that 

w = fG(z~, z2). (5) 

We aim to prove that f is an element of 5:~. Actually, as G is eFP, there exist [8] two 
L-polynomials h(Zl) E F[zl, zll] ,  k(z2) E F[z2, z21], and two L-polynomial matrices 
X(zl, z2) and Y(zl, z2), such that 

G(Zl ,  z2)X(Zl, z2) --  h(zl)lk and a(zl ,  z2)Y(Zl, Z2) = k(z2)ik. (6)  
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It entails no loss of generality supposing that f has irreducible entries, f .  So, letting 
d(Zl, z2) be the 1.c.m. of  the denominators o f f ,  equation (5) can be rewritten as 

dw = I n  1 . . .  n k ] G  , n i E 5:+, i = 1, 2 . . . . .  (7) 

Postmultiplying both members  of  (7) by X ( Z l ,  Z2) and Y(zl, z2), we obtain 

dwX(Zl, z2) = [hi . . .  nk]GX(Zl, Z2) = [nl . . .  nk]h(Zl), 

dwY(Zl, z2) = [hi . . .  nk]GY(zl, z2) = [nl . . -  nk]k(z2), 

respectively. As d, nl . . . .  , nk have no common factors, it follows that d(Zl, Za) I h(za) and 
d(Zl, z2) ] k(zz), and therefore d is a unit in 5:+. Thus f belongs to 5:~: and w to Irn± G. 

Vice versa, let e = k e r + H  :r, with H r ~ 5:~ ×p and rank H ~" = r, and consider any eFP  
G(zl, Za) E 5:~ -r)×n, such that G H  r = 0. Using the same arguments as in the first part 
of  the proof, one shows that C = Ira_+ G. [] 

Remark. By the above proof, given any encoder G of a finite code C, each set of generators 
for the subspace of F(Zl, z2) n orthogorlal to the rows of G, constitutes a syndrome decoder 
of  C. In particular, we can always resort to a rFP syndrome decoder H ~', which is unique 
modulo a right unimodular factor. 

Some specific reliability requirements, concerning the reconstruction of the information 
sequences at the decoding stage, justify the introduction of our further restrictions on the 
structure of  C. Usually, the received sequence Wr is not in e but, when the transmission 
system is well designed, w r differs from a codeword w of C in a finite number of  points, 
and therefore the error sequence e :=  w r - -  W belongs to 5:~. Since an injective encoder 
G ~ 5:~ ×n induces a bijection between 5:~ and C, there exists a decoder G-l(zl, z2) E 
F(zl, Za) n×k such that G G  -1 = Ik. So, when restricted to the set of  the codewords e ,  
G-l(Zl, z2) represents the inverse of the encoding map. The error sequence e, however, 
does not need to be a codeword. So applying G-I(zl, z2) to w r gives back the sequence 

U r : Wr G-1 = (uG)G -1 + eG -1 = u + eG -1, 

which differs from the original information sequence by the (possibly infinite) reconstruc- 
tion e r r o r  e G  -1  = u r - u .  

To avoid this kind of catastrophic error, it is imperative to use an L-polynomial  decoder, 
which exists if  and only if  C admists a g ZP encoder G. Analogously with the 1D case, 
modular  codes generated by a e ZP polynomial matrix will be called finite basic codes. 

Example. Let F = GF(2). It is easy to check that the L-polynomial  matrix 

o1 zlz2  + 1  z2 o+ 1 o 
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is gZP, while 

G2(zl, z 2 ) = I z ~ +  1 0 z l l  
z2 + 1 z22 + Zl 0 

is e FP but not g ZP, since its maximal order minors have a common zero in (1, 1). There- 
fore, no L-polynomial right inverse of G2 exists. 

As 2D finite basic codes constitute a proper subclass of convolutional ones, it might be 
expected that a characterization of their structure should be possible also in terms of syn- 
drome decoders. This is actually the case, as stated in the following proposition. 

PROPOSITION 2. Let e be a modular code. The following are equivalent: 

(i) e = Ira+G, with G ~ ~:kx. and eZP. 
(ii) e = kerI/r,  with ~/r ~ 5:~x(n-k} and rZE 

Proof (i) = (ii) By the Quillen-Suslin theorem [9], there exists an L-polynomial matrix 
P(zl, z2) such that 

I 6(z~, z9 1 U(Zl, Z2) :=  /3(Zl, Z2) 

is unimodular. The rZP matrix f-/T(Zl, Z2) ~ ~_×(n-k), constituted by the last n - k col- 
uruns of the inverse matrix U-l(q, z2) = [Lr(Zl, z2) hff(Zl, z2)], satisfies ~ / r  = 0, and 
therefore is a syndrome decoder of e .  

