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Optimization for diagnostic recognition rate was performed for subsets of 
symptoms of various sizes. The diagnostic problem was the recognition and 
identification of thyroid diseases. Unbiased evaluation of performance was 
obtained and the extent of the bias in other evaluation methods was 
determined. Interdependence of symptoms was shown to be a negligible 
nuisance in the application of Bayesian inference to the present data. An 
optimal size of optimized subsets of symptoms was observed. A comparison 
with sequential diagnosis shows that the two procedures are different, although 
theyare related, and that the optimality of subsets is sensitive to departures 
from their composition. 

1. i N T R O D U C T i O N  

I n  a p r e v i o u s  p a r t  o f  this  s tudy  (a) we h a d  sugges ted  t h a t  res t r ic ted  subsets  o f  
s y m p t o m s  c o u l d  be  used  for  the  d i agnos t i c  sc reen ing  o f  goi ters .  O u r  
i m p r e s s i o n  at  the  t i m e  was  t h a t  it w o u l d  be eas ier  to  ach ieve  a g o o d  d i agnos t i c  

a ccu racy  by d i rec t  a p p l i c a t i o n  o f  Bayes '  ru le  o f  in fe rence  to  s u b s y m p t o m -  
a to log ies  r a the r  t h a n  by the  a p p l i c a t i o n  o f  an  e m p i r i c a l  Bayes ian  r u l e -  

a s s u m i n g  the  m u t u a l  i n d e p e n d e n c e  o f  s y m p t o m s - - t o  the  who le  s y m p t o m -  
a t o l o g y  ava i lab le .  

I n  o r d e r  to  check  i f  this  impre s s ion  was  cor rec t ,  d i agnos t i c  efficiencies 
wi l l  be  d e t e r m i n e d  in t he  p re sen t  s tudy  fo r  a subse t  o f  the  s a m e  da ta ,  t a k i n g  
in to  a c c o u n t :  (a) the  size o f  the  s u b s y m p t o m a t o l o g i e s ;  (b) the s y m p t o m  
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composition of the subsymptomatologies; (c) the endorsement or the 
rejection of the hypothesis of symptom mutual independence; (d) the method 
of evaluation of the diagnostic efficiency. 

2. H A T E R I A L  A N D  M E T H O D S  

2.1. Data  

The sample of 86 goitrous patients used in the previous parts of this 
study was retained for the present experiments. Nine physical symptoms were 
selected for the data matrix: (i) time elapsed since the beginning of the 
complaints, (ii) weight loss, (iii) nervousness, (iv) thermophobia, (v) surface of 
the goiter, (vi) consistency of the goiter, (vii) thrill over the thyroid region, 
(viii) exophthalmia, and (ix) lymphadenopathy. The patients whose record 
did not include all nine symptoms were discarded. Sixty-six cases were thus 
included in the final sample, with the following distribution of diagnoses: 
14 cases of thyroid cancer, 27 cases of toxic goiter, 7 cases of nontoxic 
nodular goiter, 10 cases of nontoxic diffuse goiter, and 8 cases of toxic 
adenoma. 

2,2~ Probabilities 

T h e  estimation of a priori and conditional probabilities was made 
according to the method suggested by Bailey ~) for small-sized samples, i.e., 

where: 

P(Dj) = [N(D~) + l}/(J + k) 

P(S~/Dj) = [N(S~/Dj) 4- 1]/[N(Dj) 4- m] 

P(D~) is the a priori probability of diagnosis Dj.  
P(SjDj) is the conditional probability of symptom--or subsymptom- 

atology--S~ for diagnosis Dj.  
N(Dj) is the number of observed cases with diagnosis D~. 
N(SJDj) is the number of cases where Si and Dj are found to occur 

simultaneously. 
J is the total number of cases. 
k is the number of diagnoses. 
m is the number of distinct values of S~. For the time since the beginning 

of the complaints, the surface of the goiter, and its consistency m = 3. 
For all the other symptoms m-= 2. For a subsymptomatology 
including, e.g., four binary symptoms, m = 16. For the whole 
symptomatology m = I728. 
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2.3. Optimal i ty  

A subsymptomatology (SS) is defined as a subset of the set of symptoms. 
The number of distinct subsymptomatologies is 29 :-- 512. There are Cr ~ 
subsymptomatologies with r symptoms. A subsymptomatology will be called 
"optimal" (OSS) if it satisfies the condition that its diagnostic efficiency is 
larger than the diagnostic efficiency of any other SS with the same number of 
symptoms. While our previous study TM used information maximization as the 
optimality criterion, the present study will use the actual rate of correct 
recognitions for the same purpose. 

