
International Journal of Computer and Information Sciences, Vol. 13, No. 3, 1984 

Complexity, Convexity, and Unimodality 
Godfr ied T. Toussaint  1 

Received September 1983; revised April 1984 

A class of polygons termed unimodal is introduced. Let P = PI,Pz,-..,Pn be a 
simple n-vertex polygon. Given a fixed vertex or edge, several definitions of the 
distance between the fixed vertex or edge and any other vertex or edge are 
considered. For a fixed vertex (edge), a distance measure defines a distance 
function as the remaining vertices (edges) are traversed in order. If for every 
vertex (edge) of P a specified distance function is unimodal then P is a 
unimodal polygon in the corresponding sense. Relationships between unimodal 
polygons, in several senses, and convex polygons are established. Several 
properties are derived for unimodal polygons when the distance measure is the 
euclidean distance between vertices of the polygons. These properties lead to 
very simple 0(n) algorithms for solving a variety of problems that occur in 
computational geometry and pattern recognition. Furthermore, these algorithms 
establish that convexity is not the key factor in obtaining linear-time-complexity 
for solving these problems. The paper closes with several open questions in this 
area. 

KEY WORDS:  Unimodality; convexity; polygons; algorithms; closer-pair 
problem; diameter; all-nearest-neighbor problem; all-furthest-neighbor problem; 
geometric complexity; computational geometry; pattern recognition; artificial 
intelligence. 

1. INTRODUCTION 

The notion of convexity is very important in pattern recognition, 
computational geometry, and mathematics in general. In pattern recognition, 
convexity appears in a variety of settings such as detecting whether a two- 
dimensional figure is convex, (1) decomposing simple polygons into convex 
sets, (2'3) and computing convex hulls of sets. (4'19'27) In computational 
geometry convexity plays an important role in the analysis and design of 
algorithms. (5) In mathematics it forms a discipline of its own with a rich and 
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extensive history. Some very useful references on convexity in mathematical 
literature include the books by Yaglom and Boltyanskii, ~6) Eggleston, ~7) 
Boltyanskii and Gohberg, ~8) and Benson, tg) as well as the collection of 
papers edited by Klee. ~1~ 

In this paper we are concerned with a simple polygon P = P  l, P2,..-, pn, 
i.e., we are given a list of vertices, in clockwise order, along with their 
Cartesian coordinates. We assume the polygon is in standard form, i.e., the 
vertices are distinct and no three consecutive vertices are collinear. A pair of 
vertices PiPi+l defines an edge of the polygon where i =  1,2,...,n and 
Pn+l = Pl" If for every vertex Pk, the angle determined by the edges p~_lpk 
and PkP~+I is convex (i.e., the interior angle is less than 180 ~ then the 
polygon is convex. All indices are taken modulo n. 

Recently, Snyder and Tang ~11) proposed an algorithm (which they claim 
runs in 0(n) worst-case time) for finding the diameter of a convex polygon P. 
The diameter of P, denoted by D(P), is defined as follows: 

D(P) = max {d(p,, pj)} 
t ,J 

where d(p i ,p i  ) is the euclidean distance between vertices Pi and pj. The 
algorithm in Ref. 11 is a "hill-climbing" method in which the following basic 
operation is repeated. Given a starting vertex p, vertices Ps+ 1, Ps+ 2,..., P, -  1 
are visited in order, at each step computing the euclidean distance between Ps 
and the vertex being visited, and this scan stops at step i if d(ps, Pi)< 
d(ps, Pi-1). In Ref. l l  it is concluded that this step yields 

d(p , ,  p,_~) -- max {d(p~, Pk)} 

This is a tacit assumption that the function d(p  s, Pk), k -- s, s + 1,..., s - 1, s 
is unimodal for convex polygons. It turns out that this assumption is false 
and the algorithm in Ref. 11 is not guaranteed to work. Other authors such 
as Dobkin and Snyder ~12) provide a different diameter algorithm, but have 
also assumed that convex polygons exhibit this unimodality property. Thus it 
appears that the falsity of this property is counter-intuitive at first glance. 
For counter-examples to these algorithms the reader is referred to Refs. 13 
and 14. 

In mathematics literature almost no results are available concerning 
properties of distances in convex polygons, let alone unimodality properties 
of the resulting distance functions. This, together with the fact that such 
properties are useful in the design of efficient algorithms and in the study of 
geometric complexity, suggests that this is a fruitful area for future 
investigation. 

Many distance measures can be defined on convex polygons between 
edges and vertices. Given a vertex as an "anchor" we can measure (1) the 
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euclidean distance between the anchor vertex and the remaining vertices as 
the polygon is traversed or we can measure (2) the perpendicular distance 
between the anchor vertex and the lines collinear with the edges of the 
polygon. Alternately, given an edge as an anchor we can measure the perpen- 
dicular distance between the line collinear with the anchor edge and the 
vertices of the polygon. 

