
International Journal of Computer and InfOrmation Sciences, Vol. 3, No. 4, 1974

Some

Sheila A.

Restrictions on W-Grammars

Gre ibach 1

Received December 1973; revised February 1974

The effect of some restrictions on W-grammars (the formalization of the syntax
of AC6OI. 68) are explored. Two incomparable families examined at length
are Wan (languages generated by normal regular-based W-grammars) and
Ws (languages generated by simple W-grammars). Both properly contain the
context-free languages and are properly contained in the family of quasi-
realtime languages. In addition, WRn is closed under nested iterated sub-
stitution (but is not an AFL) and is properly contained in the family of index
languages.

t . I N T R O D U C T I O N

One o f t h e r e a s o n s for the early and still cont inuing popu la r i ty of context-free
g rammars has been their use in the fo rmal defini t ion o f par ts of the syntax
o f ALCOL and s imi lar p r o g r a m m i n g languages (19~ and their role in syntax-
d i rec ted compi la t ion (cf. Ref. 3 for a discussion of the re la t ionship o f
context-f ree g r a m m a r s and p r o g r a m m i n g languages). However , it was soon
found tha t context-free g rammars were not a l together sat isfactory models for
p r o g r a m m i n g language structure, bo th because some constructs ei ther could
no t be defined a l together or could not be convenient ly defined by context-
free systems, and because such g r a m m a r representa t ions d id no t cover the
connect ions between syntax and semantics. M a n y a t tempts have been made
on var ious levels to fill the g a p s - - i n d e x e d languages ,m macrogrammars , (lmr~
and p rope r ty g rammars (23) are only a few examples tha t come to mind.

The syntax o f ALGOL 68 cz41 p rov ided an a l together different depar ture .
The concept o f a context-free g r a m m a r was general ized to a l low an infinite

The research represented in this paper was supported in part by the National Science
Foundation under Grant G J-803.

x Department of System Science, University of California, Los Angeles, California.

289

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y 1001 I. No part of this
publicat ion may be reproduced, stored in a retrieval ~ystern, or transmitted, in any form or by any means,
electronlc, mechanical, photocopying, microfilming, recording, or otherwise, without writ ten permission of
•he p ubllsher.

290 Greibach

but recursive set of context-free productions. The productions arise from the
interaction of two context-free grammars. The first grammar feeds to the
second grammar the names of nonterminals in the second grammar. The
rules of the second grammar are really rule schemas with place holders which
we call metavariables. When each metavariable is uniformly replaced by a
string generated in the first level grammar the result is a production then
applied in standard context-free fashion. For a discussion of the reasons for
such a system and the utility of double-level grammars in programming
language definition the reader is referred to Cleaveland and Uzgalis. (I~

The type of generating system introduced in the ALC, OL 68 draft (~ has
been variously called "the syntax of ALGOL 68," "double level grammar,"
"van Wijngarden syntax," and "W-grammar." We select the term
"W-grammar" as being both suggestive and simple.

The concept of a W-grammar has been formalized by Sintzoff, 122)
Chastellier and Colmerauer, (9) Baker, (4) and others. The various definitions
differ in details though the underlying notion is identical. We introduce below
a definition adapted from that of Cleaveland and Uzgalis (1~ and modified
to--hopefully--be cleaner and clearer for reader and typist alike; the essential
idea is unchanged.

It was quickly noticed that W-grammars define the family of recursively
enumerable sets, ~22) while suitable restrictions yield recursive sets (17) or
context-sensitive languages. (~) Thus the utility and power of W-grammars
are unsurprising. However, it does not appear necessary to use the full power
of W-grammars in language definition. Thus it seems reasonable to study
restrictions on W-grammars--besides those mentioned above--which yield
recursive languages and hopefully combine descriptive power with attractive
mathematical properties (ease of recognition, decidable emptiness question,
interesting closure properties, etc.).

In this paper we define two restrictions on W-grammars and study their
properties, interrelationship, and connections with other grammars and
machines. The first restriction is to normal and regular-based grammars.
"Normal" means, roughly, that the left-hand side of a second-level rule
schema consists of one metavariable and so the rule schemas themselves
appear "context-free." Regular-based means that the first-level grammar is
finite-state. It is easy to see that either restriction by itself still permits the
generation of all recursively enumerable sets. Together, however, the
restrictions define a family WRD of languages properly containing the
context-free languages and properly contained in the family of indexed
languages and hence afortiori in the context-sensitive languages. Membership,
emptiness, and finiteness are decidable for normal regular-based
W-grammars. Languages in WRB can be recognized by nondeterministic
multitape Turing machines in realtime. The closure properties of WRB are

Some Restr ict ions on W - G r a m m a r s 291

unusual--14"R8 is closed under nonerasing substitution, in fact, under
nonerasing nested iterated substitution, but not under intersection with
regular sets.

The other family investigated is the family 1t s of languages generated by
simple W-grammars. In a simple grammar each nonterminal in the infinite
production set arises from an individual metavariable and only terminal
strings replace metavariables in the rule schemes of the second-level grammar.
Like WRB, Ws properly contains the family of context-free languages and is
properly contained in the family of languages accepted by nondeterministic
multitape Turing machines. Unlike WRB, Ws has no interesting closure
properties. The families WRB and Ws are incomparable--neither is contained
in the other. Curiously enough, although members of Ws are recursive,
membership is undecidable for simple W-grammars. Every language
expressible as the intersection of two context-free languages is in Ws, but
some languages expressible as the intersection of three context-free languages
are not.