2.4. Sizes 

(a) A S S  with m symptoms will be denoted by SS(m). In order to 
distinguish between distinct SS of identical sizes, we will write, for each m, 
SS~-(m) with j =  1 to CmL 

(b) For each value of m the diagnostic efficiency, i.e., the rate of 
correct diagnostic recognition, has been determined for each SSj(m). That 
particular SS~(m) with maximal efficiency f~(m) is the optimal sub- 
symptomatology OSS(m). 

(c) For all values of m the following statistics were computed: 

f(O, m): recognition rate of OSS0n). 
f(M, m): average recognition rate of all SSj(m). 
f(S, m): standard deviation offj(m). 

2.5. inference 

In the empirical Bayesian approach conditional probabilities are 
computed for each symptom, and the independence assumption is made, i.e., 
the conditional probability of a subsymptomatology is obtained by the 
multiplication of the conditional probabilities of its individual constitutive 
symptoms. In the straightforward Bayesian approach conditional 
probabilities are computed directly from their frequencies in the sample. 

2.6. Evaluation 

Two methods were used to test the performance of each sub- 
symptomatology. 

(A) The  biased method (reclassification method): The probabilities 
were estimated from the 66 cases and the model was used as a diagnostic 
decision rule for the same 66 cases. 
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(B) The unbiased method (.leave-one-out metllod): in order to test the 
performance of the model for each case, the probabilities were estimated 
from the 65 other cases. Hence, since none of the 66 tested cases contributed 
to the computation of tile values of the model by which its recognition was 
attempted, all 66 cases can be considered as unknown eases. The latter 
method is also known as the ( J -  1) method, and it has been described by 
Lachenbruch 1~2~ for the unbiased determination of performance in linear 
discriminant analysis. 

2.7. Notat ion  

In order to avoid possible ambiguities, the diagnostic efficiency will be 
denoted byf(A,  B, C, D) wherever necessary, with the following conventions: 

A stands for the method of inference, with: 

A = E for the independence assumption. 
A ~- D for the nonindependence assumption. 

B stands for the method of evaluation, with: 

B = B for the reclassification method. 
B = U for the (J -- 1) method. 

C stands for the particular statistic, with: 

C = O for the OSS. 
C = M for the average efficiency. 
C = S for the standard deviation of the efficiencies. 

D iS the size of the SS. 

Hence, e.g., f(E, B, M, 5) is the average diagnostic efficiency of the SS of 
size 5, determined by the reclassifictaion method, and using the assumption 
of the mutual independence of symptoms. 

3. R E S U L T S  

1. All values off(A, B, C, D) for C -~ O are given in'Fable I (diagnostic 
efficiencies of optimal subsymptomatologies). 

2. All values of f(A, B, C, D) for C = M and C -- S are given in 
Table II (average and standard deviation of the efficiencies of all sub- 
symptomatologies of given size). 

3. It is obvious from the latter results that optimization enhances 
considerably the diagnostic efficiency. This is better illustrated diagram- 
matically. In Fig. 1 we have plotted the difference between maximal and 
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Table !. Diagnostic Efficiencies (%) of Optimal $ubsymptomatotogies of 
Increasing Size ~ 

Size m = 0 1 2 3 4 5 6 7 8 9 

I. f(E,B, O,m) 40.9 54.5 63.6 71.2 75.6 80.3 83.3 81.8 83.3 83.3 

II. f(D,B, O,m) 40.9 54.5 63.6 74.2 75.8 78.8 78.8 77.3 75.8 71.2 

1tl. f(E, U, O,m) 40.9 54.5 63.6 71.2 69.7 69.7 75.8 74.2 74.2 71.2 

IV. f(D, U,O,m) 40.9 54.5 63.6 69.7 68.2 69.7 59.1 57.6 51.5 50.0 

V. I - -  III  0 0 0 0 5.9 10.6 7.5 7.6 9.1 12.1 

VI. II  - -  IV 0 0 0 4.5 7.6 9.1 19.7 t9.7 24.3 21.2 

VII. I -- II  0 0 0 --3 --0.2 1.5 4.5 4.5 7.5 12.1 

VIII. II[  -- IV 0 0 0 1.5 1.5 0 16.7 16.6 22.7 21.2 

" F o r  explanation of the abbreviations see the text. 

