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The effect of some restrictions on W-grammars (the formalization of the syntax 
of AC6OI. 68) are explored. Two incomparable families examined at length 
are Wan (languages generated by normal regular-based W-grammars) and 
Ws (languages generated by simple W-grammars). Both properly contain the 
context-free languages and are properly contained in the family of quasi- 
realtime languages. In addition, WRn is closed under nested iterated sub- 
stitution (but is not an AFL) and is properly contained in the family of index 
languages. 

t .  I N T R O D U C T I O N  

One o f  t h e r e a s o n s  for  the early and  still cont inuing  popu la r i ty  of  context-free 
g rammars  has been their  use in the fo rmal  defini t ion o f  par ts  of  the syntax 
o f  ALCOL and  s imi lar  p r o g r a m m i n g  languages  (19~ and their  role in syntax-  
d i rec ted  compi la t ion  (cf. Ref. 3 for  a discussion of  the re la t ionship  o f  
context-f ree  g r a m m a r s  and  p r o g r a m m i n g  languages).  However ,  it  was soon 
found  tha t  context-free g rammars  were not  a l together  sat isfactory models  for  
p r o g r a m m i n g  language structure,  bo th  because some constructs  ei ther  could  
no t  be defined a l together  or  could  not  be convenient ly  defined by context-  
free systems, and  because such g r a m m a r  representa t ions  d id  no t  cover  the 
connect ions  between syntax and semantics.  M a n y  a t tempts  have been made  
on var ious  levels to fill the g a p s - - i n d e x e d  languages ,m macrogrammars , ( lmr~ 
and  p rope r ty  g rammars  (23) are only a few examples  tha t  come to mind.  

The syntax o f  ALGOL 68 cz41 p rov ided  an a l together  different depar ture .  
The  concept  o f  a context-free g r a m m a r  was general ized to a l low an infinite 
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but recursive set of context-free productions. The productions arise from the 
interaction of two context-free grammars. The first grammar feeds to the 
second grammar the names of nonterminals in the second grammar. The 
rules of the second grammar are really rule schemas with place holders which 
we call metavariables. When each metavariable is uniformly replaced by a 
string generated in the first level grammar the result is a production then 
applied in standard context-free fashion. For a discussion of the reasons for 
such a system and the utility of double-level grammars in programming 
language definition the reader is referred to Cleaveland and Uzgalis. (I~ 

The type of generating system introduced in the ALC, OL 68 draft (~ has 
been variously called "the syntax of ALGOL 68," "double level grammar," 
"van Wijngarden syntax," and "W-grammar." We select the term 
"W-grammar" as being both suggestive and simple. 

The concept of a W-grammar has been formalized by Sintzoff, 122) 
Chastellier and Colmerauer, (9) Baker, (4) and others. The various definitions 
differ in details though the underlying notion is identical. We introduce below 
a definition adapted from that of Cleaveland and Uzgalis (1~ and modified 
to--hopefully--be cleaner and clearer for reader and typist alike; the essential 
idea is unchanged. 

It was quickly noticed that W-grammars define the family of recursively 
enumerable sets, ~22) while suitable restrictions yield recursive sets (17) or 
context-sensitive languages. (~) Thus the utility and power of W-grammars 
are unsurprising. However, it does not appear necessary to use the full power 
of W-grammars in language definition. Thus it seems reasonable to study 
restrictions on W-grammars--besides those mentioned above--which yield 
recursive languages and hopefully combine descriptive power with attractive 
mathematical properties (ease of recognition, decidable emptiness question, 
interesting closure properties, etc.). 

In this paper we define two restrictions on W-grammars and study their 
properties, interrelationship, and connections with other grammars and 
machines. The first restriction is to normal and regular-based grammars. 
"Normal" means, roughly, that the left-hand side of a second-level rule 
schema consists of one metavariable and so the rule schemas themselves 
appear "context-free." Regular-based means that the first-level grammar is 
finite-state. It is easy to see that either restriction by itself still permits the 
generation of all recursively enumerable sets. Together, however, the 
restrictions define a family WRD of languages properly containing the 
context-free languages and properly contained in the family of indexed 
languages and hence afortiori in the context-sensitive languages. Membership, 
emptiness, and finiteness are decidable for normal regular-based 
W-grammars. Languages in WRB can be recognized by nondeterministic 
multitape Turing machines in realtime. The closure properties of WRB are 
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unusual--14"R8 is closed under nonerasing substitution, in fact, under 
nonerasing nested iterated substitution, but not under intersection with 
regular sets. 

The other family investigated is the family 1t s of languages generated by 
simple W-grammars. In a simple grammar each nonterminal in the infinite 
production set arises from an individual metavariable and only terminal 
strings replace metavariables in the rule schemes of the second-level grammar. 
Like WRB, Ws properly contains the family of context-free languages and is 
properly contained in the family of languages accepted by nondeterministic 
multitape Turing machines. Unlike WRB, Ws has no interesting closure 
properties. The families WRB and Ws are incomparable--neither is contained 
in the other. Curiously enough, although members of Ws are recursive, 
membership is undecidable for simple W-grammars. Every language 
expressible as the intersection of two context-free languages is in Ws, but 
some languages expressible as the intersection of three context-free languages 
are not. 

2. BASIC CONCEPTS 

In this section we introduce the basic definitions, notation, and concepts 
we shall use and outline briefly our specific results. We assume that the reader 
is familiar with the notions of context-free grammars, derivation trees, and 
finite-state machines and is acquainted with the basic properties of context- 
free languages and regular sets (for background material see Hopcroft  and 
Ullman (15) or Aho and Ullmanl'~l). 

In order to avoid uninteresting and trivial variations to handle the 
empty word (designated by e), we shall assume that all languages are 
"e-free," that is, do not contain the empty word. Thus by regular, context- 
free, or context-sensitive language, we understand e-free regular, context-free, 
or context-sensitive language. Most of the results do hold if the empty word is 
added by ad hoc methods; the !nterested reader can easily work out the 
exceptions for the empty word. 

Notation. For a language L we let L + = {wz "'" wn I n >~ 1, wi e L} and 
L* = L u {e}. I f  L is finite, then ] L l is the number of elements in L. For  a 
word w we let j w ]be the length of w. 

We designate a grammar by G = (V, Z', P, or), where V is a finite 
vocabulary, Z C V, e ~ V -- Z', and P is a finite set of rules or productions 
of the form u ~ v, u ~ (V -- N)+, v e V*. We call e the start symbol, members 
of Z terminals, and members of  V -  Z nonterminals, intermediates, or 
variables. If  u ~ v is in P, x, y ~ V*, then xuy =~G xvy. Then ~ *  is the 
transitive reflexive extension of ~ c ;  we omit the subscript G when 
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no confusion can occur. The language generated by G is L(G) 
{ w ~ S  + l a  :~*w}.  I f  l u l  ~ I v [  for each u - + v  in P, then G is context- 
sensitive. I f  u ~ V --  S whenever u -~ e is in P. then G is context-free. If  
each rule i n P i s o f t h e f o r m Z - * w Y o r Z ~ u f o r Z .  )'~ J - S, w + v , .  
u E Z '+, then G is regular orfinite-state, if  G is context-sensitive (context-free, 
regular), then L(G) is a context-sensitive (context-free, regular) language. 

We are now ready to introduce our  nota t ion  for  W-grammars .  

Definition 2.1. A W-grammar G = (VM , Vp , Z, PM , Ph , a) consists 
o f  a finite set VM of  metavariables, a finite set Vp par t i t ioned into terminals Z 
and protovariables Ve - -  Z', a finite set PM of  metaproductions, a finite set Ph 
o f  hyperrules, and a start symbol ~ ~ Vp -- S, such that:  (1)  Vp c~ VM = ;~ 
and " < "  and " > "  do not  appea r  in Vpw  VM, (2) for  each A e V M ,  
GA = (VM W Ve,  V ~ , P M , A )  is a context-free g rammar ,  and (3) each 
hyperrule  in  Ph is of  the fo rm Z-- ->y  for  Z ~ H u  (V e - -  Z )  and 
y ~ (VM W V~, W H) + where H ---- {(~) [ a ~ (I'M w Vp)+}. We call H the set 
o f  hypernotions. 

I f  a is a string of  terminals,  protovariables ,  and metavariables ,  then (o~) is 
a hypernot ion.  A hypernot ion  (~ )  is a place holder for  one or more  
"var iab les"  (w)  of  the second-level g rammar .  Hyperno t ions  and recta- 
variables are replaced in the rules of  Ph as follows. Fo r  A ~ ~ t ,  GA = 
(VM tA Vp, Vp, PM, A) is a metagrammar of  G; if A ~ *  w in GA, we say 
A metagenerates w. We let L A ~-- L ( G A ) .  A metaassignment of  V~, u VM is a 
h o m o m o r p h i s m  h such that  h ( < )  = < ,  h ( > )  = > ,  h(Z) = Z for  Z ~ Ve,  
and h(A) ~ L A for  A ~ VM. I f  Z ~ y is a hyperrule and h a metaass ignment ,  
then h(Z)--~ h(y) is a product ion  of  G. We let P be the set of  all such 
product ions;  the produc t ion  set may  be infinite. 

We can define derivations of  G in two ways. First, let I---- 
{(~)  i c ~  Vp +} C H.  I f  I '  is a finite subset o f  L we can regard I '  as a set o f  
distinct nonterminals ,  l f P '  is a finite subset of  P, and G'  = ( I '  w Ve, L', P ' ,  or) 
happens  to be a context-free g rammar ,  then G' is a s u b g r a m m a r  of  G; if  
w 1 =>*, w~, then wz ~ *  w~. The language generated by G is L ( G ) =  
U s u b g r a m m a r  c;" L(G'). We call L(G) a W-language. 

Alternatively,  derivat ions of  G can be defined directly f rom P. I f  
wz, wz ~ (V~, ~3 I )* ,  ~ ~ Vp +, and ( a )  --~ y is in P, then Wl(~)w~ =>~ w~yw~. 
I f Z ~  V~, - -  ~ a n d  Z --~ y is in P, then waZw~ => wzywz. Asusua l ,  ~ *  is in 
the transitive reflexive extension of  ~ a .  Further ,  if we have a derivat ion 

y: a ~ wz ~ "'" ~ wn for  wneZ,*  
G G G 

then ~, is a complete derivation in G. Then  

L(G) = (w ~ Z:'* I ~ *~ w} 
G 
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Let us illustrate these rather complicated definitions by some examples 
which shall be useful in the sequel. 

Fxample 1. A W-grammar for {a 2'' i n ~ 1}. There is one metavariable, 
N, one protovariable, ~, and one terminal, a. The metaproductions are 
N -+ a N  and N --~ a, and the hyperrules are cr --~ ~,a), ( ,N)  - ~  ( N N ) ,  and 
(N) -~ N. 

Notice that LN = a +. Any metaassignment h is of the form h(N)  = a", 

n ~ 1. Thus 

P = { ( a  s ) ~ ( a  2~)ln >/ 1}w{(a")--~a " I n  >/ 1} u {a --~ (a)} 

Thus the only.complete derivations are of the forms: 

a ~ ( a )  ~ ( a a )  ~ (aaaa)  ~ "'" ~ (a  s") ~ a ~'~ 

Example 2. A W-grammar for { a " ~ l n  ~ 1}. We have VM = {N}, 
Vp = {a, a}, PM = { N  --~ a, N ~ N N }  and 

P~ = {or ~ ( a ) ,  ( N )  -0- N ( a a N ) ,  ( N )  --~ N }  

Thus whenever (a s) actually appears in a complete derivation of G, n is odd. 
Complete derivations of G proceed: 

~ (a )  =*- a ( a  a) ~ aaa(a ~) ~ "" 

aa a ... a2k-l(a~k+l) ~ aa ~ ... a~k-Za2k+~ 

for k ~> O. Since 

k 
a 2 m +  1 = a (k+ l )~  

zn=0 

the grammar generates the desired language. 

Example 3. A W-grammar for {a '~ I n ~ 4, n is not prime}. Let 

and 

VM = {N}, Vp = {a, ~}, PM = {N--+ aa, N - +  aN} ,  

Ph = {(r -+ ( N ) ,  ( N )  --~ N ( N ) ,  ( N )  --+ N N }  

The productions form 

P = { c r  ~ (a s) 1n >~2}u{(a  '~)--~a'~(a ' ~ ) l n  >~2} 

u { (a" )  --+ anan [ n >~ 2} 
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The start set is L~,. = {a"l n ) 2}. Thus derivations proceed, for n ) 2: 

cr ~ ( a " )  ~ a " ( a  n)  ~ a " a " ( a ' )  ~ ... ~ (a")"(a")  ~ a '~(''+~'~ 

So G defines 

{a"("'+2~ [ n ~ 2, m ~ 0} 

which is another way of expressing the desired language. 

