
International Journal of Computer and Information Sciences, Vol. 13, No. 3, 1984

Familial Model of Data

Levent Orman i

Received February 1983; revised January 1984

The family of sets is proposed as the basic structure for modeling data. A
family is created by indexing one set of objects by another to represent a
directed binary association between two sets. Familial models are shown to
have a number of distinct advantages in supporting diverse user views through a
hierarchy of abstractions and a variety of derived data, and in describing them-
selves and other data models through metamodels. An algebra of families is
introduced to provide a data definition, maintenance and processing language
that is minimal, intuitive, algebraic and theoretically sound. The language is
extended to a specification language for database application systems, largely
eliminating the need for embedding database constructs into procedural
programming languages.

KEY WORDS: Data model; family of sets; conceptual model; metamodel;
data language; system specification.

1. INTRODUCTION

1.1. Principal Objectives

The principal objective of the familial model of data is to provide a data
definition, maintenance and processing language that is minimal, intuitive,
algebraic and theoretically sound. The language is also envisioned to be a
spcification language for database application systems, largely eliminating
the need for embedding database constructs into procedural programming
languages.

The main construct of the model is the family of sets, which is used to
represent a directed binary association between two sets of objects. A family
is created by indexing one set of objects by another to represent an

CornelI University, School of BPA, Malott Hall, Ithaca, New York 14853.

149

0091-7036/84/0600-0149503.50/0 �9 1984 Plenum Pu',!ishing Corporation

1 50 Orman

association. The algebra of families developed to fulfill the requirements
specified above can be characterized as follows:

a. Algebraic: The language is based on the algebra of sets.

b. Minimal: Set operations and arithmetic comparison operations
combined with indexing constitute the data sublanguage.

c. Intuitive: The language lends itself to syntactic transformations into
graph oriented or English-like languages.

d. Extensible: The language can be extended to a declarative
specification language for database application systems by
introducing arithmetic and generalized set operations.

The effectiveness of a data language in facilitating interaction between
the users and the system is closely related to the effectiveness of data
description facilities. Consequently, a second objective of the familial model
is to provide a modeling capability based on families of sets. A data model
based on families of sets can be characterized by the following:

a. Each data model is a collection of sets and families of sets. A set is
a named collection of objects and it contains all objects playing a
unique role specified by its name. The sets STUDENT and
COURSE in a university database for example, contain the
students and,courses respectively.

b. A family of sets is created by partitioning a set through indexing
and it is used to denote a relationship between two sets of objects.
Given the sets STUDENT and COURSE described above, indexing
STUDENT by COURSE creates a family of sets by partitioning
STUDENT. Each set of the family contains the students enrolled in
a particular course, and hence captures the enrollment relationship
between the sets STUDENT and COURSE.

c. The data retrieval language consists of opertions defined on sets
and families. Since families are partitions, the operations defined on
families are particularly useful in dealing with classification and
aggregation problems that are common in data processing.

d. Each model can be described by a metamodel consisting of two
families of sets. One describes the membership of objects in sets,
the other describes the relationships between sets.

e. A hierarchy of abstracts are supported by two types of abstraction
mechanisms. Generalization is achieved through subset-superset
relationships. For example, STUDENT, FACULTY, and
ADMINISTRATOR sets of a university database can be
generalized to a PERSON superset. Aggregation is achieved by

Familial Modal of Data 151

combining a number of relationships into a single one. For
example, STUDENT-COURSE and COURSE-FACULTY
relationships can be combined into a single relationship among
STUDENT, COURSE, and FACULTY, using the operators of the
language.

1.2. Background

The use of sets for modeling data was first proposed by Childs ~1) and
Codd. (2) The subsequently developed relational theory established good
design practices and guidelines to eliminate redundancy and storage
anomalies, and to capture the inherent structure of data, through a number of
normal forms and other related concepts summarized in Ref. 3. An alter-
native approach by binary (4-6) and functional ~7) models was aimed at
developing natural and semantically rich models to facilitate user interaction
and sharing. The adoption of the three level schema framework by ANSI ~8)
and the recognition of the need for a conceptual model stimulated research in
this approach, since deferring the dependency and redundancy considerations
to the internal model, and using small units of information as building blocks
are desirable in a conceptual model. ~9) A third approach to conceptual
modeling of data based on record based structures has been eloquently
dismissed by Kent. (1~

The familial model falls into the second category. It uses families of sets
(to represent directed binary associations) as building blocks, and data
dependencies are treated as ordinary integrity constraints as opposed to
being the determinants of the data structure. At the same time, many of the
ideas in the familial approach are similar to or have been adopted from the
relational theory. The algebraic data sublanguage, familial algebra, plays a
role similar to the relational algebra, (12) although it is most similar to the
data subtanguage SQUARE. ~13) The light pen version of the familial algebra
has counterparts in graph oriented binary models, most notably FORAL-
LP. O4) The table oriented language Query by Example ~15) is also an attempt
in the same direction. The English-like syntax and the use of indentation to
increase readability have been previously used by SEQUEL.(~6) The concept
of abstraction in the familial model has been adopted from the generalization
abstraction of Smith and Smith. (17) The metamodel approach to data
description has been utilized in the design of System R, (is) Ingres, (~9) and
Extended Relational Model (2~ formalized the concept and introduced a
metamodel language.