2. BASIC CONCEPTS

In this section we introduce the basic definitions, notation, and concepts
we shall use and outline briefly our specific results. We assume that the reader
is familiar with the notions of context-free grammars, derivation trees, and
finite-state machines and is acquainted with the basic properties of context-
free languages and regular sets (for background material see Hopcroft and
Ullman (15) or Aho and Ullmanl'~l).

In order to avoid uninteresting and trivial variations to handle the
empty word (designated by e), we shall assume that all languages are
"e-free," that is, do not contain the empty word. Thus by regular, context-
free, or context-sensitive language, we understand e-free regular, context-free,
or context-sensitive language. Most of the results do hold if the empty word is
added by ad hoc methods; the !nterested reader can easily work out the
exceptions for the empty word.

Notation. For a language L we let L + = {wz "'" wn I n >~ 1, wi e L} and
L* = L u {e}. I f L is finite, then] L l is the number of elements in L. For a
word w we let j w]be the length of w.

We designate a grammar by G = (V, Z', P, or), where V is a finite
vocabulary, Z C V, e ~ V -- Z', and P is a finite set of rules or productions
of the form u ~ v, u ~ (V -- N)+, v e V*. We call e the start symbol, members
of Z terminals, and members of V - Z nonterminals, intermediates, or
variables. If u ~ v is in P, x, y ~ V*, then xuy =~G xvy. Then ~ * is the
transitive reflexive extension of ~ c ; we omit the subscript G when

292 Greibach

no confusion can occur. The language generated by G is L(G)
{ w ~ S + l a :~*w}. I f l u l ~ I v [for each u - + v in P, then G is context-
sensitive. I f u ~ V -- S whenever u -~ e is in P. then G is context-free. If
each rule i n P i s o f t h e f o r m Z - * w Y o r Z ~ u f o r Z .)'~ J - S, w + v , .
u E Z '+, then G is regular orfinite-state, if G is context-sensitive (context-free,
regular), then L(G) is a context-sensitive (context-free, regular) language.

We are now ready to introduce our nota t ion for W-grammars .

Definition 2.1. A W-grammar G = (VM , Vp , Z, PM , Ph , a) consists
o f a finite set VM of metavariables, a finite set Vp par t i t ioned into terminals Z
and protovariables Ve - - Z', a finite set PM of metaproductions, a finite set Ph
o f hyperrules, and a start symbol ~ ~ Vp -- S, such that: (1) Vp c~ VM = ;~
and " < " and " > " do not appea r in Vpw VM, (2) for each A e V M ,
GA = (VM W Ve, V ~ , P M , A) is a context-free g rammar , and (3) each
hyperrule in Ph is of the fo rm Z-- ->y for Z ~ H u (V e - - Z) and
y ~ (VM W V~, W H) + where H ---- {(~) [a ~ (I'M w Vp)+}. We call H the set
o f hypernotions.

I f a is a string of terminals, protovariables , and metavariables , then (o~) is
a hypernot ion. A hypernot ion (~) is a place holder for one or more
"var iab les" (w) of the second-level g rammar . Hyperno t ions and recta-
variables are replaced in the rules of Ph as follows. Fo r A ~ ~ t , GA =
(VM tA Vp, Vp, PM, A) is a metagrammar of G; if A ~ * w in GA, we say
A metagenerates w. We let L A ~-- L (G A) . A metaassignment of V~, u VM is a
h o m o m o r p h i s m h such that h (<) = < , h (>) = > , h(Z) = Z for Z ~ Ve,
and h(A) ~ L A for A ~ VM. I f Z ~ y is a hyperrule and h a metaass ignment ,
then h(Z)--~ h(y) is a product ion of G. We let P be the set of all such
product ions; the produc t ion set may be infinite.

We can define derivations of G in two ways. First, let I----
{(~) i c ~ Vp +} C H. I f I ' is a finite subset o f L we can regard I ' as a set o f
distinct nonterminals , l f P ' is a finite subset of P, and G' = (I ' w Ve, L', P ' , or)
happens to be a context-free g rammar , then G' is a s u b g r a m m a r of G; if
w 1 =>*, w~, then wz ~ * w~. The language generated by G is L (G) =
U s u b g r a m m a r c;" L(G'). We call L(G) a W-language.

Alternatively, derivat ions of G can be defined directly f rom P. I f
wz, wz ~ (V~, ~3 I)* , ~ ~ Vp +, and (a) --~ y is in P, then Wl(~)w~ =>~ w~yw~.
I f Z ~ V~, - - ~ a n d Z --~ y is in P, then waZw~ => wzywz. Asusua l , ~ * is in
the transitive reflexive extension of ~ a . Further , if we have a derivat ion

y: a ~ wz ~ "'" ~ wn for wneZ,*
G G G

then ~, is a complete derivation in G. Then

L(G) = (w ~ Z:'* I ~ *~ w}
G

Some Restrictions on W.Grammars 29]

Let us illustrate these rather complicated definitions by some examples
which shall be useful in the sequel.

