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Limits of sequences of finite-dimensional (AF) C*-algebras, such as the CAR 
algebra for the ideal Fermi gas, are a standard mathematical tool to describe 
quantum statistical systems arising as thermodynamic limits of finite spin 
systems. Only in the infinite-volume limit one can, for instance, describe phase 
transitions as singularities in the thermodynamic potentials, and handle the 
proliferation of physically inequivalent Hilbert space representations of a system 
with infinitely many degrees of freedom. As is well known, commutative AF 
C*-algebras correspond to countable Boolean algebras, i.e., algebras of proposi- 
tions in the classical two-valued calculus. We investigate the noncomrnutative 
logic properties of general AF C*-algebras, and their corresponding systems. 
We stress the interplay between G6del incompleteness and quotient structures-- 
in the light of the "nature does not have ideals" program, stating that there are 
no quotient structures in physics. We interpret AF C*-algebras as algebras of 
the infinite-valued calculus of Lukasiewicz, i.e., algebras of propositions in 
Ulam's "twenty questions" game with lies. 

I N T R O D U C T I O N  

In the q u a n t u m  theory  o f  finite systems, observables  are represented  by 
self -adjoint  opera to r s  in a cer ta in  Hi lbe r t  space H. The  pure  states o f  the 
system are  the ext remal  posi t ive l inear  no rmal i zed  funct ionals  on the 
C*-a lgebra  B(H)  o f  b o u n d e d  l inear  ope ra to r s  on H. The dynamics  is 
specified by a one -pa rame te r  g roup  o f  a u t o m o r p h i s m s  o f  B(H).  States  are 
weighted sums o f  pure  states, and  u n b o u n d e d  observables  are a p p r o x i m a t e d  
by bounded  ones, By yon N e u m a n n ' s  uniqueness  theorem,  the coord ina tes ,  
momen ta ,  and  spins o f  an a rb i t r a ry  finite system admi t  precisely one 
i r reducible  Hi lber t  space representa t ion ,  up  to un i ta ry  equivalence.  

Accord ing  to the theory  o f  Bi rkhoff  and  von N e u m a n n  (1936), p ropos i -  
t ions expressing proper t ies  o f  a physical  system are represented  by  projec-  
t ions on B(H) ;  the set o f  p ropos i t i ons  is na tura l ly  equ ipped  with the inf  and  
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sup operations, and with a form of complementation that are reminiscent 
of the Boolean connectives of conjunction, disjunction, and negation. 

While the Hilbert space approach scored many successes for systems 
having finitely many degrees of freedom, it was grudgingly recognized that 
infinite systems are beyond the scope of this formalism (Emch, 1984, p. 
361; Sewell, 1986). One can no longer speak of the Hilbert space of the 
system. In fact, the observables of an infinite system usually have a host of 
physically inequivalent representations, corresponding to macroscopically 
different classes of states. An essential feature of macroscopic assemblies of 
particles is that the state equations are size independent. We are naturally 
led to an idealization of the macroscopic system as an infinite-volume limit 
of increasingly large finite systems with constant density. In this way one 
can, for instance, describe phase transitions as singularities in the thermo- 
dynamic potentials. 

A mathematical counterpart of this construction is provided by ap- 
proximately finite-dimensional (AF) C*-algebras. By definition, an AF 
C*-algebra is the norm closure of the union of an ascending sequence of 
finite-dimensional C*-algebras, all with the same unit. Introduced in suc- 
cessive stages by Glimm, Dixmier, and Bratteli (see Bratteli, 1972), AF 
C*-algebras are now the standard tool for the algebraization of spin 
systems and the like (Sewell, 1986; Bratteli and Robinson, 1979). For 
example, the ideal Fermi gas is described by the CAR algebra--the limit 
C*-algebra B(C) c B(C 2) ~ B(C 4) c B(C 8) ~" " �9 This description is free 
of any underlying Hilbert space structure: all the information is contained 
in an AF C*-algebra (Emch, 1984, pp. 362, 456). 

It follows that all the logical machinery of systems described by AF 
C*-algebras is necessarily built in the algebra itself, independently of any 
Hilbert space representation. 