The familial model differs from the mostly graph oriented binary
models in its algebraic orientation. Similarly, it differs from the functional
model because of the algebraic and nonprocedural nature of its data

152 Orman

sublanguage as opposed to the procedural nature of the functional language
DAPLEX. Also, the extension of a data sublanguage into an algebraic
specification language for database application systems is a unique charac-
teristic of the familial model although some isolated attempts have been
made to formalize the application system development, t21-23)

The remainder of this paper explains the familial approach to modeling
data in detail with sections on data description, data retrieval, user orien-
tation, database maintenance, metamodel and applications programming. No
implementation of the familial algebra currently exists and the design should
be considered preliminary. The applications programming environment is not
intended to provide a complete pogramming language but a facility powerful
enough for most commercial data processing problems. Additional
constructs would be needed to extend it to a complete programming
language. (24)

2. DATA DESCRIPTION

2.1. Families of Sets

A family F from an index set I to a target set A (also denoted by AF[I])
is a collection of sets (Ai: i C I) where each Ai is a subset of the target set A,
corresponding to an element i of the index set I.(25'26) Consequently, a family
is characterized by two sets called the target set and the index set, and a
correspondence between the two. Each Ai is called a member set of the
family. Some members may be null; and the union of the members is not
necessarily equal to the target. A family Ap[1] can also be viewed as a (set
valued) function from the index set I to the target set A, and denoted as A [I]
whenever the family involved is obvious from the context. A family F with
multiple index sets 11 I , is also a collection of sets (Ai 1 in:
il E 11,..., i, E I,) , each corresponding to an element of the Cartesian product
11 X 12 • "'" X 1,. A family is a more general concept than a set of sets since
it can contain duplicate sets and distinguish them through their association
with different index values.

2.2. Modeling with Families

A familial model of data is a collection of named families. Each family
represents a correspondence between one or more index sets and a target set.
The families are named after their target sets whenever there is no ambiguity.
Index sets denote sets of entities outside the system and contain system-
generated unique identifiers for these entities as suggested in Ref. 27.

Familial Model of Data 153

Example 2.1. A university environment with the entity
STUDENT and COURSE can be modeled using the following families:

Family Target Index
SS# SS# STUDENT
DEPARTMENT DEPARTMENT STUDENT
NAME NAME STUDENT
COURSE# COURSE# COURSE
INSTRUCTOR INSTRUCTOR COURSE
DEPT DEPARTMENT COURSE
STUDENT STUDENT C OURSE
GRADE GRADE STUDENT, COURSE

sets

The semantics of the model is straightforward since each index set
corresponds to an entity set, and each target set corresponds to an attribute.
Each family represents a directed binary association between its index sets
and its target.

3. DATA RETRIEVAL

3.1. Displaying Families

A family can be displayed in table form for human processing.

Example 3.1. Given A = { a 1,a2}, B = { b 1,b2} and B[A]=
(Bal, Ba2) where Ba I = {b 1, b2}, Ba z = {b2}. B[A] is displayed as follows:

A B
al bl

b2
a2 b2

Several families with common indices such as B[A], C[A], and D[A]
may be displayed as one table using the notation B, C, D [A].

3.2. Families with Multiple Indices

A family Z[Y] is said to be obtained by indexing the target Z by the index
Y. In general, the target Z and the index Y may themselves be families; and
indexing a family by another family produces a family containing all the sets
created by indexing each element of the target by each element of the index.
More formally, given two families (Zi: i ~ I) and (Yj: j E J), and another
family Z[Y] defined on the target sets of these families:

(Zi: iC1)[(Yj: jEJ)]=(Ziy jCZi[Yj] : iEI , j C J)

154 Orman

Example 3.2. Given B[A] as above; also given C = {c~,c2} and
C[B] = (Cb~, Cb2) where Cb~ = {c2} and Cb 2 -- {c 1, c2}. C[B[A]] is obtained
by indexing C by B[A] and displayed as follows:

A B C

a 1 bl c 2
b2 c 1

C 2

a2 b2 c I

Z[YI,..., Yn] will be used to denote Z [Y n] [Y n _ l] [E l] , i.e. a family
with multiple indices created by repetitively indexing Z by Y,, Yn-~,..., Y~.

Example 3.3. Given B[A] and C[B] as above; also given D = {dl}
and C[D] = (Cd l)= ({c~}). C[D;B[A]] is obtained by indexing C by B[A],
and further indexing the result by D as displayed below:

A B D C
al bl dl 0

bz dl cl
a2 b2 dl Cl

where O is the null set.

3.3. An Algebra of Families

An algebra of families consisting of set operations union (U), inter-
section (~) and difference ("0, and comparison operations
(<, ~<, >, >/, =, :/:) in addition to indexing provides a subsetting language for
data models based on families. Indexing as defined in section 3.2 is the major
operation of the familial algebra. It is used to create complex families with
multiple indices from a set of given families which themselves are defined by
indexing sets. A special form of indexing involves the arithmetic comparison
operators. Given two sets Y and Z and a comparison operator 2; Z2Y is
defined in a similar manner to Z[Y] as follows:

z2Y=(Zy: y~ r)

where

z2= Iz~Z: z2y}

Example 3.4. Given A = {al,a2} , B = {bl,b2} as in Example3.1.
Let a 1 = 5, a : = 3, bl = 6, b2 = 4 ; B ~ A is a family of sets where each set

Familial Modal of Data 155

contains those elements of B greater than or equal to the corresponding
element of A as displayed below:

A B
5 6
3 6

4

In general, an arithmetic comparison operator takes two families as
arguments to produce a new family containing all the sets created by
applying the operator to the individual elements of argument families. Given
two families (Zi: i E I) and (Yj: j E J) and a comparison operator 2:

(Zi : i E I) 2(Yj : j C J) = (Ziyj E Zi2 Yj : i E I, j E J)

Example 3.5. Given A and B as above; also given C={CI,C2}
where el---4 and e2=6, and B[A] = (Bal,Ba2) where B a l = {bl,b2} and
Ba a = {b2}; C >/B[A] is computed by comparing C to each element orB[A]
individually as displayed below:

A
5

B C
6 6
4 4

6
4 4

6

Note the similarity between this result and the result in Example 3.2; also
note that the operators are executed in right to left order, i.e. they have long
right scope.