Example 4. Some W-grammars for L z ---- {a~'~a2'~asnln ) 1} and 
L~ = {al'~a2"~asna4'~tn ~ 1}. We have in both cases VM----{A}, Z' = 
{al, a~, as,  a4}, lip : Z u {a}, and 

PM -~ {A  -+ a2A, A ~ a3A, A --+ a~ , A -+ as} 

For the first language we have 

Ph.z =- {a ~ (a~as), <A)  --+ az<a2Aa~), ( A )  --> azA} 

and in the second case 

Pa.2 = {a -+ (a2a~), ( A )  --~ az (azAas )a~ ,  A --~ alAa4} 

Notice that both grammars have the properties: (1) The metagrammars are 
regular, and (2) whenever (~)  appears on the left-hand side of a hyperrule, 
o~ ~ VM (in this case ~ = A). We shall see in the proof  of Theorems 5.1 and 5.2 
that any W-grammars for L~ and L2 with properties (1) and (2) more or less 
" look like" the ones constructed here. Further, if we add a fifth coordinate a5, 
we must relax either (1) or (2) as is done in the next example. 

Example 5. Two W-grammars for L = {al"az '~ ... a5 '~ i n ~ 1}. 

1. We first construct a W-grammar whose metagrammar is not regular. 
Let VM = {A, B, Az, A2, As, A4}, Z = {al, a2, as,  a4,as}, Ve = ZTtd {or}, 

PM = {A --+ A,Asa5  , A --~ Aas  , A1 --+ alAla2 , As  -+ asAsa~ , 

A~ - ~  ala2 , As  -+ asa4 , B --+ a lB,  B --+ a~A2A4 , 

A2 -+ a2A2as , A4 --~ a4A4a5 , A2 --~ a~as , A~ --+ a~a~} 

and 

Ph = {a -~ (A),  (B)  -+ B} 

Notice that 

and 
LA = {az'~a2"a3'~a4~a~ k In, m, k >/ 1} 

LB = {az~:a~a3~a4"~a5 "~ I n, m,  k ~ I} 
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and the only completed derivations are 

for w in L A ('h L~ . Since 

the W-grammar generates L. 

L = La ~ LB 

2. We now give a W-grammar for L with a regular metagrammar.  Let 
I'M = {N}, Vp --  Z w {a, a}, PM = {N --,- a, N --,. aN}, and 

Ph = {a --~ aza2a~a4a~} u {cr -+ <alN><a~N)(a~N><a~N>(asN)} 

w {(aiaN> ~ a~(a~N> I i = 1, 2, 3, 4, 5} 

w {<a~a> ~ a~ai [ i ----- 1, 2, 3, 4, 5} 

to {(a~) ~ a~l i = 1, 2, 3, 4, 5} 

I t  is quite apparent that the family of languages generated by 
W-grammars is the family of  recursively enumerable languages, and that 
remains true even if we impose some strong-appearing restrictions. 

Definition 2.2. Let G = (VM , Ve , Z ,  PM , Ph , a) be a W-grammar. 
We call G regular-based if for each A ~ VM, GA ~- (VM to Vp,  Vp,  PM,  A) 
is regular. We call G normal if each hyperrule is of the form Z--~  y or 
(A> -+ y for Z e V~ -- X, A ~ VM , y ~ (VM tA lip U H)  +. We call G unary 
if each hyperrule is of  the form Z --+ y or <A> -+ y for Z ~ Vp -- Z ,  A e VM, 
y ~ ( V ~ t o  VptA{(B>IBeVM})  +. We call G strict if for each A E V M ,  
LA CZ+. 

Definition 2.3. A W-grammar G = (VM , Vp , Z, PM , Ph , a) is lossless 
if for each hyperrule of  the form 

<~> - ~  Uo</~> u~<~> ... u._~<~.>u,~ 

for n ~ 0 (if n ---- O, the rule is @> --+ Uo), ~ , /3 ie  (VM to Vv)+, 1 ~ i <~ n, 
ul e (V~  t3 Vp)*, 0 >~ i >~ n, we have 

I ~ I <~ l Uo~ "'" u._@.u. [ 
and for each A ~ VM 

# ~ ( ~ )  <~ # ~ ( U o ~  "" u._@.u.) 

where .#4(w) is the number of  occurrences of  A in w. 
Suppose G = (V, 2 ,  P, S) is a grammar.  I f  we construct three recta- 

variables A, B, and T with LA = LB = V+ and Lr  = Z +, and for each rule 
ui --~ v~ in P four hyperrules (AuiB> -+ <AviB>, (Aui> ~ (Avi>, <uiA> -+ 
<viA>, and <u~> ~ <vi> and then add hyperrules a --* <S> and <T> --* T, 
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we clearly have a W-grammar generating L(G). Thus the result of Sintzoff (22) 
can be expressed as follows. 

Theorem 2.1. (Sintzoff). Every recursively enumerable language can be 
generated by a strict regular-based W-grammar. 

An alternative construction shows that normal W-grammars also 
generate all recursively enumerable languages. 

Theorem 2.2. Every recursively enumerable language can be defined by 
a strict normal W-grammar. 

Proof. Let L be a recursively enumerable language. Then L can be 
expressed as the homomorphic image of the intersection of two context-free 
languages. (18) Further, if L __C Z +, one can assume that there is a finite 
vocabulary A and context-free languages L 1 and Lz such that Z n A _-- ~ ,  
L 1 u L2 C_ Z+A+, and L = {w e Z+ I 3x ~ A +, wx  E L 1 c~ Lz). That is, L can 
be obtained from L~ ~ L2 by chopping off the "tail" in A +. 

Let a, D, d, A, Sz, and $2 be new symbols, and for each a in Z let 
be new. The symbols D, A, 5'1, $2, and 5 wilt be metavariables. Since L~ and 
L2d are context-free, we can add metavariables and metaproductions so that 
L D = A+, LA = ~+,  Lsx --_ L 1 , Ls~ = Lad, and L a = Z*aA+dd for a e Z. 

The hyperrules are 

--~ A ( A a D ) ,  ~r --~ (aD) ,  ( 5 )  --~ a, a ~ Z 

(S1) ~ (S~d), (S2) ~ (S2d) 

Thus the only complete derivations are of the form: 

a ~ w(waz)  ~ w(wazd)  ~ w(wazdd)  =~ wa 

for w e Z*,  a c Z,  z e A+, waz ~ Ll n L2 and so wa ~ L. [] 

Thus one must consider carefully whether there are any sets of 
restrictions on a W-grammar G such that L(G) is guaranteed to be recursive 
and yet G still has considerably more expressive power than a context-free 
grammar. One obvious possibility is to examine lossless W-grammars. If G is 
lossless, every production in P is nondecreasing except for possible elimination 
of  ( and ); by inventing new symbols we surely can encode (w) within I w ] 
steps without undue complication. Further, if (/3) appears in a hyperrule, 
the language 

L e = {h(/3) ]h metaassignment} 

is certainly context-sensitive since each LA is context-free and context- 
sensitive grammars can duplicate. Thus a multitape Turing machine can 
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certainly obtain a production p from a hyperrule, and apply p to obtain 
wz ~ c w e ,  using no more than Max([wz] , tw21)= twe] tape squares. 
It is well known that any rewriting system such that each derivation step is 
nondecreasing and there is a multitape Turing machine which can imitate 
each step Wz =~ w2 using no more than ] w2 t squares yields a context-sensitive 
language. 

The details of such a construction for lossless W-grammars is given by 
Baker, t4) who shows the following. 

Theorem 2.3. (Baker). The family of languages generated by lossless 
W-grammars is precisely the family of context-sensitive languages. 

In this paper we shall examine two possible restrictions on W-grammars 
which yield proper (and incomparable) subclasses of the family of context- 
sensitive languages while still retaining some of the W-grammar's facility for 
duplicating and comparing substrings. 

We observed that neither the requirement to be regular-based nor that 
to be normal restricts the generative power of a W-grammar, although they 
may very well restrict the ease or naturalness of producing certain structures. 
On the other hand, restricting a W-grammar to be both regular-based and 
normal is a significant restriction on the generative capacity. 

In Sections 3-5 we study WRB, the family of languages generated by 
normal regular-based W-grammars. The key result (Theorem 3.1) is that 
every normal regular-based W-grammar can be effectively converted into a 
lossless normal regular-based W-grammar in a special factored form. In 
Theorem 3.2 we prove a reduced form theorem similar to the one for context- 
free grammars. ~5) Using this result, we show that although Examples 1-4 
show that normal regular-based W-grammars have considerable facility for 
computing numerical functions, duplicating strings, and comparing numbers, 
many questions--notably membership, emptiness, and finiteness-are 
decidable for such grammars (Theorem 3.3). 

In Theorem 4.1 we show that WR~ is contained in the family of indexed 
languagesC ~ (which is also the family of nested stack languages (2~ and of OI 
macrolanguagesllaaz~). Thus W~B is obviously a proper subset of the family 
of context-sensitive languages. More than that, each member of WR~ can be 
accepted in realtime by a nondeterministic multitape Turing machine 
(Theorem 4.2). 

The containments in Theorems 4.1 and 4.2 are proper--the language of 
Example 5, for example, is not in WR~ (Theorem 5.2). Finally, we conclude 
Section 5 bynoticing that WRB has curious closure properties--it is closed 
under nested iterated substitution but not under intersection with regular sets 
(Theorem 5.3). 

The other subfamily of W-grammars that we shall study is the family of 
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strict unary W-grammars. We shall call a strict unary g<grammar sharpie and 
let Ws be the family of languages accepted by simple tl=grammars. The 
family Ws is a very strange one. On one hand, simple gZgrammars can do 
with ease many things beyond the power of normal regular-based grammars-- 
e.g., Ws contains every language expressible as the intersection of two 
context-free languages (Theorem 6.1); Example 5 gives a language in 
Ws -- WR~. On the other hand, Examples 1 and 2 give examples of languages 
in WRB -- Ws ; if f is a monotone increasing function from positive integer 
to positive integers, {a : ~  I n >/ 1} cannot be in Ws if f grows more than 
linearly (cf. Theorem 6.4). Also, there are languages expressible as the inter- 
section of three context-free languages which are not in Ws (Theorem 6.5). 
Now Ws is, like WRn, a proper subset of ~, the family of languages accepted 
in realtime by nondeterministic multitape Turing machines. But this inclusion 
is nonconstructive--there is no algorithm to transform a simple W-grammar 
into an equivalent context-sensitive grammar, although one always exists! 
For example, membership is not decidable for simple W-grammars 
(Theorem 6.2), although each member of Ws is recursive! There are many 
pathological systems behaving in this manner, but this is one of the few 
examples of  more or less "natural" systems exhibiting this sort of behavior. 
The closure properties of Ws are uninteresting--Ws is closed under almost 
none of the natural operations on languages (except for Kleene § 

Finally, in Section 7 we mention some open problems regarding the 
exact relationship between Ws and ~, as well as introduce some other 
restrictions and extensions W-grammars it might be profitable to study. 

3. N O R M A L  R E G U L A R - B A S E D  W - G R A M M A R S  

As we saw, regular-based W-grammars have the same generative power 
as context-free based W-grammars, so there is little point in studying them. 
We shall instead focus attention on normal regular-based W-grammars, 
which have considerable power, as Examples 1-4 show, and yet have many 
pleasant properties. 

Definition 3.1. A W-grammar G = (VM, Vp, 2, PM, P~, c:) is regular 
if it is normal and regular-based and all the rules are of the forms Z ~ w~ I:, 
Z---~ wl(y) ,  (A)--+ wlY, (A)--+ wz(y), Z--+ w2, and (A)  --> w2 for 
Y, Z ~ Ve -- ~r A e VM , Wt E (V M W Z')*, and wz, y ~ (VM W Z')+. Let 

l~/Rn = {L(G) G normal and regular-based} 
and 

WR = {L(G) G regular} 

The following should be immediately apparent. 
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Corollary. The family of  context-free languages is properly contained 

in W ~ .  

Most  o f  our results will depend on converting a normal regular-based 
grammar  into a special form. 

First, we extend the notation LA, for a metavariable A, to La for /3 
composed  of metavariables, protovariables, and terminals. 

Definition 3.2. Let G --  (VM , Vp , Z ,  PM , P~ , cy) be a W-grammar. 
For  fi ~ (VM U Vv) + let 

Lo = {h(fi) ] h is a metaassignment} 

Thus for A ~ Vp, LA ---- {A}, and if A1 ,..., A~ ~ VM W VI,, then LA A 
1"" N 

is the collection of all words wz "'" w~ such that wi ~ LA~ and whenever 
Ai = Aj ,  then wi -~ w~.. 

Now we define a factored form for normal W-grammars. 