(ii) = (i) Using the same argument as in the first part of the proof,/7/r(z 1, z2) can be 
column-bordered into a unimodular matrix V(z t, z2) := [/~,r(Zl, z2) /-/r(zl, z2)]. The first 
k rows of V-I(zl, z2) provide a gZP encoder G(zl, Z2) of e .  [] 

3. Equivalent encoders 

The above discussion made it clear that a modular code can be generated by different en- 
coders. In a more algebraic theoretic se~ing, this amounts to say that an ~_+-module admits 
different families of generators. 

Two matrices G1 E 5:~ xn and G2 ~ ~ × n  are equivalent encoders (G1 - G2) if they 
generate the same code, i.e., if the ff±-modules generated by the rows of G1 and G 2 coin- 
cide. This implies that G1 is equivalent to G2 if and only if there exist two L-polynomial 
matrices P1 E ~k2Xkl and P:z E 5:~ x'~ such that v±  

P1 G1 = G2, P2 G2 = G1. (8) 

When confining ourselves to the class of full row rank encoders (namely, the injective 
encoders of free modular codes), we can replace (8) with the single equation 

G 1 = UG2, (9) 
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where U(Zl, Z2) denotes an 5:+-unirnodular matrix. Indeed, (8) and the row rank assump- 
tion on G 1 and G2 imply that both matrices have the same number, say k, of rows, and 
P1 and P2 are k × k L-polynomial matrices. From G1 = P2 Gz = PEP1 G1 we get P2P 1 
= Ik and consequently U(Za, z2) := Pz(zl, z2) is ~:~:-unimodular. So, when a code C ad- 
mits a eFP (gZP) encoder, all the injective encoders of ~ are eFP (gZP), too. 

As the various subclasses of modular codes introduced in Section 2 are characterized 
by the existence of suitable (injective, g FP or e zP) eneoders, an important issue is to decide 
whether a code e ,  given through the assignment of an arbitrary encoder G, admits an en- 
coder enjoying the aforementioned rank and primeness properties. The following proposi- 
tion provides a complete answer. 

PROeOSmON 3. Let G(Zl ~ z2) be in 5:~ ×n, with rank/~ over F(zl, z2). Then there exist two 
L-polynomial matrices, G(Zl, z2) E 5:~ ×" eFP and T(Zl, z2) ~ ~×k  with full column rank, 
such that 

G(Zl, zz) = Z(Zl, z2)a(z l ,  z2). 

Moreover, the code C = Ira± G 

(i) is free modular if and only if T factorizes into the product 

T(Zl, z2) = 7'(Zl, z2)L(Zl, z2) 

where T is rZP and L is a nonsingular square matrix; 
(ii) is finite convolutional if and only if T is rZP; 
(iii) is finite basic if and only if T is rZP and G is e zP. 

(10) 

(11) 

G = /3G, G = PG. (12) 

From (12) one gets 

(p/3 _ I )G = 0, 

and the row rank assumption on G implies p/3 = L So P is fZP  and/3 is rZE 

(13) 

(i) Assume that in (11) 1" is rZP and L is a nonsingular square L-polynomi_al matrix, 
mad_ consider the faetorization G = 7"(LG). As T is right zero prime, the map T : 5:~: 
5 :k is subjective, and we have Im± G = Im_+LG. Being the image of a full row rank 
matrix, the code C is free modular. 

Vice versa, let e = Im± G be a free 5: + -module. Then, there exist a full row rank L- 
polynomial matrix G such that Im± G = Ira+ G, and two L-polynomial matrices P and 
P satisfying 

Proof Let G'  be a/~ x n L-polynomial matrix, obtained by_selecting in G/~ rows linearly 
independent over F(zl, z2). Then G = RG', R E F(Zl, Za) k×k. Consider any g.l.f. Q of G'  
and factorize G'  into QG, G ~ ~y~×n gFE So G = TG, where T = RQ is an L-polynomial 
matrix, by the same reasoning as in the proof of Proposition 1. 
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On the other hand, factorize the matrix Tap_pearing in (10) as T --- TL, where/~ is rFP. 
Using (12), weget  TLCr) = G = PCr = PPT(LG),  and consequently T = /3[p~]. As 
T is rFP and P is rZP, it follows that PT is unimodular and T is rZP. 

(ii) and (iii) If in (10) T is a rZP matrix, the map T : ffk ~ 5:~ is surjective and there- 
fore Im+ G = Im+ G. This means that C is finite convolutional when G is gFP, and finite 
basic when G is g ZP. 