Table I|. Average and Standav(t Deviation of the Diagnostic Efficiencies (%) of 
Subsymptomatologies o| Increasing Size a 

Size m = 0 1 2 3 4 5 6 7 8 9 

f(E, B, M, m) 40.9 45.5 51.7 57.6 62.8 67.3 71.5 75.9 80.1 83.3 

f(E, B, S, m) -- 5.2 5.7 5.1 5.0 5.0 4.8 3.9 2.8 -- 

f(D, B, M, m) 40.9 45.5 51.9 58.7 64.8 68.0 68.9 70.2 70.9 71.2 

f(D, B, S, m) :- 5.2 5.6 5.2 5.0 4.3 4.3 4.1 3.5 --  

f(E, U, M, m) 40.9 45.5 45.9 51.5 55.1 58.4 61.6 64.8 67.8 71,2 

f(E, U, S, m) -- 5.i 10.7 8.9 7.5 6.0 5.8 5.3 5.8 -- 

f(D, U, M, m) 40.9 45.5 46.3 49.3 50.5 51.4 4 9 1 9  49.0 49.2 50.0 

f(D, U, S, m) -- 5.1 10.8 9.5 8.1 5.8 5.0 3.6 1.9 --  
i i l l  - -  - -  

a For explanation of the abbreviations see the text. 

m e a n  d i a g n o s t i c  ef f ic iency as  a f u n c t i o n  o f  size, u s i n g  u n b i a s e d  e s t i m a t e s  a n d  

e m p i r i c a l  B a y e s i a n  i n f e r e n c e ,  i.e., 

g(m) -- f (E ,  U, O, m) -- f (E ,  U, M, m) 

W h i l e  f (E ,  U, M ,  m)  is c lose ly  f i t t ed  b y  a s t r a i g h t  l ine ,  f (E ,  U, O, m) r e a c h e s  

a p l a t e a u  a t  m = 3 a n d  b e g i n s  t o  d e c r e a s e  f r o m  m = 6 on.  

4. T h e  r e su l t s  p r e s e n t e d  in  T a b l e  I e n a b l e  us  to  o b s e r v e  s o m e  

m e a n i n g f u l  f e a t u r e s  i n  r e l a t i o n  w i t h  t h e  p r o b l e m  o f  b i a s  in  p e r f o r m a n c e  
e v a l u a t i o n .  
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100. 

7~ ~O__ roll r 

0 l 2 1 4 s 6 7 ~ 9 

F i g .  1. D i a g n o s t i c  e f f ic iency  (~o) f o r  o p t i m a l  ( d a s h e d  i ine) 

s u b s y m p t o m a t o l o g i e s ,  a n d  m e a n  d i a g n o s t i c  e f f ic iency  (~o) f o r  

r a n d o m  s u b s y m p t o m a t o l o g i e s  ( so l id  l ine)  v e r s u s  s ize m.  

(a) A variable bias is actually present when the reclassification method 
is used for the determination of diagnostic efficiency. 

(b) The importance of the bias remains quite low as long as the 
number of symptoms is less than four. Hence, the diagnostic efficiency 
measured for optimal subsymptomatologies is less likely to lead to over- 
estimation than the diagnostic efficiency measured on complete symptom- 
atologies. 

(c) When the number of symptoms is increased from four to nine the 
maximum extent of the bias appears to reach about 10 ~ for the empirical 
Bayesian inference and 20 ~ for the nonmultiplicative use of Bayes' rule. 

(d) For biased results the rejection of the multiplicative approximation 
involves little advantage for subsymptomatologies of size four or less, and 
is actually a nuisance when more symptoms are used. With unbiased 
estimations the nonassumption of mutual independence of symptoms does 
always result in a fall of diagnostic efficiency. The importance of the fall 
increases with the number of symptoms, being still insignificant for m less 
than six, with a sharp rise to 20 ~ thereafter. 
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5. The composition of all unbiased optimal subsymptomatologies for 
sizes from one to nine is given by Fig. 2. Two features are readily apparent: 

(a) The optimality criterion can occasionnally be satisfied by more than 
one SS(m), as happens for m = 5. 