Fxample 1. A W-grammar for {a 2'' i n ~ 1}. There is one metavariable,
N, one protovariable, ~, and one terminal, a. The metaproductions are
N -+ a N and N --~ a, and the hyperrules are cr --~ ~,a), (,N) - ~ (N N) , and
(N) -~ N.

Notice that LN = a +. Any metaassignment h is of the form h(N) = a",

n ~ 1. Thus

P = { (a s) ~ (a 2~)ln >/ 1}w{(a")--~a " I n >/ 1} u {a --~ (a)}

Thus the only.complete derivations are of the forms:

a ~ (a) ~ (a a) ~ (aaaa) ~ "'" ~ (a s") ~ a ~'~

Example 2. A W-grammar for { a " ~ l n ~ 1}. We have VM = {N},
Vp = {a, a}, PM = { N --~ a, N ~ N N } and

P~ = {or ~ (a) , (N) -0- N (a a N) , (N) --~ N }

Thus whenever (a s) actually appears in a complete derivation of G, n is odd.
Complete derivations of G proceed:

~ (a) =*- a (a a) ~ aaa(a ~) ~ ""

aa a ... a2k-l(a~k+l) ~ aa ~ ... a~k-Za2k+~

for k ~> O. Since

k
a 2 m + 1 = a (k+ l)~

zn=0

the grammar generates the desired language.

Example 3. A W-grammar for {a '~ I n ~ 4, n is not prime}. Let

and

VM = {N}, Vp = {a, ~}, PM = {N--+ aa, N - + aN} ,

Ph = {(r -+ (N) , (N) --~ N (N) , (N) --+ N N }

The productions form

P = { c r ~ (a s) 1n >~2}u{(a '~)--~a'~(a ' ~) l n >~2}

u { (a") --+ anan [n >~ 2}

294 Greibach

The start set is L~,. = {a"l n) 2}. Thus derivations proceed, for n) 2:

cr ~ (a ") ~ a " (a n) ~ a " a " (a ') ~ ... ~ (a")"(a") ~ a '~(''+~'~

So G defines

{a"("'+2~ [n ~ 2, m ~ 0}

which is another way of expressing the desired language.

Example 4. Some W-grammars for L z ---- {a~'~a2'~asnln) 1} and
L~ = {al'~a2"~asna4'~tn ~ 1}. We have in both cases VM----{A}, Z' =
{al, a~, as, a4}, lip : Z u {a}, and

PM -~ {A -+ a2A, A ~ a3A, A --+ a~ , A -+ as}

For the first language we have

Ph.z =- {a ~ (a~as), <A) --+ az<a2Aa~), (A) --> azA}

and in the second case

Pa.2 = {a -+ (a2a~), (A) --~ az (azAas)a~ , A --~ alAa4}

Notice that both grammars have the properties: (1) The metagrammars are
regular, and (2) whenever (~) appears on the left-hand side of a hyperrule,
o~ ~ VM (in this case ~ = A). We shall see in the proof of Theorems 5.1 and 5.2
that any W-grammars for L~ and L2 with properties (1) and (2) more or less
" look like" the ones constructed here. Further, if we add a fifth coordinate a5,
we must relax either (1) or (2) as is done in the next example.

Example 5. Two W-grammars for L = {al"az '~ ... a5 '~ i n ~ 1}.

1. We first construct a W-grammar whose metagrammar is not regular.
Let VM = {A, B, Az, A2, As, A4}, Z = {al, a2, as, a4,as}, Ve = ZTtd {or},

PM = {A --+ A,Asa5 , A --~ Aas , A1 --+ alAla2 , As -+ asAsa~ ,

A~ - ~ ala2 , As -+ asa4 , B --+ a lB, B --+ a~A2A4 ,

A2 -+ a2A2as , A4 --~ a4A4a5 , A2 --~ a~as , A~ --+ a~a~}

and

Ph = {a -~ (A), (B) -+ B}

Notice that

and
LA = {az'~a2"a3'~a4~a~ k In, m, k >/ 1}

LB = {az~:a~a3~a4"~a5 "~ I n, m, k ~ I}

Some Restrictions on W-Grammars 2?5

and the only completed derivations are

for w in L A ('h L~ . Since

the W-grammar generates L.

L = La ~ LB

2. We now give a W-grammar for L with a regular metagrammar. Let
I'M = {N}, Vp -- Z w {a, a}, PM = {N --,- a, N --,. aN}, and

Ph = {a --~ aza2a~a4a~} u {cr -+ <alN><a~N)(a~N><a~N>(asN)}

w {(aiaN> ~ a~(a~N> I i = 1, 2, 3, 4, 5}

w {<a~a> ~ a~ai [i ----- 1, 2, 3, 4, 5}

to {(a~) ~ a~l i = 1, 2, 3, 4, 5}

I t is quite apparent that the family of languages generated by
W-grammars is the family of recursively enumerable languages, and that
remains true even if we impose some strong-appearing restrictions.

Definition 2.2. Let G = (VM , Ve , Z , PM , Ph , a) be a W-grammar.
We call G regular-based if for each A ~ VM, GA ~- (VM to Vp, Vp, PM, A)
is regular. We call G normal if each hyperrule is of the form Z--~ y or
(A> -+ y for Z e V~ -- X, A ~ VM , y ~ (VM tA lip U H) +. We call G unary
if each hyperrule is of the form Z --+ y or <A> -+ y for Z ~ Vp -- Z , A e VM,
y ~ (V ~ t o VptA{(B>IBeVM}) +. We call G strict if for each A E V M ,
LA CZ+.

