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A general method is proposed for the synthesis of texture. It is based on a 
model which treats the pixels (picture elements) of a digitized textural scene 
as a two-way seasonal time series. This method possesses the desirable 
characteristic that the parameters needed for synthesis are derived directly 
from the analysis of the "parent" texture (texture to be imitated). With the 
help of well-developed methods in the time series analysis the process that 
generates the pixels of the parent texture is identified. From a set of boundary 
conditions the future values of the time series are generated which in essence 
are the pixels of the synthesised texture. The effectiveness of this method is 
illustrated with examples. 

1. I N T R O D U C T I O N  

1.1. Texture Synthesis: its Importance 

The synthesis o f  natural  looking textures deserves considerably more at tent ion 
than it has received. General  methods  are needed by which we can generate 
a scene that  bears an acceptable resemblance to the texture to be imitated 
( " p a r e n t "  texture). It is highly desirable that  the parameters  required tbr the 

synthesis are derived automat ica l ly  f rom the analysis o f  the " p a r e n t "  texture. 

Texture  synthesis procedures o f  this type can be evolved to solve the 
ever-pressing problem of  image storage. For  it requires considerably less 

storage to save a few parameters  and boundary  condit ions than to  store a 

complete  digitized scene. This effectively means redundancy in the image has 
been reduced, leading to a more efficient analysis of  the resultant scene. Us ing  
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the values of the texture parameters as features for discrimination/recognition 
is also suggested. By specifying intervals on values of each parameter, we can 
potentially generate a family of textures. 

1.2. Seasonal T ime Series Hodel  for Texture  

Many authors have suggested methods for texture synthesis c6-8,1~ 
Among them only Rosenfeld et al. a61 and Conroy 161 attempt to synthesize 
natural looking textures, while others merely generate scenes with prespecified 
statistical properties to be used in their experiments concerning the visual 
perception of texture. However, none of these methods possesses a desirable 
quality, namely the choice of parameters needed for synthesis be based on the 
analysis of "parent"  texture. We suggest a scheme for the synthesis of texture 
that has this property. This scheme is based on a model that views the pixels 
of a digitized two-dimensional textural scene as a two-way seasonal time 
series. 

Any digitized visual scene can be viewed as a two-way time series. 
Bartels and Wied ~ were among the first to treat a textural scene as ordinary 
two-way time series. However, the orderly repetitiveness of a subpattern 
which is an essential characteristic of texture strongly hints at the possible 
representation of a digitized textural scene by seasonal time series. The choice 
seems quite natural and very appropriate because there is a striking corre- 
spondence between some of the problems that occur in textures and those 
that are considered in seasonal time series analysis. For example, in TV scan 
of a texture the repeating subpattern is not necessarily identical from line to 
line though it retains similar characteristics. In the time series analysis the 
minor variations of the function from one season to another are accounted 
for by the assumption of the presence of white noise. Well-developed methods 
are available to estimate the values of the parameters {/z, a2} of this noise. 

It is possible that there can be more than one periodicity present Jn the 
textural scene, such as the subpatterns consisting of subsubpatterns and so on. 
This may be treated as multiple seasonality. In the case of statistical textures 
these latter periodicities may be absent and they may be treated as an ordinary 
time series with no seasonal effect. 

Spectral analysis, in the frequency domain, comprises one class of 
techniques for time series analysis. Our interest here is to stay in the time 
domain and build stochastic models for time series. This way we can gain 
a better insight into the nature of the system that generates the time series and 
can better observe regional boundaries, which of course are observed solely 
in the time domain. The models developed then can be used to obtain forecasts 
of the future, values of the time series. Our objective, from the engineering 
viewpoint, is to obtain models that possess maximum simplicity and the 
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minimum number  of  parameters consonant with representational adequacy. 
Precisely the same approach is taken by Box and Jenkins. (4) 

1.3. Stochastic Models for T ime  Series 

Let us introduce some notation for convenience in representation. Let 

�9 "" Zt-2,  Zt-1,  Z t ,  Z~+I .... 

be the time series which can be denoted as [Zt]. 
A series of  values at (shocks) is assumed to be generated from a white 

noise process with mean zero and variance ~rs2. 
B is the backward shift operator such that BZ~ = Zt-1; hence 