In this paper we shall interpret projections of AF C*-algebras as 
propositions in the infinite-valued sentential calculus of Lukasiewicz 
(Tarski and Lukasiewicz, 1956). We then apply to AF C*-algebras such 
notions as polynomial time computability and G6del incompleteness. We 
also relate states of AF C*-algebras and truth-averaging processes. 

We refer to Dixmier (1977) for background on C*-algebras, and to 
Effros (1981) and Goodearl (1982) for AF C*-algebras. Throughout this 
paper, each C*-algebra A has a unit 1A and is separable. 

1. ELLIOTT'S CLASSIFICATION AND MV ALGEBRAS 

It is not hard to see that every commutative AF C*-algebra is 
isomorphic to the C*-algebra C(X) of all continuous complex-valued 
functions defined over a separable Boolean (totally disconnected, compact 
Hausdorff) space X. This suggests that AF C*-algebras should be regarded 
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as sort of noncommutative Boolean algebras (Blackadar, 1987, 7.1). To 
substantiate this intuition, we rely on Elliott's (1976) classification theory. 

Recall that two projections p and q in a C*-algebra A are equivalent (in 
the sense of Murray-von Neumann) iff there is an element v eA such that 
vv* = p and v*v = q. The set of equivalence classes is denoted by D(A), and 
the equivalence class ofp  is denoted by [p]. For AF C*-algebras this notion 
of equivalence coincides with the familiar notion of unitary equivalence 
(Effros and Rosenberg, 1978, 3.6; Blackadar, 1987, 7.1). When A is the 
C*-algebra B(C') of linear operators on n-dimensional Hilbert space, p is 
equivalent to q iff dim(range p ) =  dim(range q). Accordingly, equivalence 
classes of projections are often regarded as (generalized) dimensions. 

In its original formulation, Elliott's (1976) classification theory is the 
study of the order-theoretic and additive properties of dimensions. 

We write [p] -< [q] iff p is equivalent to a subprojection of q. In many 
important cases, including all AF C*-algebras, the relation -< on D(A) is 
a partial order (i.e., a reflexive, transitive, antisymmetric binary relation), 
and is called the Murray-yon Neumann order of A. A partial addition + 
is defined on D(A) by stipulating that [p]-h [q] exists iff p and q are, 
respectively, equivalent to orthogonal projections p '  and q'. Defining in 
this case [p] + [q] = [p' + q'], D(A) becomes a partial structure, known as 
Elliott's local semigroup. Trivially, Elliott's addition is associative, commu- 
tative, monotone, and satisfies the following residuation property, where 
for each projection p e A ,  [p]* is an abbreviation of [1A - p ] :  

[p]* is the smallest element in D whose sum with [p] equals [IA]. 

The requirement that property (*) be preserved together with associativity, 
commutativity, and monotonicity makes the extension problem for Elliott's 
addition a nontrivial and interesting one: 

Theorem 1. (Mundici and Panti, n.d.). For any AF C*-algebra A, let 
D = D(A). Then: 

(i) Elliott's addition + has at most one extension to an associative, 
commutative, monotone operation O: O 2--~D satisfying Condition (*). 

(ii) The (unique) extension �9 exists if, and only if, the Murray-von 
Neumann order of A is a lattice-order. 

In his classification theory of AF C*-algebras, Elliott (1976) proved 
that the local semigroup (D(A), +)  is a complete invariant for each AF 
C*-algebra A. It follows that: 

Theorem 2. The semigroup (D(A), •) is a complete invariant for all 
AF C*-algebras A whose Murray-von Neumann order is lattice: noniso- 
morphic AF C*-atgebras determine nonisomorphic semigroups. 
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For all x, y ED(A), the • operation can express the order as follows: 
x -< y iff x �9 z = y for some z eD(A). Let 0 and 1, respectively, denote the 
smallest and the largest element of D. From Condition (*) it follows that 
the semigroup (D(A), 0 )  is equipped with a unary operation *, where x* 
is the smallest element y such that x O y  = 1. Setting now 
x ' y  = (x* Oy*)* ,  we obtain a map A--* (D(A), O, 1, *, if3, "). 