Definition 2.3. A W-grammar G = (VM , Vp , Z, PM , Ph , a) is lossless
if for each hyperrule of the form

<~> - ~ Uo</~> u~<~> ... u._~<~.>u,~

for n ~ 0 (if n ---- O, the rule is @> --+ Uo), ~ , /3 ie (VM to Vv)+, 1 ~ i <~ n,
ul e (V~ t3 Vp)*, 0 >~ i >~ n, we have

I ~ I <~ l Uo~ "'" u._@.u. [
and for each A ~ VM

~ (~) <~ # ~ (U o ~ "" u._@.u.)

where .#4(w) is the number of occurrences of A in w.
Suppose G = (V, 2 , P, S) is a grammar. I f we construct three recta-

variables A, B, and T with LA = LB = V+ and Lr = Z +, and for each rule
ui --~ v~ in P four hyperrules (AuiB> -+ <AviB>, (Aui> ~ (Avi>, <uiA> -+
<viA>, and <u~> ~ <vi> and then add hyperrules a --* <S> and <T> --* T,

296 Greibach

we clearly have a W-grammar generating L(G). Thus the result of Sintzoff (22)
can be expressed as follows.

Theorem 2.1. (Sintzoff). Every recursively enumerable language can be
generated by a strict regular-based W-grammar.

An alternative construction shows that normal W-grammars also
generate all recursively enumerable languages.

Theorem 2.2. Every recursively enumerable language can be defined by
a strict normal W-grammar.

Proof. Let L be a recursively enumerable language. Then L can be
expressed as the homomorphic image of the intersection of two context-free
languages. (18) Further, if L __C Z +, one can assume that there is a finite
vocabulary A and context-free languages L 1 and Lz such that Z n A _-- ~ ,
L 1 u L2 C_ Z+A+, and L = {w e Z+ I 3x ~ A +, wx E L 1 c~ Lz). That is, L can
be obtained from L~ ~ L2 by chopping off the "tail" in A +.

Let a, D, d, A, Sz, and $2 be new symbols, and for each a in Z let
be new. The symbols D, A, 5'1, $2, and 5 wilt be metavariables. Since L~ and
L2d are context-free, we can add metavariables and metaproductions so that
L D = A+, LA = ~+, Lsx --_ L 1 , Ls~ = Lad, and L a = Z*aA+dd for a e Z.

The hyperrules are

--~ A (A a D) , ~r --~ (aD) , (5) --~ a, a ~ Z

(S1) ~ (S~d), (S2) ~ (S2d)

Thus the only complete derivations are of the form:

a ~ w(waz) ~ w(wazd) ~ w(wazdd) =~ wa

for w e Z*, a c Z, z e A+, waz ~ Ll n L2 and so wa ~ L. []

Thus one must consider carefully whether there are any sets of
restrictions on a W-grammar G such that L(G) is guaranteed to be recursive
and yet G still has considerably more expressive power than a context-free
grammar. One obvious possibility is to examine lossless W-grammars. If G is
lossless, every production in P is nondecreasing except for possible elimination
of (and); by inventing new symbols we surely can encode (w) within I w]
steps without undue complication. Further, if (/3) appears in a hyperrule,
the language

L e = {h(/3)]h metaassignment}

is certainly context-sensitive since each LA is context-free and context-
sensitive grammars can duplicate. Thus a multitape Turing machine can

Some Restrictions on W-Grammars 297

certainly obtain a production p from a hyperrule, and apply p to obtain
wz ~ c w e , using no more than Max([wz] , tw21)= twe] tape squares.
It is well known that any rewriting system such that each derivation step is
nondecreasing and there is a multitape Turing machine which can imitate
each step Wz =~ w2 using no more than] w2 t squares yields a context-sensitive
language.

The details of such a construction for lossless W-grammars is given by
Baker, t4) who shows the following.

Theorem 2.3. (Baker). The family of languages generated by lossless
W-grammars is precisely the family of context-sensitive languages.

In this paper we shall examine two possible restrictions on W-grammars
which yield proper (and incomparable) subclasses of the family of context-
sensitive languages while still retaining some of the W-grammar's facility for
duplicating and comparing substrings.

We observed that neither the requirement to be regular-based nor that
to be normal restricts the generative power of a W-grammar, although they
may very well restrict the ease or naturalness of producing certain structures.
On the other hand, restricting a W-grammar to be both regular-based and
normal is a significant restriction on the generative capacity.

In Sections 3-5 we study WRB, the family of languages generated by
normal regular-based W-grammars. The key result (Theorem 3.1) is that
every normal regular-based W-grammar can be effectively converted into a
lossless normal regular-based W-grammar in a special factored form. In
Theorem 3.2 we prove a reduced form theorem similar to the one for context-
free grammars. ~5) Using this result, we show that although Examples 1-4
show that normal regular-based W-grammars have considerable facility for
computing numerical functions, duplicating strings, and comparing numbers,
many questions--notably membership, emptiness, and finiteness-are
decidable for such grammars (Theorem 3.3).