The set operations union, intersection, and difference are an integral
part of the familial algebra. When applied to sets, their set theoretic
definitions are preserved; and they are generalized in two different ways to
apply to families. A binary set operator union, intersection, or difference
takes two families as arguments and produces a new family consisting of all
the sets created by applying the operator to the individual elements of the
argument families. Given two families (Zi: i E I) and (Yj: j C J) and a set
operator 7:

(Zi: i E I) 7 (Y j : j E J) = (W i j : i ~ I , j ~ J)

where

wU = ziv Yj

156 Orman

Example 3.6. Given A, B, C, and B[A] as above; also given
D = {dl} and C[B] = (Cbl, Cb2) where Cb 1 = {c2} and Cb 2-- {c 1, c2}.
C[B[A]] t._JD is computed by taking the union of D with each element of
C[B[.4]] and preserving the indices as displayed below:

A B
al bl C2

dl
b2 Cl

C2
dl

a 2 b2 6' 1

C2
dl

A unary set operator union or intersection takes one family as a right
argument and produces another family by repetitively applying the operator
to all sets with the same index values except for the leftmost index. This
operation is also called aggregation over the leftmost index. Given a family
(Zi 1 ... i ,) and a set operator 7; a unary set operation is defined as follows:

y(Zil .. . in)= (Zi2 ... in)

where

Z i 2 . . . i n = ~ Zili2 . . . i n
l 1

Example 3.7. Given A, B and B[A] as above;

UB[A] = (B a l , B a 2) = {b 1,b2} L){b2} = {bl,bz}

Example 3.6. Given A, B, C, B[A] and C[B] as above:

~C[B[A]] = A (C b l a 1, Cb2a 1, Cbza2)= (Ca1, Ca2)

where Ca 1 = Cblal N Cbza ~ and Ca2 = Cb2a2 as displayed below:

A C
a l c2

a 2 /21

c2

Note that the application of unary set operator always eliminates the
leftmost index. Repetitive application of operators eventually eliminates all
indices producing a simple set as in Example 3.7.

Familial Model of Data 157

3.4. Variable Names

In a complex familial algebra expression the same set name may appear
more than once. Since the algebra utilizes no variable names other than the
set names, the situations where a set may play several different roles in an
expression must be carefully distinguished from the situation where a set
plays the same role in several places. More then one occurrence of a name in
an expression requires the corresponding values to be the same (or null) at
all times. This property is used in applying operators selectively to
corresponding elements. The same set name can be used to play different
roles only by using primed variables, i.e. X and X' may be used to
distinguish two roles played by the set X in the same expression.

Example 3.9. Given A, B, C, and B[A] as above; also given C[A] =
(Ca1, Ca2) where Ca1 = {e2} and Ca 2 = {6'1}. B[A] t..)C[A] is computed by
selectively applying the union operator to elements with the same index
value, and displayed as follows:

A
a]

a2

b 1

b2
C2

b2
C1

Example 3.10. Given A, B , C, B[A] and C[A] as above;
B[A] U C[A'] is computed by treating A and A' as two independent roles
played by the set A, and displayed as follows:

A' A

a I a I

a 2

a 2 a I

a2

h i

b2
6' 2

b2
6'2

bl
b2
6'1

b2
C1

3.5. Algebra as a Data Sublanguage

The use of the familial algebra as a subsetting language is demonstrated
below with some sample queries.

1 58 Orman

Example 3.1 1. Given the university environment of the Example 2.1,
also given the inverses of all families as derived data (section 5); the
following queries are first stated in English, then in familial algebra. The
responses include the index values and would be displayed in table form:

a. Courses offered by the CS department:

COURSE[DEFT = {CS}]

b. Courses listed by department:

COURSE[DEFT]

c. Courses taught by instructor Smith in the MIS department:

COURSE[INSTRUCTOR = {SMITH}; DEFT --- {MIS}]

d. Courses offered jointly by CS and MIS departments:

C3COURSE[DEPT = {CS, MIS}] or

COURSE[DEPT = {CSI] ~ COURSE[DEFT' = {MIS })

e. Instructors teaching at least one course in the CS department:

LdlNSTRUCTOR [COURSE[DEPT -- {CS}]]

4. USER ORIENTATION

4.1. Requirements from a User Language

A database management system serves the diverse needs of many users.
Different types of user interaction and languages may be appropriate for
users with different needs and interests. Readability, ease of query
construction, consistency, precision, conciseness, and intuitiveness may each
appeal in different ways to different users of database languages. The familial
algebra is concise, precise, and is based on a consistent theoretical
framework. The price for conciseness and preciseness is paid in readability
and intuitiveness as queries grow more complex. An immediate solution is
the ability to break up complex queries into smaller, more easily comprehen-
sible pieces. This ability will be achieved by introducing an assignment
operator. In addition, for further improvement in readability and
intuitiveness at the expense of conciseness, two new syntactical arrangements
based on the familial algebra will be introduced.

Familial Model of Data 159

4.2. Assignment

The assignment operator ~ is used to create sets and families from the
existing ones. Given a family (Z0"); A ~ (Ztj) would create a new family
(A/j) where Aij = Zij. Obviously, this operation would have the side effect of
creating a new set A containing all the elements of Z involved in the family
(ZU).

Example 4.1. Given A, B, C, B[A], and C[B] as in section3;
Q ~ ~C[B[A]] would create a set Q and a family Q[A] where Q = {e,, 02},
Q[A] = (Qal, Qaz) with Qa 1 = {c2} and Qa 2 = {c l, e2}. Comparison of this
result with the result of example 3.8 is useful.

In some instances, it is useful to specify the indices of the new family
explicitly to leave out some others. The unspecified indices are eliminated by
applying the union operator to the result over those indices.