In this paper we investigate the relationship between convex polygons 
and polygons which have the property that each of their vertices or edges has 
a unimodal distance function in each of the above senses. Polygons that 
exhibit such unimodal distance functions are termed unimodal polygons. 
Furthermore, if the sense is not specified then the first sense above is 
intended. These results and several useful properties of unimodal polygons 
are presented in Sections 2 and 3. Section 4 considers the implications that 
the results of Sections 2 and 3 have for computational geometry. It is well 
known that when n points form the vertices of a convex polygon many 
computational geometric problems such as (1) the closest pair problem; (2) 
the all-nearest-neighbor problem; and (3) computing the diameter of a set 
can all be solved in 0(n) worst-case running time.(15'16) For arbitrary sets of 
points the fastest existing algorithms require time 0(n log n) and this is 
optimal for most of the above problems. For the all-furthest-neighbor 
problem, even for convex polygons the fastest known algorithm requires time 
0(n log n). One naturally asks whether the property of convexity is the key 
factor in obtaining the reduced linear time complexities. In Section 4 it is 
shown that this is not the case. First it is shown that the diameter algorithm 
in Ref. 11 does not work even for convex, unimodal polygons (note that 
unimodal polygons need not be convex). Next it is shown that the diameter 
algorithm in Ref. 12 does indeed work for unimodal convex polygons and 
that it can be used to solve the all-furthest-neighbor problem for unimodal 
convex polygons in 0(n) worst-case time. This represents the first instance of 
a linear time complexity for this problem. Finally, 0(n) algorithms are given 
for solving the remaining problems listed above for the case of unimodal 
polygons in general, thus showing that 0(n) time complexities can be realized 
for these problems even if the polygons are not convex. Furthermore, the 
algorithms presented here are extremely simple compared to the 
corresponding algorithms existing for convex polygons. Some concluding 
remarks and open problems are given in Section 5. 

2. CONVEXITY A N D  U N I M O D A L I T Y  

One of the most common definitions of convexity is the following(6): 

Definition. A simple polygon P is convex iff for every pair of points 
p, q E P the closed line segment p~- lies entirely in P. 
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We now introduce some notation and definitions of distances that are 
useful in characterizing convex polygons. 

Let L(pi, Pi+l ) (sometimes Li,i+ 1 for short) denote the line collinear 
with points Pi and Pi+l. Let H(pi, Pi+l) denote the interior dosed half-plane 
determined by L(p i, Pt+l), i.e., since the vertices are ordered in a clockwise 
direction, H(pi, pi+~ ) lies to the right of pipi+~ and it includes the line 
L(pi,pl+l ). Let H(pi,Pi+~) denote the complement of H(pi,pi+O. As 
before, d(pi, pj) denotes the euclidean distance between vertices Pi and pj. 
Let d(p k • Lit ) denote the perpendicular distance between vertex Pk and 
L(pi,pj). Furthermore, if pk lies in H(Pi, Pj) then the distance is negative. 
With these two distance measures we can define several distance functions. 

(1) Given a vertexpi,  

f (p , ,  pj) ~= d(p,, pj), 

(2) Given a vertex Pk, 

f(Pk • Lj,j+ 1) ~ d(Pk • Ljo+ 1), 

(3) Given and edgepipt+l, 

f (L , , i+  l • Pk) ~= d(L,,,+ , k Pk), 

j = i , i +  1,..., i - -  1, i 

j = k , k  + 1 ..... k -  2, k -  1 

k = i +  1, i + 2  ..... i - -  1, i 

Thus a polygon P = Pl ,  P2 ..... Pn specifies n distance functions for each of 
the above definitions. 

In this paper we consider polygons which have the property that for 
every vertex or edge, as the case may be, the corresponding distance 
functions, as defined above, are unimodal, and we investigate the relationship 
between such polygons and convex polygons. A real function f defined on 
the integers 1, 2,..., n is said to be unimodal if there exist two integers i,j, 
where 1 < i ~ j  < n such that f is strictly increasing on the interval [1, i], 
strictly decreasing on the interval [ j ,n]  and such that f ( k ) = f ( k  + 1) for 
k = i, i + 1,..., j - 1. In other words, if a function contains one "peak" only it 
is unimodal. Similarly, functions with two "peaks" are bimodal and with 
many peaks, multimodal. 

Definition. If a polygon P=Pl ,P2  ..... p ,  is such that for every 
vertex Pi, i= 1, 2,..., n, f(Pi-l-Ls,j+l) is unimodal then P is said to be a 
unimodal polygon in this sense. Alternately, P is termed 
f(Pi • Lj.j+ 1)--unimodal. 

Similar definitions hold for the other distance measures and for k- 
modality where k > 1. 
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It is tempting at first glance to assert that convex polygons are 
unimodal in all three senses defined. Indeed such polygons exist as evidenced 
by the equilateral triangle. However, it was shown in Ref. 14 that for the 
case o f f ( p i ,  p]) convex polygons may contain vertices with as many as 0(n) 
modes. We will extend these results to hold for the case o f f ( p i L L j j + l  ) 
also. 