We shall now characterize the range of this map. Following Chang 
(1958), we say B = (B, 0, 1, *, O ,  ") is an M V  algebra iff B satisfies the 
following equations: 

MV 1 (x q~ y) if3 z = x �9 (y  G z) 
MV2 x O y  = y O x  
MV3 x �9 0 = x 
MV4 x G 1 = 1 
MV5 O* = 1 
MV6 1" = 0 
MV7 x "y = ( x * O y * ) *  
MV8 ( x * O y ) * G y  = ( y * G x ) * ( ~ x .  

Replacing y by 0 in the last equation, we get x** = x. Replacing y by 1, we 
get 1 = x * |  Then it is not hard to see (Mundici, 1986, w that these 
equations are equivalent to Chang's original equations. Boolean algebras 
coincide with MV algebras obeying x G x = x. The prototypical example of 
an MV algebra is the unit interval [0, 1] equipped with the opera- 
tions x* = 1 - x ,  x O y  =min(1 ,  x +y ) ,  x "y =max(0 ,  x + y -  1). Indeed, 
Chang's (1959) completeness theorem states that the variety of MV algebras 
coincides with the smallest class of structures containing [0, 1] and closed 
under homomorphic images, subalgebras, and products. Stated otherwise, 
if an equation holds in [0, 1], then it holds in every MV algebra. Subalge- 
bras of [0, 1] exhaust all possible cases of simple (i.e., quotient-free) MV 
algebras. Algebras of [0, 1]-valued functions exhaust the most general 
possible case of  semisimple MV algebras, those algebras where the intersec- 
tion of maximal ideals is zero (Chang, 1959; Belluce, 1986). 

MV algebras provide the desired notion of noncommutative Boolean 
algebra in the following sense: 

Theorem 3. (Mundici and Panti, n.d.; Mundici, 1986). Up to isomor- 
phism, the map A ~(D(A),  0, 1, *, O, ") is a o n e -o n e  correspondence 
between AF C*-algebras whose M u r r a y - y o n  Neumann order is a lattice 
and countable MV algebras. Commutative AF C*-algebras correspond to 
countable Boolean algebras. 

Some instances of  the above duality theorem are given by Table I. 
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Table I. 

Countable MV algebra Its AF C*-correspondent 

{0, 1} 
Lukasiewicz chain {0, 1/n  . . . . .  (n  - 1 ) / n ,  I} 
Finite 
Boolean 
Atomless Boolean 
Totally ordered 

Subabgebra of Qc~[0, 1] 

Dyadic rationals in [0, I] 

Q c~ [0, 1] 

Subalgebra of [0, 1] 

Generated by an irrational p el0, 1] 

All real algebraic numbers in [0, l] 

Two-idea1 algebras of Mundici (1992a) 

Chang algebra C (Chang, 1958, p. 474) 

Every prime quotient is finite 

Finite-valued (Grigolia, 1977) 

Three-valued (Grigolia, 1977) 

Post MV algebra of order n + 1 
(Mundici, 1993) 

Finite product of Post MV algebras 
(Mundici, 1993) 

Free, denumerably many generators 
(Mundici, 1986, w 

Free, one generator 

C 
B(C"), the n x n complex matrices 
Finite-dimensional 
Commutative 
C(2 ~~ (Effros, 1981, p. 13) 
With Murray-von Neumann comparability 

of projections (Elliott, 1979) 
Glimm's UHF algebra (Effros, p. 50; 

Effros and Rosenberg, 1978) 
CAR algebra of the Fermi gas 

(Blackadar, 1987; Effros, 1981) 
Glimm's universal UHF algebra (Effros, 

1981; Effros and Rosenberg, 1978) 
Simple with Murray-von Neumann 

comparability (Elliott, 1979) 
Effros-Shen algebra ~p (Effros, 

1981, p. 65) 
Blackadar algebra B (Blackadar, 

1980a, p. 504) 
Behncke-Leptin algebras with two-point 

dual (Behncke and Leptin, 1972) 
Behncke-Leptin algebra Ao, 1 (Behncke 

and Leptin, 1972; Bratteli, 1972, 3.4) 
Liminary with Hausdorff spectrum 

(Cignoli e t  a l . ,  n.d.) 
Subhomogeneous with Hausdorff spectrum 

(Mundici, n.d.-a) 
3-Subhomogeneous with Hausdorff 

spectrum (Mundici, 1989) 
Homogeneous of order n (Mundici, n.d.-a) 