Conversely, if Im_+G = Im_+G for some fFP (gZP)/~ x n matrix G, there exists an 
L-polynomial matrix P such that G = PG, and therefore 

(~ = (PT)(~. (14) 

As both G and G are f FP, PT is unimodular and T is rZP. Moreover, if G is e ZP, G is 
fZP too. [] 

In the remaining part of this section, we shall confine ourselves to finite convolutlonal 
codes. Since these codes can be characterized as kernels of syndrome decoders, it seems 
quite natural to ask how two syndrome decoders of the same code C are connected to each 
other. The following proposition provides an equivalence condition for two syndrome de- 
coders, and shows that, when dealing with encoders of convolutional codes, the equivalence 
condition (8) can be replaced by a single L-polynomial equation. 

PROPOSITION 4. Consider a pair of finite convolutional codes Ci = Im+ Gi = ker+ H/r, 
i = 1, 2. Then ~1 = ~2 if and only if 

(a) there exist two full column rank L-polynomial matrices Pt and P2 such that 

P1G1 = PzG2 (15) 

or, equivalently, 
(b) there exist two full row rank L-polynomial matrices Q1 and Q2 such that 

H~Q1 = HfQ2. (16) 

Proof. (a) Assume first Im+ G1 = Im+ G2. By Proposition 3, there exist two rZP L-pol_y- 
nomial matrices T1 and T2 such that Gi = Ti G~, G i f FP, i = 1, 2. Since we have Im 2 G1 
= Im__+ G1 = _Im+ G2 = Im± G2, we can find an 5:_+-unimodular matrix U(zl, z2), satisfy- 
ing G1 = UG2, which, in turn, gives 

TI"-I(TI(~rl) = UT21(T2G2), (17) 

T11 and T21 L-polynomial left inverses of T 1 and T2, respectively. Putting P1 := T1-1 and 
P2 := UT{ 1 in (17), one gets Equation (15). 

Vice versa, assume that (15) holds and, using_Proposition 3, let Gi = Ti Gi, Ti rZP, Gi 
eFP, i = 1, 2. This gives (PI T1)G1 = (P2T2)G2, and, consequently, 

G'I = (T11p11pETE)GE, (18) 
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where T1-1 and P1-1 are rational left inverses of T 1 and P1 respectively. As both G1 and 
G2 are eFE Tllpllp2T2 is an ~_+-unimodular matrix. So, the equivalence chain G1 
G1 ~ G2 ~ 6 2  proves that GI and G2 are equivalent encoders. 

(b) If (16) holds, we have 

wH~Q 1 = 0 ~* wH ff = 0 

and, similarly, 

wHfQ 2 = 0 ~ wH f =  O. 

Therefore 

ker___ H r = ker± HrQI = ker± HrQ2 = ker_+ Hr. 

Vice versa, if H~ and H f  are equivalent syndrome decoders, the columns of H1 r and H f  
generate the same subspace in Fn(Zl, z2)- Hence, there exists a rational matrix L that sat- 
isfies the equation H~L = Hr. We can column-border L into a full row rank matrix 
[L M],  so as to get 

Hr[L M] = Hf[I  N], (19) 

where M and N are suitable rational matrices. Consider now any rMFD RS-1 of [L M ], 
and rewrite (19) as H~R = Hf[I  N]S. R is clearly full row rank and, denoting by Qzj-1 
any rMFD of [I N]S, we get HrlQ1 = HrRj  = HfQ2, where both Q1 := RJ and Q2 are 
full row rank. [] 

4. Dual codes 

An obvious way to extend the finite codes considered in the previous sections, is to relax 
the constraints on the supports of the codewords, thus allowing the codes to include se- 
quences with infinite supports. This point of view has been adopted in [6], where (infinite) 
convolutional codes have been introduced by imposing increasingly stronger constraints, 
typical of the "behavioral approach" [3, 10], on two-dimensional sequences in 5 :n. 

In this section we aim to show that every complete and, in particular, convolutional (in- 
finite) code can be seen as the set of all parity checks that can be applied to an arbitrary 
sequence of 5:~, to decide whether it belongs to a given modular code e .  From an alge- 
braic point of view, this amounts to regard an infinite code as a space of linear functionals 
on ~:~=, i.e., as the algebraic dual of a modular code. 

Introduce in 5:~ x 5 :m the nondegenerate bilinear form (., ")m : 5:m_+ X 5:~ ~ F, de- 
fined by 

(u, v)~ = (uv r, I) = ~ u(i, j)VT(--i, --j). 
i,j~z 
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Two vectors u fi 5 :m are called orthogonal if (u,  V)m = 0. Given any modular code ~ c 
5:~, its orthogonal complement C ± is constituted by all vectors of 5:m_+ which are orthogo- 
nal to C. Similarly, every submodule ~3 of ~m identifies an orthogonal complement ~ ± 
in 5:~. 