The following properties of convex polygons established in Ref. 6 will 
be useful in proving some theorems. 

Property 1. A polygon P is convex iff every line passing through an 
interior point of P intersects the boundary of P at two points. 

Definition. A line L is called a supporting line of a polygon P if it 
passes through at least one boundary point of P and if P lies entirely to one 
side of L. 

Property 2. In each direction there exist two parallel supporting lines 
to a convex polygon. 

Theorem 1. A convex polygon isf(Li,i+ ~ 2_ pj)--unimodal .  

Proof. Consider any edge PiPi+l of the convex polygon P. This edge 
defines a direction r By property 2 there exist two parallel supporting lines 
in direction ~ and L(pi ,p i+l  ) is one of them. Let L(pk ,  Pk+l) be the other. 
Note that k may equal k + 1. Tl~ese supporting lines decompose P into two 

polygonal chains C l = P i + l ~ P i +  2 ..... Pk and C2=Pk+l ,pk+ 1 ..... Pi" By 
property 1 the line L(x)  passing through an interior point x of P in direction 

intersects the boundary of P at two points. Since the two chains C 1 and C 2 
span Li,i+ 1 and Lk,k+ 1, L(X) intersects C 1 and C 2. Therefore L(x)  intersects 
C~and C 2 each at precisely one point. Therefore the chains C~ and CEare 
monotonic in the direction orthogonal to 4. Therefore f(Li,i+ 1 2_ pj) is 
unimodal. Since this is true for every edge of P the theorem follows. II 

Theorem 2. A polygon that is f(L;, i+ 1 2_pj)---unimodal is convex. 

Proof. Assume a polygon P is not convex. Then P must contain at 
least one reflex vertex (i.e., a vertex, the interior angle of which is greater 
than 180~ Let Pk be one such vertex. Now considerf(Lk,k+ ~ 2_Pi)" That 
there must exist vertices pj such that d(Lk,k+ ~ 2_ p j ) >  0 follows from 
Jordan's curve theorem. However, d(Lk,k+ 1 2_ Pk-1) "( 0 since Pk is a reflex 
vertex. Furthermore d(Lk,k+ 1 2_ Pk) = 0. Therefore f(Lk,k+ ~ 2_ Pi) is at least 
bimodal and cannot be unimodal, proving Theorem 2. II 
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Thus we see that Theorems 1 and 2 provide us with yet another 
definition of convexity. A polygon P is convex iff for every edge PiPi+l of P 
the function f (Zi j+l  -[. pj) is unimodal. This unimodality property of convex 
polygons is fairly well known. It allows Chazelle (5) to design efficient 
algorithms for detecting whether two convex polygons intersect or not. It 
also implies that certain other functions of edges of convex polygons are 
unimodal. For example consider the area of a set of triangles, each deter- 
mined by the base as an edge P~Pi+I of a convex polygon P and the top of 
the triangle consisting of vertex Pk where k = i + 2, i + 3 , . ,  i - 1. The area 
of a triangle equals half the base times the height. The base is constant and 
the height is precisely d(Lla+1 L p~). Therefore the area is unimodal. This is 
one of the properties that allows Dobkin and Snyder (12) to obtain an 0(n) 
algorithm for finding the maximum-area triangle inscribed in a convex 
polygon. 

Consider now what happens if we interchange the role of edge and 
vertex in Theorems 1 and 2, in other words consider the function 
f(ptLLj,j+l).  This function appears not to have been previously 
investigated. 

Theorem 3. 
unimodal. 

Proof. 
vertices are 

A convex polygon need not be f(pi• 

Consider the convex pentagon in Fig. 1, The coordinates of the 
as follows: a = ( 0 , 0 ) , b = ( 1 , 5 ) ,  e = ( 2 , 5 ) ,  d = ( 2 , - 5 ) ,  

b 

a 

@ 

Fig. 1. Illustration of Theorem 3. 
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e = ( 1 , - 5 ) .  Now consider f (p iLLi , j+l)  where pi=a.  We have the 
following distance function: (0, 5, 2, 5, 0) which is clearly bimodal.  I 

This result can be strengthened by Theorem 4. 

Theorem 4. A convex n-vertex polygon may  contain vertices whose 
distance function f (Pi  5_ Li, j+l)  exhibits as many  as 0(n) modes or local 
maxima.  