Continuous trace (Mundici, n.d.-a) 

Universal AF C*-algebra S0I 
(Mundici, 1986, w 

The "Farey" AF C*-algebra 9~ I 
(Mundici, 1988a) 

2. NONCOMMUTATIVE (MANY-VALUED) LOGIC AND 
ULAM'S GAME 

MV algebras were originally introduced as the algebras of the infinite- 
valued sentential calculus of Lukasiewicz (Tarski and Lukasiewicz, 1956). 
To investigate the "noncommutative" logical aspects of MV algebras, we 
consider Ulam's game (Ulam, 1976, p. 281), a variant of the "twenty 
questions" game where the first player thinks of a number x in a certain set 
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S, and the second player must guess x by asking questions to which the first 
player can only answer yes or no - -be ing  allowed to lie a certain number 
L of times. Let us call Pinocchio the first player. 

In practical applications, Pinocchio may be replaced by a satellite, and 
Pinocchio's answers are bits of information transmitted by the satellite 
from a great distance. Distortion during transmission has the same effect as 
Pinocchio's lies. The role of the second player is now taken by a powerful 
receiver-transmitter sending noiseless feedback information to the satellite, 
in order to optimize the error-correction process. Typically, the feedback 
may consist in sending a copy of  the received bit back to the satellite. In 
this way, Ulam's game becomes an interesting chapter of  the theory of 
error-correcting communication with feedback (Berlekamp, 1968; Czyzo- 
wicz et al., 1989; Mundici, 1991). 

When L > 0, Pinocchio's answers do not obey classical logic, in at 
least two respects: (i) the conjunction of two equal answers to the same 
repeated question is usually more informative than a single answer, and (ii) 
the conjunction of two opposite answers need not lead to contradiction. 

During the game, our state of  knowledge about Pinocchio's secret 
number x becomes sharper and sharper; an increasing set of  numbers is 
excluded from consideration, as soon as they falsify too many (i.e., 
> L  + 1) answers. Needless to say, after receiving t answers A1 . . . . .  At, 
our state of knowledge k is only determined by the conjunction of  these 
answers. Without loss of generality, k is representable by a function 
k: S ~ { 0 ,  1/(L + 1 ) , . . . , L / ( L  + 1), 1}, where for every yeS ,  k(y) is the 
distance, measured in units of L + 1, from the condition of falsifying too 
many answers. Thus, in particular, k(y )= 1 -  w/(L + 1) iff y falsifies w 
answers, w = 0, 1 , . . . ,  L + 1. As proved in Mundici (1992b), upon identi- 
fying Ai with the state of knowledge determined by the ith answer alone, 
we have identity k = A1 . . . . .  At, where �9 is the Lukasiewicz conjunction 
a �9 b = max(0, a + b - 1). 

To express the natural pointwise order between states of  knowledge 
k < h (saying that k is more restrictive, or sharper, than h), we can use the 
negation operation h * - - 1 -  h. Indeed, the inequality k < h holds iff 
k"  h * =  0. In this way, inequalities can be equivalently reformulated as 
equations. 

Let KL.s be the algebra of states of knowledge equipped with the 
operations ", *, and •,  where ~) is the de Morgan dual of conjunction, 
a @ b = (a*" b*)*. Let us agree to say that an equation is absolute iff it 
holds in KL.s for all finite L and S. Associativity and commutativity are 
examples of absolute equations, while the law of  idempotence h �9 h = h is 
not absolute, as it holds only for states of  knowledge in Ulam's game 
without lies. Then we have: 
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Theorem 4. (Mundici, 1993). An equation is absolute iff it follows 
from the equations MV1-MV8 iff it holds in the MV algebra Q n [0, 1] of 
rational numbers in the unit interval. 