(b) The first six values of m show a phenomenon of absorption of the 
OSS of increasing size, i.e., if we denote by OSS(i) the composition of the 
OSS for rn ==- i, we have 

oss(i) c oss(i  + l) 

where i is less than six and C is the symbol of  subset inclusion. The phenom- 
enon of absorption has practical implications as soon as we think in terms of 
sequential diagnosis. This will be discussed later. However, we can already 
observe that: 

(a) Proceeding sequentially from m = I on, we will meet the optimality 
criterion everywhere except at m = 7. 

(b) At m = 5 two SS are optimal. Starting f rom the first one (5A) and 
going on with symptom acquisition, we will still be able to meet the optimality 
criterion everywhere except at m = 7. This is not so with the other, OSS(5B), 
since it is not part  of  any OSS(m > 5) except at m = 9. 

4, <) 

7 

Fig. 2. 

6 

9 

Optimal subsymptomatologies for sizes one to nine. For size five, one optimal 
SS  is surrounded by vertical lines and the other by horizontal lines. 
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4. D I S C U S S I O N  

4.t .  Bias 

The biased nature of the reclassification method of performance 
evaluation has been recognized by many authors. The extent of the bias in the 
reclassification method has been determined by use of the (J -- 1) method or 
by the separation of the cases under study into a training set and a test set. 
In all cases where the former method has been used the extent of bias of the 
reclassification evaluation method was found to be far from negligible. For 
example, the recognition rate falls from 89.1 ~ to 58.5 ~ in a study of liver 
diseases 16) and from 83 ~ to 75 ~ in a study of thyroid diseases. TM 

The separation method has been more widely used. Some previous results 
are given in Table III. In the present study the extent of the bias could be 
determined with accuracy by pairwise comparison of results of the reclassifi- 
cation and (J -- 1) methods. The bias is much more important for the direct 
than for the empirical Bayesian approach, as could well be expected. In the 
former case the effect of the bias is to hide the very important fall of  perfor- 
mance observed for OSS of size larger than five. Using the empirical method 
the extent of the bias does not appear to be as size dependent. The bias 
remains at a semiconstant level of 10 700 for sizes larger than four. Using the 
empirical method the bias is negligible for sizes up to three. The importance 
of the overestimation by the reclassification method is of the same order of 
magnitude for optimal and random subsymptomatologies. 

4.2.  I n fe rence  

The postulate of the mutual independence of symptoms has been 
subjected to much criticism, m7,22~ Its legitimacy has been repeatedly invali- 

Table l i | .  Evaluation of Bias by Comparison of Performance on a Training Sample 
and blew Cases ~ 

Reference Disease Training set New cases 

Nordyke e t  al .  (16~ Goiter 
Fleiss e t  al .  r Psychiatry 
Horrocks e t  al .  ~9~ Gastroenterology 

Bouckaert e t  al .  ~ Goiter 

93,96 93,04 
56 43 
91 84 
87.8 79.7 
88 64 
83 72 

Results in percent correct recognition. 
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dated in particular cases. However, it is obvious that any other method 
requires that more information should be extracted from the available data. 
a process that can only lead to increased bias in reclassification estimates. 
Some previous research has been devoted to the finding of an acceptable 
compromise between the use of arbitrary assumptions and excessive infor- 
mation requirements. 

Several methods have been suggested for getting rid of the interference 
of interdependent symptoms. However, most of them failed to take into 
account the biased nature of the reclassification method. ~17,18) Many 
interesting studies have used some kind of linear discriminant analysis. 
It has to be kept in mind that the latter method rests on particular 
assumptions, e.g., multinormal distribution of variates and equality of 
variance-covariance matrices, that are not likely to be met. Nevertheless, 
these methods are not very sensitive to departures from the Gaussian 
hypothesis (11) and it is interesting to compare their results with the perfor- 
mance of the Bayesian method. Actually, for thyroid function diagnosis, by 
physical examination and laboratory test data, Nordyke et  al. ~16~ found that 
the empirical Bayesian approach was superior to linear discriminant analysis. 
No striking difference was observed by Scheinok and Rinaldo (19) for upper 
abdominal pain syndromes, nor by Fleiss et  al. ~8~ for psychiatric classification. 
In cases where quadratic rather than linear discriminant functions were used 
the postulate of the common covariance matrix vanishes but the information 
requirement increases. The problem of bias in discriminant analysis has been 
the subject of some recent studies.~l~ The bias seems to be larger for quadratic 
than for linear functions. (141 The same finding was made by Michaelis a3) 
using medical material, whenever the bias was evaluated by the ( J -  1) or 
by the sample division method. 

