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The family of sets is proposed as the basic structure for modeling data. A 
family is created by indexing one set of objects by another to represent a 
directed binary association between two sets. Familial models are shown to 
have a number of distinct advantages in supporting diverse user views through a 
hierarchy of abstractions and a variety of derived data, and in describing them- 
selves and other data models through metamodels. An algebra of families is 
introduced to provide a data definition, maintenance and processing language 
that is minimal, intuitive, algebraic and theoretically sound. The language is 
extended to a specification language for database application systems, largely 
eliminating the need for embedding database constructs into procedural 
programming languages. 

KEY WORDS: Data model; family of sets; conceptual model; metamodel; 
data language; system specification. 

1. INTRODUCTION 

1.1. Principal Objectives 

The principal objective of the familial model of data is to provide a data 
definition, maintenance and processing language that is minimal, intuitive, 
algebraic and theoretically sound. The language is also envisioned to be a 
spcification language for database application systems, largely eliminating 
the need for embedding database constructs into procedural programming 
languages. 

The main construct of the model is the family of sets, which is used to 
represent a directed binary association between two sets of objects. A family 
is created by indexing one set of objects by another to represent an 
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association. The algebra of families developed to fulfill the requirements 
specified above can be characterized as follows: 

a. Algebraic: The language is based on the algebra of sets. 

b. Minimal: Set operations and arithmetic comparison operations 
combined with indexing constitute the data sublanguage. 

c. Intuitive: The language lends itself to syntactic transformations into 
graph oriented or English-like languages. 

d. Extensible: The language can be extended to a declarative 
specification language for database application systems by 
introducing arithmetic and generalized set operations. 

The effectiveness of a data language in facilitating interaction between 
the users and the system is closely related to the effectiveness of data 
description facilities. Consequently, a second objective of the familial model 
is to provide a modeling capability based on families of sets. A data model 
based on families of sets can be characterized by the following: 

a. Each data model is a collection of sets and families of sets. A set is 
a named collection of objects and it contains all objects playing a 
unique role specified by its name. The sets STUDENT and 
COURSE in a university database for example, contain the 
students and,courses respectively. 

b. A family of sets is created by partitioning a set through indexing 
and it is used to denote a relationship between two sets of objects. 
Given the sets STUDENT and COURSE described above, indexing 
STUDENT by COURSE creates a family of sets by partitioning 
STUDENT. Each set of the family contains the students enrolled in 
a particular course, and hence captures the enrollment relationship 
between the sets STUDENT and COURSE. 

c. The data retrieval language consists of opertions defined on sets 
and families. Since families are partitions, the operations defined on 
families are particularly useful in dealing with classification and 
aggregation problems that are common in data processing. 

d. Each model can be described by a metamodel consisting of two 
families of sets. One describes the membership of objects in sets, 
the other describes the relationships between sets. 

e. A hierarchy of abstracts are supported by two types of abstraction 
mechanisms. Generalization is achieved through subset-superset 
relationships. For example, STUDENT, FACULTY, and 
ADMINISTRATOR sets of a university database can be 
generalized to a PERSON superset. Aggregation is achieved by 



Familial Modal of Data 151 

combining a number of relationships into a single one. For 
example, STUDENT-COURSE and COURSE-FACULTY 
relationships can be combined into a single relationship among 
STUDENT, COURSE, and FACULTY, using the operators of the 
language. 

1.2. Background 

The use of sets for modeling data was first proposed by Childs ~1) and 
Codd. (2) The subsequently developed relational theory established good 
design practices and guidelines to eliminate redundancy and storage 
anomalies, and to capture the inherent structure of data, through a number of 
normal forms and other related concepts summarized in Ref. 3. An alter- 
native approach by binary (4-6) and functional ~7) models was aimed at 
developing natural and semantically rich models to facilitate user interaction 
and sharing. The adoption of the three level schema framework by ANSI ~8) 
and the recognition of the need for a conceptual model stimulated research in 
this approach, since deferring the dependency and redundancy considerations 
to the internal model, and using small units of information as building blocks 
are desirable in a conceptual model. ~9) A third approach to conceptual 
modeling of data based on record based structures has been eloquently 
dismissed by Kent. (1~ 

The familial model falls into the second category. It uses families of sets 
(to represent directed binary associations) as building blocks, and data 
dependencies are treated as ordinary integrity constraints as opposed to 
being the determinants of the data structure. At the same time, many of the 
ideas in the familial approach are similar to or have been adopted from the 
relational theory. The algebraic data sublanguage, familial algebra, plays a 
role similar to the relational algebra, (12) although it is most similar to the 
data subtanguage SQUARE. ~13) The light pen version of the familial algebra 
has counterparts in graph oriented binary models, most notably FORAL- 
LP.  O4) The table oriented language Query by Example ~15) is also an attempt 
in the same direction. The English-like syntax and the use of indentation to 
increase readability have been previously used by SEQUEL.(~6) The concept 
of abstraction in the familial model has been adopted from the generalization 
abstraction of Smith and Smith. (17) The metamodel approach to data 
description has been utilized in the design of System R, (is) Ingres, (~9) and 
Extended Relational Model (2~ formalized the concept and introduced a 
metamodel language. 