As a consequence, we may safely identify the following: (i) tautologies, 
or equivalences, in the infinite-valued sentential calculus of Lukasiewicz, 
(ii) equations which follow from the MV equations MV1-MV8, (iii) 
equations which are valid when interpreted over Q c~ [0, 1], and (iv) equa- 
tions k = h between states of knowledge in Ulam's game which are valid 
even if we do not know how many times Pinocchio can lie. 

Boolean logic corresponds to the special case of Ulam's game where 
Pinocchio is not allowed to lie. Thus, it is suggestive to regard the 
noncommutativity of MV algebras as a logical counterpart of the lies (or 
distortions) in Ulam's game. 

As a matter of fact, one can naturally extend Ulam games from finite 
to infinite search spaces, S, and even assume that the number of lies 
available to Pinocchio is not a constant L, but is a variable l(x) depending 
on the chosen number x. In this way, larger and larger classes of MV 
algebras arise as algebras of states of knowledge in suitably generalized 
Ulam games. 

Conversely, Di Nola's (n.d.) representation theorem yields a fixed non- 
standard real line R* together with its unit interval [0, 1] * = {z ~R*I0 _< z -< 1 } 
such that every countable MV algebra B is an algebra of [0, 1]*-valued 
functions defined over some space S. This allows us to realize B as an algebra 
of states of knowledge in some Ulam game with lies: each state of knowledge 
k ~B assigns to every y ~S a (possibly nonstandard) truth value k(y) E[0, 1]*; 
again, the truth value is interpreted as the relative distance of y from the 
condition of elimination. Semisimplicity of B is equivalent to requiring that 
each state of knowledge of B is a [0, 1]-valued function. 

In this way, C*-algebraic notions can be given a game-theoretic 
interpretation, as in Table II [see Mundici (1993) for further details and 
particular cases]. 

3. EASY COMPUTATIONS AND GODEL INCOMPLETENESS IN 
AF C*-ALGEBRAS 

After all, equations between states of knowledge in Ulam's game are 
formulas in the infinite-valued calculus of Lukasiewicz. Formulas are just 
strings of symbols built up in the usual way from a denumerably infinite 
supply of sentential variables X1, X ~ , . . . ,  and the connectives of negation 
*, disjunction O, and conjunction ". 

Identifying two formulas whenever they are logically equivalent, we 
obtain the free MV algebra F~o over countably many free generators. More 
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Table II. 

Ulam game AF C*-algebra 

Game 
Search space S 
Element x E S 
Number of lies l(x) 
Arbitrary question 
Opposite question 
Finite search space 
Fixed number L of lies 
No lies 
State of knowledge 
Comparison of states 
Initial state 
InconSistent state 
Mutually incompatible states 
Largest state incompatible with another state 
Conjunction 

Final state of knowledge 

AF C*-algebra A 
Space prim A of primitive ideals of A 
Kernel of irreducible representation u 
- 1  + d i m ~  
Arbitrary subset of prim A 
Complementary subset 
Finite-dimensional C*-algebra 
A is homogeneous of degree L + 1 
Commutative 
Equivalence class of projections 
Murray-von Neumann order 
Unit element 
Zero element 
Orthogonal projections 
Complementary projection 
De Morgan dual of canonical extension 

of Elliott's addition 
Projection which is nonzero in just one 

irreducible representation 

generally, for every set | of formulas, identifying two formulas whenever 
they are equivalent in 0,  we obtain the Lindenbaum algebra B o of 0.  Stated 
otherwise, B o = Foe/Io, where Io is the ideal of Fo, canonically determined 
by (the negations of the formulas of) | 

Algebraists use to say that | is a presentation of B| via generators (the 
sentential variables) and relations (the axioms of | word problem for 
B| is the problem of deciding whether an arbitrary formula ~ is a consequence 
of | whether ~ follows via modus ponens from the axioms of | 
together with the tautologies of the infinite-valued calculus (Tarski and 
Lukasiewicz, 1956; Mundici, 1986, w Mundici (1988c) is devoted to the 
study of consequence relations in the infinite-valued calculus of Lukasiewicz. 

Since | uniquely determines Bo, and B o uniquely corresponds to an 
AF C*-algebra Ao, regarding | as a presentation of A o we may measure 
the complexity of A o in terms of the complexity of the decision problem of 
0.  