In Theorem 4.1 we show that WR~ is contained in the family of indexed
languagesC ~ (which is also the family of nested stack languages (2~ and of OI
macrolanguagesllaaz~). Thus W~B is obviously a proper subset of the family
of context-sensitive languages. More than that, each member of WR~ can be
accepted in realtime by a nondeterministic multitape Turing machine
(Theorem 4.2).

The containments in Theorems 4.1 and 4.2 are proper--the language of
Example 5, for example, is not in WR~ (Theorem 5.2). Finally, we conclude
Section 5 bynoticing that WRB has curious closure properties--it is closed
under nested iterated substitution but not under intersection with regular sets
(Theorem 5.3).

The other subfamily of W-grammars that we shall study is the family of

298 Greibach

strict unary W-grammars. We shall call a strict unary g<grammar sharpie and
let Ws be the family of languages accepted by simple tl=grammars. The
family Ws is a very strange one. On one hand, simple gZgrammars can do
with ease many things beyond the power of normal regular-based grammars--
e.g., Ws contains every language expressible as the intersection of two
context-free languages (Theorem 6.1); Example 5 gives a language in
Ws -- WR~. On the other hand, Examples 1 and 2 give examples of languages
in WRB -- Ws ; if f is a monotone increasing function from positive integer
to positive integers, {a : ~ I n >/ 1} cannot be in Ws if f grows more than
linearly (cf. Theorem 6.4). Also, there are languages expressible as the inter-
section of three context-free languages which are not in Ws (Theorem 6.5).
Now Ws is, like WRn, a proper subset of ~, the family of languages accepted
in realtime by nondeterministic multitape Turing machines. But this inclusion
is nonconstructive--there is no algorithm to transform a simple W-grammar
into an equivalent context-sensitive grammar, although one always exists!
For example, membership is not decidable for simple W-grammars
(Theorem 6.2), although each member of Ws is recursive! There are many
pathological systems behaving in this manner, but this is one of the few
examples of more or less "natural" systems exhibiting this sort of behavior.
The closure properties of Ws are uninteresting--Ws is closed under almost
none of the natural operations on languages (except for Kleene §

Finally, in Section 7 we mention some open problems regarding the
exact relationship between Ws and ~, as well as introduce some other
restrictions and extensions W-grammars it might be profitable to study.

3. N O R M A L R E G U L A R - B A S E D W - G R A M M A R S

As we saw, regular-based W-grammars have the same generative power
as context-free based W-grammars, so there is little point in studying them.
We shall instead focus attention on normal regular-based W-grammars,
which have considerable power, as Examples 1-4 show, and yet have many
pleasant properties.

Definition 3.1. A W-grammar G = (VM, Vp, 2, PM, P~, c:) is regular
if it is normal and regular-based and all the rules are of the forms Z ~ w~ I:,
Z---~ wl(y) , (A)--+ wlY, (A)--+ wz(y), Z--+ w2, and (A) --> w2 for
Y, Z ~ Ve -- ~r A e VM , Wt E (V M W Z')*, and wz, y ~ (VM W Z')+. Let

l~/Rn = {L(G) G normal and regular-based}
and

WR = {L(G) G regular}

The following should be immediately apparent.

Some Restrictions on W-Grammars 279

Corollary. The family of context-free languages is properly contained

in W ~ .

Most o f our results will depend on converting a normal regular-based
grammar into a special form.

First, we extend the notation LA, for a metavariable A, to La for /3
composed of metavariables, protovariables, and terminals.

Definition 3.2. Let G -- (VM , Vp , Z , PM , P~ , cy) be a W-grammar.
For fi ~ (VM U Vv) + let

Lo = {h(fi)] h is a metaassignment}

Thus for A ~ Vp, LA ---- {A}, and if A1 ,..., A~ ~ VM W VI,, then LA A
1"" N

is the collection of all words wz "'" w~ such that wi ~ LA~ and whenever
Ai = Aj , then wi -~ w~..

Now we define a factored form for normal W-grammars.

Definition 3.3. A normal W-grammar G ~- (VM , Vp , 27, PM , Ph , or)
is fac tored if (1) for all A ~ VM, LA ~ s~ ; (2) for all A, B ~ VM either LA = LB
or L• t~ LB ---- ~ ; and (3) if </3) appears in any hyperrule, there is an A e VM
such that L~ _C LA �9

Now we shall see that every normal regular-based W-grammar can be
converted into a tossless factored one. This is an easy consequence of
Nerode 's r176 theorem for regular sets. Recall that for a finite vocabulary T*
an equivalence relation ~ on T* is a congruence relation if whenever u ~-~ v
and x ~ y, then ux ~-~ vy; it is of f inite index if T* is partitioned by ~--~ into
a finite number of equivalence classes.

Theorem 3.1. Given a normal regular-based grammar G, we can
construct a lossless, factored, normal, regular-based grammar G such that
L(G) = L(G), and G is regular if G is regular, strict if G is strict, and unary
if G is unary:

Proof. Let G = (VM, Vp, Z', P M , Ph , c~). We know that each LA is
regular for A e VM. Hence there is a congruence relation of finite index on
Vp*, call it ~-~, such that each LA is the union of some of the congruence classes
of ~-~ on Vp*. (2~ Let E be the set of these congruence classes. For A ~ VM let
O~A ~ { E ~ , E I E N L A ~ ~}; thus LA = ~EegAE. NOW since ~-~ is a
congruence relation , given E~ and E2 in ~, there is a unique E 3 in d ~ such that
EIE2 = {ux I u ~ E~ , x ~ E~} C_ E~ . Let us write for convenience

EI " E2 = Ea

For u e V~*, let [u] be the equivalence class of u. For each A e VM, E e EA,

300 Greibach

let /~, E, and (E, A) be new symbols. Thus if A, B~ V~u, A :/: B, and
E ~ A ndoB, (E,A) and (E,B) will be distinct symbol s - two different
metavariables.