Definition 3.3. A normal W-grammar G ~- (VM , Vp , 27, PM , Ph , or) 
is fac tored  if (1) for all A ~ VM, LA ~ s~ ; (2) for all A,  B ~ VM either LA = LB 
or L• t~ LB ---- ~ ; and (3) if </3) appears in any hyperrule, there is an A e VM 
such that L~ _C LA �9 

Now we shall see that every normal regular-based W-grammar can be 
converted into a tossless factored one. This is an easy consequence of 
Nerode 's  r176 theorem for regular sets. Recall that for a finite vocabulary T* 
an equivalence relation ~ on T* is a congruence relation if whenever u ~-~ v 
and x ~ y, then ux  ~-~ vy; it is of  f inite index if T* is partitioned by ~--~ into 
a finite number  of equivalence classes. 

Theorem 3.1. Given a normal regular-based grammar  G, we can 
construct a lossless, factored, normal,  regular-based grammar  G such that 
L(G) = L(G), and G is regular if G is regular, strict if G is strict, and unary 
if G is unary: 

Proof. Let G = (VM,  Vp, Z', P M ,  Ph ,  c~). We know that each LA is 
regular for A e VM. Hence there is a congruence relation of finite index on 
Vp*, call it ~-~, such that each LA is the union of some of the congruence classes 
of  ~-~ on Vp*. (2~ Let E be the set of these congruence classes. For A ~ VM let 
O~A ~ { E ~ , E I E N L A  ~ ~}; thus LA = ~EegAE. NOW since ~-~ is a 
congruence relation , given E~ and E2 in ~, there is a unique E 3 in d ~ such that 
EIE2 = {ux I u ~ E~ , x ~ E~} C_ E~ . Let us write for convenience 

EI " E2 = Ea 

For u e V~*, let [u] be the equivalence class of u. For each A e VM, E e EA, 
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let /~, E, and (E, A) be new symbols. Thus if A, B~  V~u, A :/: B, and 
E ~ A  ndoB, (E,A) and (E,B) will be distinct symbol s - two  different 
metavariables. 

Each equivalence class E ha C is a regular set and so E -- {e} is regular. 
Thus we can add metavariables to form a set VM, containing {E i E ~ d} w 
{(E, A) [ A ~ VM, E ~ doA}, and a set PM of metaproductions such that for 
E ~ d  ~, Lg = E - - { e }  and for A ~ VM, E EdoA, L(e,A)= L/~, and our 
ultimate W-grammar G will be regular-based. 

The set Ve of protovariables and terminals for G is given by 

V,, = vp v { ~ l  Ecdo} 

Each (VM U Vp, Vv,  PM, E) or (V~f u Vp, Vp, PM, (E, A)) is regular. 
Notice that because ~ is a congruence relation, ifAi c V~t u Vv, E~ ~ do, 

and Ei_CA~ for 1 ~ i ~ n ,  then there is a unique E c d  ~ such that 
for any metaassignment h with h(Ai) c E~ for 1 <~ i <~ n, h(A~ .." A, )  ---- 
h(A1) "'" h(A, )C C_ E~ ... E ,  C E. This is the key observation that makes our 
construction work. 

A rule (A)  --+ y is lossless if A appears in y and otherwise is lossy. Rules 
Z --~ y for Z a protovariable are always considered losstess. If  (A )  -~ uAv is 
a hyperrule with A ~ VM and u, v e (Vv w VM W {(/3) ] /3 ~ (Vv W VM)+) *, 
then the rule is said to "deposit" A. If  (/3) appears in a hyperrule, we must 
guess whether we will apply a series of lossless rules to (/3) followed by a 
depositing lossless rule or whether we will apply zero or more nondepositing 
lossless rules followed by a lossy rule. In the first case we merely replace each 
A e VM by some symbol (E, A) for E ~ doA �9 In the second case we replace 
(fl) by some ~ such that L~ c~ E =/: ~ .  

More carefully, we construct the set of hyperrules Ph as follows. Consider 
any function f from VM to d o such that f (A)  ~ d~A for each A ~ VM ; thus f 
assigns to each metavariable A an equivalence class contained in doA. 
Associated with f ,  define a homomorphism f~ from (VM U Vv)* into 
(VM W Vv)* and a function f~ from (VM W V),)* into do defined byfa(A) = 
( f (A) ,  A) for A ~ VM and f l (Z)  = Z for Z ~ Vp, f2(A) = f (A)  for A ~ VM, 

f2(Z) = [Z] for Z e Vp , and fz(xy) = f2(x) " f~(y) for x, y E (VM W Vv) +. 
For each such function f and each hyperrule of P~ we add to P~ one or 

more hyperrules defined as follows. Consider a hyperrute in Pn: 

'~  ~ / , /O(Vl )  " ' "  U . _ I ( ~ ) ~ ) H  n 

for n >~0, u ~ ( V v ~  V~)*, 0 ~ i ~ < n ,  v ~ ( V e ~  VM) +, 1 ~<i<~n,  and 
7 e ( V e - - X ) ~ { ( A ) I A e V M } ;  if n-----0, the rule is ~ , ~ u o  and uo 
(Vv ~ VM) +. For 1 ~< i ~< n let E~ = f~(v0. 

Then Ph will contain all possible rules 7' --~f~(u0) v~ ""f~(un_z) ~,~f~(un) 
satisfying the conditions: 
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1. For 1 ~ i ~ n, either vi = ( f l ( v i ) )  or ~; : E~.. 
2. I f y : Z e V p , t h e n ~ , ' : Z .  
3. If  7, = (A), A e VM, E = f ( A ) ,  either (a) ~,' = / ~ ,  and (E, A) does 

not appear in anyfl(u~) or any ~ ; or (b) 7' : ((E, A)), and (E. A) 
appears either in some fl(u~) or some gz. 

Let G : (VM,  Vp, 27, PM, P~, ~)" NOW condition 3(b) ensures that G 
is lossless. For  E in d~ L(e,A) : L~ : E --  {e}, so L(e 1 A) -= L(e~ if and 
only if Ex = E2 ; otherwise, L(Ez,A) f'~ L(E2,B ) = .._~- S~ppose (~'~ "" Y,) 
appears in P~, each Yi in Ve w VM. If  Y~ ~ Vp C_ Vp,  let Ei = [Y,]. Other- 
wise we must have Y~ = (E~, At) for some A~ e VM, E~ e gA, �9 So Lrz. . .r" C_ 
Lr~...r, C_ E~ "" E ,  and there is a unique E e g  with Ez ... E,_CE; thus 
Lr~...r, _C Lg.  So G is factored; it is obviously normal and regular-based. 

We have altered the hyperrules of G in two ways. We may replace a 
metavariable A of G by any metavariable (E, A) with E ~  OcA. Since 
LA = Urge a E = Ue~e a L(E,A), this causes no problems. Notice that since 
(E, A) v a (E, B) for A 4= B, if A and B both appear in a hyperrule, no 
undesired duplications occur. Also, we might have functions f and ft. as 
described above such that (fl) is replaced by f~ ( /3 )=/~ .  In an actual 
production of G, (/3) would appear as (w) for w e L~ c~ L e .  Rule (w) -+ y 
applied t O (w) would either come from a lossy hyperrule ( A )  ~ y '  or from 
a lossless hyperrule ( A )  ~ x ( u A v ) z  in which A was not deposited. In the 
first case all one needs to know is that w E LA- -and  recall that either w e LA 
for a / /w  in E or else w r LA for a// w in E. In the second case the actual 
production looks like ( w ) ~  x ' ( u ' w v ' ) y '  and one needs only to know 
whether u ' w v ' e  LB for various B in VM. Again, either u'Ev'C_ L~ or 
u'Ev' n L8 ~- ~ ,  so it suffices to know that w is in equivalence class E. 

Arguing along these lines, one can show that L(G) = L(G). The actual 
proof  is omitted since it is long and unenlightening. It involves showing by 
induction on the length of a derivation that for w e ~r+, Z e Vp - -  Z,  and 
y ~ lie +, Z ~ *  w if and only if Z =~* w and ( y )  ~ *  w if and only if either 
( y )  =~* w or/~ ~ c  w, where E = [y]. 

Now Baker's result immediately shows the following. 

Corollary 1. If  G is a normal, regular-based grammar, then L(G) is 
context-sensitive. 

Corollary 2. If  G is a normal, regular-based grammar, then membership 
in L(G) is decidable. 

We can extend both corollaries. First let us show that some questions 
undecidable for context-sensitive grammars are decidable for normal, 
regular-based W-grammars. 

Here are some concepts we shall find useful in the next few theorems. 
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Definition 3.4. Let G = (VM, Vp, Z', PM, Ph,  or) be a normal 
W-grammar and let A ~ VM. I f  7 --~ uAv ~ Ph,  and 7 ~ (A),  then A appears 
independently in the hyperrule and the hyperrule is creative. For w~ Vp +, let 
L ( w )  -~ { y E Z + I (w)  ~ * y} and L( A)  = U,~.~L A L(~,). Forf i  ~ (V~ u Ve) + 
let L(f l )  = U ~ L  L(w) .  For Z e Vp --  S let L(Z)  = { y ~ Z+ E Z :~ * y}. 

We define re~luced normal factored W-grammars. Our definition is in the 
same spirit as the usual definition of reduced context-free grammars. 

Definition 3.5. A normal factored W-grammar G = ( V u ,  Ve, Z, 
P u ,  Ph ,  or) is reduced if either VM = Z = PM = Pn - -  ~ or: 

1. For  each Z e Vp -- Z, L(Z)  va ;~. 

2. I f  (/3) appears in a hyperrule, then for each w ~ Le ,  L ( w )  r ~ .  

3. For each Z ~ Ve there are words u, v ~ Z*  such that ~ :~* uZv. 

4. I f  (A)  appears on the left-hand side o f a  hyperrute, there are w ~ LA,  
�9 U, V e Z*, such that  a =~* u(w)v. 

5. For  A ~ V ~ ,  LAC--(V e - { e } ) + ,  L A n ( V ? - - Z ) =  ~ and LA is 
infinite. 

6. The start symbol e does not appear on the right-hand side of  a 
hyperrule. 

7. There are no hyperrules <A) --~ (A)  or ( Z )  -+ (Y) .  

Theorem 3.2. Given a normal regular-based W-grammar G, we can 
construct a reduced, lossless, factored, normal,  regular-based W-grammar G 
such that L(G) = L(G) and G is regular or strict or unary if G is. 

Proof. We can of course assume G = (VM, Vp,  Z, PM, Ph,  cr) to be 
lossless, factored, normal, and regular-based. 

First we can ensure that for A e VM, L.4 contains no protovariable Z. 
For  if Z ~ L A , we can first replace LA by LA --  {Z} and G will still be regular- 
based and factored. Then we add a new symbol ,~ to Vp - -  X and for each 
hyperrule ~, --+ y add the result of first replacing A by Z in 7 -+ Y and then 
replacing ( Z )  by ,~. So we can assume that LA n (V  e - -  Z )  = ~ .  By the 
standard methods for context-free grammars,  we can ensure that L.~ _C 
(Ve - -  {e})+ and (6) holds. 

Let 

V= {Ze V,~- Z1L(z) r ~} 

Ideally, we should like to have V e -  Z = V, since the appearance of a 
symbol of  Vp --  Z - -  V obviously blocks a derivation in a lossless grammar.  
First we must locate V. 

Notice that because G is factored, if w eLA and L ( w )  ~ ~ ,  then 
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L(w' )  @ ~ for any w ' ~ L A n ( Z ' t 3  V) +. Let T = {A e V~ i l L ( A )  =/= ;~}, 
a n d I = { A ~ V M i L A n ( 2 J u  V) +4= ;~}. 

We construct V, T, and I in a familiar way. First, let ~.] = Tt = 
an d /1  = {A e VM I LA n Z'+ @ ~}. If we have built V. ,  T . ,  and I .  with 
V. _C V, Tn _C T, and I~ C L we obtain V.+I, T.+~, and I.+i as follows, 
starting with V. _C V.+z, and T,, _C T.+I.  We search P .  for a rule 

~, --+ uo(vz) "" u ~ _ t ( v , . ) u ~  

with u~, vj, as usual, satisfying: 

(a) uo, ul ..... um ~ ( v .  u I~ u •)+. 

(b) vl ..... v~ ~ (V~ u I .  u 2)+.  

(c) For  1 ~ j  ~ n, L~j C LA. for some As e Tn. 

Then if 7 = Z e Vp, we add Z to V~+~ ; if y = (A),  we add to T~+I, along 
with any B with Ls = LA. When this is done let 

&+~ = {A ~ VM1 b~ n (v.+~ u Z]+ r ~} 

By construction we have V. C V~+z _C V, T~ C T~.+ I _C 7", and /~ ~ In+z C_ L 
Since ] Vp u VMI is finite, there is an no ~<i Vp w VMi such that 

l/~o w T~o = V%+ 1 U T%+z. Then V% = V%+1, T~ o = T%+I, and I .  ~ = I%+ 1 . 
Hence V% = U,  v,_c V, T% = U,  T,  C T, and 1% = U,  In-C I. We omit 
the straightforward but long proof that V% = V, T,0 = T, a n d  I% = L 

If  a ~ V, then L(a) = L(G) 4= ~. In this case let G be the trivial 
W-grammar G = ({~}, ~ ,  e ,  ~ ,  ~ ,  a). Suppose cre V. 