Conversely, for every AF C*-algebra A whose Murray-yon Neumann 
order is a lattice, we may ask for a simplest possible set of formulas | such 
that A = Ao. 

Table III summarizes the complexity of many AF C*-algebras existing 
in the literature; for more details, and for background in complexity theory, 
see the references mentioned. 
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Table III, 

AF C*-algebras Complexity of simplest presentation | 

Finite-dimensional 
Glimm's universal UHF algebra 
CAR algebra 
Most Glimm's UHF algebras 
Universal AF C*-algebra 
AF C* algebra ~1 
Effros-Shen algebra ~0, 0 a quadratic irrational 
Effros-Shen algebra ~/e 
Most Effros Shen algebras 
Behncke Leptin algebras with two-point dual 
Most AF C*-algebras 

Polynomial time (Mundici, 1987a) 
Polynomial time (Mundici, 1987a) 
Polynomial time (Mundici, 1987a) 
Not recursively enumerable 
Co-NP complete (Mundici, 1987a,b) 
Polynomial time 
Polynomial time (Mundici, 1987a) 
Polynomial time (Mundici, 1987a) 
Not recursively enumerable 
Polynomial time (Mundici, 1992b) 
Not recursively enumerable 

See Mundici (1986) for an explicitly given presentation for the CAR 
algebra. From the proof  of  the main result of Mundici (1992a) one can 
draw a concrete presentation of every Behncke-Leptin C*-algebra with a 
two-point dual. Once an infinite physical system is described by an AF 
C*-algebra A, and A is presented as A e for some set | of  formulas, the 
word problem, of Ae is the problem of deciding the validity of  arbitrary 
(*, O, ")-equations between equivalence classes of projections of Ae. Using 
the expressive power of these equations, one can formalize comparisons, as 
well as commutativity, incompatibility, and orthogonality properties of  the 
{0, 1 }-valued observables of the system. Moreover, since linear combina- 
tions of projections are dense in A, computational problems involving more 
general observables of the system can also be formal ized- -or  approxi- 
m a t e d - i n  terms of the decision problem of  | 

At the opposite extreme of polynomial time computability, we say that 
a set of formulas | is Ggdel incomplete iff: 

(i) | is effectively presentable, in the sense that there is a Turing 
machine listing all the formulas of  | and hence, by Chang's completeness 
theorem, all consequences of | 

(ii) | is undecidable, in the sense that there is no Turing machine 
deciding whether or not a formula r is a consequence of | 

In Mundici (1986, 6.1) the following theorem is proved: 

Theorem 5. Suppose | is G6del incomplete. Then A e has some 
nontrivial quotient. 

The theorem shows that writing A = Ae is more than a notational 
expedient, because the degree of complexity of | impinges upon the ideal 
structure of Ao. Let us, for instance, consider the belief that "nature does 
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not have ideals" (Cuntz, 1982, p. 85), in the sense that the C*-algebras of 
physically interesting systems do not have nontrivial quotient structures 
(Kastler, 1982, p. 468). Accordingly, whenever a C*-algebra A possesses a 
nontrivial ideal, the relevant object is the quotient, rather than A (Haag 
and Kastler, 1964, p. 852); iterating this quotient-elimination procedure, 
one finally obtains a simple (i.e., quotient-free) structure A ' =  A/K' ,  where 
K'  is a maximal closed two-sided ideal of A. Writing A --- A| and recalling 
that all quotient structures are preserved in the duality between AF 
C*-algebras and MV algebras (Effros, 1981; Goodearl, 1982; Blackadar, 
1987), it follows that K'  canonically determines a set of sentences | _ | 
such that A ' =  Ao., and | is maximally consistent (i.e., 0 '  is consistent, 
but adding any new formula to | destroys consistency). Now, if | is 
assumed to be essentially incomplete (whence | is G6del incomplete, and 
none of its maximally consistent extensions is recursively enumerable), then 
by the above theorem, A o has a nontrivial ideal; however, any completion 
process | | paralleling the quotient elimination process A ~ A '  will 
inevitably destroy the effective presentability of A| 

Thus, in some cases one has to strike a balance between the two 
natural but conflicting desiderata of simplicity and effective presentability. 