Example 4.2. Given A, B, C, B[A], and C[B] as above; Q[A]
C[B[A]] is equivalent to Q ~ UC[B[A]] and creates a set Q and a family
Q[A] where Q = {ej, e2} and Q[A] = (Qa,, Qa2) with Qa I = Qa 2 = {c 1, e2}.

Note that the assignment operator is very effective in summarizing the
result of a complex familial algebra expression as a simple family by
eliminating all the intermediate sets used in forming the expression.
Assignment is also instrumental in database mdofification (see section 5).

4.3. Syntactic Variations

To further improve readability and simplify the query construction, two
new version of the familial algebra each with syntactical modifications to the
original, will be introduced.

4.3.1. A Light-Pen Syntax

The first version involves replacing the unary set operators union and
intersection with the English words SOME and ALL respectively and
moving them next to the variables they apply to. This process brings the
algebra closer to the grammatical structure of English making it more
intuitive, but meanwhile destroying the ability to sequence operators in order
of application, hence requiring parentheses to establish precedence. This
version is espcially suitable for a graphic implementation to be used with a
light pen where set names appear on the screen as nodes of a network and
the user simply connects the nodes with directed arcs to formulate a query.
Each arc connects a target to its index set and it is labeled with one of the
keywords SOME or ALL or comparison operators. New nodes for constants

160 Orman

or new variables are created by simply typing them at the bottom of the
screen.

Example 4.3. The following algebraic expressions are stated in both
versions and as a graph for comparison:

~C[B[AI] O)

C[ALLB[A]] (l ')

C B A

ALL

(-~C[B;A] (2)

C[SOME B; ALL d] (2')

C B A

ALL

~t._J~ClD; B [A l]

C[ALL D; SOME B[ALLA]]

D C B A

ALL SOME ALL

C[ALL D; SOME(B [ALL A 1)]

(3)

(3 ,)

(4)

(4 ')

Familial Model of Data 161

Note that circles in the light pen syntax correspond to parentheses in
algebra, i.e. they establish the precedence of the circled expression.
Parentheses in Eq. 4' have to be used to enforce the priority of the right-most
intersection operation, which was automatic in the original algebra. This can
easily be seen by comparing Eqs. 3 and 4.

4.3.2. An English-like Syntax

The last version to be introduced goes another step further in improving
the readability and intuitiveness by utilizing visual aids such as indentation
and a multiline structure at the expense of further reduction in conciseness.
The expressions in this version are very close to English expressions and
they can actually be completed to English sentences by using filler clauses,
later to be ignored by the interpreter. The following characteristics
distinguish this version from the previous one:

a. A multiline structure is employed where each variable name is
placed on a different line.

b. The index of a family is indented with respect to the target of the
family.

c. New key words such as EACH for intersection, and THE, A and
AT LEAST ONE for union are utilized to express subtle differences
in context. These subtle differences are already captured by the
algebra in the sequence of operations, hence the key words will all
be treated the same by the interpreter; however, the human users
benefit from this more English-like expression of the contextual
differences. The choice of EACH instead of ALL, for example, may
be quite revealing in an English sentence as shown in the following
examples.

d. English expressions can be used as fillers between variable names to
complete sentences. These fillers are displayed in small print in the
following examples and they will be ignored by the intrepreter.

e. Curly brackets around sets are dropped since constants cannot be
confused with set names when only one set name is allowed per
line.

Example 4.4. Given a university database containing the following
families and their inverses:

NAME, DEPT [STUDENT]

NAME, RANK, PH# , DEPT[INSTRUCTOR]

STUDENT, INSTRUCTOR, COURSE#, DEPT [COURSE]

162 Orman

The following sample queries are expressed in English and all three versions
of the familial algebra to provide a comparison and to demonstrate the use
of the algebra for database querying.

a. Instructors in MIS department.

INSTRUCTOR[DEPT = {MIS}]

INSTRUCTORs in

DEPT = MIS

b. Instructors listed by department.

INSTRUCTOR[DEPT]

INSTRUCTORs listed by

DEPT

c. Instructors in the MIS department with the rank of professor.

INSTRUCTOR [DEPT = { MIS }; RANK = { PROFESSOR }

INSTRUCTORs in

DEPT = MIS with

RANK = PROFESSOR

d. Instructors teaching a course in the MIS department.

U INSTRUCTOR[COURSE[DEPT = {MIS }]]

INSTRUCTOR [SOME COURSE [DEPT = {MIS }]]

INSTRUCTORs teaching

A COURSE in

DEPT = MIS

e. Students taking all the courses offered by the MIS department.

~ STUDENT [COURSE [DEPT = {MIS }] l

STUDENT [ALL COURSE[DEPT = {MIS }][

STUDENTs taking

ALL COURSEs offered by

DEPT = MIS

f. Students taking at least one course from each department.

~USTUDENT[COURSE[DEPT]]

STUDENT [SOME COURSE [ALL DEPT]]

STUDENTs taking

AT LEAST ONE COURSE from

EACH DEPT

Familial Model of Data 163

g. Students taking a course listed by all departments.

USTUDENT[NCOURSE[DEPT]]

STUDENT [SOME(COURSE [ALL DEPT])]

STUDENTs taking

A (COURSE listed by

ALL DEPT)

h. The departments of the students taking courses from the MIS
department.

UUDEPT[STUDENT[COURSE[DEPT' = {MIS }]]]

DEPT]SOME STUDENT[SOME COURSE[DEPT' = {MIS }1]]

DEPTs of

THE STUDENTs taking

SOME COURSEs from

DEPT' = MIS

i. Loyal students are the students taking at least one course from their
own department.

LOYAL STUDENT~-UUSTUDENT]COURSE [DEPT [STUDENT]]]

LOYAL STUDENT~-STUDENT[SOME COURSE[SOME

DEPT[STUDENT]]]

LOYAL STUDENT~-

STUDENTs taking

AT LEAST ONE COURSE from

THE DEPT of the same

STUDENT

j. Students taking no course from their own departments.