B~Zt = Zt_~.  
V is the backward difference operator such that 

VZt -= Zt - -  Z r  = -  ( 1  - -  B)Zt,  V " Z r  = (1  - -  B)" Zt 

1.3.1. Nonseasonal Time Series 

Box and Jenkins(4! represent the process that generates the nonseasonal 
time series [Zt] by the following model: 

~ ( B )  VaZt = Oq(B)at (1) 

where qS~(B) and 0~(B) are polynomials in B of order p and q and are 
known as the autoregressive (AR) operator of order p and the moving average 
(MA) operator of order q, respectively. The process is known as A R I M A  
(autoregressive integrated moving average) process of order (p,  d, q). This 
model is sufficiently powerful to represent time series which show both 
stationary 2 (d -= 0) and nonstationary a behavior. 

There a rep  -t- q + 2 unknown parameters to be estimated from the data. 
I t  can be seen that the A R I M A  process can be generated from white 

noise at by means of three filtering operations as shown in Fig. 1. 

2 The process that generates "stationary" time series is assumed to be in equilibrium about a 
constant mean level. 

3 Only homogeneous nonstationary behavior which calls for the dth difference of the series 
to be stationary has been considered. 
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Fig. 1. Block diagram for ARIMA process. 
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1.3.2. Seasonal Time Series 

In the same manner if [Zt] shows seasonal behavior  (with period s). 
it can be represented by the f\~llowing multiplicative model~'~: 

~ ( B )  ~v(B'O V ' W s  === Oq(B) Oo(B")a, (2) 

where qBp(B.,) and Oo(B "~) are polynomials in B ~ of order P and Q, respectively 
and V, is the seasonal backward difference operator (1 -- B~). 

This modified version of the ARIMA process is said to be of the order 
(p,  d, q) • (P, D, Q).~. This multiplicative model is very useful in that it can 
be easily extended to take care of multiple seasonalities. 

Box and Jenkins (4) and Bacon m give detailed procedures for identifying, 
fitting, and checking the adequacy of the fit of the appropriate model for the 
given time series. The programs developed by Bacon implementing these 
procedures have been modified to suit our needs and are described in detail 
in Refs. 9 and 12. These procedures will become clear when we make a 
detailed case study with an example in the next section. 

1.4. Forecasting 

One of the primary objectives in building stochastic models for discrete 
time series that occur in many practical cases is to utilize their ability to 
forecast the fdture values of the series. 

Let Zt(l), l = 1, 2 ..... be the function that provides the forecasts at 
origin t for all future lead times (l). This will be known as the forecast fimction 
at origin t. For  a general ARIMA model (nonseasonal), shown by Eq. (1), 
the forecast function 2t(l) may be expressed directly in terms of the difference 
equation by 

2~(l) = Zt+~ = q)lzt+~-~ + "'" + ~b~+dZ~+~_,,_~ 

- -  0 1 a t + l - 1  . . . . .  Oqat+z_q + at+l (3) 

Box and Jenkins (4) show that the minimum mean square error forecast Z,(l) 
(l > 0) of Zt~, is the conditional expectation 

2t(I) -- [Z~t] =- E[Z,.z ] Z , ,  Zt-1 .... ] 

The conditional expectations of the terms in Eq. (3) are evaluated by 
inserting actual Z's for future values, actual a's when these are known, and 
zeros for future a's (because E[a,+j] - 0 for j > 0). 

This forecast function is highly useful when the future values are needed 
for very short lead times as required in many business and industrial appli- 
cations. Fo i  longer lead times the forecast error will be cumulatively larger. 
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Also, as the future values of a's are replaced by zeros the eventual [\~rccast 
function takes on a deterministic mathematical form as dictated by the 
solution of the homogeneous difference equation containing autoregressive 
terms only. 

Our intention of fitting a time series model for the pixels from a textural 
scene is to be able to forecast the series for longer lead times and thus effect 
the texture synthesis from a set of boundary conditions. The forecast function 
will be unsuitable for this purpose for the reasons mentioned above. In 
particular, the eventual disappearance of the stochastic effect is highly 
detrimental for the textural property of the scene. 