The familial model differs from the mostly graph oriented binary 
models in its algebraic orientation. Similarly, it differs from the functional 
model because of the algebraic and nonprocedural nature of its data 
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sublanguage as opposed to the procedural nature of the functional language 
DAPLEX. Also, the extension of a data sublanguage into an algebraic 
specification language for database application systems is a unique charac- 
teristic of the familial model although some isolated attempts have been 
made to formalize the application system development, t21-23) 

The remainder of this paper explains the familial approach to modeling 
data in detail with sections on data description, data retrieval, user orien- 
tation, database maintenance, metamodel and applications programming. No 
implementation of the familial algebra currently exists and the design should 
be considered preliminary. The applications programming environment is not 
intended to provide a complete pogramming language but a facility powerful 
enough for most commercial data processing problems. Additional 
constructs would be needed to extend it to a complete programming 
language. (24) 

2. DATA DESCRIPTION 

2.1. Families of Sets 

A family F from an index set I to a target set A (also denoted by AF[I]) 
is a collection of sets (Ai: i C I)  where each Ai is a subset of the target set A, 
corresponding to an element i of the index set I.(25'26) Consequently, a family 
is characterized by two sets called the target set and the index set, and a 
correspondence between the two. Each Ai is called a member set of the 
family. Some members may be null; and the union of the members is not 
necessarily equal to the target. A family Ap[1] can also be viewed as a (set 
valued) function from the index set I to the target set A, and denoted as A [I] 
whenever the family involved is obvious from the context. A family F with 
multiple index sets 11 ..... I ,  is also a collection of sets (Ai 1 ..... in: 
il E 11,..., i, E I,) ,  each corresponding to an element of the Cartesian product 
11 X 12 • "'" X 1,. A family is a more general concept than a set of sets since 
it can contain duplicate sets and distinguish them through their association 
with different index values. 

2.2. Modeling with Families 

A familial model of data is a collection of named families. Each family 
represents a correspondence between one or more index sets and a target set. 
The families are named after their target sets whenever there is no ambiguity. 
Index sets denote sets of entities outside the system and contain system- 
generated unique identifiers for these entities as suggested in Ref. 27. 
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Example 2.1. A university environment with the entity 
STUDENT and COURSE can be modeled using the following families: 

Family Target Index 
SS# SS# STUDENT 
DEPARTMENT DEPARTMENT STUDENT 
NAME NAME STUDENT 
COURSE# COURSE# COURSE 
INSTRUCTOR INSTRUCTOR COURSE 
DEPT DEPARTMENT COURSE 
STUDENT STUDENT C OURSE 
GRADE GRADE STUDENT, COURSE 

sets 

The semantics of the model is straightforward since each index set 
corresponds to an entity set, and each target set corresponds to an attribute. 
Each family represents a directed binary association between its index sets 
and its target. 

3. DATA RETRIEVAL 

3.1. Displaying Families 

A family can be displayed in table form for human processing. 

Example 3.1. Given A = { a  1,a2}, B = { b  1,b2} and B[A]= 
(Bal, Ba2) where Ba I = {b 1, b2}, Ba z = {b2}. B[A] is displayed as follows: 

A B 
al bl 

b2 
a2 b2 

Several families with common indices such as B[A], C[A], and D[A] 
may be displayed as one table using the notation B, C, D [A ]. 

3.2. Families with Multiple Indices 

A family Z[Y] is said to be obtained by indexing the target Z by the index 
Y. In general, the target Z and the index Y may themselves be families; and 
indexing a family by another family produces a family containing all the sets 
created by indexing each element of the target by each element of the index. 
More formally, given two families (Zi: i ~ I) and (Yj: j E J), and another 
family Z[Y] defined on the target sets of these families: 

(Zi: iC1)[(Yj: jEJ)]=(Ziy jCZi[Yj] :  iEI ,  j C J )  
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Example 3.2. Given B[A] as above; also given C =  {c~,c2} and 
C[B] = (Cb~, Cb2) where Cb~ = {c2} and Cb 2 -- {c 1, c2}. C[B[A]] is obtained 
by indexing C by B[A] and displayed as follows: 

A B C 

a 1 bl c 2 
b2 c 1 

C 2 

a2 b2 c I 

Z[YI,..., Yn] will be used to denote Z [ Y n ] [ Y n _ l ]  ..... [ E l ] ,  i.e. a family 
with multiple indices created by repetitively indexing Z by Y,, Yn-~,..., Y~. 

Example 3.3. Given B[A] and C[B] as above; also given D = {dl} 
and C[D] = (Cd l )=  ({c~}). C[D;B[A]] is obtained by indexing C by B[A], 
and further indexing the result by D as displayed below: 

A B D C 
al bl dl 0 

bz dl cl 
a2 b2 dl Cl 

where O is the null set. 