4. STATES ON MV ALGEBRAS AND ON AF C*-ALGEBRAS 

Intuitively, C*-algebraic states are averaging processes for the values 
of observables; MV states are averaging processes for truth-values. Their 
relationship is discussed in the present section. 

By a state on an MV algebra B we mean a function s: B ~ [0, 1] such 
that s(0) = 0, s(1) = 1, and whenever a"  b = 0, then s(a Gb) = s(a) + s(b). 
We say that s is faithful iff a # 0 implies s(a) > 0. We define invariance of 
s with respect to the group of all automorphisms of B in the obvious sense. 

Recall that a tracial state on a C*-algebra A is a normalized positive 
linear functional t satisfying t(aa*) = t(a*a) for all a~A.  We say that t is 
faithful iff 0 < a~A implies t(a) > O. 

Theorem 6. (Mundici, n.d.-b). Let A be an 'AF C+-algebra whose 
Murray-yon  Neumann order is a lattice. Let B be its corresponding MV 
algebra. Then the tracial states of A are in one-one  correspondence with 
the states of B. Faithful tracial states of A correspond to faithful states 
of B. 

The set of states of an MV algebra B has a convex structure, and 
inherits the topology of the product space [0, 1] 8 of all [0, 1]-valued 
functions over B. Recall from Belluce (1986) that the spectral topology of 
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the set prim B of  prime ideals of B has as its open sets the sets Og, where 
J ranges over the ideals of B, and Oj = {psprim B[p does not contain J}. 

Theorem 7. (Mundici, n.d.-b). Let B be an MV algebra. It follows 
that: 

(i) Every state of B is in the closure of the convex hull of the set of 
extremal states of B. The latter form a nonempty compact Hausdorff  space 
which is canonically homeomorphic to the space of  maximal ideals of  B 

spectral topology. 
B has exactly one state iff B is local (i.e., B has only one maximal 

with the 
(ii) 

ideal). 
(iii) 

[o, 1]. 
(iv) 
(v) 
(iv) 

If  B is simple, then the only state of  B is the embedding into 

If  B is free, then B has an invariant rational-valued faithful state. 
If B is semisimple and countable, then B has a faithful state. 
If B is not semisimple, then B has no faithful state. 

Following Christensen (1982) and Maeda (1990, and references 
therein), we say, that a measure on the set proj(A) of projections of a 
C*-algebra A is a function m : p r o j ( A ) ~ [ 0 , 1 ]  such that m ( 0 ) = 0 ,  
m(1) = 1, and m(p) + m(q) = m(p + q) whenever pq = 0. We say that m is 
faithful iff p > 0  implies m ( p ) > 0 .  We say that m is invariant iff 
m(p) = rh(e(p)) for every projection p and every automorphism e of  A. 

By Gelfand's theorem, every commutative C*-algebra A is isomorphic 
to the C*-algebra C(X) for some compact Hausdorff  space X. In this case, 
projections are the (characteristic functions of) clopens of  X, and a 
measure is simply a finitely additive measure on the clopens of X. 

When projections do not abound, one usually considers the o--algebra 
of Borel subsets of X, replacing finite additivity by o--additivity. Mackey 
asked whether every a-additive measure of  the set of  projections of A is the 
restriction of a positive linear functional over A. In a celebrated paper, 
Gleason gave a positive answer for the case when A = B(H), and the 
Hilbert space H is of  dimension at least three. Various people have studied 
generalizations of Gleason's theorem. See Maeda (1990) for further infor- 
mation. 

At the other extreme, since for every AF C*-algebra A the linear span 
of projections is dense in A, there is no need to resort to infinitary 
operations. We then have: 

Theorem 8. (Mundici, n.d.-b). Let A be an AF C*-algebra whose 
M u r r a y - v o n  Neumann order is a lattice. Let B be the corresponding MV 
algebra. Then invariant measures on the projections of  A are in o n e -o n e  
correspondence with invariant states on B. Faithful invariant measures 
correspond to faithful invariant states. 