STUDENT ~ LOYAL STUDENT

STUDENT

LOYAL STUDENT

5. DATABASE MAINTENANCE

5.1. Null Se t s

A null set O is a set with no elements. A null set of employees is no
different from a null set of courses except for its name. A family may
contain a null set if a particular index object has no corresponding objects in

828/13/3-3

164 Orman

the target set. This situation arises when an attribute does not apply to a
particular object in a set. Since the uniformity of the objects in a set in terms
of the relationships they participate in is important in capturing semantics,
the null sets are not allowed in the declared families. This assumption has
important consequences in database maintenance. Obviously, the null set is
indispensable in derived data as demonstrated in section 3.

5.2. Insertion and Deletion

Insert ~ and delete ~ operations are used to insert or delete entities (i.e.
internally generated surrogates corresponding to entities). Each operator
takes a family with a single set as a right argument and inserts a new entity
into that set, or deletes all the entities of that set with proper adjustments to
the indices and to the sets defining the family.

Example 5.1. Given the university database containing the families
SS#, NAME, YEAR[STUDENT], and their inverses; ,~STUDENT[YEAR
= {JUNIOR}] would add a new student to the set of juniors by including the
new student in the specified set. Obviously, the new student would also be
included in the set STUDENT, and the value 'JUNIOR' would be added to
the set YEAR if it is a new value. The SS# and the name of the new student
would be defined as 'unknown' since every object in the set STUDENT is
required to have corresponding objects in the sets SS#, NAME and YEAR.
This follows the null set restrictions of section 5.1. Note that the inverse
STUDENT[YEAR] of the family YEAR[STUDENT] should be defined to
insert a student with a given year.

Example 5.2. Given the same database:

TSTUDENT[SS# = {321587744}; NAME = {SMITH}]

would delete the set of students identified above from the set STUDENT and
from all families they participate in. As a side effect, all objects related
(through some family) to a deleted object and to no other object are also
deleted. This requirement follows from the effort to eliminate the null sets
and the dangling objects (i.e. objects with no relationships to other objects)
from the declared data. This requirement is natural in a set theoretic model
where the sets contain the currently active objects (extension) rather than all
possible objects (intension) as in types or domains. Under this requirement
the SS# 321587744 will be deleted from SS# as a side effect of the above
operation unless it is also the SS# of another student!

5.3. Modification

Modification *--(or assignment) is used to modify the existing values,
sets and families, in addition to creating new sets and families as described

Familial Model of Data 165

in section 4.2. This is accomplished by replacing every set of the family on
the left with the corresponding set on the right hand side. Some sets on the
right may correspond and replace many sets on the left in case some indices
of the left argument do not have corresponding indices on the right. The
reverse situation (i.e. some indices on the right with no corresponding indices
on the left) leads to aggregation over and elimination of those indices by
applying the union operator as explained in section 4.2.

Example 5.2. Given the same database as above:

YEAR [STUDENT [SS# = {321587744 }]] ~- [JUNIOR }

would change current standing of the specified student to 'junior.'

Example 5.3. Given the same database:

YEAR [STUDENT [YEAR ---- [JUNIOR }]] ~- {SENIOR}

would change all juniors to seniors.

5.4. Derived Data

All sets and families created using the assignment operator of
section 4.2 constitute the derived data. They can be used in the same way as
the declared data except that their extension changes as the declared data is
modified since they are defined in terms of the declared data. The data
derived by a user may be restricted to the individual workspace as temporary
variables or stored permanently in the model for later use.

Inversion operator i is used exclusively for deriving inverse families
from the declared families. The careful reader might have observed that in
the previous examples the inverse families have been assumed to exist
without actually declaring them. The inverse of a family can be derived using
the i operator that takes a family as an argument and returns the index
objects corresponding to each distinct target object.

Example 5.4. The inverse STUDENT[YEAR] of the family
YEAR[STUDENT] can be derived as follows:

STUDENT[YEAR] ~ i YEAR[STUDENT]

5.5. User Views

A user view in a familial model is a subset of the model with no restruc-
turing. It is used to mask part of the model from a user to make it more
managable. It may contain both declared and derived data as long as they

166 Orman

are identified as such. In addition, a user may derive data using the families
in his own view. The data derived by a user is local and temporary until it is
explicitly stored permanently.

A major problem with user views in all data models is updating the
derived data in a view without the full knowledge of the underlying declared
data. In general, the derived data cannot be updated without additional infor-
mation about the underlying declared data. (28) The familial model attacks
this problem by requiring that each user view contain all the declared data
relevant to that view and by restricting the update operations to the declared
data. Consequently, a user view cannot simply consist of derived data, but
all derived data in view must be derivable from the declared data included in
that view. This approach does not produce unmanagable views as it would in
network and relational models, since the familial models has the smallest
unit of information as its building block (i.e. directed binary association) and
the views are naturally subsets of the model with no restructuring.

Example 5.5. Given the university environment of Example 4.4, a
user view including a direct relationship NAME[COURSE#] between the
course numbers and the names of instructors of those courses would also be
required to contain the underlying families NAME[INSTRUCTOR],
INSTRUCTOR[COURSE], and COURSE[COURSE#] since

NAME [COURSE#] ~ NAME [INSTRUCTOR [COURSE [C OURSE#]]]

Note that COURSE[COURSE#] itself is a family derived from
COURSE#[COURSE], which should also be included in the view. It is easy
to show that although NAME[COURSE#] is a very useful family for
querying the database without involving any internal identifiers, it would
lead to ambiguities when updated. NAM E[CO U RS E# ={ CS 1 0 1 }]* -
{SMITH} for example may be interpreted to modify the name of an
instructor using NAME[INSTRUCTOR], the instructor of a course using
INSTRUCTOR[COURSE] or the course# of a course using
COURSEoC[COURSE]. It is of course possible to instruct the system to
select one of these interpretations consistently by sacrificing generality(7'28);
but in general a user has to see the underlying structure to update a
database.