3.3. An Algebra of Families 

An algebra of families consisting of set operations union (U), inter- 
section (~)  and difference ("0, and comparison operations 
(<, ~<, >, >/, =, :/:) in addition to indexing provides a subsetting language for 
data models based on families. Indexing as defined in section 3.2 is the major 
operation of the familial algebra. It is used to create complex families with 
multiple indices from a set of given families which themselves are defined by 
indexing sets. A special form of indexing involves the arithmetic comparison 
operators. Given two sets Y and Z and a comparison operator 2; Z2Y is 
defined in a similar manner to Z[Y] as follows: 

z2Y=(Zy: y~ r) 

where 

z2= Iz~Z:  z2y} 

Example 3.4. Given A = {al,a2} , B =  {bl,b2} as in Example3.1. 
Let a 1 = 5, a : =  3, bl = 6, b2 = 4 ;  B ~ A  is a family of sets where each set 
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contains those elements of B greater than or equal to the corresponding 
element of A as displayed below: 

A B 
5 6 
3 6 

4 

In general, an arithmetic comparison operator takes two families as 
arguments to produce a new family containing all the sets created by 
applying the operator to the individual elements of argument families. Given 
two families (Zi: i E I) and (Yj: j E J) and a comparison operator 2: 

( Zi : i E I) 2( Yj : j C J) = ( Ziyj E Zi2 Yj : i E I, j E J) 

Example 3.5. Given A and B as above; also given C={CI,C2} 
where el---4 and e2=6,  and B[A] = (Bal,Ba2) where B a l =  {bl,b2} and 
Ba a = {b2}; C >/B[A] is computed by comparing C to each element orB[A] 
individually as displayed below: 

A 
5 

B C 
6 6 
4 4 

6 
4 4 

6 

Note the similarity between this result and the result in Example 3.2; also 
note that the operators are executed in right to left order, i.e. they have long 
right scope. 

The set operations union, intersection, and difference are an integral 
part of the familial algebra. When applied to sets, their set theoretic 
definitions are preserved; and they are generalized in two different ways to 
apply to families. A binary set operator union, intersection, or difference 
takes two families as arguments and produces a new family consisting of all 
the sets created by applying the operator to the individual elements of the 
argument families. Given two families (Zi: i E I) and (Yj: j C J) and a set 
operator 7: 

(Zi: i E I ) 7 ( Y j :  j E J ) = ( W i j :  i ~ I , j ~ J )  

where 

wU = ziv Yj 
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Example 3.6. Given A, B, C, and B[A] as above; also given 
D = {dl}  and C[B] = (Cbl,  Cb2) where Cb 1 = {c2} and Cb 2-- {c 1, c2}. 
C[B[A]] t._JD is computed by taking the union of D with each element of 
C[B[.4]] and preserving the indices as displayed below: 

A B 
al bl C2 

dl 
b2 Cl 

C2 
dl 

a 2 b2 6' 1 

C2 
dl 

A unary set operator union or intersection takes one family as a right 
argument and produces another family by repetitively applying the operator 
to all sets with the same index values except for the leftmost index. This 
operation is also called aggregation over the leftmost index. Given a family 
(Zi 1 ... i ,)  and a set operator 7; a unary set operation is defined as follows: 

y(Zil  .. .  in )= (Zi2 ... in) 

where 

Z i  2 . . .  i n = ~ Zili2 . . .  i n 
l 1 

Example 3.7. Given A, B and B[A] as above; 

UB[A] = ( B a l , B a 2 ) =  {b 1,b2} L){b2} = {bl,bz} 

Example 3.6. Given A,  B,  C, B[A] and C[B] as above: 

~C[B[A]]  = A ( C b l a  1, Cb2a 1, Cbza2)= (Ca1, Ca2) 

where Ca 1 = Cblal  N Cbza ~ and Ca2 = Cb2a2 as displayed below: 

A C 
a l  c2 

a 2 /21 

c2 

Note that the application of unary set operator always eliminates the 
leftmost index. Repetitive application of operators eventually eliminates all 
indices producing a simple set as in Example 3.7. 
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3.4. Variable Names 

In a complex familial algebra expression the same set name may appear 
more than once. Since the algebra utilizes no variable names other than the 
set names, the situations where a set may play several different roles in an 
expression must be carefully distinguished from the situation where a set 
plays the same role in several places. More then one occurrence of a name in 
an expression requires the corresponding values to be the same (or null) at 
all times. This property is used in applying operators selectively to 
corresponding elements. The same set name can be used to play different 
roles only by using primed variables, i.e. X and X' may be used to 
distinguish two roles played by the set X in the same expression. 

Example 3.9. Given A, B, C, and B[A] as above; also given C[A] = 
(Ca1, Ca2) where Ca1 = {e2} and Ca 2 = {6'1}. B[A] t..)C[A] is computed by 
selectively applying the union operator to elements with the same index 
value, and displayed as follows: 

A 
a ]  

a2  

b 1 

b2 
C2 

b2 
C1 

Example 3.10. Given A, B ,  C, B[A] and C[A] as above; 
B[A] U C[A'] is computed by treating A and A' as two independent roles 
played by the set A, and displayed as follows: 

A'  A 

a I a I 

a 2 

a 2 a I 

a2  

h i  

b2 
6' 2 

b2 
6'2 

bl 
b2 
6'1 

b2 
C1 

3.5. Algebra as a Data Sublanguage 

The use of the familial algebra as a subsetting language is demonstrated 
below with some sample queries. 
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Example 3.1 1. Given the university environment of the Example 2.1, 
also given the inverses of all families as derived data (section 5); the 
following queries are first stated in English, then in familial algebra. The 
responses include the index values and would be displayed in table form: 

a. Courses offered by the CS department: 

COURSE[DEFT = {CS}] 

b. Courses listed by department: 

COURSE[DEFT] 

c. Courses taught by instructor Smith in the MIS department: 