Several other interesting methods of dealing with the problem of inter- 
dependence among symptoms have been used in diagnostic studies. However, 
~ve will limit ourselves to the discussion of the enlightening study of 
Templeton et  al. (2~ on the differential diagnosis of solitary radiological 
pulmonary nodules. In the latter study nine diagnoses were considered. Using 
the empirical Bayesian approach, the diagnostic recognition rate was 67 ~ 
It rose to 95 ~ if a linear dependence between symptoms was assumed and 
taken into account. This study had the merit of demonstrating clearly the 
real kind of trouble with reclassification estimates in the comparison of 
diagnostic methods using different numbers of parameters. If N is the number 
of patients and m the total number of symptoms, N experimental points are 
available for the estimation of m parameters provided there are no missing 
items and if linear dependence is not assumed. As soon as the hypothesis of  
linear dependence is used, the number of parameters needed becomes 
(m /2 ) (m  + 1) since we must take into account (m /2 ) (m  - -  1) coefficients for 

8z8/314-6 
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the description of all first-order interactions. Since the number of obser- 
vations is fixed and is raN, it is obvious that the size of the sample will 
rapidly become too small to allow valid determination of the values of the 
parameters. This conclusion was strongly supported by the results of 
Tempteton et al. C21~ These authors found that when the estimated parameters 
were used for diagnosis on the same sample from which they were computed 
the replacement of the independence assumption by a linear dependence 
model led to a rise of diagnostic efficiency from 67 ~o to 95 ~o- However, the 
use of these parameters for diagnosis on another sample for the same 
diagnostic problem allowed only 40 9/0 of correct diagnoses to be made with 
the hypothesis of independence, and 27 ~ under the assumption of linear 
dependence. A fall of 95 ~o to 27 ~,, is of course depressing, especially in view 
of the smaller loss observed with the independence hypothesis. Hence, the 
linear dependence model, far from improving the performance of the system, 
led to the nearly complete disappearance of its predictive power. 

Summarizing, in the present study the complete rejection of the inde- 
pendence hypothesis for Bayes' rule was found to be associated with a 
reduction of the real recognition rate, a finding in agreement with previous 
studies using different models. Kanal and Chandresakaran (1~ point out that 
"decision procedures involving estimated covariance matrices when nothing 
is known about the dependence or independence of the variables are non- 
optimal when in fact the variables are independent." 

4.3. Opt imal  Size 

As was pointed out, it is probable that not all the information contained 
in clinical records can really be put to use for recognition purposes. In the 
present study a glance at Fig. 1 shows clearly that six out of nine symptoms 
are actually enough to give us all the information really available. The fact 
that the diagnostic efficiency actually decreases when the size of the OSS 
increases beyond a certain point is also of interest. There is no drastic 
reduction of the diagnostic efficiency after the optimal size is reached, as 
would be the case for some theoretical models. I~~ Nevertheless, it is important 
to point out that although it is impossible to do better with nine symptoms 
than with six, it is quite possible to do worse. This statement is of course 
valid only for optimal subsymptomatologies. The solid line in Fig. 1 shows 
that there is a clear relationship between the size of the SS and its average 
diagnostic efficiency. Hence, one has to make a sharp distinction between 
two basically different situations: 

(a) When the subsymptomatology used is an optimal one (i.e., an OSS) 
the optimum optimorum is already reached with two-thirds of the symptoms. 
To increase the size of the OSS still further would only be harmful. 
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(b) When the SS are composed of symptoms drawn randomly from 
the collection of nine, any new symptom added to a subset already used will 
lead to enhanced performance. 

The contrast between the two statements above is, by itself, a justification 
of the optimization of the subsymptomatologies. 

The optimal size of the OSS depends also on the kind of inferential rule 
used. While there is no important loss of performance for empirical Bayesian 
decisions when the size of the OSS is larger than six, the loss is much more 
pronounced.when the multiplicative assumption is not made. in the latter 
case the optimum optimorum is reached for sizes 3-5 and performance 
deteriorates rapidly thereafter, the accuracy obtained with nine symptoms 
being less than that achieved by proper selection of one single symptom. 