1952 Mundici 

5. C O N C L U D I N G  R E M A R K S  

We have formalized AF C*-algebraic systems in terms of sets of 
formulas in the infinite-valued sentential calculus of Lukasiewicz. We have 
then applied to AF C*-algebras methodologies arising from logic and 
computation theory. For instance, as an effect of (noncommutative) G6del 
essential incompleteness, we have seen that effective presentability may 
irremediably conflict with the traditional desideratum that a physically 
relevant structure does not have quotients. 

At the moment of writing this paper, no example is known of an 
essentially incomplete AF C*-algebra arising from a natural quantum 
system. However, since for many years it was widely--and wrongly--be- 
lieved that undecidable sentences would never seriously affect the working 
mathematician, the prospect that G6del incompleteness phenomena will 
affect the working mathematical physicist should not be hastily excluded. 

New interesting problems arise, whose formulation would have been 
impossible before this formalization, e.g., the problem of giving algebraic 
characterizations of AF C*-algebras having decidable (resp., polynomial 
time computable, G6del incomplete, essentially G6del incomplete) presen- 
tations. 

MV algebras are known under several different names, and as such, 
they have been studied by quite a few researchers working in different areas 
of mathematics, other than many-valued logic. See Cignoli et al. (1994) for 
a comprehensive account on MV algebras. 

For instance, as proved in Mundici (1986, w MV algebras are 
categorically equivalent to lattice-ordered Abelian groups with a distin- 
guished strong unit. Indeed, up to isomorphism, Grothendieck's functor Ko 
maps AF C*-algebras whose Murray-von Neumann order is a lattice 
one-one onto countable Abelian lattice groups with strong unit (Mundici, 
1986). 

More generally, K0 maps AF C*-algebras one-one onto countable 
unperforated Abelian Riesz groups with strong unit (Effros, 1981; Good- 
earl, 1982). For the relationship between these groups and lattice-ordered 
groups, see Mundici (1986), Mundici and Panti (n.d.), and Elliott and 
Mundici (1993). 

By the main theorem of Mundici (1988a), every AF C*-algebra A 
whose Murray-von Neumann order is a lattice has the ultrasimplicial 
property (Elliott, 1979; Blackadar, 1987, 7.7.2) in the sense that the 
approximating sequence for A of finite-dimensional C*-algebras 
F1 c F2 c F3 c . . .  can always be assumed to correspond, via K0, to an 
increasing sequence of free Abelian groups of finite rank with the product 
order, Z n~ c Zn2 c Z n3 c . . . .  This is not true in general for AF C*-alge- 



Logic of Infinite Quantum Systems 1953 

Table IV .  

Finite systems Infinite systems 

Hilbert space H 
Projections 

Lattice operations 
Uncountable nondistributive lattice 

Incomplete classifier 

Orthomodular logic 

Unit vector in Hilbert space 

yon Neumann uniqueness theorem 

AF C*-aIgebra A 
Equivalence classes of projections 

(dimensions) 
Additive operations 
Countabie MV algebra with underlying 

distributive lattice ~ 
Complete classifier with equational 

characterization 
Infinite-valued calculus of 

Lukasiewicz 
Extremal positive linear normalized 

functional 
Proliferation of inequivalent 

representations 

aDefining in any MV algebra B, x -< y, iff x* OY = 1, B becomes a distributive lattice. When 
B = [0, 1], this order coincides with the natural order. However, from the order structure of 
B alone we cannot in general recover B uniquely. See Cignoli et al. (n.d.) for notable classes 
of exceptions. 

bras, and has interesting consequences on the set of tracial states (Black- 
adar, 1980b). 

By the results of Mundici (1986, w the AF C*-algebra 9J~ corre- 
sponding to the free MV algebra F~ with denumerably many free genera-. 
tors represents a sort of "universal" infinite system, since every AF 
C*-system arises from a quotient of 9~. Owing to their rich quotient 
structures, universal objects are important for the study of amalgamations 
and free products (Mundici, 1988b) and may serve the purpose of provid- 
ing a first algebraization of composite physical systems. 

In Table IV, we compare the Birkhoff-von Neumann logical analysis 
with our analysis of AF C*-algebras. 
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