Each equivalence class E ha C is a regular set and so E -- {e} is regular.
Thus we can add metavariables to form a set VM, containing {E i E ~ d} w
{(E, A) [A ~ VM, E ~ doA}, and a set PM of metaproductions such that for
E ~ d ~, Lg = E - - { e } and for A ~ VM, E EdoA, L(e,A)= L/~, and our
ultimate W-grammar G will be regular-based.

The set Ve of protovariables and terminals for G is given by

V,, = vp v { ~ l Ecdo}

Each (VM U Vp, Vv, PM, E) or (V~f u Vp, Vp, PM, (E, A)) is regular.
Notice that because ~ is a congruence relation, ifAi c V~t u Vv, E~ ~ do,

and Ei_CA~ for 1 ~ i ~ n , then there is a unique E c d ~ such that
for any metaassignment h with h(Ai) c E~ for 1 <~ i <~ n, h(A~ .." A,) ----
h(A1) "'" h(A,)C C_ E~ ... E , C E. This is the key observation that makes our
construction work.

A rule (A) --+ y is lossless if A appears in y and otherwise is lossy. Rules
Z --~ y for Z a protovariable are always considered losstess. If (A) -~ uAv is
a hyperrule with A ~ VM and u, v e (Vv w VM W {(/3)] /3 ~ (Vv W VM)+) *,
then the rule is said to "deposit" A. If (/3) appears in a hyperrule, we must
guess whether we will apply a series of lossless rules to (/3) followed by a
depositing lossless rule or whether we will apply zero or more nondepositing
lossless rules followed by a lossy rule. In the first case we merely replace each
A e VM by some symbol (E, A) for E ~ doA �9 In the second case we replace
(fl) by some ~ such that L~ c~ E =/: ~ .

More carefully, we construct the set of hyperrules Ph as follows. Consider
any function f from VM to d o such that f (A) ~ d~A for each A ~ VM ; thus f
assigns to each metavariable A an equivalence class contained in doA.
Associated with f , define a homomorphism f~ from (VM U Vv)* into
(VM W Vv)* and a function f~ from (VM W V),)* into do defined byfa(A) =
(f (A) , A) for A ~ VM and f l (Z) = Z for Z ~ Vp, f2(A) = f (A) for A ~ VM,

f2(Z) = [Z] for Z e Vp , and fz(xy) = f2(x) " f~(y) for x, y E (VM W Vv) +.
For each such function f and each hyperrule of P~ we add to P~ one or

more hyperrules defined as follows. Consider a hyperrute in Pn:

'~ ~ / , /O(Vl) " ' " U . _ I (~) ~) H n

for n >~0, u ~ (V v ~ V~)*, 0 ~ i ~ < n , v ~ (V e ~ VM) +, 1 ~<i<~n, and
7 e (V e - - X) ~ { (A) I A e V M } ; if n-----0, the rule is ~ , ~ u o and uo
(Vv ~ VM) +. For 1 ~< i ~< n let E~ = f~(v0.

Then Ph will contain all possible rules 7' --~f~(u0) v~ ""f~(un_z) ~,~f~(un)
satisfying the conditions:

Some Restrictions on W-Grammars 30t

1. For 1 ~ i ~ n, either vi = (f l (v i)) or ~; : E~..
2. I f y : Z e V p , t h e n ~ , ' : Z .
3. If 7, = (A), A e VM, E = f (A) , either (a) ~,' = / ~ , and (E, A) does

not appear in anyfl(u~) or any ~ ; or (b) 7' : ((E, A)), and (E. A)
appears either in some fl(u~) or some gz.

Let G : (VM, Vp, 27, PM, P~, ~)" NOW condition 3(b) ensures that G
is lossless. For E in d~ L(e,A) : L~ : E -- {e}, so L(e 1 A) -= L(e~ if and
only if Ex = E2 ; otherwise, L(Ez,A) f'~ L(E2,B) = .._~- S~ppose (~'~ "" Y,)
appears in P~, each Yi in Ve w VM. If Y~ ~ Vp C_ Vp, let Ei = [Y,]. Other-
wise we must have Y~ = (E~, At) for some A~ e VM, E~ e gA, �9 So Lrz. . .r" C_
Lr~...r, C_ E~ "" E , and there is a unique E e g with Ez ... E,_CE; thus
Lr~...r, _C Lg. So G is factored; it is obviously normal and regular-based.