Now we can alter G to ensure that Vv _C V w Z a n d  ~ v~ LA C (V W 2)+ 
for each A e VM ; the construction is quite obvious; when we eliminate a 
symbol we obviously eliminate all members of PM W Ph in which it appears. 
We also eliminate any hyperrule containing a hypernotion (/~) with L~ _C LA 
for some A in V~4 -- (I w T). Then we can assume that G satisfied 1 and 2. 

Now we want to ensure that 3 and 4 hold. We want to construct sets 
similar to L T, and V; this time we only sketch the construction. We want to 
build sets J (consisting of metavariables appearing independently in hyper- 
rules), K (consisting of metavariabtes satisfying 3), and N (consisting of 
protovariables and terminals satisfying 3). 

We start with J = K = ;~ and N --: {a}. We alternate scanning hyper- 
rules and sets LA. If  Z - + y  is a hyperrule and Z e N ,  we add to J all 
matavariables in y, to N all members of Vj. in y, and to K any A such that y 
contains (fl) and LB C_ L , 4  �9 If  (A)  ~ y is a hyperrule, we add to N and K as 
above and add to J any symbol in VM -- {A} appearing in y. When we add A 
to J, we add to N any Z e Ve with L.~ c~ V*ZV* :/= ~ ;  since the LA are 
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context-free (in fact regular), this condition is testable. Eventually the process 
ends when we scan all hyperrules without increasing J, 1<2, or N. 

whe n  we finish we simply eliminate all members of Vp -- N everywhere 
in G and all hyperrules (A) --~ 3' where A ~ K. When we have finished G 
satisfies 3 and 4 still satisfies 1 and 2. 

Next, if LA = {wl ,..., w,~} and A e VM, replace each hyperrule ), --~ y 
by n hyperrules 

h~(~) -~ h~(y) 

where h~ is a homomorphism such that hi(A) = w~ and hi is the identity 
elsewhere. Do this successively for each A ~ V~ with LA finite. This may 
create an "illegal" hyperrule 

(w) -~ y 

for w ~ Ve +. In this case eliminate this rule, create a new p rotovariable w, 
add a rule w -~ y, and replace every occurrence of (w) by w. Hence we can 
assume that LA is infinite. Thus, using the remarks at the start of the con- 
struction, we see that 5 and 6 hold. 

Finally, we can satisfy 7 with constructions similar to those used for 
context-free grammars, aS) Thus we can construct a new W-grammar G 
which is reduced and still lossless, factored, normal, and regular-based and 
which also generates L(G). [] 

Now we state our main decidability results. 

Theorem 3.3. It is decidable for normal regular-based grammars G 
whether L(G) is empty and whether L(G) is finite. 

Proof. We can assume that G = (VM, Ve,  •, PM, P~, or) is reduced, 
factored, and lossless as well as normal and regular-based. Obviously 
L(G) ~ ~ if and only if G is not the trivial grammar ( ~ ,  {e}, ~ ,  ~ ,  ~ ,  ~). 

Assume L(G) =/: ~.  First notice that if L(~A) ~ ;g and LA is infinite, 
then L ( A )  is infinite. For if x ~ L(A) ,  then there is a word w ~ LA such that 
I w I > I x 1. As we mentioned before, the fact that G is factored implies that 
since L ( A )  v~ 2~, L (w)  is also nonempty. But G is lossless, so if y ~ L(w),  
then y ~ L ( A )  and [ y [ >~ ] w I > I x [. Hence L ( A )  is infinite. 

Since G is reduced, LA is infinite for A ~ VM. Further, every hyperrule 
in G is "usable" in some completed derivation. Hence if G has any creative 
hyperrule, L(G) is infinite. 

So assume now that no hyperrule is creative--no metavariables ever 
appear independently. This means that there are at any point only finitely 
many actual productions applicable to a string generated from e. Hence for 
any q there are only finitely many complete derivation trees in which no 
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path has more than q nodes. Call a complete derivation tree minimal if there 
is no smaller tree yielding the same word in L(G). By building all smaller 
derivation trees, one can certainly determine whether a given tree is minimal. 

Suppose G has a minimal complete derivation tree with a path containing 

q =  2 §  VMI 4-(i V p - - Z ) ( V ~ , i )  

nodes. If  the path contains 1 + I Ve --  Z ! nodes labeled in Vp -- Z, two of 
them must have the same label, say Z. Thus there is a subderivation 
Z 3 "  uZv, u, v e Z * .  l f u  = v = e, the tree is not minimal. I fuv ~ e, then 
we have cr =~* w~Zw~ and Z 3 "  wa for Wa, w2, u'3 ~ Z* and so L(G) has the 
infinite context-free subset {wzu"w3v"w~ ! a ~ 0}. 

Otherwise, the path must contain two nodes labeled <,,~) and \w.,\ such 
that Wl, w2 ~ LA for some A E VM and no intermediate node has a label in 
V p -  Z. We could apply to <w.,) a production derived from the same 
hyperrules that one applied to <wa) and continue in this way until we generate 
some <w3) with w 3 in LA. Repeating the process as long as we choose, we see 
that L(G) is infinite. 

On the other hand, if no complete derivation tree has a path with q or 
more nodes, then L(G) is finite. Hence we can tell whether L(G) is finite. 

4. RELATIONS BETWEEN WR8 A N D  OTHER FAHILIES 

In this section we show WR~ to be contained in two familiar families of 
languages. 

First we show that WRB is a subfamily of the family of indexed languages 
-- the languages defined by indexed grammars, m by nested stack automata, I~) 
and by Ol (outside-in) macrogrammars, m,12) It appears simpler and more 
enlightening to use macrogrammars. 

We shall discuss macrogrammars briefly and informally. A very careful 
and rigorous treatment appears in Ref. 11. 

A rnaerogrammar contains three disjoint sets of symbols--a finite 
vocabulary Z of  terminals, a finite vocabulary I of function letters ranked by 
a function p, and a finite set V of variables. Terms are defined inductively. 
Any member of Z u V is a term, as is any zero-place function letter A 
[i.e., A e I a n d  p(A) = 0]. Ifc~ and/~ are terms, so is ~/~. l f~l  .... , ~, are terms, 
n >~ 1, F e  I, and p(F) = n, then F(cq ,..., c~,) is a term. A macrogrammar 
consists of Z, I, p, and V plus a start symbol e usually taken to be 0-place 
[i.e., a ~ l a n d  p(~r) = 0] and a finite set P of productions of the forms Z --~ Yl 
and F(xl  ,..., x , )  -+ Y2, where F, Z ~ I, p (Z)  = 0, p(F) = n, the x~ are all 
distinct members of V (so xi -~ xj for i r j), and Yl and Y2 are terms such that 
Yl ~ ([ kJ Z )  + and y~ ~ (I u Z u {xz .... , x~}) +. 

8281314-3 
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Derivations in a macrogrammar  could go from the outside in or the 
inside out, with different results. We shall only consider outside-in, 
OI, derivations since those yield precisely the indexed languages. I f  
F(xl  ..... x,O ~ y is a production, c~1 ..... c~n are terms, and y'  is obtained f rom 
y by substituting al for x~ [i.e., y'  = h(y) ,  where h(xO = a~, 1 <~ i <~ ti, and 
h is the  identity elsewhere], then F(c~l ..... ~ )  =~ y'.  I f  Z - +  3' is a rule, 
p(Z)  = O, then Z ~ y. I f  u * v and x and y are terms, then xuy  --- xvy.  
We extend :* to =-* in the usual way. Then the language generated by G is 
L(a)  = {w E 2 ~ 1 ~  :~- * w). 

For example, the set {a "2 I n ) 1} is generated by the macroproductions 
a -~ F(a, a), F(xa,  x2) ~ F(xlxzaa, x~aa), and F ( x l ,  x~) ~ x l .  The string a 9 
is obtained: 

cr , f (a ,  a) ~ f ( a  4, a ~) ~ F(a 9, a 5) ~ a 9 

Theorem 4.1. The family WR8 is contained in the family of indexed 
languages. Given a normal regular-based grammar  G, we can construct a OI  
macrogrammar  G such that L(G) = L(G). 

Proof. We can assume that G = (VM, Ve, 27,, PM, P~,, ~) is factored. 
Let V~ = {A1 ..... An}. Each metavariable A~ will become an n-place function 
letter in (3 and each protovariable Z will be represented in (; by  a zero-place 
letter Z and an n-place letter 2. We shall generate in C, terms such as 
A~(~ .... , an) where each c~ is in LA~ and G is currently applying a production 
to ( ~ ) .  The idea is that  a hyperrule such as (A~) -~ aA2(A~aA2Az) with 
LA~A~A ~ C_ LA~ would become a macroproduction 

Al(x l  , x2 , x~) --+ a x i A l ( y 1 ,  y., , xlax2xl)  

and the y~ would generate members of LA~ �9 This will not quite work- -we  need 
outside-in derivation to make proper duplicates but in order to expand y~ 

f irst ,  we would have to use inside-out derivation. So our construction must 
become more complicated. 

Let T be the set of  all vectors (Bz ,..., Bn) with each B~ in VM �9 Let 
V = {xl ..... x~} and 

I = { A ~ , A ~ . t ] I  ~.-i ~ n , t ~ T } u { S o }  

U { Z ,  2 , 2 ~ ]  Z e  Vp --  Z , t ~  T} ~A(S,S~l t ~  T} 

with p(A~) = p(A~.d = p(2)  = p(2~) = n and p(Z)  = O for A~e  VM, 
Z ~ V ~ , - - 2 : ,  t ~ T .  Now a term A~.~(~ .... ,oh) with t = ( B z  ..... B,)  but 
B~ = Ai will mean that we want to expand ( ~ )  next, ~ is in L e  for i 4: j, 
and we are trying to expand =~ to a member  of  LA~. 

The macroproductions that simulate PM are relatively easy to state. I f  
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1 ~< k ~. n, t = (B~ ,..., B,,) e T, Bk - :  A~. but Bi is arbitrary l\~r i : k. 

then we need all possible product ions 

where t ' =  (C1,..., C,,), C k -  Bk--  A~., Yk-= x~,  and for i-.~ k either 
C~ =- Bt and  yi = x~ or  else y~ = wx~ and C~ --,- wBi is a metaproduct ion  
in PM �9 We also need for to = (Az, A2 ,..., A, )  the product ion 

Ak,to(xl ..... x,~) --+ Ak(xl  .... , x , )  

Similarly, for  Z e Vp --  X and t = (B~ .... , B,)  we need all product ions 

1. Z - -~  2~(wl .... , w,O where B j - *  w j ,  wj e Vp ~ f o r l  ~ j ~ n .  

2. 2~(x~ ,..., x , )  - ,-  2 t , (y~  ,..., y , )  where t ' =  (C~, . . . ,C , )  and for  
1 ~<j ~ n  either Cj---=Bj and yj = xj or  else yj =-w~x3 and 
Cj --,- w~Bi in PM. 

Fo r  to = (A1 , . . ,  A , )  we need 2to(X1 ,..., x,O --," 2 (x l  .... , x,O. 
Each hyperrule in Ph yields a number  o f  macroproduct ions .  Instead o f  

giving the general form, which would bristle with subscripts, let us give 
two examples, for n = 3. Suppose Ph contains 

<A2} --~ A~a<aAzA2) b<A3A2a}A1 

and LaAzA 2 C_LAx and LAaAoaC_ LAz. Then we have all possible macro-  
product ions 

A2(xz , x2 , x~) --~ x2aAz,t(axlx2 , u2 , u~) bA2,~(vl , x~x2a, v~)xl 

where t = (A1, Be,  B3); r = ((71, A2, C3); vl ,  vs,  u2, u~ e Vp+; and B2 --+ u~, 
B3 -+  u~, (71 --+ v l ,  and C~ --~ v3 are in PM" Similarly, if Z ~ Vp and we have 
a hyperrule 

Z ~ aA2<bA~Azb> A~Z 

with Lc~zAzb CC L % ,  we have all possible macroproduct ions  

2(x~ , x~ , x~) --~ ax2A~a(uz , uz , bxzxzb) x~Z 

with t = (B1, B2, A3); uz, u~ e Z+; and Bz --+ uz,  B2 -> u2 in PM �9 
The reader can verify tha t  the OI  mac rog rammar  so constructed 

generates L(G). [] 

Corollary. WRB is properly contained in the family o f  context-sensitive 
languages. 
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A language L in WRB is, as we saw, context-sensitive and so can be 
recognized by a nondeterministic multitape Turing machine which needs 
at most E w ] tape squares to accept w. In fact, L can not only be recognized, 
nondeterministically, in linear space but also in linear time. For IVR~ is 
contained in 22, the family of languages accepted in realtinw by nondeter- 
ministic multitape Turing machines. Languages in Y are called quasireahhne. 
More rigorous definitions of multitape Turing machines, nondeterminism, 
realtime, and quasirealtime can be found in Ref. 8. 