ProoL We shall construct a convex polygon P with the required 
property. L e t p i  be any vertex of  P and let d(p i, Pi-1)= d(Pi, P i + I ) =  r, and 
refer to Fig. 2. Construct  an arc of  radius r f rom Pi+l to Pi-1 with center at 
Pi.  Place vertices Pi+k, k = 3, 5, 7, 9 .... on the circular arc an equal distance 
apart. Place vertices p i + j , j = 4 ,  8, 12, 16 .... on the circular arc such that 
Pi+j bisects the arc defined by Pi+j-1 and Pi+j+l" Let Xi+l, 1 = 2, 6, 10, 14, 
18,... denote the intersection of  Pi+kPi+k+z with the line through Pi that 
bisects Pi+kPi+k+2, k : 1, 5, 9, 13,.... Similarly let Yi+t denote the inter- 
section of this same line with arc (Pi+k, Pi+k+z)" Place the remaining 
vertices P~+t,l= 2, 6, 10, 14, 18 .... anywhere on the open line segment 
xi+tYi+ l, First we need to prove that  this polygon is convex. Consider any 
vertex p~+j where j = 3, 4, 5, 7, 8, 9, 11, 12, 13 ..... Since the adjacent vertices 
ofp~+j lie either on or in the interior of  the circle of  radius r, such a vertex is 
convex. Now consider the vertices p,.+j, where j = 2, 6, 10, 14, 18 ..... Since 
Pi+l lies in 14(pi+~_ ~, Pi+~+ 1), Pi+l is also convex. Finally, p~., Pi+ ~, and P i -  1 
are all convex and thus all the vertices of  P are convex establishing the 
convexity of  P. Now we show that  f (Pi  • Lj,j+~) contains 0(n) modes or 
local maxima.  Consider any pair of  edges such as Pi+jPi+j+~ and 
Pi+j+lPi+j+2 where j =  1, 5, 9, . . .  Let d(piLLi+j,i+j+l)=ds. Also let d C 

�9 i - I  

Fig. 2. Illustration of Theorem 4. 
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denote the length of the chord defined by extending the line segment 
Pi+jPi+j+x to intersect the circular arc. Clearly dc>d(pi+3,Pi+4 ) for 
example. Note that the perpendicular bisector of the chord defining d c 
precisely specifies d s. Now consider edges such as Pi+3Pi+4. The perpen- 
dicular bisector of Pi+3Pi+4 specifies d(PiJ_Zi+3,1+4). From the chordal 
property of circles it follows that since dc > d(Pi+ 3, Pi+4),  distances such as 

d(Pi Z Li+ re+z)" < d(pi -1- Li+ 3,i+4) 

Since this relationship alternates we see that we obtain a local maximum 
every time four edges are traversed starting from Pi+ 2,P,+ 3. | 

Although a convex polygon need not be f (pi  A_ Lj j+  x)---unimodal, the 
converse is nevertheless true as the next theorem demonstrates. 

Theorem 5. A polygon that is f(Pi •176 must be 
convex. 

Proof. By contradiction, let P be a nonconvex simple polygon and let 
Pk be a reflex vertex of P. Consider vertex Pk-~" From Jordan's curve 
theorem it follows that there exist edges PiPi+~ of P such that 
Pk-1 ~ H(pi,Pi+I) and therefore for which d(p~_~ 2 Li,i+l) is positive. But 
d(pk_ 1 • Lk,k+~) < 0. Thereforef(Pi • Lj,j§ is at least bimodal. I 

We turn now to consider the function f(Pi, Pj) investigated in Ref. 14. 
As mentioned earlier, it was shown in Ref. 14 that a convex polygon need 
not be f(Pi, pj)----unimodal and that vertices of convex ngons could have as 
many as 0(n) local maxima in their distance functions. It is tempting 
nevertheless to assert that convex polygons must surely have at least one 
unimodal vertex. That this is also false was discovered independently by 
Jones (17) and Lantuejoul, (~8) who exhibited convex hexagons for which 
f(Pi, Py) is bimodal for i = 1, 2, 3, 4, 5, 6. An alternate proof of their result 
is given in Theorem 6. 

Theorem 6. A convex polygon need not contain a single vertex 
whose distance function f ( p i ,  p j) is unimodal. 

Proof. Construct an equilateral triangle T the vertices of which 
coincide with those of a Rouleaux polygon ~6) (see Fig. 3). Three vertices, 
(P~, P3, and p~) will form the required hexagon. Let the coordinates ofp~ be 
(0, 0) and p~ = (1, 0). Construct an equilateral triangle inscribed in T deter- 
mined by one of its vertices (a in Fig. 3) being placed at (1/3, 0) and one of 
its edges being collinear with the line x =  1/3. Let L(b, a) intersect arc 
(Ps, Pi) at a ' ,  let L(a, e) intersect arc  (P3,  Ps) at c', and let L(c, b) intersect 
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P3 

Pl a c P4 c' 

I 

Fig. 3. I l lus t ra t ion  of Theorem 6. 