COURSE[INSTRUCTOR = {SMITH}; DEFT --- {MIS}] 

d. Courses offered jointly by CS and MIS departments: 

C3COURSE[DEPT = {CS, MIS}] or 

COURSE[DEPT = {CSI] ~ COURSE[DEFT'  = {MIS }) 

e. Instructors teaching at least one course in the CS department: 

LdlNSTRUCTOR [COURSE[DEPT -- {CS}]] 

4. USER ORIENTATION 

4.1. Requirements from a User Language 

A database management system serves the diverse needs of many users. 
Different types of user interaction and languages may be appropriate for 
users with different needs and interests. Readability, ease of query 
construction, consistency, precision, conciseness, and intuitiveness may each 
appeal in different ways to different users of database languages. The familial 
algebra is concise, precise, and is based on a consistent theoretical 
framework. The price for conciseness and preciseness is paid in readability 
and intuitiveness as queries grow more complex. An immediate solution is 
the ability to break up complex queries into smaller, more easily comprehen- 
sible pieces. This ability will be achieved by introducing an assignment 
operator. In addition, for further improvement in readability and 
intuitiveness at the expense of conciseness, two new syntactical arrangements 
based on the familial algebra will be introduced. 
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4.2. Assignment 

The assignment operator ~ is used to create sets and families from the 
existing ones. Given a family (Z0"); A ~ (Ztj) would create a new family 
(A/j) where Aij = Zij. Obviously, this operation would have the side effect of 
creating a new set A containing all the elements of Z involved in the family 
(ZU). 

Example 4.1. Given A, B, C, B[A], and C[B] as in section3; 
Q ~  ~C[B[A]] would create a set Q and a family Q[A] where Q = {e,, 02}, 
Q[A] = (Qal, Qaz) with Qa 1 = {c2} and Qa 2 = {c l, e2}. Comparison of this 
result with the result of example 3.8 is useful. 

In some instances, it is useful to specify the indices of the new family 
explicitly to leave out some others. The unspecified indices are eliminated by 
applying the union operator to the result over those indices. 

Example 4.2. Given A, B, C, B[A], and C[B] as above; Q[A] 
C[B[A]] is equivalent to Q ~  UC[B[A]] and creates a set Q and a family 
Q[A ] where Q = {ej, e2} and Q[A ] = (Qa,, Qa2) with Qa I = Qa 2 = {c 1, e2}. 

Note that the assignment operator is very effective in summarizing the 
result of a complex familial algebra expression as a simple family by 
eliminating all the intermediate sets used in forming the expression. 
Assignment is also instrumental in database mdofification (see section 5). 

4.3. Syntactic Variations 

To further improve readability and simplify the query construction, two 
new version of the familial algebra each with syntactical modifications to the 
original, will be introduced. 

4.3.1. A Light-Pen Syntax 

The first version involves replacing the unary set operators union and 
intersection with the English words SOME and ALL respectively and 
moving them next to the variables they apply to. This process brings the 
algebra closer to the grammatical structure of English making it more 
intuitive, but meanwhile destroying the ability to sequence operators in order 
of application, hence requiring parentheses to establish precedence. This 
version is espcially suitable for a graphic implementation to be used with a 
light pen where set names appear on the screen as nodes of a network and 
the user simply connects the nodes with directed arcs to formulate a query. 
Each arc connects a target to its index set and it is labeled with one of the 
keywords SOME or ALL or comparison operators. New nodes for constants 
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or new variables are created by simply typing them at the bottom of the 
screen. 

Example 4.3. The following algebraic expressions are stated in both 
versions and as a graph for comparison: 

~C[B[AI] O) 

C[ALLB[A]] ( l ' )  

C B A 

ALL 

(-~C[B;A] (2) 

C[SOME B; ALL d ] (2') 

C B A 

ALL 

~t._J~ClD; B [A l] 

C[ALL D; SOME B[ALLA]] 

D C B A 

ALL SOME ALL 

C[ALL D; SOME(B [ALL A 1)] 

(3) 

(3 ,) 

(4) 

(4 ') 
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Note that circles in the light pen syntax correspond to parentheses in 
algebra, i.e. they establish the precedence of the circled expression. 
Parentheses in Eq. 4' have to be used to enforce the priority of the right-most 
intersection operation, which was automatic in the original algebra. This can 
easily be seen by comparing Eqs. 3 and 4. 

4.3.2. An English-like Syntax 

The last version to be introduced goes another step further in improving 
the readability and intuitiveness by utilizing visual aids such as indentation 
and a multiline structure at the expense of further reduction in conciseness. 
The expressions in this version are very close to English expressions and 
they can actually be completed to English sentences by using filler clauses, 
later to be ignored by the interpreter. The following characteristics 
distinguish this version from the previous one: 

a. A multiline structure is employed where each variable name is 
placed on a different line. 

b. The index of a family is indented with respect to the target of the 
family. 

c. New key words such as EACH for intersection, and THE, A and 
AT LEAST ONE for union are utilized to express subtle differences 
in context. These subtle differences are already captured by the 
algebra in the sequence of operations, hence the key words will all 
be treated the same by the interpreter; however, the human users 
benefit from this more English-like expression of the contextual 
differences. The choice of EACH instead of ALL, for example, may 
be quite revealing in an English sentence as shown in the following 
examples. 

d. English expressions can be used as fillers between variable names to 
complete sentences. These fillers are displayed in small print in the 
following examples and they will be ignored by the intrepreter. 

e. Curly brackets around sets are dropped since constants cannot be 
confused with set names when only one set name is allowed per 
line. 