It seems plausible that containment in 22 should be a consequence of the 
last theorem. We conjecture that the indexed languages are indeed quasi- 
realtime. However, to the best of the author's knowledge, this has never been 
established in print and must be considered to be an open question. Thus 
WRB _C .~ requires an independent proof. 

We shall not give the full proof  that WRB _C ~, since it is very long and 
would lead us far afield of our goals. Instead we content ourselves with 
sketching some of the ideas that make the proof "work."  

Theorem 4.2. WR~C_22; given a normal regular-based grammar G, 
one can construct a nondeterministic multitape Turing machine to accept 
L(G) in realtime. 

Proof. We only outline the necessary construction. 
First, the results in Refs. 6-8 indicate that to show L in 22 it suffices to 

exhibit a nondeterministic multitape Turing machine M and an integer k 
such that M generates L and M generates ~' in time k I w ',. That is, linear time 
is no more powerful than realtime for nondeterministic Turing machines. 
The results of Refs. 8 and 18 show that, without loss of generality, we can 
let M have any finite number of working tapes and any finite number of 
read-write heads per tape. Thus, using auxiliary two-headed tapes, we can 
copy and duplicate without loss of time. 

We can assume L = L(G) for a reduced, factored, lossless, normal, 
regular-based W-grammar G = (VM, Vp, ~, PM, PJ,, or). The idea is that 
in any cycle M selects a hyperrule 7--+Y, a metaassignment h, and a 
production 11(7) -+ tl(y) and applies this to h(7 ). What is involved in obtaining 
t1(3') from y? Since each GA is regular, one can, nondeterministically, select 
h(A) ~ LA in the time it takes to write ! h(A)], thus checking that h(A) ~ LA 
causes no loss of time. If A appears twice in y, then M must duplicate h(A). 
By using an auxiliary two-headed tape, Mcan write h(A) h(A) in time 2 [ h(A)!. 
It will need at most ] VM E such tapes; at the end of each cycle M can erase 
these tapes at the cost of doubling computation time. 

The organization of this simulation is of some importance. There are 
three main tapes, TL for the left part of the generated string, TR for the 
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right part, and TC for the current section to be expanded. I f  a protovariable Z 
is being expanded, there is no problem selecting which hyperrutes are legal. 
I f  (w) is to be expanded, the contents of TC are written as (AWA) where 
w ~ LA ; by suitably recoding one could write this in I w [ tape squares. Thus 
M can select a hyperrule (B)  -~ y for L~ = LB without testing whether 
w E LB. Since G is factored, if (fi) appears in the right-hand side of  a 
hyperrule, M knows at once the set V~ --  {A ~ V~r I L~ C LA} and knows that 
if A r V~, then h(/3) ql LA for any metaassignment h. So M can select at 
random A EVe and write (Ah(~)A) without inspecting h(~). This is a vital 
point. The other point is that since G is lossless, when (w) is expanded w 
remains behind in some form or other. 

The order of  expansion is of some significance. When the production 
applied is Z ~ h(y) for Z E Vp --  27 and h(y) ~ 27+, it does not matter which 
part  of h(y) is expanded next, so select the teftmost. That  is, if y ~ uyv, 
u ~ Z +, and y ~ (Vp --  27) t9 {(w) t w EVe+}, put u on TL, v on TR, and the 
appropriate encoding of (w) (i.e., (AWA) for w e LA) on TC. I f  the hyperrule 
is (A)  -+ y, there is a slight catch. I f  y = x(uAv)Z  and TC contains (AWA) 
(or (cWc) for L.~ = Lc), write h(x) on TL, h(z) on TR, and (~h(u)wh(v)B) 
on TC for LuA~ C L~.  Now the latter operation need take only L h(u)! + ! h(v)] 
steps because TC can also be a two-headed tape, and because M does not 
have to scan h(u) wh(v) to know that it is in L~.  

One other point should be mentioned. I f  the hyperrule ~ ~ y yields a 
production with h(y) ~ ~+, M must guess whether or not TL has anything 
left to expand. A wrong guess will cause M to block. I f  M guesses that TL 
has nothing to expand, it puts h(y) on the right of TL and it transfers 
terminal symbols from the left of TR to the right of TL until it hits 
~] = Z ~ g p  - -  ~ o r  ~2 = ( A W  A) .  Then it puts a barrier ~ on TL and puts 7 
on TC. On the other hand, if M guesses TL contains a suitable ~, for 
expansion, it puts h(y) on TR and transfers terminals from the right of TL 
to the left of  TR until either it empties TL or it encounters the barrier [] or 
it finds 7. In the first two cases M blocks. In the last case M puts y on TC 
and continues. This avoids repeated shuttling of symbols between TL and 
TR--once  a symbol goes from TR to TL it can never be moved until the final 
cleanup. 

Finally, the process starts with cr on TC and TL and TR empty and ends 
when M guesses that only terminals remain. A wrong guess means a block. 
In the final cleanup M transfers TL and TR minus barrier []  onto an output 
tape. Since there can never be more barriers than terminals and since TL 
and TR could have two heads, this takes at most 2 T w ] steps for an output w 
and so at worst increases the linear factor by one. The way to see that the 
process is linear is t o  count not the steps per cycle but the number of times 
a symbol is "handled" (created, transferred from TR to TC, etc.), recalling 
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that G is lossless; in the worst case no symbol is handled more than eight times 
before yielding a new terminal on the output tape. [] 

Corollory 1. Each member  of Iu can be expressed as the nonerasing 
homomorph ic  image of the intersection of three context-free languages. 

Proof. This is true of  .~.~s~ []  

Corollary 2. WRB iS contained in the family of deterministic context- 
sensitive languages. 

Proof. This follows from Corollary 1, since the family of  deterministic 
context-sensitive languages is closed under intersection and nonerasing 
homomorphism.  []  

5. N E G A T I V E  RESULTS FOR WRB 

We have examined what normal regular-based grammars can do, what 
useful normal forms and reductions apply to them, and how easy they are to 
generate or recongize. Now we discuss their limitations. First we exhibit a 
language in W~s - -  WR and then notice that the same arguments can exhibit 
a language in . ~ -  WRg. The languages are those of  Examples 4 and 5. 
Then we discuss briefly the closure properties of  WR~ �9 

Theorem 5.1. The language L = {az'~a2'~a3~'a4 '~ ] n .~ 1} is not in WR �9 

Proof. The proof  turns on some implications of  the structure of  L. First 
notice that if L contains a subset {uzvl'~u2v2"u3v3'~u~ in  ~ 1}, then we must 
have Vl = v2 -= v3 = e for we cannot alter the occurrences of  three symbols 
and leave the fourth unchanged. A fortiori, L cannot contain an infinite 
context-free or an infinite regular subset. ~5) 

Part  of  a word in L may uniquely determine the rest. Given a word u 
containing az ,  there is at most  one v such that uv is in L. Hence if uvz and uv2 
are in L, vz = v~ ; similarly, u~v and uzv in L implies u, = u2 if v contains a3. 
The situation regarding middle sections is slightly more complicated. I f  w 
contains three distinct letters (i.e., w ~ az+a2+aa + u a~ +a3+a4 + • a~+a2+a3+a4+), 
then there is at most  one u and one v with uwv in L. I f  u contains two letters, 
then uwv c L uniquely determines wv and similarly for v and uw. So if any 
three o f  u~w~v~, u~w~vz, and u2w~v2 are in L, either wl = w~ or 
(u~, vl) = (us,  v~). 

We also need the fact that although duplication does not preserve 
regularity in general, if  R is regular and R _C w* for any word w, then 

Dup(R, k) = {yk [ y c R) 

is regular for any k >~ 1. Also note that no subword with more than one letter 
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can be duplicated in L, so if we use a hyperrule with two occurrences of a 
metavariable A, we may as well assume that L~ _C a~+ for some i. 

I f  L is in Wg, we can assume that L = L(G) for a reduced, factored, 
lossless, normal,  regular-based grammar  G = (VM, V~, Z, PM, Ph,  ~) such 
that  the rules of Pn are of  the forms 

--~ w, V - +  u(w>, 7, --* u Y  

f o r w ~ ( V i w Z ) + , u E ( V g W Z ) * , a n d v E  Vv - -  Z o r  7 = ( A > f o r A E  V M. 
Observe that since G is lossless and factored, if (wl> ~ * z, z ~ 2:+, and 

w i E L A , then z can be factored z = zlwzz2wl "" z~wtzk+~ in such a way that 
for any w2 ~ L A ,  (w2> ~ *  ZlW~Z2 "'" ZkW2Zk+l and k = 1 if no duplications 
occur. Also, if (wi> =~* (UWlV> without duplications and w~ and uw~v ~ L ~ ,  
then (wi) =~* (UnWl v'n) for all n >~ 1. 

First we show that a is really the only useful protovariabte in G. For 
Z ~ V e - - Z , A ~  V i , a n d w e L A , l e t ~ v ( Z )  = { ( u , v )  lu, v ~ Z  + , a  ~ * u Z v } .  
Now protovariables behave like nonterminals in an ordinary context-free 
grammar,  so L(G) contains uL(Z)v  for each u, v ~ 7r(Z). Because G is reduced, 
L ( Z )  ~ ~ .  v~ zr(Z), either~r(Z) = {(uo, Vo)} [i.e., I ~r(Z)i = 1] or L(Z)  = {wo} 
[i.e., ] L(Z)I  = 1]. In the first case we can add {~ ~ uoyvo I Z --~ y is in Ph} 
and then remove Z from G. In the second case we can replace Z by w o on the 
right-hand side of hyperrules and eliminate all hyperrules containing Z; 
however, if Z appears in a word of LA and A appears in some (8>, we may 
have to add Z- -~  % as the only hyperrule involving Z. In the latter case 
we regard Z as a specially tagged version of w 0 and so, in effect, in 2+. Thus 
in the subsequent argument we lose no generality by assuming Vp = Z' u {~}. 

Recall that a metavariable A appears independently in a hyperrule 
--+ y i fA appears in y but not in 7- We now observe that we can assume that  

metavariables do not appear independently in hyperrules of  G. Suppose 
a - - ) - U l A  "'" u k A u k + l ( f l )  and A does not appear in ui .... , uk+i or ft. As 
mentioned before, if  k / >  2, we can assume that L,~ _C a~+ for some i and 
rearrange the rule as cr ~ uxu2 "'" ukA~:U~+l ( f l ) .  For  metaassignment h and 
(h(fl)> ~.. * w, w ~ Z +, h(uz ... uT~) Dup(L~ ,  k) h(uk+l)w is an infinite regular 
subset of  L(G), a contradiction. Suppose cr --~ u(fl> is a hyperrule and u and ]3 
contain A. As before, we can assume u = ui A~ and fl -~ A~fll where k, r ~> I 
and A does not appear in u~, u~, or fli- I f  (wx~h(fli)> ~ *  z ~ ~+ for wi ~ LA 
and a metaassignment h, we can factor z = zzwt ~ ... z~w~z~+x such that  

<w~"h(~l)> *~ z l w ~ ' " z , w 2 % + ~  

for any w~ E L~ ,  and zzw2 ~ .... z~w~z~+i ~ w~z l  "'" z~+i. Thus 

h(ul) Dup(L~ ,  k 4- rs) z l  ... z~+l 
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is an infinite regular  subset  of  G. By examining  the case ~ -+  u(/3) where A 

appears  in fi but  not  u and all the cases \ B  \ -+  v where A .... B and ,4 appears  

in y, we find in all cases, if G conta ins  a creat ive hyperrule,  then L(G) 
conta ins  an infinite regular  subset  of  the form x D u p ( L , .  k ) y  where 

LA C a /  for k ) 2. Hence we can assume that  no metavar iab le  appears  
independent ly  in a hyperrule.  

W e  can also e l iminate  rules ( A )  ~ u(f l)  where A does not  appea r  in ft. 
As  noted,  we can assume tha t  u e ( I  w {A}) + and f i e  I +  Suppose  there is a 
me taass ignment  h and a str ing v e l  + such tha t  ~ * *  v(h(A)) .  Then  
vh(u)L(~)  C_ L(G). Ei ther  i L (~ ) I  = 1 or  there  are unique v and h with 
c~ ~ *  v (h(A)) .  In  the first case we replace ( A )  --~ u(f i )  by ( A )  --~ uw o for  
L(/3)  = {Wo} and in the second case we remove ( A ) ~  u(/3) and  add  

- ,  vh(u)<~>. 