Hence, the assumption of Bouckaert (a) that the direct application of 
Bayes' rule to diagnosis of goiters would allow subsymptomatologies to be 
found with increased diagnostic efficiency is certainly not supported by the 
present findings. What appears clearly here is that if there is actually an 
optimal size of OSS, this has very little to do with the problem of symptom 
independence. The empirical Bayesian OSS's show an optimum optimorum 
even without the problem of statistical validity reduction with size. The 
optimum optimorum is sharper for direct Bayesian inference: This is probably 
at least partially an effect of the limited statistical validity of esitmates, but 
since the latter procedure does not prove to be superior to the former before 
the optimum is reached and is clearly less efficient beyond the optimal size, 
there is no reason to give particular consideration to this nonoptimal 
decision procedure. In another context, the observation of Mount and 
Evans ~15) that the increase of the size of the training set could not be followed 
by an increase of the diagnostic efficiency beyond a certain limit seems 
completely in agreement with the present results. However, the suggestion 
of these authors that in place of further sampling further investigation into 
the structure of symptom interaction may prove more profitable is not 
supported by this study with the present data using an unbiased estimation 
of performance. 

The present study has many points of similarity with the study carried 
out by Scheinok and Rinaldo (19) for the differential diagnosis of upper 
abdominal pain. In the latter study l l physical signs were used for a biased 
estimation of Bayesian diagnosis using the multiplicative rule and Bailey's 
correction for small samples. The peak diagnostic efficiency was found for a 
SS of size nine. As in the present study, the diagnostic efficiency decreased 
from size nine to size 11 on, and the extent of the loss was of the same order 
of magnitude: The diagnostic efficiency of OSS(9) was 58.33 ~ vs. 57 ~ for 
OSS(12). 7In the present study we found the peak diagnostic efficiency at 
OSS(6) with 83.3 ~ and we found again 83.3 ~ for OSS(9). The peak 
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phenomenon was more readily apparent when unbiased estimates were used: 
In this case the peak occurred at OSS(6) with 75.8 ~/o vs. 7t.2 ~o for OSS(9). 
In this case, thus, as in the quoted study of abdominal syndromes, the 
optimum optimorum occurs at two-thirds of the maximal size. The diagnostic 
efficiency for larger sizes either decreases steadily or remains unchan~d. 
according to the method of evaluation. 

Other authors have tried to determine the influence of the size of the 
subsymptomatology on the diagnostic efficiency. However, subsymptoma- 
tologies were usually not optimized at each stage. It is thus best to compare 
their results with the results of Table II, where average efficiencies are shown. 
Mount and Evans ~15~ studied simulated symptomatologies of size 100. The 
shape of the diagnostic efficiency curve showed a plateau from size 60 on, 
symptoms being generated by simulation from an arbitrary matrix of 
conditional probabilities. If the conditional probabilities were generated first, 
then determined on a training set and used for recognition on an independent 
set, the plateau did not appear before size 80 for a training sample of 
1000 cases, and no plateau was observable if the size of the training set was 
less than 1000. Thus, with small training sets the shape of the performance 
curve approached that of a straight line, a finding analogous to ours. 

4.4. Design 

The theory of optimal subsymptomatologies did notdevelop forresearch 
into the structure of the recognition process. Its main aim was to allow the 
design of optimal small-sized examination structures, either for screening 
purposes or as a response to the challenge of medical manpower shortage. 
We are able to show here that the examination time can be appreciably 
shortened without loss of accuracy, provided the composition of the exami- 
nation is designed optimally. A second problem now arises due to the fact 
that the queuing process generated by examination time consumption is a 
stochastic process. The time imparted to examination will thus be sometimes 
larger, sometimes shorter, than the fixed time allowed to the OSS. If we 
assume that the patient input follows a statistical distribution, then two kinds 
of questions arise: 

(a) If the OSS(m) type of examination is completed before the next 
patient shows up, what is the best thing for the examiner to do? 

1. To stop the examination and wait for the next patient? 

2. To increase the size of the examination: (i) by picking an (m § t)th 
symptom at random and using it as a supplementary and supposedly useful 
predictor? or (ii) by increasing optimally the size of the OSS, i.e., by 
performing OSS(m + 1)? 
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(b) If the patient is unable to go through the full course of the OSS(m), 
the actual number of symptoms investigated will be m -  1 or m -  a 

according to each case. What will be the effect of such an omission? Or, more 
precisely: 

1. What effect has the random deletion of one of the m components of 
OSS(m) on diagnostic efficiency ? 

2. What is the effect of the replacement of OSS(m) by OSS(m -- I)? 

In both cases (a) and (b), questions 2 are closely related to the problem 
of the analogy between the OSS and sequential diagnosis. This matter wilt be 
discussed later. We will first deal with the questions of kind 1, related to the 
effects of addition or deletion of symptom:s at random. 