We can associate with every v fi 5:m+ the linear functional on 5:m_+ defined by 

f~(') = <', V)m (20) 

and, conversely, every linear functional on 5:~ can be represented as in (20), for an appro- 
priate choice of v E 5 :m. This way the space 5 :m is identified with L(5:~), and several 
strong results, which do not hold for arbitrary pairs of dual spaces, are made available [11]. 

Let C be a modular code, described as the image of the map G : 5 :k ~ 5:n+ : u ~ uG, 
and consider the map G r : ~Y~ ~ ~Y~ : v ~ v G  r. As  (uG, v)n = (uGv r, 1) = (u(vGr) r, 
1) = (u, v G r ) k ,  then G and G r are dual mappings. This implies 

Im_+ G = (kerG~r) ± (21) 

and 

kerG r = (Ira+ G )  ±,  (22) 

where 

kerG r :=  {v E 5 :n : v G  r = 0}. (23) 

By (21), the ~Y+_-submodule of 5 :n, :D := kerG 7", represents the set of all linear functions 
fv(') we are allowed to apply when deciding whether w ~ 5 :n belongs to C, and it will 
be called the dual code of ~.  

Relations (21) and (22) together, induce a bijective map between the family of modular 
codes (i.e., the family of submodules of 5:~) and a family of specific 5:+-submodules of 
5 :n, namely those that can be described as the kernel of polynomial operators. In the se- 
quel we will analyze some "internal" properties which characterize infinite codes that can 
be described as duals of modular codes. Moreover we aim to investigate how the subclasses 
of modular codes considered in Section 2, mirror into classes of dual codes having very 
special structures. 

The submodules of 5 :n which can be represented as the kernel of a polynomial matrix, 
are exactly those which are closed in the pointwise covergence topology, i.e., the so called 
"complete dual codes" [6]. A complete dual code fi) can be characterized as follows: given 
an infinite sequence gl C 82 C . . .  of finite windows invading Z x Z (so that every 
point (i, j )  E Z × Z eventually belongs to all the windows of the sequence), a sequence 
v E 5 :n is an element of g) if and only if there exist codewords Vx, v2 . . . .  in :D such 
that v/Ig/  = vlSi, i = 1, 2, . . .  

In general, to test whether w ~ 5:~ is in some modular code e ,  we resort to parity 
checks represented by elements of ~D, which possibly have an infinite support. These checks 
seem quite unsuitable for an algorithmic implementation, so it is interesting to determine 
when the submodule of the finite codewords of the dual code 
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3 3 f : =  {v fi 33 : v E ~ }  = 33 f') 5:n_+ (24) 

constitutes a set of parity checks sufficient to decide whether w is in C, namely under 
which conditions the equivalence 

w ~ (~ ¢~ <w, v> n = O, V v E 33f (25) 

holds. Being as 5:+-submodule of 5:"_+, 33fis finitely generated; that is, 33f = I m + H  for 
some p × n L-polynomial matrix. Thus (25) can be restated as 

W E (~ ¢¢ w H T  = O, (26) 

where Hr(zl, z2) can be seen as a syndrome decoder. As shown in Section 2, a syndrome 
decoder of e can be found if and only if C is the image of a e FP L-polynomial matrix. 
Therefore the submodule 33f of the dual code 33 = C ± provides a set of parity checks, 
rich enough to identify the elements of ~ if and only if e is finite convolutional. In this 
case it is natural to expect that the whole code 33 can be uniquely reconstructed from 337. 
The following proposition shows that this is true, indeed, and analyzes how the main features 
of finite convolutional codes translate, via duality, into properties of the corresponding duals, 
that will be called dual convolutional codes. 

PROPOSmON 5 (Finite and Dual Convoluational Codes). Let C be a modular code of length 
n and 33 = C ± its dual. The following facts are equivalent: 

(a) e is finite convolutional, i.e., e = k e r ± H  r for some L-polynomial matrix H r. 
(b) e = Ira+ G, for some G eFP L-polynomial matrix. 
(c) 33 = I n ~  :=  {v 6 5:~ : v = u/-/, u E 5 :p } for some L-polynomial matrix ~t. 
(d) 33 = kerG r = {v fi 5:~ : vG r = 0} for some ~ r  eFP. 
(e) ID is the closure, in the pointwise convergence topology on 5:n~, of the 5:±-module 337 