Thus  we can assume tha t  G conta ins  only hyperrules  o f  the forms 

~r --~ w, cr --+ u(w)v ,  ( A )  .--+ xAy ,  ( A )  --, x(v~Av~) 

for  w ~ 1+;  u, v e Z* ;  x, y, u 1 , V 2 ~ (.S k) {A})*. In the last  case we can assume 
vlv~ ~ e, for  x = v~ = v~ = e would  be t r ivial  ( ( A )  --+ ( A ) )  and  v~ = vz = e 

but  x v a e would,  if  used, p roduce  an  infinite regular  subset  o f  the fo rm 

W1X*W 2 

Since L(G) = L is infinite, there mus t  be a w e I + such that  L (w)  is 
infinite and  ~ --~ u ( w ) v  is a rule. Any  der iva t ion  f rom ( w )  mus t  look  like 

for  ui ~ I * ,  w~, x ~ l + ,  where each w~ is a p rope r  subs t r ing  o f  w ,  and  for  
each i we can fac tor  x as x = x~w~ ... x~w~x~+l where i f  w~, v are in LA,  then 

( v )  ~ *  XaV "" x~vx~+~. Since there are no independen t  metavar iab les  in P~ ,  
there  are only finitely m a n y  der iva t ions  o f  size n f rom (w) .  Since VM is finite, 
i f  L ( w )  is infinite, we mus t  have 

0) 

for  w l ,  w2, x ~ I ~  ; u~, u~ e Z'*; and  wl and  w2 in LA for the same meta-  
var iable  A. Then e ~ *  uu~(wl)z, ( w l )  ~ *  u2(wz), and  (w2) ~ *  x. Fur the r -  

more ,  w2 = v~w~v~ , v~v2 v a e, and x = xlw2kx2 where ( v )  ~ * xlvkx2 for  any  
v in LA.  I f  wl conta ins  two or  more  letters, no dupl ica t ions  occur  in the 
der iva t ions  f rom ( w l )  and  (w2) and  k = 1. Then  {uulu~'~wlv2'~x2z I n ~ 1} is 
a subset  o f  L for  v~v~ :/= e, which is impossible .  

I f  w2 = ai ~, then w~ = a~ ~ and  1 ~< r ~ s. In  this case L conta ins  bo th  
uuix~a~kx2z and  uu~u~x~agkx2z. I f  uu~ or  a~x2 con ta in  two or  more  letters,  the 
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middle of the string is determined, so u2xza~ k = xlair~, which is impossible 
since the words have different lengths; otherwise, xla~ ~ contains three or 
more symbols, so uut --  uulu,, and x,,z - a~t'>~kx2z, which is also impossible. 

Thus if wl contains two or more letters or w,, contains only one letter, we 
obtain a contradiction. Notice that once the bracketed portion of a derivation 
has two or more letters, this condition persists. Hence if there is a derivation 
f rom (w) of length 21 Feet[ -q- 3 or greater, then (1) must occur with wl 
containing one letter. Thus derivations from (w)  cannot be longer than 
21 VML + 2. This contradicts the fact that L ( w )  is infinite. D 

Corollary 1. WRB- WR ~ ~. 

Proof. Example 4 shows that L is in WR~ �9 

Remark. The argument above shows that if f l  ,.f2 , f3 ,  andf~ are strictly 
increasing functions from the positive integers into the positive integers, then 
WR cannot contain any infinite subset ~,~ ~r ~,x~h(")~(n)~f-~('~)"~,(~),z- -a- -4 In >~ 1}. 

I f  we add one more coordinate, as ,  we can use the arguments of 
Theorem 5.1 to show that the resulting language is not in WR~. 

Theorem 5,2. The language f, = {al'~a2'~a~'~a4'~as'~ln ~ 1} is not in 

WRB- 

Proof. We adopt  the argument in Theorem 5.1. Note that our remarks 
on the structure of  L also apply to/2 and in addition if{uav~"u2v2'~uzva~u4v4'~u51 
n >/ 1} C /], then vx ~ v2 = v3 ~ v4 = e. 

I f s  is in W~n, we can assume L = L(G) for a reduced, factored, lossless, 
normal,  regular-based W-grammar G = (VM , Ve , 2 ,  PM , Pn , or) obtained 
using the constructions of Theorems 3.1 and 3.2. 

First we notice that at most  one variable per hyperrule can be "usable." 
Suppose cr ~ *  u l (wl )  u2(wz)u3 for u l ,  u2, u3 ~ 2 " ,  W1, W 2 E: Vp +. Then 
u l L ( w l )  u~L(wz}uz C L so either ] L(wl)[  ~ 1 or ] L(w2)[ = 1. I f  x a L ( w )  
and w ~ L ~ ,  there is a factorization x = xxw' . . xkwx~+~ such that 
xaw' "" x~w'x~+z is in L ( w ' )  for all w' in L~. Hence if L ( w )  = {x}, we could 
replace (t3) in a hyperrule by Xlfl "'" x~x~+~.  So if G has a hyperrule 
"Y - +  Y~<fll) y~{/3z) y~, there is either a string c~ ~ (V~ w V~)+ such that we 
can replace the hyperrule either by ~ --+ y~(/3~) y~o~y~ or by y -+ y~yz ( f i~ )  y z .  
Similarly, if ~r ~ *  uiZuzYu a for Z, Y ~  V e -  ~ ,  either I L(Z)I = 1 or 
t L(Y)I --=- I and analogously for cr ~ *  UlZU~(W)U ~ or ~r =,* ua(w) u~Zua. 

We can eliminate protovariables and independent metavariables f rom 
hyperrules, using arguments analogous to those in the proof  of  Theorem 5.1. 
We can finally conclude that the hyperrules of  G are in the forms 

c~ ~ w, ~ --, u(w)v ,  ( A )  -+ u~(v~Av~)u~, ( A )  ~ uiAu~ 

for w ~ Z'+; u, v e Z*;  Ul ,  U 2 ~ ( S  k.J {A})*; [1/) 2 e ( ~  t )  {A})+, 
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Again we observe that we must have L(w)  infinite for some w ~ Z'+ 
with a ~ u ( w ) v  in Ph. Hence there must be arbitrarily long derivations from 
(w) and so derivations of at least 2 I VM I + 3 steps. But such a derivation 
can be divided: 

(2) 

where Ul, uz, wl,  w2, z1  , 2"2 , X ~ .~Y~*, W 1 , W 2 ~ LA for some A, and either 
w2 = aft or Wl contains two or more letters. We can factor x :=- xlw2~'x~ so 
that  ( v )  =>* xlz~x2 for each z e LA. 

I f  W~ = aft, then w~ --- a~ ~ for 1 ~ r ~< s and both uu~xla~~x.~v~v and 
uu~u2x~a~x2v~v are in s To avoid the sort of  contradiction we obtained 
before, we must have uu~ ~ a~*, v~v E as*, i = 3, Xl ~ a2+a3 *, and x2 ~ a3*a4 +. 
We must have u2 ~ az+a2 + and v., ~ a4+as + to balance the increase in the a3's. 
But since w~ = az ~ ~ LA and any duplications in (az ~) ~ * u2(a3')v~ must 
take place wholly within brackets, we have (az ~) ~ *  uz(a~t)vz for some 
a3 ~ ~ L A . But then uu~u~u~xza~x~v~v~vzv is in L, an obvious contradiction. 

On the other hand, if Wl contains two or more letters, no duplications 
occurred in (w~} ~ *  u~(w~}v2 or (w~) ~ *  x~w~x~, k = 1, and w~ = zzwzz~, 
v~v~ ~ e. Then we have 

{~2bll~12nXlZl~WlZ2nX2U2"l)lV ] n ~ 1} _C/~ 

a contradiction. 

Corollary 1. WRB C ~.  

Corollary 2. WRB is properly contained in the family of index languages. 

Proof. The language L is clearly generated by the macroproductions 
S --+ F ( a l ,  as ,  a3, a4, as), 

and 

F ( x 1 ,  x~ , x z  , x4  , xs) --~ F ( a l x x a e x 2 a 3 x 3 a 4 x 4 a s x s )  

F(XIX2X3X4X5)--->X1X2X3X4X5 [ ]  

We conclude our discussion of normal regular-based W-grammars with 
some brief comments on their closure properties. Roughly speaking, WRn is 
closed under operations involving symbol replacement but not under those 
depending on the order of  symbols. Thus W ~  is closed under nonerasing 
homomorphism,  substitution, and nested iterated substitution but not under 
intersection with regular sets. 

Definition 5.1. A homomorphism h is nonerasing if h(w) v~ e for w :~ e. 
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De~nition 5.2. Let Z be a finite vocabulary. A substitution -: on Z* is 
defined by associating a language ~-(a) = La to each a ~ Z, extending r to Z* 
by r(e) = {e} and ~-(xy) = r(x) ~-(y) for x, y c X*, and finally for L ~ Z*,  
letting ~-(L) = Uw~z ~-(w). The substitution ~- is nonerashTg if e r ~-(a) for each 
a s Z;  it is nested if a ~ ~-(a) for each a E Z. A family of languages N~ is closed 
under nonerasing substitution if whenever L e L~', L C Z*,  and r is a nonerasing 
substitution with ~-(a) E ~ for each a ~ Z, then ~-(L) ~ SF. 

Definition 5.3. Let Z be a finite vocabulary and ~- a substitution on X*. 
I f  ~'(a) _C Z* for each a c Z, and L _C X*, let T~ = L, and ~-"+I(L) = ~'(rn(L)) 
for n >~ 0. We call ~'~(L) = Un~>z ~-"(L) an iterated substitution and if ~- is 
(nonerasing) nested, then ~ is a (nonerasing) nested iterated substitution. 
A family of languages 5(' is closed under (nonerasing) nested iterated substi- 
tution if whenever L e ~ ,  L __C Z*, and -r is a (nonerasing) nested substitution 
with r(a) C Z* and ~-(a) e SF for each a ~ Z, then T~(L) is in ~e. 

Theorem 5.3. The family WRB is closed under nonerasing substitution 
and nonerasing, nested, iterated substitution but not under intersection with 
regular sets. 

Proof. Let L ~ WRB, L C Z +, and let r be a nonerasing substitution 
such that  ~-(a) ~ WRB for each a E Z. We wish to use the same sort of con- 
struction as for context-free grammars. However, we must use distinct 
terminals as well as distinct variables in order to prevent using a production 
available for ~-(a) while generating a word in r(b) for a :~ b. So we "pa in t"  
~-(a) and ~-(b) different "colors."  

For a, b ~ Z (a, b may be equal or unequal) let (a, 1) and (a, b ) b e  
new symbols. Let h and hb be homomorphisms given by h(a) = (a, 1) and 
hb(a) = (a, b) for a ~ X. Let Zb = {(a, b) I a ~ Z} and Z 1 = {(a, 1) I a ~ Z}. 
Now renaming all symbols with new and distinct names obviously does not 
affect membership in W~B. Hence the language L~ = h(L) is in WRy, as are 
the languages La = h~(r(a)) for each a ~ Z. 

So we may assume we have normal regular-based W-grammars 

G1 = (VM,1 , gP,1,21, PM,1, eh,l, o'1), 
a,~ : (vM.o , v,.o, , & , PM.o , ~ . ~  , ~ )  

such that L~ .... L(GO, L,, = L(G~) for a ~ Z' and 

fora, b ~ X , a  @b. 
To obtain (7 such that L(G) = ~-(L), we let G have as metaproductions 

PM ~--- PM.1 U PM,,~ 
ct~ 
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and as hyperrules 

Then. 

and 

�9 Ph = Ph,1 U Pl,,a I0 {(a, i) --+ g. i a ~ Z'} w {(a, b) --+ a i a, b ~ Z}  
a6:Z 

v-~= v~. ,U  vM .... v,,:-- v,,., U v,,.ouz 
a~Z  a~X' 

If  r is nested, then we obtain O with L(G) = r~ (L )  by selecting as 
hyperrules 

tsh = Pt~ w {(a, 1)---> a ] a e Z }  o {(a, b) --~ ~ l a, b ~ Z }  

we let G = (VM , Vp , Z ,  PM , Ph , ~0" 
We show that WRB is not closed under intersection with regular sets by 

recalling that L = {a~"az"aa~a4"as n [ n ~ 1} is not in WRB. On the other hand, 
let Z = {az, a~, as,  a4, as} and 

L = {xzazx2a2xaaax4a4xsa~ I 3n ~ O, Vi, [ xi  I = n, xi  ~ Z*} 

and R = al+az+a3+a~+as + . Then L = L 1 n R and R is regular. But LI can be 
generated by a normal regular-based W-grammar with metavariable N, 
protovariables ~ and Z, metaproductions N ~ Z ,  N ~ Z N ,  and hyperrules 

--+ ( N } ,  ( N }  --~ NazNa2Na~Na4Na~, ~ -§  ala2a3a4a~ 

and 

Z - - + a i  for 1 ~ < i ~ 5  U} 

6. S IMPLE W - G R & M M A R S  

A W-grammar is simple if it is s t r ic t - -each  LA C Z~---and it is unary--  

whenever (/3} appears anywhere in a hyperrule then fi = A for a meta- 
variable A. Let Ws be the set of all languages generated by simple W- 
grammars. It is evident that Ws --like WRB -- properly contains the family of 
context-free languages; we shall show that WRB is properly contained in 4~. 
We shall also see that WRn and Ws are incomparab le - -WR~-  Ws v L 

and Ws - -  WR~ ~ ~;. Finally, we notice that Ws has no interesting closure 
properties. 