Example 4.4. Given a university database containing the following 
families and their inverses: 

NAME, DEPT [STUDENT] 

NAME, RANK, PH# ,  DEPT[INSTRUCTOR] 

STUDENT, INSTRUCTOR, COURSE#,  DEPT [COURSE] 
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The following sample queries are expressed in English and all three versions 
of the familial algebra to provide a comparison and to demonstrate the use 
of the algebra for database querying. 

a. Instructors in MIS department. 

INSTRUCTOR[DEPT = {MIS}] 

INSTRUCTORs in 

DEPT = MIS 

b. Instructors listed by department. 

INSTRUCTOR[DEPT] 

INSTRUCTORs listed by 

DEPT 

c. Instructors in the MIS department with the rank of professor. 

INSTRUCTOR [DEPT = { MIS }; RANK = { PROFESSOR } 

INSTRUCTORs in 

DEPT = MIS with 

RANK = PROFESSOR 

d. Instructors teaching a course in the MIS department. 

U INSTRUCTOR[COURSE[DEPT = {MIS }]] 

INSTRUCTOR [SOME COURSE [DEPT = {MIS }]] 

INSTRUCTORs teaching 

A COURSE in 

DEPT = MIS 

e. Students taking all the courses offered by the MIS department. 

~ STUDENT [COURSE [DEPT = {MIS }] l 

STUDENT [ALL COURSE[DEPT = {MIS }][ 

STUDENTs taking 

ALL COURSEs offered by 

DEPT = MIS 

f. Students taking at least one course from each department. 

~USTUDENT[COURSE[DEPT]]  

STUDENT [SOME COURSE [ALL DEPT]] 

STUDENTs taking 

AT LEAST ONE COURSE from 

EACH DEPT 
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g. Students taking a course listed by all departments. 

USTUDENT[NCOURSE[DEPT]] 

STUDENT [SOME(COURSE [ALL DEPT])] 

STUDENTs taking 

A (COURSE listed by 

ALL DEPT) 

h. The departments of the students taking courses from the MIS 
department. 

UUDEPT[STUDENT[COURSE[DEPT' = {MIS }]]] 

DEPT]SOME STUDENT[SOME COURSE[DEPT' = {MIS }1]] 

DEPTs of 

THE STUDENTs taking 

SOME COURSEs from 

DEPT' = MIS 

i. Loyal students are the students taking at least one course from their 
own department. 

LOYAL STUDENT~-UUSTUDENT ]COURSE [DEPT [STUDENT] ] ] 

LOYAL STUDENT~-STUDENT[SOME COURSE[SOME 

DEPT[STUDENT]]] 

LOYAL STUDENT~- 

STUDENTs taking 

AT LEAST ONE COURSE from 

THE DEPT of the same 

STUDENT 

j. Students taking no course from their own departments. 

STUDENT ~ LOYAL STUDENT 

STUDENT 

LOYAL STUDENT 

5. DATABASE MAINTENANCE 

5.1.  Null Se t s  

A null set O is a set with no elements. A null set of  employees is no 
different from a null set of  courses except for its name. A family may 
contain a null set if a particular index object has no corresponding objects in 

828/13/3-3 
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the target set. This situation arises when an attribute does not apply to a 
particular object in a set. Since the uniformity of the objects in a set in terms 
of the relationships they participate in is important in capturing semantics, 
the null sets are not allowed in the declared families. This assumption has 
important consequences in database maintenance. Obviously, the null set is 
indispensable in derived data as demonstrated in section 3. 

5.2. Insertion and Deletion 

Insert ~ and delete ~ operations are used to insert or delete entities (i.e. 
internally generated surrogates corresponding to entities). Each operator 
takes a family with a single set as a right argument and inserts a new entity 
into that set, or deletes all the entities of that set with proper adjustments to 
the indices and to the sets defining the family. 

Example 5.1. Given the university database containing the families 
SS#, NAME, YEAR[STUDENT],  and their inverses; ,~STUDENT[YEAR 
= {JUNIOR}] would add a new student to the set of juniors by including the 
new student in the specified set. Obviously, the new student would also be 
included in the set STUDENT, and the value 'JUNIOR' would be added to 
the set YEAR if it is a new value. The SS# and the name of the new student 
would be defined as 'unknown' since every object in the set STUDENT is 
required to have corresponding objects in the sets SS#, NAME and YEAR. 
This follows the null set restrictions of section 5.1. Note that the inverse 
STUDENT[YEAR] of the family YEAR[STUDENT] should be defined to 
insert a student with a given year. 

Example 5.2. Given the same database: 

TSTUDENT[SS# = {321587744}; NAME = {SMITH}] 

would delete the set of students identified above from the set STUDENT and 
from all families they participate in. As a side effect, all objects related 
(through some family) to a deleted object and to no other object are also 
deleted. This requirement follows from the effort to eliminate the null sets 
and the dangling objects (i.e. objects with no relationships to other objects) 
from the declared data. This requirement is natural in a set theoretic model 
where the sets contain the currently active objects (extension) rather than all 
possible objects (intension) as in types or domains. Under this requirement 
the SS# 321587744 will be deleted from SS# as a side effect of the above 
operation unless it is also the SS# of another student! 