Since there is a wide range of variation for a given value of the size m 
between the diagnostic efficiencies of various subsymptomatologies, it quite 
often happens that some of the OSS for m have a better diagnostic efficiency 
than some nonoptimal subsymptomatology for m + 1. If no preliminary 
planning of investigations has been made, let us suppose that the diagnostician 
observes that the time allowed to him for his investigations offers him the 
possibility of pushing ahead the examinations one step ahead of what was 
originally contemplated. If  he does not know in advance the diagnostic 
efficiencies of all SSj(m -b 1), can he still be confident about.the fact that the 
supplementary information obtained by adding one supplementary symptom 
at random will, on the average, increase its diagnostic efficiency ? The answer 
can be found in Table IV. It is obvious that: 

(a) Any observation is always better than no observation at all. 

(b) Thegain  in diagnostic efficiency obtained by adding at random one, 
two, or even three supplementary symptoms to an OSS is either rather low 
(negligible) or, usually, negative. In our previously introduced terminology, 
this means that 

f ( x ,  x, M, m + 1) 

is not superior to 

f(x, x, O, m) 

The complementary problem can be stated as follows: m being fixed, 
it can happen that it will unfortunately not be possible to observe all m 
elements of OSS(m) either because it would take too much time and thus we 
are forced to decrease the value of m, or because some element of OSS(m) 
is not observable for certain reasons. While in the first case the problem is 
one of symptom omission, in the second case it is a problem of symptom 
replacement. Here, too, the diagnostician does not know the diagnostic 
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Table IV. Mean Diagnostic Efficiency M Obtained when A Symptoms Outside the 
Optimal  Subsyrnptomatology are Added to the Latter ~ 

m =  0 1 2 3 4 5 6 7 8 

A = 0  
M 40.9 54.5 63.6 71.2 69.7 69.7 75.8 74.2 74.2 

A = I  
M 45.5 54.9 64.1 66.2 68.2 70.8 70.2 69.7 71.2 
S 5.1 9.5 4.08 2.47 1.5 4.2 1.7 6.4 - -  

A = 2  
M 45.9 58.0 62.1 66.1 68.3 69.2 71.7 71.2 -- 
S 10.7 7.2 4.6 3.2 3.7 t.8 2.3 -- -- 

A = 3  
M 51.5 58.5 62.8 67.3 69.2 70.8 71.2 -- -- 
S 8.9 5.3 5.0 4.4 2.0 3.1 -- -- -- 

The standard deviation of the resulting diagnostic efficiency S is atso given. The size of 
the optimal subsymptomatology is m. 

efficiencies o f  all SS~(m) or S S ~ ( m -  1) and thus he deletes or replaces 
symptoms at random.  The critical values are 

f ( x ,  x, O, m) - - f ( x ,  x, Om -- 1, m --  1) 

for deletion [Ore --  1 stands for the SSj(m --  1) obtained by deletion o f  one 
element o f  OSS(m): hence, only a subset o f  the SSj(m --  1)] and 

f ( x ,  x, O, m) --  f ( x ,  x, M',  m) 

for  replacement [M'  stands for the average of  all  fj(m) excluding SS~(m) = 
OSS(m)]. The effects of  replacement and deletion are summarized in Table V. 
The fact that  replacement is an inefficient procedure was already suggested 
by Table IV results. Since the r andom addit ion o f  one element to OSS(m) 
leads usually to a decrease of  the diagnostic efficiency, it is quite probable  
that  the r andom replacement of  one element of  OSS(m) by another  will lead 
to an even worse efficiency. The two problems, while related, are no t  
identical, however. OSS(m - -  1) is not  always a subset o f  OSS(m). Similarly, 
the SSj(m --  1) obtained by r andom deletion of  an element o f  OSS(m) is not  
equivalent to OSS(m --  1). Table V shows that  the effects of  deletion with or  
wi thout  replacement o f  the lost symptom are not  very different, considered 
f rom the point  o f  view of  diagnostic efficiencies. The mean of  the differences 
between these two procedures is 1 .32~ ,  with s tandard deviation 2.28 
(not significant). 
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Table V ~ 

r i,i l l l l  

DEL(OSS(m)) REPL(OSS(m)) 

6 
7 
8 

m 

1 54.5 40.9 
2 63.6 49.2 
3 7i .2 55.0 
4 69.7 61.3 
5 69.7 61.5 

75.8 60.1 
74.2 65.8 
74.2 66.9 

i l l l ~  

m is the size of the optimal subsymptomatology. 