First we observe that�9 W s  contains every language expressible as the 
intersection of two context-free languages. This easy result contrasts with the 
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surprising fact that Ws does not contain certain languages expressible as the 
intersection of three context-free languages! 

Theorem 6.1. If L1 and L2 are context-free, then L1 • L2 ~ Ws .  

Proof. Let L1 = L(G1) and L., = L(G.,) for context-free grammars 
G1 = (V1 ,2 ,  P1,SI)  and G2 = (V2,~r, P2,S2) with V~c~ V., = Z. Let c~ 
be a new symbol and Ph = {e -+ ($1}, ($2} ~ $2}. Then L = L(G) for the 
simple W-grammar 

G = ((Va -- s  u (V2 -- Z'),{cr} u s Z, Pz w Pz,  P,~, or) D 

Corollary 1. The family of context-free languages is properly contained 
in Ws.  

Corollary 2. Ws contains languages that are not indexed languages. 

Proof. The family of indexed languages does not contain every language 
of the form L 1 ~ L 2 for L~ and L2 context-free, m 

Corollary 3. The language L -- {a{~a2'~a3~a4,a5 ~ i n >~ 1} is in WRB - Ws.  

Proof. The language L is expressible as the intersection of two context- 
free languages. 

We shall show that Ws C ~ but the containment is not effective. For each 
simple W-grammar G there is a nondeterministic multitape Turing machine M 
accepting L(G) in realtime, but there is no algorithm to construct M from G. 
Indeed, although each language in'Ws is recursive, each simple W-grammar 
is not recursive in the following sense. 

Theorem 6.2. The question "is w in L(G)" is undecidable for simple 
W-grammars G. 

Proof. For context-free grammars G 1 and G2 the question "L(G~)c~ 
L(G2) = ;~" is undecidable. 15~ We can assume that Gx = (V~, 2,  P~, $1) 
and G2 = (V2, Z', P2, $2) where V1 ~ V2 = Z'. Let or, a be new symbols. 
We can construct from G1 and G2 a set of hyperrules P~ = {~ -~ (S~), 
($2) -+ a} and a simple W-grammar 

a = ((v~ - -  Z') v (V~ - s  {~} w 2 ,  & p~ w P~,  p,~, ~) 

Then a ~ L(G) if and only if L(GO n L(G2) v/= ~.  Thus if membership were 
decidable for simple W-grammars, emptiness would be decidable for 
L(G1) N L(Ge). D 

Despite Theorem 6.2, it is true that W s C.~. If we have a simple 
W-grammar G .... (VM, V1,, ,Y,, PA~ , Ph , or) and let 7r(S) = ()Ar LA for 
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S _C V~,  then if we were given the set 5Pc = {S 2 V~ i ~r(S) @ ~ }, we could 
construct a nondeterministic multitape Turing machine to accept LfG) in 
realtime. Unfortunately, there is no algorithm to locate 5"a given G. 

Let us see what could be done if a "birdie" told us the membership 
of o%. 

Theorem 6.3. Ws C_ ~A. Given a simple W-grammar G = (V~ ,  ~ ) ,  2`, 
PM, Ph,  ~) and the set 5~G = {S C VM i OA~S L~ v ~ ~}, one can construct 
a nondeterministic multitape Turing machine to accept L(G) in realtime. 
I f  G is lossless, it is not necessary to know 5Pc. 

Proof. We only outline the necessary steps. As in the proof  that 
WR~ _C. ~, it suffices to construct a nondeterministic multitape Turing 
machine M to generate L(G) in linear time--i.e. ,  there is an integer k such 
that if W ~ L(G), M generates W in at most k I w I steps. 

The machine M has as before a tape TL for the left part  of  the derived 
string, a tape TR for the right part, a tape TC for the current protovariable 
or hypernotion being expanded, and up to E V~ ] auxiliary two-headed tapes 
for duplicating, and up to I VM] extra pushdown store tapes to check 
membership in each 7r(S). On TC, M will have either Z for a protovariable Z, 
or (S, w) for S e 5ca and w e rr(S) or S for S ~ ~c  �9 

Whenever M wants to apply a production ~,. ~ y with y ~ Z'-  it again 
guesses whether TL has any substrings to be expanded (protovariables or 
hypernotions). I f  it has none, M puts y on the right of TL and transfers 
terminals from the left of TR to the right of  TL until it hits a protovariable or 
hypernotion ~, whereupon it places a barrier []  on TL and puts ~7 on TC. 
I f  M guesses that TL has a substring ~/to expand, it transfers terminals from 
the right of TL to the left of TR until either it finds ~ and puts r] on TC or 
it hits a barrier or empties TL, in which cases M blocks. 

Suppose M has a protovariable Z on TC, and selects a hyperrule 

Z ~ uo(A1) "'" um-l(Ar~)U~ 

I f m  = 0 and uo ~ (2, w VM) +, M selects a corresponding production Z --+ uo' 
for Uo' ~ .S + and behaves as above. I f m  = 0 but u 0 contains a protovariable Y 
and the corresponding production is Z --+ Uo' Yuo , M writes u o' on TL, u o on 
TR, and replaces Z by Y on TC. I f  m >~ 1, M selects a metaassignment h, 
puts h(uo) on TL, Yl on TC, and h(uO~'2 "'" h(u~,_O 7~um on TL where for 
each i either 7~ = S~, A~ e S~, h(A~)~ ~r(SO, and S~ ~ 5e~, o r  else 7~ = 
(S~, h(A~)), h(A~) c rr(S~), A~ ~ S~, and S~ e 5~'~ ; if A~ = A~, then S~ = S~. 
Notice that if A; does not appear in any u~ and whenever A~ = A~ then 
y~ == S,:, there is no need to compute h(A~); it suffices to select any S i e  S~'~ 
with A~ e Sz. Also, each 7r(S) is quasirealtime (~ so (S~, h(A~)) can be written, 
suitably encoded, in time I h(A~)]. 
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I f  TC contains (S, w), M selects a lossless hyperrule 

( A )  --+ uo(Ax) "'" u,~_z(A,,)u,,~ 

(A appears on the right) with A e S and a metaassignement h such that 
h(A) = w. I f  m = 0, M behaves as above. I f  m = 1, there are three cases. 
Suppose A is one of  the Ai ; M selects any r with Ar = A. I f A  does not  appear  
in any Us, M places h(Uo) 71"'" h(u,._l) on the left of  TL, leaves 7,. = ,/S, w) 
on TC, and puts h(ur) 7~+1 "'" h(u~,~_a) y~h(u,,) on TR, where the 7~ are selected 
as before; on the other hand, if A --  A~ and A appears in some Us, M either 
behaves as in the previous case, or puts h(uo) on TL, 71 on TC, and 
h(ul) "" h(um) on TR where in this case Ys = Sr whenever At = A = A,.. 
I f  A~ v ~ A for  all A but  A appears in some us, M puts h(uo) on TL, ),~ on TC, 
and h(Ul) "" h(u,~) on TR where the y,. are selected as before. 

I f  S appears on TC for S e 5fc., M selects a hyperrule 

( A )  -~ Uo(&) "'" u,,,_l(A,,)u,,~ 

with A ~ S such that A does not  appear  in any us. I f  m = 0, M behaves as 
before. If  m ~ l, M selects a metaassignment h. I f  At = A, M leaves 7,- = 
on TC, puts h(uo) ~, ... h(ur_O on TL and h(ur) Yr+l "" h(u,,) on TR, where 
now ~'s = .? whenever As = A = Ar .  I f  A; v~ A for all i, M p u t s  h(uo) on TL,  
~1 on TC, and h(uO "'" h(u,,) on TR. 

The impor tant  point  here is that  we use S as a new protovariabte 
substituting for (A)  when A e S and we guess that  no product ion subse- 
quently applied to (h(A))  will "deposi t"  h(A) in unbracketed form. In such 
a situation we do not  need to know h ( A ) - j u s t  the hyperrules applicable to 
(h (A) )  and this informat ion is given to us by g. When  we use S instead o f  
(h (A) )  we say that  h(A) ~ LB for all B ~ S and guess that  we will never use 
a hyperrule starting with ( B )  for B r S. Thus in effect we treat G as if it 
were lossless. Since we can verify a guess that  w ~ ~(S) in the time it takes 
to write .(S, w), the same argument  as before (Theorem 4.2) shows that  M 
operates in linear time. 

N o w  we examine some of  the limits on simple W-grammars.  On the one 
hand, simple W-grammars  can generate the intersection o f  two context-free 
languages and so can generate languages which are no t  indexed languages.m 
On the other hand, we shall see next that  certain subsets of  a * - - s u c h  as 
{a ~ ] n >~ 1} and {a 2" ] n >~ 1}--are in WRn and even WR but  no t  W s .  

Theorem 6.4. Let L _C a* be in Ws �9 I f  L is infinite, it contains an infinite 
regular set. 

Proof. Let L = L(G) for  the simple W-grammar  G = (VM, Vp, Z, 
PM,  Ph ,  ~) and assume L _C a*. First, since the context-free languages are 



320 Greibach 

closed under intersection with regular sets, we can assume that for each 
A ~ VM either LA _C a + or else LA _C L'*(Z' --  {a}) Z'*. Second, if LA C_ 
Z * ( Z -  {a})Z*, then for any hyperrule 7 - ~  u0<A~> "'" u,,,_l<A,,,\u,,~ either 
the rule is never used or A cannot appear in any uj.  T h u s  \A \ could be 
replaced by protovariables SA for A ~ S..~ , S.t C V,u , and S ~ ~ ,~/i; where ~'i: 
is as before. Hence there is (but we may not be able to find it) an equivalent 
W-grammar with each LA C a +. But a context-free subset of a* is regular. ~la) 

Since we are only interested in an existence proof, we may as ~ell assume 
that G is regular-based as well as strict and unary and so, by Theorems 3.1 
and 3.2, also factored, lossless, and reduced. 

Suppose that L does not contain an infinite regular set. If  A is a meta- 
variable appearing independently in a hyperrule, the arguments of  
Theorems 5.1 and 5.2 show that L = L(G) contains a subset of the form 

Wl Dup(LA , k)w2 

for wa, w~ ~ Z'*, k >~ 1. Since LA C a + and LA is infinite, w~ Dup(LA, k)w2 is 
an infinite regular subset of L. Hence, we can assume that there are no 
creative hyperrules. 

So for any n, G contains only finitely many derivations of length n or less. 
I f  cr ~ * x ( w )  y, ( w )  ~ * u(w)v ,  and (w) ~ * z  for xy  e a*; w, uv, z ~ a+; 
then L contains the infinite regular subset xy(uv)* z. I f  a =~ * xZy ,  Z ~ * uZv, 
and Z ~ *  w for Z e Vp --  Z'; x, y ~ a*; w, uv ~ a+; then L contains the infi- 
nite regular subset xy (uv )*  w. Finally, if cr =,* x ( w i ) y ,  (wit  =,* u(w~)v, 
and (w2) ~ *  wwith Wl r w2 ; x , y  ~ a*; uv, wl ,  w2, w ~ a+; and wa, w.~ ~ LA ; 
then there is a factorization u = UlWlkU2, v = viw~v2 such that (z )  ~ *  
ulz~u2<w2) vlz~v~ for all z e LA . Hence (w2) ~ *  uiw2~u~(w2) 14'lW2/U2 and so L 
contains the infinite regular set xuvw(u~w2~'u~vzwe~v2) *. Thus no complete 
derivation from (r can contain a path of length greater than I VM w Ve ] § t, 
so there are only finitely many complete derivations. Hence L -- L(G) is 
finite. []  

Corollary 1. W ~  and Ws are incomparable. 

Proof. By Corollary 3 to Theorem 6.1, Ws -- We9 # ~ .  On the other 
hand, the language L = {a ~ I n ~> 1} is in W~n (and even W~) by Example 2 
but is not in W s .  [] 

Corollary 2. Ws is not closed under nonerasing homomorphism. 

Proof. Let 

Lz = c{a"ca'~+~c l n ~ 1}* k9 c(anca'~+~c} * a+c 
and 

Lz = {c} w caac{anca"-'.2c I n ~ 1}* w caac{anca"+Zc I n ~ 1}* a+c 
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and h(a) = h(c) = a. Then LI and Lz are context-free, so L1 n L~ is in Ws but 
h(La c~ L~) : {a"~ I n ) 1} is not in Ws.  ~_] 

We now show that Ws does not contain all intersections of context-free 
languages. 