6. METAMODEL

6.1. Set Relationships

A model description consisting of a listing of families is not complete
since some objects may play multiple roles by participating in multiple sets.
Consider the introduction of the families

Familial Model of Data 167

SS#, SALARY[EMPLOYE] and

YEARS OF SERVICE, TITLE, DEPT]STAFF]

into the university database of Example 4.4. It is not evident from the listing
of families that each member of INSTRUCTOR is also a member of
EMPLOYEE (i.e. INSTRUCTOR c EMPLOYEE) and consequently
INSTRUCTOR is related to SS# and SALARY in addition to its own
attributes; nor is it evident that EMPLOYEE ~ INSTRUCTOR U STAFF
(where ~- denotes set equality). Moreover the listing of families does not
reflect the fact that some instructors may also hold staff positions (i.e. inter-
secting sets).

Obviously, a complete description of a model should include set
relationships unless all sets of the model are assumed to be disjoint. This
assumption is harmful (although common in current commercial systems)
since allowing some sets to be subsets of others leads to effective abstraction
where lower level objects (such as INSTRUCTOR and STAFF) are
combined and named as sets to produce higher level objects (such as
EMPLOYEE). Separating and hiding lower level objects from the users of
the higher level objects results in increased manageability. The explicit set
relationships are also important in recognizing the multiple roles played by
some objects and enforcing integrity constraints in a consistent manner.
Consequently a complete data description should include subset-superset
relationships, intersecting sets, and equivalent sets, in addition to index-target
relationships.

6.2. Metamodel Description and Manipulation

A complete description of a familial model can be included in the model
itself as a metamodel with two families, each capturing one of the two basic
conditions defining a familial model:

a. the membership condition that links objects to sets is captured by
the family SETNAME[OBJECT]

b. the indexing condition that links the index objects to their targets is
captured by the family TARGET[INDEX]

SETNAME[OBJECT] captures the membership condition by specifying the
sets containing each object where SETNAME contains the names of all sets
in the model and OBJECT contains all objects of the model including
surrogates. Note that OBJECT contains the objects themselves, not their
surrogates. This is the only difference between the model and the metamodel
and is triggered by the fact that the metamodel deals with the objects of the
model that are already in the system, as opposed to the model dealing with

168 Orman

real life objects outside the system representable in the model only by
surrogates. INDEX and TARGET are subsets of OBJECT.
TARGET[INDEX] captures the indexing condition by specifying the target
objects linked to each index object hence describing the roles (surrogate or
value) the objects play with respect to each other. In general, INDEX and
TARGET intersect and their union equals OBJECT.

The families of the metamodel are minimal, complete, and conceptually
elegant, and many useful families may be derived from them. Some useful
families indicating subset-superset, attribute-entity, and multiple role
relationships are derived as follows:

a. Supersets of a set X are the sets containing all the elements of X.

SUPERSET[SET[~- ~SET ' [OBJECT [SET]]

b. Subsets of a set X are the sets which have X as a superset.

SUBSET[SUPERSET[<- i SUPERSET[SET]

c. Multiple roles played by some elements of a set lead to intersecting
sets. The sets intersecting a set X are the sets that have at least one
common element with X.

INTERSECTINGSET [SET] ~ U SET' [OBJECT [SET]]

Note that subsets and supersets of X are also intersecting sets of X.

7. APPLICATIONS PROGRAMMING

7.1. Database Application Systems

Raw data is rarely useful in modern organizations. A variety of
algorithms may be employed for analyzing and processing data before it is
usable. These algorithms are written using high level procedural
programming languages as apposed to the nonprocedural and algebraic
nature of data sublanguages such as familial algebra and relational algebra.
Interfacing nonprocedural data sublanguages with procedural programming
languages have been attempted t29-32) and found to be less than satisfactory
in studies by Stonebraker taa) and Prenner ~a4) because of basic incom-
patibilities between procedural and nonprocedural languages. The dichotomy
between data retrieval and algorithmic processing has also effected the
organizational structure and use of information in organizations, t35) The
familial algebra lends itself to extension into an algebraic programming
language for database applications by introducing additional primitive

Familial Model of Data 169

operations on families, hence eliminating all the disadvantages of interfacing
to procedural language. Some of these operations are introduced in this
section; others may be defined in a similar fashion see (Ref. 24).

7.2. Counting

The 'count' operator p is used to compute the cardinality of sets. It
returns the cardinality of a set as a singleton whose only element is an
integer. When applied to families, it returns a family of singletons each of
which is the count of the corresponding set.

Example 7.1. The following queries involve the count operator:

a. Number of students.

b.

p STUDENT

Number of courses each student is taking.

p COURSE[STUDENT]

7.3. Arithmetic Operations

Addition (+), Subtraction (--), Multiplication (X), Division (/),-
Exponentiation (*), Maximum (F), and Minimum (L) preserve their
common definitions when applied to singletons by treating the single element
of the singleton as a scalar, hence returning another singleton.

Example 7.2.

a. {3} + {4} returns {7}

b. {3}F{4} returns {4}

When applied to families of singletons, they return a family of
singletons created by applying the operator to the individual elements of the
argument families. Given two families (Zi: i C I) and (Yj: j E J) and an
arithmetic operator a:

(Zi : i ~ I) a (Yj: j C J) = (W/j: i E I, j ~ J)

where

w / j = z i a Y j

Note that the variable name restrictions of section 3.4 still apply to establish
correspondence between indices.