1.5. G e n e r a t i o n  of T i m e  Series 

As shown in Fig. 2, the general AR1MA process can be generated from 
a white noise process with appropriate filtering operations. Figure 2 shows 
the rearrangement of the filters in Fig. 1 for the generation of time series. 
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I 
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Fig. 2. Generation of time series [Zt]. 
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Here q~(B)Zt = qS~,(B) VaZt and at is the output of the white noise generator. 
The present scheme requires p -t n. q-,~-d delays and registers to store the 
previous occurrences of Z's  and a's which are required in the calculation 
of the present value. The mulliplicalive constants (qfs and O's) are the 
parameters of the model. To start with, the registers are loaded with the 
"initial" conditions and the wdues of Zt+~ (l > O) are successively 
regenerated. 

The above discussion can be extended to seasonal time series. 

1.6. Synthesis of 2D Texture 

So far we have considered one-dimensional time series. By concatenating 
either successive rows or successive columns, a two-way series can be treated 
as a one-way time series. Of course, by doing this we are introducing one 
more (known) periodicity. 

The pixels from a digitized textural scene to be imitated ("parent" 
texture) are row- (or column-) concatenated to form a one-way time series 
[Zd. With the help of programs USID 4 and L1KESURF, 5 an appropriate 
model is fitted and the values of the parameters are estimated. The generation 
process shown in Fig. 2 is simulated in GENTEX, 6 which synthesizes the 
textural scene from a set of boundary conditions. This method is illustrated 
with an example in the next section. 

1.7. Redundancy Reduction 

The digitized TV scan of a picture is a row-concatenated one-way time 
series. When an appropriate model is fitted for this series we come up with an 
attractive scheme for redundancy reduction in the transmission of the TV scan 
of the picture. In the literature aT) we find a method known by the name 
"optimum linear predictor" in which the next value in the series is predicted 
by expressing it as a linear function of the previous occurrences: 

}Yt = 2 0 i Y t - ~ ,  et-~- Y t - -  ~t 

Program USI D: Univariate Stochastic Model Identification. This program inputs a time 
series [ZJ and plots the autocorrelation function (acf) rk and the partial autocorrelation 
function (pacf) r which help in the identification of the series. For details see Refs. 
1, 4, and 12. 
Program LIKESURF: This program plots the likelihood surface over the specified 
parameter space and outputs the maximum likelihood estimates of parameters for the 
selected model for a given time series. See Refs. 1, 4, and 12. 

8 Program GENTEX: This program synthesizes the textural scene by generating the pixels 
for a set of boundary conditions from a given time series model. Using PAX(z~) subroutines 
the output scene is printed as a gray-level picture. See Ref. 12. 
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where t~t is the predicted value, Yt is the actuai value, and et is tile error in 
prediction; 0's are selected to minimize the mean square error [e2(et)]. Data 
compression (redundancy reduction) is achieved by transmitting the error 
values only. At the receiving end the actual values (y's) can be reconstructed 
from the "errors" (e's) once the system has been properly initialized. 

In the present scheme derived from the time series model a one-step- 
ahead forecast is made by expressing the next value as a linear function of not 
only the previous values in the series, but also the previous "errors": 

~+d q 

2~ = ~ qhZ~-~ - ~ Oia~_~ 
'/=1 r 

(autoregressive terms) (moving average terms) 

a ~  = [ Z t  - 2d 

where 2t is the one-step-ahead forecast of Z~ and as is the "residual ~" or 
"error ."  The values of q)'s and 0's are selected to minimize the mean square 
error [o-a2]. We can see that this is an improved version of the "optimum linear 
predictor" method for achieving redundancy reduction in the transmission of 
a TV scan of a picture. At the receiving end we can perform a similar 
"filtering" operation as shown in Fig. 2 to reconstruct Z's from a's, which 
are transmitted. 