5.3. Modification 

Modification *--(or assignment) is used to modify the existing values, 
sets and families, in addition to creating new sets and families as described 
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in section 4.2. This is accomplished by replacing every set of the family on 
the left with the corresponding set on the right hand side. Some sets on the 
right may correspond and replace many sets on the left in case some indices 
of the left argument do not have corresponding indices on the right. The 
reverse situation (i.e. some indices on the right with no corresponding indices 
on the left) leads to aggregation over and elimination of those indices by 
applying the union operator as explained in section 4.2. 

Example 5.2. Given the same database as above: 

YEAR [STUDENT [SS# = {321587744 }]] ~- [JUNIOR } 

would change current standing of the specified student to 'junior.' 

Example 5.3. Given the same database: 

YEAR [STUDENT [YEAR ---- [ JUNIOR }]] ~- {SENIOR} 

would change all juniors to seniors. 

5.4. Derived Data 

All sets and families created using the assignment operator of 
section 4.2 constitute the derived data. They can be used in the same way as 
the declared data except that their extension changes as the declared data is 
modified since they are defined in terms of the declared data. The data 
derived by a user may be restricted to the individual workspace as temporary 
variables or stored permanently in the model for later use. 

Inversion operator i is used exclusively for deriving inverse families 
from the declared families. The careful reader might have observed that in 
the previous examples the inverse families have been assumed to exist 
without actually declaring them. The inverse of a family can be derived using 
the i operator that takes a family as an argument and returns the index 
objects corresponding to each distinct target object. 

Example 5.4. The inverse STUDENT[YEAR] of the family 
YEAR[STUDENT] can be derived as follows: 

STUDENT[YEAR] ~ i YEAR[STUDENT]  

5.5. User Views 

A user view in a familial model is a subset of the model with no restruc- 
turing. It is used to mask part of the model from a user to make it more 
managable. It may contain both declared and derived data as long as they 
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are identified as such. In addition, a user may derive data using the families 
in his own view. The data derived by a user is local and temporary until it is 
explicitly stored permanently. 

A major problem with user views in all data models is updating the 
derived data in a view without the full knowledge of the underlying declared 
data. In general, the derived data cannot be updated without additional infor- 
mation about the underlying declared data. (28) The familial model attacks 
this problem by requiring that each user view contain all the declared data 
relevant to that view and by restricting the update operations to the declared 
data. Consequently, a user view cannot simply consist of derived data, but 
all derived data in view must be derivable from the declared data included in 
that view. This approach does not produce unmanagable views as it would in 
network and relational models, since the familial models has the smallest 
unit of information as its building block (i.e. directed binary association) and 
the views are naturally subsets of the model with no restructuring. 

Example 5.5. Given the university environment of Example 4.4, a 
user view including a direct relationship NAME[COURSE#]  between the 
course numbers and the names of instructors of those courses would also be 
required to contain the underlying families NAME[INSTRUCTOR],  
INSTRUCTOR[COURSE],  and COURSE[COURSE#]  since 

NAME [COURSE#] ~ NAME [INSTRUCTOR [COURSE [C OURSE#] ] ] 

Note that COURSE[COURSE#]  itself is a family derived from 
COURSE#[COURSE],  which should also be included in the view. It is easy 
to show that although NAME[COURSE#]  is a very useful family for 
querying the database without involving any internal identifiers, it would 
lead to ambiguities when updated. NAM E[CO U RS E# ={ CS 1 0 1 } ]* -  
{SMITH} for example may be interpreted to modify the name of an 
instructor using NAME[INSTRUCTOR],  the instructor of a course using 
INSTRUCTOR[COURSE] or the course# of a course using 
COURSEoC[COURSE]. It is of course possible to instruct the system to 
select one of these interpretations consistently by sacrificing generality(7'28); 
but in general a user has to see the underlying structure to update a 
database. 

6. METAMODEL 

6.1. Set Relationships 

A model description consisting of a listing of families is not complete 
since some objects may play multiple roles by participating in multiple sets. 
Consider the introduction of the families 
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SS#, SALARY[EMPLOYE] and 

YEARS OF SERVICE, TITLE, DEPT]STAFF] 

into the university database of Example 4.4. It is not evident from the listing 
of families that each member of INSTRUCTOR is also a member of 
EMPLOYEE (i.e. INSTRUCTOR c EMPLOYEE) and consequently 
INSTRUCTOR is related to SS# and SALARY in addition to its own 
attributes; nor is it evident that EMPLOYEE ~ INSTRUCTOR U STAFF 
(where ~- denotes set equality). Moreover the listing of families does not 
reflect the fact that some instructors may also hold staff positions (i.e. inter- 
secting sets). 

Obviously, a complete description of a model should include set 
relationships unless all sets of the model are assumed to be disjoint. This 
assumption is harmful (although common in current commercial systems) 
since allowing some sets to be subsets of others leads to effective abstraction 
where lower level objects (such as INSTRUCTOR and STAFF) are 
combined and named as sets to produce higher level objects (such as 
EMPLOYEE). Separating and hiding lower level objects from the users of 
the higher level objects results in increased manageability. The explicit set 
relationships are also important in recognizing the multiple roles played by 
some objects and enforcing integrity constraints in a consistent manner. 
Consequently a complete data description should include subset-superset 
relationships, intersecting sets, and equivalent sets, in addition to index-target 
relationships. 