arc (Pl,P3) at b ' .  Clearly if vertices p2, p4 ,andP6 were placed at b, c, and a, 
respectively, bimodali ty would be assured as is easy to verify with 
elementary geometry. However,  for P to be a convex hexagon we cannot 
allow collinear triplets of  adjacent vertices. Thus we place P2 in the open 
interval (b, b ' ) ,  P4 in (c, c ' )  and 19 6 in (a, a ' ) .  We now have a convex 
hexagon. For  i - -  1, 3, 5 f (P t ,  P:) is clearly still bimodal.  For  i = 2, 4, 6 we 
must be more careful because if we move the vertices too close to the 
boundary  of the Rouleaux tr ianglef(p i, p:) will become unimodal. Referring 
to Fig. 4 let c be the distance that  P4 is translated in the direction of ac. Let 

d(p6, P4) = d*, d(p 6, Ps) = d', d(a, a") = e 
and let 

2 ( 1 - c o s 3 0  ~ ) 6 =- a(a, Ps) - d(a, c) = ~-  

Clearly, d(p6,P4) '< d(p6,p3 ). In order to ensure bimodali ty of  P6 we 
require that d(P6, P4) also be less than d(p6, Ps). In other words we want 
d* < d ' .  Now d* < d(a", P4) = d(a, e) + 2e and d '  > d(a, e) + t~. Therefore it 
is sufficient to choose e so that d(a, e) + 2e < d(a, e) + fi, i.e., e < fi/2. By 
symmetry  the result follows. | 

With the previous distance functions we have seen in Theorems 2 and 5 
that unimodali ty implies convexity. Surprisingly, polygons that are 
f (P i ,  pj)---unimodal  need not be convex. 
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P3 

Fig, 4. Illustration of Theorem 6. 

Theorem 7. Unimodal polygons need not be convex. 

Proof. Consider two right angled triangles abc and edc where b and d 
are the right angles and d(a, b) = d(e, d) = 2, d(b, c) = d(c, d) = 1 and join 
them at c such that (bcd = 90 ~ to form a nonconvex pentagon as shown in 
Fig. 5. It is elementary to show that the polygon is unimodal. II 

Furthermore, it is not difficult to construct unimodal n-vertex polygons 
that contain 0(n) reflex vertices and this is left as an exercise for the reader. 
Thus unimodality in the f ( p i ,  pj) sense and convexity appear to be quite 
distinct notions. 

In summary we have the following relationships between convexity and 
unimodality in the three senses discussed. 

convexity ~ f ( L i ,  i + 1 A_ pj)---unimodality 

convexity ~ f ( p j  • L i, i + 1)--unimodality 

convexity ~ f ( P i ,  pj)---unimodality 

b d 

2 2 

a e 
Fig. 5. A unimodal polygon which is not convex. 
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3. SOME PROPERTIES OF UNIMODAL POLYGONS 

In this section we derive some properties of unimodal polygons that will 
allow us to obtain very simple algorithms to solve some geometric problems 
in Section 4. 

Given a simple polygon P=Pl, P2,...,Pn, let the graph consisting of 
only the vertices and edges of P be denoted by PG(P). Let NNG(P) denote 
the nearest neighbor graph of P. 

Theorem 8. If a simple polygon P is unimodal then the nearest 
neighbor of every vertex p~ is an adjacent vertex ofpi .  

ProoL By contradiction, let ~/p]  be an edge in NNG(P) and not in 
PG(P). Thus p~ and P1 are not adjacent to each other. Thus there must exist 
at least one vertex p[ in the polygonal chain C~j=p~,...,p;,...,pj and 
similarly there must exist at least one vertex pj in the chain 
Cji=Pj ..... Pj,...,Pi. Furthermore, since PiPy ~ N N G ( P )  it follows that 
either pe is a nearest neighbor ofpj  or the reverse is true. Assume the former, 
without loss of generality. Therefore, d(pj,p[) > d(p i,py) and 
d(pj, pj)>d(pi ,pj  ). It follows that f(Pi, Pj) is at least bimodal, a 
contradiction. II 

A similar argument establishes Corollary 2. 

Corollary 2. If a simple polygon P is unimodal then the closest pair 
of vertices forms an edge in PG(P). 

Definition. A pair of vertices of P are antipodal if they admit parallel 
lines of support. 

Definition. A pair of vertices p~, py E P are global symmetric furthest 
neighbors (GSFN) iff 

and 

for k = 1, 2,..., n. 

d(pi, Pj)=mkax {d(pi, Pk)} 

d(p,, py) = rnkax {d(p k, pj)} 

Definition. A pair of vertices Pi, Pj C P are local symmetric furthest 
neighbors (LSFN) iff 

d(p~, pj) > d(pt, &_ 1) and d(p,, &+ 1) 
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and 

d(p t, pfl > d(p~_~, pfl and d(pt + 1 ,  Pfl. 

It is clear that a GSFN pair is also a LSFN pair. Furthermore, it is 
easy to show that a LSFN pair is antipodal32~ In Ref. 20 it is shown that a 
convex ngon may have as many as [n/2J GSFN pairs of vertices. For some 
additional distance properties in convex polygons the reader is referred to 
Moser (21) and Altman. (22) 

Theorem 9. If a simple polygon P is unimodal then every local SFN 
pair of vertices of P is also a global SFN pair. 