Proof (a) ~ (b) has been proved in Section 2. 
By resorting to the well-known property of dual maps 

(ker+H r) ± = ImH, (27) 

one gets 33 = C ± = (ke r±Hr )  ± = ImH, so that (a) = (c), while 

(ImH) -L = ker±/7  r (28) 

implies e = 33± = (IrnH) -L = ker+/~ r, and hence (c) = (a). 
Analogously, from (22) it follows that 33 = C ± = (_Irn+ G)±  = kerG r and therefore 

(b) = (d), whereas, from (21) one gets C = 33± = (kerGr) -L = ]2n+ 0,  and so (d) ~ (b). 
Finally, the equivalence (c) ¢~ (e) has been proved in [6, 10]. []  
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Remark. If C = Im+ G is not a finite convolutional code, i.e., G = TG, with G(zl, z2) 
eFP and T(zl, z2) a full column rank L-polynomial matrix, which is not rZP, by applying 
to a finite sequence w the parity checks associated with the elements of ~f_, we cannot 
guarantee that w is in ~. Indeed, the elements of 5:~ which belong to ker+H r are exactly 
the codewords o f /me  G. Actually, as the rows of G belong to C, then 0 = GH r = TGH r. 
Since T is a full column rank matrix, it follows that G(zl, z2)Hr(zl, z2) = 0, and therefore 
Im+G c_ ker+H r. 

Conversely, as the columns of H T span in Fn(Zl, Z2) the vector space orthogonal to the 
rows of G, each vector w E ker+ H T can be expressed as a linear combination over F(zl, 
z2) of the rows of G. By the le~ factor primeness of G, the coefficients of the combination 
are in 5:+, namely w E /meG.  

The code Im+ G is the minimal finite convolutional code including e .  Actually, if G(zl, 
z2) is a eFP L-polynomial matrix such that ~ _ Im+ G, there exists an L-polynomial 
matrix P(zb  z2) such that PG = G = TG. As T is full column rank, there exists a left 
rational inverse T-l(zl, z2), so that G --- (T-1P)G. Moreover, since G is eFP and G L- 
polynomial, T-1p is an L-polynomial matrix, which implies that Ira+ G c_ Im+ G. 

Example. Let F = GF(2) and Let e = Im__+ G, where 

o zlzz _[Zl z2+alE1 z211 1 0 zl  1 0 =:  T(zl' z2)a(zl, z2). 

A basis for the space orthogonal in F3(zb zz) to the rows of G consists of the vector 

H(zb z2) :=  [1 + z2(1 + Z2 + ZlZ2) Zl "}- Z2 1 + Z2 + ZlZ2 + ZlZ2]. 

H T is a syndrome decoder for the code ~ := Im_+ G, which properly includes C. Actually 
includes the sequence w = [zl 1 0], which is not an element of C, but produces an 

all-zero pattern when applied to the syndrome decoder H r. Therefore w is recognized by 
H r as a codeword. 

The reason why the syndrome decoder proves to be unreliable for identifying the ele- 
ments of @, is that the totality of the parity checks in ImH is a proper subset of the dual 
code ~ = kerG r. For instance, the infinite sequence 

2 O ~-]~z i 2 
iEZ i (Z  

is an element of ~ which is not in ImH. 
Note that, by applying v to the sequence w, we recognize it as an illegal sequence, since 

fi( ' )  = (w, v)n ~ 0, for each "7 = z~z~v, n, m E Z.  
Proposition 2, together with the dual relations (21)-(22) and (27)-(28), allows us to ob- 

tain a characterization of finite basic codes and their duals, which is very close to that 
provided by Proposition 5 for convolutional codes. 
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PROPOSITION 6 (Finite and Dual Basic Codes). Let C be a modular code of  length n and 
if) = C "  the corresponding dual code. The following are equivalent: 

(a) C is a finite basic code, namely C = Ira+ G, G g ZE 
(b) C = ker+/~/T, f /T rZP. 
(c) if) = kerG r, ~7" rZE 
(d) 5) = ImH, H g ZE 

As underlined by Propositions 5 and 6, the bijective correspondence between modular 
codes and dual complete codes, maps, in particular, finite convolufional codes into dual 
convolutional codes. Consequently, internal properties of  the different classes of  modular 
codes mirror into internal properties of  the corresponding classes of  dual codes. The anal- 
ysis of  these properties has been carried out in [6] mainly for dual codes, while an internal 
characterization of  the different classes of  modular codes is still unavailable. Indeed, what 
seems interesting to understand, is what kind of  mutual relations among codewords charac- 
terize a modular code, without taking into account the input-output map which underlies 
their generation. 
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