2. S Y N T H E S I S  OF T E X T U R E :  A CASE S T U D Y  

2.1. Selection of an Appropriate Model 

The textural scenes that are used in the following examples are taken 
from Brodatz. (~) A digitized scene of cheesecloth texture (D-105, Brodatz (5)) 
with 16 gray levels is considered as the "parent texture" (Fig. 3) in Example 1. 
For the sake of analysis, pixels from a 32 • 16 window are treated as a 
two-way input time series. It is row-concatenated (s = 32) and is given as an 
input one-way time series ([Zt], t = 1,512) to the program USID. The 
output of this program consists of the estimated autocorrelations for [Wf] 
where W~ = VlaV~DZt: 

(a) For the original series, Zt ,  i.e., d = 0, D ---= 0; [ACF-00]. 
(b) For  the series differenced once with respect to basic interval only, 

VzZ~, i.e., d = 1, D = 0; [ACF-10]. 
(c) For  the series differenced once with respect to seasonal interval only, 

V~Z~, i.e., d = 0, D = 1; [ACF-01]. 
(d) For  the series differenced once with respect to both basic and 

seasonal intervals, V1VsZt, i.e., d = 1, D = 1; [ACF-t 1]. 
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Fig. 3. Cheesecloth texture. Fig. 4. Synthesized texture (see Section 2.4). 

Figure 5 shows the plots of the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) for all the four cases mentioned 
above. The partial autocorrelation function is more useful in the identification 
of the nonseasonal models and hence is not further discussed. 

The autocorrelation values in case (a) are large and highly periodic, 
as might be expected. In case (b) it is seen that differencing with respect to the 
basic interval reduces the correlation in general while a heavy periodic 
component remains. We obtain stationarity by differencing with respect to the 
seasonal interval, as seen in cases (c) and (d), where the correlation values 
diminish very rapidly. The values of d and D which produce stationarity in 
the present case are zero and one respectively. 

A prospective model is selected for further analysis based on the infor- 
mation furnished by the autocorrelation function by referring to Table 3.2 
of Ref. 1 and Appendix A9.1 of Ref. 4. In practice we can pick up many 
tentative models and even probably overparameterize them. T h e  program 
LIKESURF is used to estimate the parameters of a given model from 
analyzing the input data. This program is capable of checking many models 
at a time and its output indicates the adequacy of any model as well as any 
redundancy in the choice of number of parameters. 

By the procedure mentioned above, we select the following model to 
represent the given data: 

(I -- q)B.~)Wt = (I -- A,B)(1 -- A~B~)a~ (4) 

where ~V~ := V~Zt and s is the length of season (length of row). 
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2.2. Est imation of the  Parameters  
We need to estimate the values of  four parameters ( r  At, )t~, ~r,,) by 

analyzing the input data, 

Zt = (1 + cI))Zt_~ - -  q ) Z t - 2 s  + a~ - -  hza~_l - -  A~a~_~ + )qA~at_~_1 (5) 

Wi th  the knowledge of  a t ,  a t - 1 ,  a t_ , , ,  etc., we can make a one-step-ahead 
forecastT: 

2t+z = (1 + ~b)Z,+l_~ --  ~ Z , _ 2 ,  - -  A~at - -  Asat+l_s -= ZlAsat_s (6) 

The "residual" a ,  = Z t + l  - -  4~t+x, i.e., the residuals are considered on the 
one-step-ahead forecast errors. With  appropriate  starting values we can see 
that  the values o f  at can be recursively calculated for a given set o f  parameters. 

2.2.1. A Method to Obtain Starting Values for Recursive Calculations of Residuals 

A procedure to obtain the starting values is described in detail and 
illustrated with an example in Chapter  9 of  the book  by Box and Jenkins. ~ 
I t  is as follows: For  a given set o f  parameters the series may be forecast 
backward starting somewhere in the middle o f  the series. Initially the 
unknown  a's are assumed to be zero. This introduces transients which will 
hopefully die down by the time Z 0 , Z_ 1 , Z_2,  etc. are estimated, provided 
the starting po in t  is chosen sufficiently far along the series. The backforecast-  
continues till we obtain sufficient number  of  terms to be able to forward-  
forecast the first value (Z1): 

2 1  = (1 -~- I ~ ) Z l _  s - -  (I)Zl_2s 

Here we need the values till ZI_~.~ and the values of  at  for t < 1 are assumed 
to be z e r o .  

Now we can calculate the first of  the residuals: 

a I = Z 1 - -  21 

2.2.2. Sum of Squares Function 

From now on we can recursively estimate the values of  residuals a l ,  
az ,..., as �9 We define a sum of  squares funct ion S as 

S((b, ,~a, A~) = ~ at 2 
t = l  

While forecasting, the unknown values of a~ are replaced by their expected value, tn this 
case E(a~+l) = O. 
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We obtain the least squares estimate of the parameters by picking a set of 
values (c~,A1, ~,~) which provides the minimum sum of squares Sn~t,~. It is 
shown in Refs. 1 and 4 that likelihood estimates are the same as the least 
squares estimates if we assume that the a's are normally distributed. Under 
the assumption program L I K E S U R F  actually plots the sum of squares 
function and obtains a set of values that make it minimal. 