Proof. Let Pi, Pj be a local SFN pair of vertices of a unimodal 
polygon P. It follows that 

and 

d(p,, pj) > d(p> Pk) 

d(p,, 1~) > d(Pk, Pj) 

Since P is unimodal we have 

for k - - j -  1,j + 1 

for k = j - l , j + l  

and 

Therefore 

d(Pi, Pk) <~ d(p,, Pj-1), 

d(p,, Pk) <~ d(p,, 1~+ 1), 

Similarly it follows that 

k = i , i  + 1, . . . , j -  1 

k = j +  1, j  + 2,..., i 

d(p,, pj) -- max {d(p,, P0}  

d(p , ,  pj) -- max {d(pk, p;)} 

Therefore Pi, Pj is a global SFN pair. | 

Note that the converse of Theorem 9 is not true. Consider the octagon 
a-h formed by (1) defining a square and letting a, c, e, and g, the vertices of 
the square, be four vertices of the octagon, (2) placing vertex b at the 
midpoint of E~, d at the midpoint of ~ ,  f at the midpoint of eg and h at the 
midpoint of ~ ,  and (3) perturbing vertices b, d, f ,  and h, very slightly so 
that no three consecutive vertices are collinear. Then all the LSFN pairs 
(namely a, e and e, g) are also GSFN pairs and yet the octagon is not 
unimodal since f (Pi ,  P j) is not unimodal for p; = b, d, f,  h. Furthermore, the 
polygon need not be convex either. 
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4. GEOMETRIC ALGORITHMS AND COMPLEXITY 

In this section we investigate the two diameter algorithms in Refs. 11 
and t2 in light of the results of the previous sections and then propose 
algorithms for solving the problems mentioned in the introduction. 

4.1. The Diameter 

4.1.1. The Algorithm of Snyder and Tang (jl) 

Snyder and Tang ~11) have proposed the following algorithm for finding 
the diameter of a convex polygon. We denote their algorithm by Algorithm 
D-1. It turns out this algorithm does not necessarily yield the correct 
answer. (13) 

Algorithm D-1. 

Input: A convex polygon P = P l ,  PE,..., pn. 
Output: The diameter of P. 
Step 1. Select an arbitrary starting vertex; call it P0. 
Step 2. Perform a linear search of the vertices of P, testing adjacent 
vertices in turn, searching for the vertex with a maximum distance from 
P0. Call the new vertex p~. 
Step 3. With p~ as an "anchor" point, starting at P0, search clockwise 
or counter-clockwise for the vertex furthest from p~. This search is 
carried out only in the direction in which the distance is increasing. 
If the distance decreases in both directions, EXIT with Po and p~ as the 
extrema determining the diameter; ELSE continue. 
Step 4. Find a new point P2, such that d(pl,p2 ) > d(pl,po), and 
assign P0 ~ P l ,  P~ +-P2 ; then GO TO Step 3. 

Sufficient conditions on convex polygons which guarantee that 
Algorithm D-1 will fail are given in Ref. 13. Several questions arise 
concerning (a) how "bad" can the answer be, (b) does the algorithm solve 
another interesting problem for convex polygons and (c) is the algorithm in 
fact guaranteed to find the diameter for another class of polygons? 

The answer to (b) is easy. From the stopping criterion used in the 
algorithm it follows that the algorithm is guaranteed to find a LSFN pair of 
vertices of a convex polygon P. In fact not only can the algorithm fail to find 
the diameter but also it can fail to exit with a GSFN pair. This partially 
answers (a). We now expand on (a); we show that given a convex ngon P 
with 0(n) GSFN pairs, Algorithm D-1 can exit with the closest such pair. 
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p ,p? 

] 

Fig. 6. Algorithm D - 1 can exit with the closest GSFN pair of vertices. 

Construct a convex polygon, illustrated in Fig. 6, as follows. Place two 
vertices of P, (Pi, Pj) a unit distance apart, and construct LUNE (Pt, P j). 
Let 0 denote the midpoint of p -~ . .  Construct two circles C1 and C 2 with 
center 0, C 1 with radius 1/2 and C 2 with radius r such that 1/2 < r < v/-3/2. 
Let C 2 intersect LUNE (pi,  p j) at points a, b creating arc C~ and c, d 
creating arc C~'. Now place the remaining vertices in diametrically opposite 
pairs on C~ and C~'. The polygon is clearly convex. Also each diametrically 
opposite pair on C~' and C~' as well as pair Pi, Pj is a GSFN pair. Therefore 
there are n/2 GSFN pairs when n is even. Now Algorithm D-1 clearly exists 
with (Pi, Pj), which is the closest GSFN pair. 