170 Orman

Example 7.3. Given A = {al, a2}, B = {bl, b2}, C = {cl, c2}, B[A] =
(Bal ,Ba2) , and C[A] = (Ca1, Ca2) where Bal = {bl}, Ba2 = {bE}, Cal = {el}
and Ca2={c2} . B[A] +C[A] is computed by selectively applying the
operator + to the singletons with the same index value, and displayed as
follows:

A
a~ b I + C 1

a: bE + C2

Example 7.4. Given the same families: B[A] + C[A'] is computed
by applying the + operator to all pairs of singletons, and displayed as

A' A
al al bl + c 1

a2 b2 + c1
a 2 a I b~ + c 2

a2 b2 + c2

follows:

The symmetric arithmetic operators +, • F, and L also have unary
versions. They take one family of singletons as a right argument and create
another family of singletons by repetitively applying the operators to all
singletons with the same index values except for the leftmost index. This
operation is also called arithmetic agrregation over the leftmost index and it
eliminates the leftmost index. Given a family of singletons (Zi 1 ... i ,) and a
symmetric arithmetic operator a:

where

a(Zi , ... in)= (Zi2 ... in)

Zi2 "'" i n = q Zi l "'" i n
ll

The similarities between the definitions of the set operations of section 3.3
and the arithmetic operations are interesting to observe where the only major
difference is the restriction of the arithmetic operations to families of
singletons.

Example 7.3. Given A, B, C, and C[A] as above; also given C[B] =
(Cbl, Cb2) where Cb 1 = Cb2= {C1,C2}- + C [B ; A] is computed by summing
Cbia i values over b i as displayed below:

A C
a I Cl -~- c 1

a2 c2 + c2

Since Cbxa 1 = Cb2al = {c1} and Cb2a 1 = Cbza2 = {c2}.

Familial Model of Data 1 71

Example 7.4. Given the university environment of section 6.1, the
following queries involving arithmetic operations are expressed in English
and in algebra:

a. Total salary expense of the university.

+SALARY [EMPLOYEE]

b. Total salary expense for instructors in each department.

+SALARY [INSTRUCTOR [DEPT]

c. The difference between the average salaries of instructors and staff.

INSAVERAGE ,- +SALARY[INSTRUCTOR]/p INSTRUCTOR

STAFFAVERAGE *-- +SALARY [STAFF lip STAFF

INSAVERAGE -- STAFFAVERAGE

d. The difference between the average salaries of instructor and staff
in each department.

INSAVERAGE [DEPT] ~- +SALARY [INSTRUCTOR [DEPT] 1/
p INSTRUCTOR [DEPTI

STAFFAVERAGE[DEPT] ~- +SALARY[STAFF [DEPT]]/
p STAFF [DEPT]

INSAVERAGE[DEPT[- STAFFAVERAGE[DEPT]

7.4. Inner and Outer Products

The familial algebra accommodates inner and outer products without
introducing additional primitives, but by using the arithmetic operations and
the ability to apply these operators selectively by matching index variables
as explained in section 3.4.

Example 7.5. Given the same university environment with the
following families

COURSE, STUDENT, GRADE[ENROLLMENT]

CREDIT[COURSE]

POINT[GRADE]

captures the information about enrollment, credit value of each course and
the point value of each letter grade. The GPA of each student can be
computed as follows:

172 Orman

POINT [COURSE; STUDENT] ,,- POINT [GRADE [ENROLLMENT
[COURSE; STUDENT]]]

COURSEPOINT[COURSE; STUDENT] ~ CREDIT[COURSE] •
POINT [COURSE; STUDENT[

TOTALPOINT[STUDENT] ,- + COURSEPOINT[COURSE
[STUDENT]; STUDENTI

TOTALCREDIT[STUDENT] ~ + CREDIT [COURSE [STUDENT]]

GPA [STUDENT] *- TOTALPOINT [STUDENT] /TOTALCREDIT
[STUDENT l

Note that the second and the third lines above constitute an inner product of
credit and point values along the course index. It is easier to see the inner
product by visualizing CREDIT[COURSE] as a one dimensional array
where each element corresponds to a value in COURSE, and visualizing
POINT]COURSE; STUDENT] as a two dimensional array where rows
correspond to courses and columns correspond to students.

8. CONCLUSION

The familial model of data has the following principal characteristics:

a. The building blocks of the model are sets and families of sets.

b. The existing theory of sets and families is utilized to design a
nonprocedural data sublanguage based on set algebra.

c. The familial model is minimal in terms of the number of data
constructs and the number of algebraic operations defined on them.

d. The familial algebra as a data sublanguage, is concise and intuitive,
and lends itself to syntactic transformations into graph oriented or
English-like languages.

e. The familial model can distinguish duplicate elements through their
association with different index values. This capability leads to the
ability to count and do arithmetic. The familial algebra is extended
to a complete declarative specification language for database
applications by introducing arithmetic and generalized set
operations.

f. Maintenance operations are also incorporated into the familial
algebra.

g. A family represents a directed binary association between two sets,

Familial Modal of Data 173

h.

which is the smallest unit of information in a data model. Having
the smallest unit as a building block has the following advantages:

1. The model can support user views without any restructuring,
but by simply selecting the relevant families. Consequently,
creating and maintaining user views becomes a more
systematic task. This capability is important for a conceptual
model in a multi-level schema environment.

2. Other data models with larger building blocks can be described
in and accessed by a familial environment. This capability is
important in facilitating transition from existing data models to
a familial framework and in supporting a heterogeneous multi-
database environment.

A metamodel approach to data description is taken. The metamodel
can be described and manipulated in the same environment, by the
same familial algebra. No additional constructs or operations are
required for the metamodel.