Using the program LIKESURF,  the following model is fitted to 

Example 1 : 

(1 -t- 0.15B s) V~Zt = (1 --  0.25B)(1 --  0.SBQa; 

where aa 2 = 1.03. 

2.3. Checking the Adequacy of the Fit 

According to the model, the residuals a~ are generated by a white noise 
process. If  the fit were to be adequate, the calculated residuals should be 
uncorrelated. Figure 6 shows the correlation values of  the residuals. It 'can 
be seen that the values are fairly small and there is no periodic component  
either. Thus, it offers no significant departures from randomness among 
residuals, confirming the adequacy of the fit. 

As mentioned in the previous section, we can also check the adequacy by 
comparing the actual values to the forecast values from any origin. Fore- 
casting is done on the same principle as before (i.e., using the difference 

Loli "~ 

1i 
~ i o  i - i J 

"~i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' !  . . . . . . . . . . . .  . . . .  

Fig. 6. Serial correlations of residuals in Example 1. 
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equation approach). The values of a~ for ~ > :origin are set to zero. Figure 7 
shows the actual values (solid line) and forecast values (crosses) from the 
origin t -- 128. Considering the limited number of parameters steering the 
model, the forecast function follows actual values rather closely even ~t\~r 
t ~ torigin . 

2.4. Generation of Texture  

We can create a white noise generator having a mean zero and the 
variance e 2  which generates the residuals a t .  To start the recursive procedure 
for the generation of future values, we need at least 2s values of Z~. These 
can be considered as the boundary conditions. Figure 4 shows the texture 
synthesized in this manner. Here, using two rows of length 64 (s = 64) from 
the original scene as the starting values, the future values of the pixels have 
been generated by the procedure mentioned above. 

One of the ways of testing the effectiveness of the scheme of synthesis is 
by attempting to fill the holes in the "parent"  texture. The results are shown 
in Figs. 8a and 8b. We notice some edge effects here. This can be expected 
in the case of structural textures. It is possible to minimize these effects. 
In the present case we have used pixels from two rows parallel to the top 
edge of the hole as the starting values, instead we can incorporate pixels 
from a couple of rows and columns which are parallel to eack edge of the hole 
as boundary conditions~ Then we can proceed to patch the hole by forward 
forecasting from the top edge and backward forecasting from the bottom 
edge [as suggested in Eq. (5)]. In the center we can average out the values 
forecasted from either side, thus reducing the edge effects. 

Let us consider a different class of textures in the second example. The 
texture of hamtmade paper (Fig. 9a) belongs to general class of statistical 

~3,0 5 0 . 0  I 0 0 , 0  150 ,0  2 0 0 . 0  

Fig. 7. 

i 
I - ~ i I 

250.0 300.0 350.0 q00.0 

Forecast values (shown by • in Example 1. 

I ~ . 
1 

450.0 500.0 



Fig. 8a. Holes in cheesecloth texture. Fig. 8b. Resultant scene after filling the hok 

Fig. 9a. Texture of a handmade paper. Fig. 9b. Holes. 

Fig, 9c. Resultant scene after filling the holes. 
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textures. I t  has little global structure. The seasonal time series model fitted 
for  this texture is of  the form 

(1 - -  0.8B~)Zt = (1 + 0.25B)(1 --  0.5B,')a, 

where ~ ~- 3.27. Figures 9b and 9c show the results of  hole-filling operat ion 
using the above model.  Here the edge effects are hardly noticeable. 

3. C O N C L U S I O N  

We have shown that  it is possible to synthesize natural- looking textures 
using the seasonal time series model.  This method is particularly suitable 
in the case of  statistical textures. M a n y  biomedical textures of  interest are 
statistical in nature, as are many  textures occurring in remote sensing of  the 
environment.  I t  can be anticipated that  the parameterizat ion of  texture 
proposed  here will be o f  value in moni tor ing the dynamics o f  change with 
time of  such textured areas. 
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