We turn now to the question of whether there exist interesting classes of 
polygons for which the algorithm is guaranteed to find the diameter. Since 
the algorithm tacitly assumes that the polygons are unimodal one hopes that 
the algorithm will work in this situation. We show that the algorithm fails 
even for unimodal polygons. In fact we show more; we show that there exist 
very restricted classes of polygons that are convex and unimodal, and can be 
circumscribed in a circle, for which the algorithm can fail. Consider the 
circle of radius one with center 0 and refer to Fig. 7. Let L be the horizontal 
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Fig.  7. 

b c 

A l g o r i t h m  D - 1 c a n  fail o n  a c o n v e x - u n i m o d a l  p o l y g o n .  

line through 0 that intersects the circle at a and y. Let a be the first vertex of 
P. We choose b so that the arc length from a to b is some small value 2e, c 
such that the arc length from c to y equals e, and d such that the arc length 
from y to d is 2e. Clearly the quadrilateral is circumscribed on the circle, it 
is convex and unimodal. The diameter of P is 2 as specified by bd. 
Elementary geometrical observations lead to the following distance relations: 

d(b, c) < d(b, y) = d(a, d) < d(a, c) < 2 

from which it follows that Algorithm D-I  exist with the incorrect answer a-~ 
as the diameter. Thus it would appear that Algorithm D-1 is rather hopeless 
for finding the diameter of a polygon. Note however that for unimodal 
polygons, due to Theorem 9, the algorithm finds a "better" solution than for 
convex polygons in the sense that now the algorithm always exits with a 
GSFN pair. 

4.1.2. The Algorithm of Dobkin and Snyder ~12) 

We now turn our attention to a n  elegant class of linear running time 
algorithms proposed in Ref. 12 to find an area maximizing kgon inscribed in 
a convex ngon. A proof for the case k = 3 is given in Ref. 12. However, as 
was shown in Ref. 14 this algorithm cannot be used for the case k = 2. For 
this case the algorithm is intended to find the diameter and is described as 
Algorithm D-2. 

Algorithm D-2. 

Input: Convex ngon P = P l  , ' . . ,  Pn" 
Output: Vertices A, B of the diameter. 

828/13/3 6 
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Legend: All additions are performed modulo n. 
loop a while 1~: 7 repeat is due to Knuth and is equivalent to the 
ALGOL-60 code 

loop: a; 
if]~ then go to L1 else go to L2;  

L I :  7; 
go to loop 

L2: 
begin A ~ p ~ ;  B~p2; a ~  1; b ~ 2 ;  

loop 
loop 
while d(pa, Pb) ~ d(Pa, Pb+ 1): 
b ~ - b +  1; 
repeat 
if d(A, B) < d(Pa, Pb) then begin A ~Pa ; B ~Pb; end; 
a ~ a + l ;  
i f a = b  then b o b +  1; 

while a 4: 1: 
repeat 

end 

We now prove that Algorithm D-2, unlike D-1, does work for unimodal 
convex polygons. 

Theorem 10. Algorithm D-2 finds the diameter of a convex unimodal 
ngon in 0(n) time. 

Proof. Consider a polygon P=Pl,P2,...,P, and let Algorithm D-2 
start at vertex Pi. With Pi as an "anchor" vertex subsequent vertices are 
scanned until a vertex pj is found such that d(pi,pj+l)'< d(p i, pj). Now 
d(Pi, Pi) is marked as the ith candidate for the diameter. Since the polygon 
is unimodal it follows that pj is the furthest neighbor of Pi. Therefore if we 
were to repeat this procedure for each vertex p~, i = 1 ..... n and select the 
largest candidate, the correct answer would clearly be obtained but at a cost 
of an 0(n 2) time complexity. Linearity is obtained in Algorithm D-2 by 
limiting the search for subsequent "anchor" vertices. In particular when P~+I 
becomes the "anchor" vertex, vertices are scanned starting from p j, and all 
vertices Pk for i + 2 < k < j are ignored in searching for the furthest neighbor 
of p~+ 1. Thus to prove that Algorithm D-2 works we still need to show that 
if pj is the furthest neighbor of p;,  then all distances d(p~+l,pk ) for 
i + 2  < k < j  are less than or equal to d(pi+l,pj ). Since the polygon is 
unimodal it is sufficient to show that d(pi+l,Pj_l)<.d(pi+l,pj ). Let 
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pj = max k {d(pf, Pk)} 
d(Pi, Pj- 1)" Therefore 

Since 

and 

and refer to Fig. 8. We have that d(pi,t~)>/ 

s ) LPj-lPjPi 

/P i+lP j - lP i  = /PI+lPj - lP i  + /--PiPj-I.Pj 

/-Pj-lPjPi+ I =/-Pj-lPjPi-/-Pi+ll~Pi 

it follows that Lpi+jpj_1pa>/Lpj_11~pl+l. Therefore d(pi+l,&)>~ 
d(Pi+l,pj_,). II 