6.2. Metamodel Description and Manipulation 

A complete description of a familial model can be included in the model 
itself as a metamodel with two families, each capturing one of the two basic 
conditions defining a familial model: 

a. the membership condition that links objects to sets is captured by 
the family SETNAME[OBJECT] 

b. the indexing condition that links the index objects to their targets is 
captured by the family TARGET[INDEX] 

SETNAME[OBJECT] captures the membership condition by specifying the 
sets containing each object where SETNAME contains the names of all sets 
in the model and OBJECT contains all objects of the model including 
surrogates. Note that OBJECT contains the objects themselves, not their 
surrogates. This is the only difference between the model and the metamodel 
and is triggered by the fact that the metamodel deals with the objects of the 
model that are already in the system, as opposed to the model dealing with 
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real life objects outside the system representable in the model only by 
surrogates. INDEX and TARGET are subsets of OBJECT. 
TARGET[INDEX] captures the indexing condition by specifying the target 
objects linked to each index object hence describing the roles (surrogate or 
value) the objects play with respect to each other. In general, INDEX and 
TARGET intersect and their union equals OBJECT. 

The families of the metamodel are minimal, complete, and conceptually 
elegant, and many useful families may be derived from them. Some useful 
families indicating subset-superset, attribute-entity, and multiple role 
relationships are derived as follows: 

a. Supersets of a set X are the sets containing all the elements of X. 

SUPERSET[SET[ ~- ~SET '  [OBJECT [SET]] 

b. Subsets of a set X are the sets which have X as a superset. 

SUBSET[SUPERSET[ <- i SUPERSET[SET] 

c. Multiple roles played by some elements of a set lead to intersecting 
sets. The sets intersecting a set X are the sets that have at least one 
common element with X. 

INTERSECTINGSET [SET] ~ U SET' [OBJECT [SET]] 

Note that subsets and supersets of X are also intersecting sets of X. 

7. APPLICATIONS PROGRAMMING 

7.1. Database Application Systems 

Raw data is rarely useful in modern organizations. A variety of 
algorithms may be employed for analyzing and processing data before it is 
usable. These algorithms are written using high level procedural 
programming languages as apposed to the nonprocedural and algebraic 
nature of data sublanguages such as familial algebra and relational algebra. 
Interfacing nonprocedural data sublanguages with procedural programming 
languages have been attempted t29-32) and found to be less than satisfactory 
in studies by Stonebraker taa) and Prenner ~a4) because of basic incom- 
patibilities between procedural and nonprocedural languages. The dichotomy 
between data retrieval and algorithmic processing has also effected the 
organizational structure and use of information in organizations, t35) The 
familial algebra lends itself to extension into an algebraic programming 
language for database applications by introducing additional primitive 
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operations on families, hence eliminating all the disadvantages of interfacing 
to procedural language. Some of these operations are introduced in this 
section; others may be defined in a similar fashion see (Ref. 24). 

7.2. Counting 

The 'count' operator p is used to compute the cardinality of sets. It 
returns the cardinality of a set as a singleton whose only element is an 
integer. When applied to families, it returns a family of singletons each of 
which is the count of the corresponding set. 

Example 7.1. The following queries involve the count operator: 

a. Number of students. 

b. 

p STUDENT 

Number of courses each student is taking. 

p COURSE[STUDENT] 

7.3. Arithmetic Operations 

Addition (+), Subtraction (--), Multiplication (X), Division (/),- 
Exponentiation (*), Maximum (F), and Minimum (L) preserve their 
common definitions when applied to singletons by treating the single element 
of the singleton as a scalar, hence returning another singleton. 

Example 7.2. 

a. {3} + {4} returns {7} 

b. {3}F{4} returns {4} 

When applied to families of singletons, they return a family of 
singletons created by applying the operator to the individual elements of the 
argument families. Given two families (Zi: i C I) and (Yj: j E J )  and an 
arithmetic operator a: 

(Zi : i ~ I) a (Yj: j C J) = (W/j: i E I, j ~ J) 

where 

w / j  = z i  a Y j  

Note that the variable name restrictions of section 3.4 still apply to establish 
correspondence between indices. 
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Example 7.3. Given A = {al, a2}, B = {bl, b2}, C =  {cl, c2}, B[A ] = 
(Bal ,Ba2) ,  and C[A] = (Ca1, Ca2) where Bal  = {bl}, Ba2 = {bE}, Cal = {el} 
and Ca2={c2} .  B[A] +C[A]  is computed by selectively applying the 
operator + to the singletons with the same index value, and displayed as 
follows: 

A 
a~ b I + C 1 

a: bE + C2 

Example 7.4. Given the same families: B[A] + C[A']  is computed 
by applying the + operator to all pairs of singletons, and displayed as 

A'  A 
al al bl + c 1 

a2 b2 + c1 
a 2 a I b~ + c 2 

a2 b2 + c2 

follows: 

The symmetric arithmetic operators +, • F, and L also have unary 
versions. They take one family of singletons as a right argument and create 
another family of singletons by repetitively applying the operators to all 
singletons with the same index values except for the leftmost index. This 
operation is also called arithmetic agrregation over the leftmost index and it 
eliminates the leftmost index. Given a family of singletons (Zi 1 ...  i , )  and a 
symmetric arithmetic operator a: 

where 

a(Zi ,  ... in )= (Zi2 ...  in) 

Zi2 "'" i n = q Zi l  "'" i n 
ll 

The similarities between the definitions of the set operations of section 3.3 
and the arithmetic operations are interesting to observe where the only major 
difference is the restriction of the arithmetic operations to families of 
singletons. 