We have altered the hyperrules of G in two ways. We may replace a
metavariable A of G by any metavariable (E, A) with E ~ OcA. Since
LA = Urge a E = Ue~e a L(E,A), this causes no problems. Notice that since
(E, A) v a (E, B) for A 4= B, if A and B both appear in a hyperrule, no
undesired duplications occur. Also, we might have functions f and ft. as
described above such that (fl) is replaced by f~ (/3)=/~ . In an actual
production of G, (/3) would appear as (w) for w e L~ c~ L e . Rule (w) -+ y
applied t O (w) would either come from a lossy hyperrule (A) ~ y ' or from
a lossless hyperrule (A) ~ x (u A v) z in which A was not deposited. In the
first case all one needs to know is that w E LA- -and recall that either w e LA
for a / /w in E or else w r LA for a// w in E. In the second case the actual
production looks like (w) ~ x ' (u ' w v ') y ' and one needs only to know
whether u ' w v ' e LB for various B in VM. Again, either u'Ev'C_ L~ or
u'Ev' n L8 ~- ~ , so it suffices to know that w is in equivalence class E.

Arguing along these lines, one can show that L(G) = L(G). The actual
proof is omitted since it is long and unenlightening. It involves showing by
induction on the length of a derivation that for w e ~r+, Z e Vp - - Z, and
y ~ lie +, Z ~ * w if and only if Z =~* w and (y) ~ * w if and only if either
(y) =~* w or/~ ~ c w, where E = [y].

Now Baker's result immediately shows the following.

Corollary 1. If G is a normal, regular-based grammar, then L(G) is
context-sensitive.

Corollary 2. If G is a normal, regular-based grammar, then membership
in L(G) is decidable.

We can extend both corollaries. First let us show that some questions
undecidable for context-sensitive grammars are decidable for normal,
regular-based W-grammars.

Here are some concepts we shall find useful in the next few theorems.

302 Greibach

Definition 3.4. Let G = (VM, Vp, Z', PM, Ph, or) be a normal
W-grammar and let A ~ VM. I f 7 --~ uAv ~ Ph, and 7 ~ (A), then A appears
independently in the hyperrule and the hyperrule is creative. For w~ Vp +, let
L (w) -~ { y E Z + I (w) ~ * y} and L(A) = U,~.~L A L(~,). Forf i ~ (V~ u Ve) +
let L(f l) = U ~ L L(w) . For Z e Vp -- S let L(Z) = { y ~ Z+ E Z :~ * y}.

We define re~luced normal factored W-grammars. Our definition is in the
same spirit as the usual definition of reduced context-free grammars.

Definition 3.5. A normal factored W-grammar G = (V u , Ve, Z,
P u , Ph , or) is reduced if either VM = Z = PM = Pn - - ~ or:

1. For each Z e Vp -- Z, L(Z) va ;~.

2. I f (/3) appears in a hyperrule, then for each w ~ Le , L (w) r ~ .

3. For each Z ~ Ve there are words u, v ~ Z* such that ~ :~* uZv.

4. I f (A) appears on the left-hand side o f a hyperrute, there are w ~ LA,
�9 U, V e Z*, such that a =~* u(w)v.

5. For A ~ V ~ , LAC--(V e - { e }) + , L A n (V ? - - Z) = ~ and LA is
infinite.

6. The start symbol e does not appear on the right-hand side of a
hyperrule.

7. There are no hyperrules <A) --~ (A) or (Z) -+ (Y) .

Theorem 3.2. Given a normal regular-based W-grammar G, we can
construct a reduced, lossless, factored, normal, regular-based W-grammar G
such that L(G) = L(G) and G is regular or strict or unary if G is.

Proof. We can of course assume G = (VM, Vp, Z, PM, Ph, cr) to be
lossless, factored, normal, and regular-based.

First we can ensure that for A e VM, L.4 contains no protovariable Z.
For if Z ~ L A , we can first replace LA by LA -- {Z} and G will still be regular-
based and factored. Then we add a new symbol ,~ to Vp - - X and for each
hyperrule ~, --+ y add the result of first replacing A by Z in 7 -+ Y and then
replacing (Z) by ,~. So we can assume that LA n (V e - - Z) = ~ . By the
standard methods for context-free grammars, we can ensure that L.~ _C
(Ve - - {e})+ and (6) holds.

Let

V= {Ze V,~- Z1L(z) r ~}

Ideally, we should like to have V e - Z = V, since the appearance of a
symbol of Vp -- Z - - V obviously blocks a derivation in a lossless grammar.
First we must locate V.

Notice that because G is factored, if w eLA and L (w) ~ ~ , then

Some Restrictions on W-Grammars]03

L(w') @ ~ for any w ' ~ L A n (Z ' t 3 V) +. Let T = {A e V~ i l L (A) =/= ;~},
a n d I = { A ~ V M i L A n (2 J u V) +4= ;~}.

We construct V, T, and I in a familiar way. First, let ~.] = Tt =
an d /1 = {A e VM I LA n Z'+ @ ~}. If we have built V. , T . , and I . with
V. _C V, Tn _C T, and I~ C L we obtain V.+I, T.+~, and I.+i as follows,
starting with V. _C V.+z, and T,, _C T.+I. We search P . for a rule

~, --+ uo(vz) "" u ~ _ t (v , .) u ~

with u~, vj, as usual, satisfying:

(a) uo, ul um ~ (v . u I~ u •)+.

(b) vl v~ ~ (V~ u I . u 2)+.

(c) For 1 ~ j ~ n, L~j C LA. for some As e Tn.