4.2. The All-Furthest-Neighbor Problem 

Given a set of n points on the plane (vertices in the case of a polygon) 
the all-furthest-neighbor problem consists of finding the furthest point for 
each point, i.e., for each Pi, i = 1, 2, .... n we need to find pj such that 

d(p,, &) = mkax {d(p,, Pk)} 

Shamos ~23) proposes on 0(n log n) algorithm to solve this problem, based on 
searching edges of the dual of the furthest-point-Voronoi diagram of the set. 
However it was shown in Ref. 24 that this algorithm does not work and an 
alternate 0(n log n) algorithm is proposed. No faster algorithms are available 
for the case of convex polygons. However, from Theorem 10 it follows that 
for each vertex of a convex unimodal polygon the candidate diameter is a 
furthest-neighbor pair. Therefore Algorithm D-2 solves the all-furthest- 
neighbor problem for convex unimodal polygons in 0(n) time. 

Fig. 8. Illustrating the proof of Theorem 10. 
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4.3. The All-Nearest-Neighbor Problem 

Given a set of n points on the plane (vertices in the case of polygons) 
the all-nearest-neighbor problem consists of finding the nearest point to each 
point. Note that the solution to this problem also solves the closest-pair 
problem, Shamos and Hoey ~25~ have shown that this problem can be solved 
in 0(n log n) time. Lee and Preparata (26) show that if the set is a convex 
polygon this problem can be solved in 0(n) time. Although the algorithm in 
Ref. 26 is linear it is nevertheless quite involved. We now give a trivially 
simple 0(n) algorithm for solving the all-nearest-neighbor problem for 
unimodal polygons. 

Algorithm ANN 

Input: A unimodal polygon P = P l ,  P2,..., pn. 
Output: The closest vertex to every vertex. 

Step 1. For each vertex Pt exit with pi+ 1 as its nearest neighbor if 
d(p~, Pi+ 1)" < d(p~, Pi- 1); otherwise exit with P i -  1. 

Theorem 1 1. Algorithm ANN solves the all-nearest-neighbor 
problem for unimodal polygons in 0(n) time. 

Proof. That the algorithm gives the correct solution follows from 
Theorem 8 in Section 3. For each vertex Pt its nearest neighbor can be found 
in constant time and thus the total running time of the algorithm is 0(n). II 

Nor only is this algorithm much simpler than that in Ref. 26 but it 
works for nonconvex polygons. 

For some additional properties of distances in convex polygons relevant 
to this problem the reader should refer to Refs. 28 and 29. 

5. CONCLUDING REMARKS 

A list of open problems and some suggestions for further investigation 
are presented here. 

One area for possible investigation concerns the k-modality properties 
of convex polygons for k > 1. For example, are theorems analogous to 
Theorem 6 possible such that all distance functions f (Pi,  Pj) are k-modal 
where k >~ 2? Similar questions arise for other distance functions such as 
f (p i •  ). Other open problems include questions such as: what is the 
minimum value of n for which a polygon is bimodal? For the function 

f (Pi,  Pj) it has been shown by Olariu t3~ that six is the smallest number. 
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Another topic for further investigation concerns characterizations of 
unimodal polygons. For example, the converse of Theorem 9 is not true. Are 
there additional properties that would make the converse true? 

In Section 4.1.2 it was shown that the algorithm of Dobkin and 
Snyder ~12) works for unimodal polygons if they are convex. Until recently it 
was not known whether the algorithm would work for arbitrary unimodal 
polygons. N. Tsikopoulos has shown that it will not. r 

For convex polygons it is an open question whether or not one can 
solve the all-furthest-neighbor problem in 0(n) time. If  "furthest" is replaced 
by "nearest," a linear time complexity is achievable. ~16) 

Finally, no results are yet available concerning the design of efficient 
algorithms for detecting whether a simple polygon is unimodal in all of the 
senses considered in this paper. For the function f ( P i ,  Pj) Aggarwal and 
Melville ~32) have discovered a linear algorithm for determining whether or 
not a convex polygon is unimodal. They also solve the all-furthest-neighbor 
problem in 0(m + n) time for an m-modal convex ngon. Finally, they also 
present an algorithm to compute the modality of an m-modal simple polygon 
in 0(nl'69~+m) time. A notion closely related to unimodality is 
monotonicity. A simple polygon P is monotone if there exists a straight line l 
in direction 0 such that the boundary of P can be partitioned into two chains 
Cij and Cji that are monotonic with respect to /. Let r be the direction 
orthogonal to 0 and let (x, y) be two points on the plane such that L(x ,  y)  is 
a supporting line of P at Pi in direction r Then clearly if P is monotone in 
direction 0 it follows that f (Lx , y  2_Pk), k = i, i + 1,.,.,j ..... i, is unimodal. 
Preparata and Supowi(33) present an 0(n) algorithm that obtains all 
directions with respect to which P is monotone. 
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