Example 7.3. Given A, B, C, and C[A] as above; also given C[B] = 
(Cbl, Cb2) where Cb 1 = Cb2= {C1,C2}- + C [ B ; A  ] is computed by summing 
Cbia i values over b i as displayed below: 

A C 
a I Cl -~- c 1 

a2 c2 + c2 

Since Cbxa 1 = Cb2al = {c1} and Cb2a 1 = Cbza2 = {c2}. 
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Example 7.4. Given the university environment of section 6.1, the 
following queries involving arithmetic operations are expressed in English 
and in algebra: 

a. Total salary expense of the university. 

+SALARY [EMPLOYEE] 

b. Total salary expense for instructors in each department. 

+SALARY [INSTRUCTOR [DEPT] 

c. The difference between the average salaries of instructors and staff. 

INSAVERAGE ,- +SALARY[INSTRUCTOR]/p INSTRUCTOR 

STAFFAVERAGE *-- +SALARY [STAFF lip STAFF 

INSAVERAGE -- STAFFAVERAGE 

d. The difference between the average salaries of instructor and staff 
in each department. 

INSAVERAGE [DEPT] ~- +SALARY [INSTRUCTOR [DEPT] 1/ 
p INSTRUCTOR [DEPTI 

STAFFAVERAGE[DEPT] ~- +SALARY[STAFF [DEPT]]/ 
p STAFF [DEPT] 

INSAVERAGE[DEPT[ - STAFFAVERAGE[DEPT] 

7.4. Inner and Outer  Products 

The familial algebra accommodates inner and outer products without 
introducing additional primitives, but by using the arithmetic operations and 
the ability to apply these operators selectively by matching index variables 
as explained in section 3.4. 

Example 7.5. Given the same university environment with the 
following families 

COURSE, STUDENT, GRADE[ENROLLMENT] 

CREDIT[COURSE] 

POINT[GRADE] 

captures the information about enrollment, credit value of each course and 
the point value of each letter grade. The GPA of each student can be 
computed as follows: 
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POINT [COURSE; STUDENT] ,,- POINT [GRADE [ENROLLMENT 
[COURSE; STUDENT]]] 

COURSEPOINT[COURSE; STUDENT] ~ CREDIT[COURSE] • 
POINT [COURSE; STUDENT[ 

TOTALPOINT[STUDENT] ,- + COURSEPOINT[COURSE 
[STUDENT]; STUDENTI 

TOTALCREDIT[STUDENT] ~ + CREDIT [COURSE [STUDENT]] 

GPA [STUDENT] *- TOTALPOINT [STUDENT ] /TOTALCREDIT 
[STUDENT l 

Note that the second and the third lines above constitute an inner product of 
credit and point values along the course index. It is easier to see the inner 
product by visualizing CREDIT[COURSE] as a one dimensional array 
where each element corresponds to a value in COURSE, and visualizing 
POINT]COURSE; STUDENT] as a two dimensional array where rows 
correspond to courses and columns correspond to students. 

8. CONCLUSION 

The familial model of data has the following principal characteristics: 

a. The building blocks of the model are sets and families of sets. 

b. The existing theory of sets and families is utilized to design a 
nonprocedural data sublanguage based on set algebra. 

c. The familial model is minimal in terms of the number of data 
constructs and the number of algebraic operations defined on them. 

d. The familial algebra as a data sublanguage, is concise and intuitive, 
and lends itself to syntactic transformations into graph oriented or 
English-like languages. 

e. The familial model can distinguish duplicate elements through their 
association with different index values. This capability leads to the 
ability to count and do arithmetic. The familial algebra is extended 
to a complete declarative specification language for database 
applications by introducing arithmetic and generalized set 
operations. 

f. Maintenance operations are also incorporated into the familial 
algebra. 

g. A family represents a directed binary association between two sets, 
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h. 

which is the smallest unit of information in a data model. Having 
the smallest unit as a building block has the following advantages: 

1. The model can support user views without any restructuring, 
but by simply selecting the relevant families. Consequently, 
creating and maintaining user views becomes a more 
systematic task. This capability is important for a conceptual 
model in a multi-level schema environment. 

2. Other data models with larger building blocks can be described 
in and accessed by a familial environment. This capability is 
important in facilitating transition from existing data models to 
a familial framework and in supporting a heterogeneous multi- 
database environment. 

A metamodel approach to data description is taken. The metamodel 
can be described and manipulated in the same environment, by the 
same familial algebra. No additional constructs or operations are 
required for the metamodel. 

Sets of the model are not required to be disjoint. Consequently: 

1. Multiple roles played by an entity can be represented consis- 
tently and without redundancy. 

2. Subset-superset and membership conditions are used for 
effective abstraction in a set theoretic sense. 
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