44.3 
51.3 
59.3 
60.0 
60.5 
63.7 
65.2 
67:0 

OSS(m) is the diagnostic efficiency (~) of the optimal subsymptomatology of size m. 
DEL(OSS(m)) is the diagnostic efficiency (~) obtained on the average by random 
omission of one of the elements of the optimal subsymptomatology of size m. 
REPL(OSS(m)) is the average diagnostic efficiency of a subsymptomatology of size m 
containing m -- 1 elements of the optimal subsymptomatology of size tn and one element 
randomly selected outside this optimal subsymptomatology. 

These results point to a conservative policy in diagnostic planning as the 
best safeguard against performance deterioration. Thus, if the observation 
of one i tem out of an OSS is impossible, it is better to be satisfied with what 
is left than to replace at random the missing item by an item that does not 
belong to the OSS. When all elements of an OSS have been observed it is 
better to be satisfied with this rather than to try to fill some extra time that 
could be available by increasing the number of observed items by random 
selection of an extra item outside the OSS. Since we are still convinced of the 
interest in designing small optimized subsets of symptoms for use in medical 
screening, it seems wise to reduce to a minimum the role played by the 
personal opinions of the examiner in the application of the planning in the 
field. 

4.5. Sequences 

At first, the process of OSS construction may appear to be similar to 
sequential diagnosis. In both cases, indeed, the problem at hand is one of 
designing an optimal subset of symptoms for a given size of the subset. The 
difference between the two concepts is that sequential diagnosis (SD) is 
subjected to a constraint on the selection of the items. For a given size rn the 
subsymptomatology must always be a subset of the subsymptomatology 
selected for size rn -t- 1. SD can only grow by absorption, while this is not so 
for OSS, where no inclusion is required for subsets of increasing size. 
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Moreover, in Part 1V of this study we made a sharp distinction between 
two kinds of SD. In the first kind the subsymptomatologies for a given size m 
are determined by the results obtained at the (m -- l)th step. For the second 
variety all subsymptomatologies generated for the same size are identical. 
It was then shown that for the particular sample considered the performance 
of the two systems was the same. It is only in the second kind of SD that the 
construction of OSS becomes a related procedure. The construction of the 
OSS becomes identical with the planning of the second kind of SD as soon 
as the growth of the OSS is accomplished by absorption at all steps. Of 
course, this will preclude the use of some very powerful OSS's just because 
they do not include OSS's of smaller sizes. Hence the optimality criterion will 
not be met everywhere in a SD. Considering things this way, the problem of 
SD can be expressed as follows: nine points must be attained sequentially, 
each point being a symptom. At each point a certain amount of diagnostic 
efficiency is given as a payoff to the diagnostician. The latter is expected to 
maximize his payoff. He is not allowed to bypass any point or to cross the 
same point more than once. Since there are 362,880 distinct pathways, a 
solution by enumeration of all the payoffs is an impressive task. An approxi- 
mate suboptimal solution is obtained by allowing at each step the OSS to be 
incremented by one single element. In this case the SD is shown in Fig. 3. 
It is obvious that it would be meaningless to allow the SD to proceed further 
than the third step, if the number of steps is used as a stopping rule. The 
procedure for SD construction used for Fig. 3 is obviously related to well- 
known sequential tests, e.g., stepwise multiple regression. 

The SD described here differs from that reported in Part IV of this study 
by the very early appearance of the plateau. The two situations are not 
comparable, however: In Part IV, 12 (vs. 9) symptoms were used for 86 

v l ; ,  71 

: •  

I' 72f 

Fig. 3. Sequential diagnosis by stepwise absorption into 
optimal subsymptomatologies. Symptoms are referenced by 
roman numerals (see Section 2.1). 
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(vs. 66) cases. We suspect, moreover, that part of the difference is accounted 
for by the fact that in the present results unbiased performance estimates 
were used. 
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