Sets of the model are not required to be disjoint. Consequently:

1. Multiple roles played by an entity can be represented consis-
tently and without redundancy.

2. Subset-superset and membership conditions are used for
effective abstraction in a set theoretic sense.

REFERENCES

!. D. L. Childs, Feasibility of a Set Theoretical Data Structure--A General Structure Based
on a Reconstituted Definition of Relation. Proc. IFIP Congress, pp. 162-172 (1968).

2. E. F. Codd, A Relational Model of Data for Large Shared Data Banks, Comm. ACM
13(6):377-387 (1970).

3. J. D. Ullman, Principles of Database Systems. Computer Science Press, Maryland
(1980).

4. J. R. Abrial, Data Semantics. In Database Management, J. W. Klimbie and K. L.
Koffeman (eds.), North Holland Publising Co., Amsterdam (1974).

5. G. Bracchi, P. Paolini, and G. Pelagatti, Binary Logical Associations in Data Modeling.
In Modeling in Database Management Systems, G. M. Nijssen (ed.), North Holland
Publishing Co., Amsterdam (1976).

6. M. E. Senko, DIAM as a Detailed Example of the ANSI/SPARC Architecture. In
Modeling in Database Management Systems, G. M. Nijssen (ed.), North Holland
Publishing Co., Amsterdam (1976).

7. D. W. Shipman, The Functional Data Model and the Data Language DAPLEX, ACM
Transactions in Database Syst. 6(1):140--173 (March 1981).

8. ANSI/X3/SPARC Study Group on Database Management Systems. Interim report
(February 1975); also FDT, ACM-SIGMOD, 7(1):1-26 (1975).

174 Orman

9. G. M. Nijssen, A Gross Architecture for the Next Generation Database Management
Systems. In Modeling Database Management Systems, Proc. IFIPTC2 Working
Conference, Freuderstadt, G. M. Nijssen (ed.), North Holland Publishing Co.,
Amsterdam (1976).

10. W. Kent, Data and Reality, North Holland Publishing Co., Amsterdam (1978).
11. W. Kent, Limitations of Record-Based Information Models, ACM Transactions on

Database Systems 4(1):107-131 (1979).
12. E. F. Codd, Relational Completeness of Database Sublanguages. Courant Computer

Science Symposia, Vol. 6, in Database Systems, R. Rustin (ed.), Prentice Hall,
Englewood Cliffs, New Jersey (1972).

13. R. F. Boyce, D. D. Chamberlin, F. W. King, and M. M. Hammer, III, Specifying Queries
as Relational Expressions: The SQUARE Data Sublanguage, Comm. ACM
18(11):521-628 (1975).

14. M. E. Senko, A Query-Maintenance Language for the Data Independent Accessing Model
II, Inform. Syst. 5(4):257-272 (1980).

15. M. M. Zloof, Query by Example: A Database Language, IBM Systems Journal
16(4):324-343 (1977).

16. D. D. Chamberlin and R. F. Boyce, SEQUEL: A Structured English Query Language,
Proc. Conf. on Management of Data (1974).

17. J. M. Smith and D. C. P. Smith, Database Abstractions: Aggregation and Generalization,
ACM Transactions on Database Syst. 2(2):105-133 (1977).

18. M. M. Astrahan et al., System R: Relational Approach to Database Management, ACM
Transactions on Database Systems 1(2):97-137 (June 1976).

19. M. Stonebraker et al., The Design and Implementation of INGRES, ACM Transactions
on Database Syst. 1(3):189-222 (September 1976).

20. E. F. Codd, Extending the Database Relational Model to Capture More Meaning, ACM
Transaction on Database Systems, 4(4):397-434 (1979).

21. R. Bosak et al., An Information Algebra, Comm. A CM 5(4):190-204 (April 1962).
22. M. Hammer et al., A Very High Level Language for Data Processing Applications,

Comm. ACM 211(11):832-840 (November 1977).
23. L. Orman, An Array Theoretic Specification Environment for the Design of Decision

Support Systems, Policy Anal. and Infor. Syst. 6(4):373-391 (1982).
24. L. Orman, A Familial Specification Language for Database Application Systems,

Computer Languages, 8(3):113-124 (1983).
25. C. Berge, Topological Spaces, MacMillan Co., New York (1963).
26. P. R. Halmos, Naive Set Theory, Van Nostrand Publishing Co., New York (1960).
27. P. A. V. Hall, J. Owlett, and S. J. P. Todd, Relations and Entities. In Modeling Database

Management Systems, G. M. Nijssen (ed.), North Holland (1976).
28. U. Dayal and P. H. Bernstein, On the Updatability of the Relational Views. Proc. 4th Int.

Conf. Very Large Database, pp, 368-377, Berlin (September 1978).
29. E. Allman, M. R. Stonebraker, and G. Held, Embedding a Relational Data Sublanguage

in a General Purpose Programming Language, ACM SIGPLAN Notices 11:25-35
(March 1976).

30. D. D. Chamberlin et al., SEQUEL2: A Unified Approach to Data Definition,
Manipulation and Control, 1BM J. of Res. and Develop. 20(6):560-575 (November
1976).

31. L. Orman, An Information Base for Procedure Independent Design of Information
Systems, Proc. AFIPS National Computer Conference, pp. 817-821 (1980).

32. J. W. Schmidt, Some High Level Constructs for the Data of Type Relation, ACM Tran-
sactions on Database Syst. 2(3):247-261 (1977).

Familial Model of Data 175

33. M. R. Stonebraker and L. A. Rowe, Observations on Data Manipulation Languages and
Their Embedding in General Purpose Programming Languages, Proc. Very Large
Databases (1977).

34. C. J. Prenner and A. R. Lawrence, Programming Languages for Relational Database
Systems, Proc. AFIPS National Computer Conference, pp. 849-855 (1978).

35. S. L. Alter, A Study of Computer-aided Decision Making in Organizations, Ph.D. Disser-
tation, Massachusetts Institute of Technology (June 1975).