Theorem 6.5. The language 

L ~a "a "a kb "b '~b ~c nc "c ~' : 1 ,  1 2 3 1 2 3 1 2 3 ] n , m , k ~ l }  

is not in Ws �9 

Proof. Suppose L ----- L(G) for a simple W-grammar G ----- (VM, Ve, Z', 
PM, Ph,  or). The first part  of  our proof  hinges on structural facts about  L 
similar to those employed in Theorems 5.1 and 5.2. First, L does not contain 
any infinite context-free language. Second, if any three of uawlvl, uaw2vl, 
u~wzv 2 , and u2w2v 2 are in L, either w I = W 2 or uz ---- us and vz ----- v2 �9 We shall 
use these facts to narrow down the possibilities until we get L expressed as the 
union of intersections of  two context-free languages, and then use a result of  
Liu and Weiner. t~6~ 

The arguments in the proofs of Theorems 5.1 and 5.2 show that we can 
assume that  G contains no protovariables except e and cr never appears on 
the right-hand side of a hyperrule. If a complete derivation has a subpart 
<w> ~ *  u<w>v for uv ~Z~,  then L(G) contains an infinite context-free 
language, a contradiction. So we can assume that G has no hyperrule of the 
form <A> ~ u<A>v. This is the key observation. 

The role of a hypernotion <w> in a derivation depends on only two 
things. It  must arise from a hyperrule <C>-+  u<A>v with A #: C, i.e., 
A independent and w in L , .  Then the rule applied to <w> comes from a 
hyperrule <B> --+ u0<Az> ... u,,~_l(Am>u~ where Ai @ B for all i and w ~ L~.  
Then (w) disappears. We call A the first metavariable of  (w) and B the 
second. For any other w' in LA c~ Ln,  (w')  could play the role of (w2 in that 
derivation. 

Suppose cr ~ * x(wl)  y; (wl) : -~* u(w2)v; (wz) ~ * w; x , y ~ Z * ;  uv, 
w e Z + ;  and both (Wl) and ~w2) have first metavariable A and second 
metavariable B. Then (Wl) arose from a hyperrule ( C )  -+ ~(A//3, A @ C, 
and a metaassignment h with h(A) = w~, yielding a production, (h(C)) -+ 
h(oc)(w~) h(fl). If we let ha(A) = w2 and h~(D) = h(D) for A @ D, then 
(h(C)) ~ hl(~)(w2) h~(~) is also a production. I f  (w~) appears in ha(a) or 
hz(fl), we can derive w from it and otherwise proceed as in the original 
derivation. Hence, there are x', y' ~ Z* with cr =~* x'(w~) y'. Similarly there 
are u', v' with u'v '~.S* such that (w~) ~ *  u'(w~)v'. Thus L(G) would 
contain an infinite context-free language. 

We can likewise argue that if (wa) :~ (w2) :~ "'" ~ (w~), we can 

8 2 8 / 3 [ 4 - 4  
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assume that n ~<[VM i ' - k  2, for otherwise there is a shorter derivation 
from (wl) to (wn). Hence we can assume that no derivation tree has a path 
longer than p2 + p + 1, where p = [ V~ [-~ + 2. 

We can obtain from a complete derivation in G a skeleton derivation 
tree T as follows. The root of T is labeled e. Instead of a node labeled (w)  we 
have (A, B)  where A and B are the first and second metavariables of  w, 
respectively. I f  the production applied to (w) came from a hyperrule 
( B )  --~ uo(A 1) ... u,,_l(A,n)u,~ and ui ---- Zil "'" Z i ~ ,  each Zi e V:u w 2,  then 
(A, B)  has m + 27i~ o ri sons labeled Z01 ..... Z0% , ( A t  , B 1 ) ,  211 , . . . ,  etc., for 
appropriate B,:. The nodes labeled Zi~- are, of  course, leaves. 

I f  a leaf labeled B has a father labeled (A, B),  then no brother can be 
labeled (B, A1). In this case, to form a member of  L(G), B can be replaced by 
all and only members of  LA n Ls provided all brothers labeled B and uncles 
labeled A are replaced by the same member  of LA n LB �9 Similarly, if a leaf 
labeled B has a brother labeled (B, A),  it can be replaced by all and only 
members of  LA N LB provided the same replacement is made to any brother 
labeled B and to any son of (B, A) labeled A. Now in all these cases if 
members o f  LA n Ln can be duplicated, then LA n LB _C a + for some letter 
a e Z' and the same is true for anything lying in between these duplications. 
Thus we can rearrange leaves so that a leaf labeled B is adjacent to all its 
brothers labeled B; we can also move the duplicated "uncles" or "nephews" 
next to B and replace the whole mess by one leaf labeled Dup(LA n LB, k) 
for an appropriate k. 

I f  a leaf labeled B has no father labeled (A, B)  or brother labeled 
(B, A),  it and its brothers labeled B can be replaced by any member  of  
Ln = LB n Ls.  Again they can be collected and replaced by Dup(L~ n LB, k). 

I f  we read off the labels on the leaves of T, we now get a language 
Lr C L(G) of the form 

LT = Wo Dup(Lz n Lt', k l )  "'" w m - t  Dup(L~ n L~', k~)wm C_ L(G) 

where w~ E ~*,  ki >~ 1, and each L~, L~' is context-free. First, notice that if 
k~ /> 2, then L~ n L~' _C a* for some a ~ Z', and since L~ n a + is regular, 
Li n Li '  and so Dup(L~ n L~', k~) is regular and hence context-free. Thus we 
can in effect assume Lr  is expressed as 

Lr = wo(Lz n Lz' ) ... wm_l(L~ n L~')w~ 

for L~, L~' context-free. 
Next, notice that wi(L~+ 1 n L'~+I) = (w,L~+l n w~L~+z) and each w~Li+x , 

wiL~+z is context-free. Thus we can assume Lr  is expressed as 

Lr = (Lz n LI '  ) ... (L,~ n L~') 
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each L i ,  Li' is context-free. Finally, notice that we must have t Li n L~' i -- 1 
for all but one i. So we can assume that Lr is the intersection of two context- 
free languages. 

Now we saw that we can assume that no tree has a path of length more 
than p2 -k P + 1. Hence there are finitely many trees 7"1 ,..., Tq such that 

q 

L(G) -= ~ LT,, Lr, = Lil n Liz 
i=1  

for L~z, L ~  context-free, 1 ~< i ~ q. 
Now Liu and Weiner a6) have shown that 

~1 7~2 ~3 ~1 n9 ~3 {a I a s a a b 1 b~ b~ I nz, n~, n~ ~ 1} 

is not expressible as the intersection of two context-free languages. Their 
arguments can be modified to show that L cannot be expressed as the union 
of a finite number of intersections of two context-free languages. This gives us 
our contradiction. [] 

This language L of Theorem 6.5 is expressible as the intersection of  
three context-free languages, the first comparing the al's and bl's and b2's and 
c2's, the second comparing the a2's and b2's and b3's and c3's , and the third 
comparing the al's and cl's and a3's and b3's. 

Corollary 1. Ws does not contain all languages expressible as the 
intersection of three context-free languages. 

Corollary 2. Ws is incomparable with the intersection closure and with 
the Boolean closure of the context-free languages. 

Proof. The language {a'~In ~ 4, n not prime} is in Ws as shown by 
Example 3 but cannot be in the Boolean closure of the context-free 
languages. [] 

Corollary 3. Ws is not closed under inverse homomorphism or under 
intersection with regular sets. 

Proof. Let L be defined as in Theorem 5.5 and let Lz,  L2, L~ be three 
context-free languages such that L = Lz n L 2 c~ Ls �9 For each i let L = L(Gi) 
for a context-free grammar G~ = (V~, Z', P~, S~) with V~ n Vj = Z for 
i =/: j. Let d, cr be new and 

P~ = {or --> (S~>, ($2) --" S2($2>d, <S~> --+ d} 

and let G be the simple W-grammar 

G : ((1/1 -- ~ ) w  (V~ -- r ) ,  Z u  { ~ , d } , ~ w { d } , e l  w e~, eh ,  ~) 
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Then L(G) = {'~t"~d ''+1 i /'t ~ O, W ~  L} and Ldd = L(G) ~ Z-~tkl. If c=u is new 
and h(a) = a, for a ~ Z,  h(~a) = c~dd, then 

L 1 = h-I(L(G)) = ~al"a2 ma3~bl''b.,-''b3~cl''c~'''c~'-13 ! n. m. k ' 1 }/~:~ 

The arguments used to show L ~ Ws can also be used to show Ldd and L~ not 
in  Ws �9 [] 

We could continue in this vein to establish other nonclosure properties 
of W s .  We summarize: 

Theorem 6.6. Ws is not closed under: union, concatenation, nonerasing 
homomorphism, inverse homomorphism, and intersection with regular sets. 

Thus Ws does not possess any of the "AFL'" closure properties 
(union, concatenation, Kleene + ,  nonerasing homomorphism, inverse 
homomorphism, and intersection with regular sets) except Kleene §  Since 
is an AFL and every member of ~ is the nonerasing homomorphic image of 
the intersection of three context-free languages, Cs~ the proof of Corollary 3 
of Theorem 6.5 can be used to show that ~ is the least AFL containing W s 
and each member o f ~  can be expressed as lh(h~(L))  for L ~ Ws  and hi and h~ 
nonerasing homomorphisms. 

In the last section we examine some of the open problems on the 
relationship between W s ,  ~., and some subclasses of W-grammars. 

7. F U R T H E R  Q U E S T I O N S  

The study of regular-based and simple W-grammars leads to many other 
questions, some of them on the precise relationship between W s and WR8 and 
various welt-known families of languages, and others regarding extensions of 
W-grammars. 

We saw that finiteness is decidable for normal regular-based W-grammars 
and that members of WRB are quasirealtime. It is likely that both statements 
apply also to macrogrammars and to indexed languages. That is, we conjec- 
ture that finiteness is decidable for macrogrammars (under either the 
outside-in or inside-out definitions) and that indexed languages are quasi- 
realtime, i.e., belong to ~. 

The exact relationship between the family J of indexed languages and 
WR~ is unknown. We know that WRB C J but do not know exactly how 
WRB should be extended to obtain J .  One possibility is that J is the closure 
of WRB under finite state translations; that does not seem too likely, however. 
In view of the similarities between the operations of factored, normal, 
regular-based W-grammars and those of macrogrammars, it seems plausible 
that some natural relationship between WRB and J exists. 
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The relationship between W-grammars--and W~ in particular and 
various tree manipulating systems might be a fruitful area of research. 

Several families of languages are closely related to Ws: o~, tile family of 
languages accepted by nondeterriainistic multitape Turing machines in 
realtime, 22, the family of languages accepted by nondeterministic two 
pushdown store machines in realtime, W=, the family of languages by unary 
W-grammars, and WNL, the family of languages generated by normal lossless 
W-grammars. It is fairly evident that: 

1. Ws ~ Wu C .~ C_ WNL C TIME(n2), where TIME(n 2) is the family of 
languages accepted by nondeterministic multitape Turing machines 
in time proportional to the square of the length of the input. 

2. .~2 _C W~,. 

3. .~ is the closure of Ws under nonerasing finite-state translations. 

We conjecture that WNL ----- 2. The difficulty lies in hyperrules such as 
(A)  ~ (uAv) which might require checking membership of w, uwv, uuwvv, 
etc. in a context-free language and thus scanning a word w more than a fixed 
number of times. Thus the approach used in showing WRn C A and Ws C .~ 
yields at best time n 2. It seems plausible that a tighter construction would 
yield WNL C_ .~. On the other hand, Ws C oA,, if and only ifA 2 ---- ~: the latter 
question is still open. 

There are various ways in which the concept of a W-grammar or double- 
level grammar can be generalized. There does not seem too much point in 
extending unrestricted W-grammars since they already represent all 
recursively enumerable sets quite conveniently. However, extensions of some 
of the restricted families, particularly of WR9, might prove useful. 

For a family of languages ~ we can speak of an c~a-based double-level 
grammar as a sixtuple (VM, Vp, L', P~,, or,/x), where VM, Vp, Z', P~, and c~ 
are as before and/z maps each A in VM into a language/z(A) e c~a. One might 
treat probabilistic regular-based double-level grammars in which distri- 
butions were attached to the regular languages t~(A), to the assignment 
function ~, or to the use of hyperrules--or even to all three. One might also 
consider double-level Lindenmeyer systems in which each /z(A) is an OL 
language and the derivation process required simultaneous expansion of each 
protovariable or hypernotion in the string (cf. Rozenberg and Doucet(2~)). 

There are two obvious ways in which the derivation process could be 
extended. One might allow the expansion of a protovariable within a 
hypernotion--e.g., (aZb) ~ (ay(bcZ)b)--or  allow tz(A) to contain nested 
hypernotions--e.g., (ab(baa)(a(a))) - -and then use either outside-in or 
inside-out derivations. Another possibility is to allow words in /z(A) to 
contain a fixed number of occurrences of a special comma symbol. Then if 
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wl,  w~, wa and ~, fl, 7 are words in/x(A), a hyperrule (A) ~ AI(A')A2(A3, A2) 
would correspond to productions 

@1,  w~, w~) -~ wl(wl,  w2, w~) w2(w~, w~) 
and 

(~,/3, 7) -~ ~(~, fi, 7) fi(7, fi). 

Some of these ideas might shed light on the relationship between We~ and J .  
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