Then if 7 = Z e Vp, we add Z to V~+~ ; if y = (A), we add to T~+I, along
with any B with Ls = LA. When this is done let

&+~ = {A ~ VM1 b~ n (v.+~ u Z]+ r ~}

By construction we have V. C V~+z _C V, T~ C T~.+ I _C 7", and /~ ~ In+z C_ L
Since] Vp u VMI is finite, there is an no ~<i Vp w VMi such that

l/~o w T~o = V%+ 1 U T%+z. Then V% = V%+1, T~ o = T%+I, and I . ~ = I%+ 1 .
Hence V% = U, v,_c V, T% = U, T, C T, and 1% = U, In-C I. We omit
the straightforward but long proof that V% = V, T,0 = T, a n d I% = L

If a ~ V, then L(a) = L(G) 4= ~. In this case let G be the trivial
W-grammar G = ({~}, ~ , e , ~ , ~ , a). Suppose cre V.

Now we can alter G to ensure that Vv _C V w Z a n d ~ v~ LA C (V W 2)+
for each A e VM ; the construction is quite obvious; when we eliminate a
symbol we obviously eliminate all members of PM W Ph in which it appears.
We also eliminate any hyperrule containing a hypernotion (/~) with L~ _C LA
for some A in V~4 -- (I w T). Then we can assume that G satisfied 1 and 2.

Now we want to ensure that 3 and 4 hold. We want to construct sets
similar to L T, and V; this time we only sketch the construction. We want to
build sets J (consisting of metavariables appearing independently in hyper-
rules), K (consisting of metavariabtes satisfying 3), and N (consisting of
protovariables and terminals satisfying 3).

We start with J = K = ;~ and N --: {a}. We alternate scanning hyper-
rules and sets LA. If Z - + y is a hyperrule and Z e N , we add to J all
matavariables in y, to N all members of Vj. in y, and to K any A such that y
contains (fl) and LB C_ L , 4 �9 If (A) ~ y is a hyperrule, we add to N and K as
above and add to J any symbol in VM -- {A} appearing in y. When we add A
to J, we add to N any Z e Ve with L.~ c~ V*ZV* :/= ~ ; since the LA are

304 Grelbach

context-free (in fact regular), this condition is testable. Eventually the process
ends when we scan all hyperrules without increasing J, 1<2, or N.

whe n we finish we simply eliminate all members of Vp -- N everywhere
in G and all hyperrules (A) --~ 3' where A ~ K. When we have finished G
satisfies 3 and 4 still satisfies 1 and 2.

Next, if LA = {wl ,..., w,~} and A e VM, replace each hyperrule), --~ y
by n hyperrules

h~(~) -~ h~(y)

where h~ is a homomorphism such that hi(A) = w~ and hi is the identity
elsewhere. Do this successively for each A ~ V~ with LA finite. This may
create an "illegal" hyperrule

(w) -~ y

for w ~ Ve +. In this case eliminate this rule, create a new p rotovariable w,
add a rule w -~ y, and replace every occurrence of (w) by w. Hence we can
assume that LA is infinite. Thus, using the remarks at the start of the con-
struction, we see that 5 and 6 hold.

Finally, we can satisfy 7 with constructions similar to those used for
context-free grammars, aS) Thus we can construct a new W-grammar G
which is reduced and still lossless, factored, normal, and regular-based and
which also generates L(G). []

Now we state our main decidability results.

Theorem 3.3. It is decidable for normal regular-based grammars G
whether L(G) is empty and whether L(G) is finite.

Proof. We can assume that G = (VM, Ve, •, PM, P~, or) is reduced,
factored, and lossless as well as normal and regular-based. Obviously
L(G) ~ ~ if and only if G is not the trivial grammar (~ , {e}, ~ , ~ , ~ , ~).

Assume L(G) =/: ~. First notice that if L(~A) ~ ;g and LA is infinite,
then L (A) is infinite. For if x ~ L(A) , then there is a word w ~ LA such that
I w I > I x 1. As we mentioned before, the fact that G is factored implies that
since L (A) v~ 2~, L (w) is also nonempty. But G is lossless, so if y ~ L(w),
then y ~ L (A) and [y [>~] w I > I x [. Hence L (A) is infinite.

Since G is reduced, LA is infinite for A ~ VM. Further, every hyperrule
in G is "usable" in some completed derivation. Hence if G has any creative
hyperrule, L(G) is infinite.

So assume now that no hyperrule is creative--no metavariables ever
appear independently. This means that there are at any point only finitely
many actual productions applicable to a string generated from e. Hence for
any q there are only finitely many complete derivation trees in which no

Some Restrictions on W-Grammars 305

path has more than q nodes. Call a complete derivation tree minimal if there
is no smaller tree yielding the same word in L(G). By building all smaller
derivation trees, one can certainly determine whether a given tree is minimal.

Suppose G has a minimal complete derivation tree with a path containing

q = 2 § VMI 4-(i V p - - Z) (V ~ , i)

nodes. If the path contains 1 + I Ve -- Z ! nodes labeled in Vp -- Z, two of
them must have the same label, say Z. Thus there is a subderivation
Z 3 " uZv, u, v e Z * . l f u = v = e, the tree is not minimal. I fuv ~ e, then
we have cr =~* w~Zw~ and Z 3 " wa for Wa, w2, u'3 ~ Z* and so L(G) has the
infinite context-free subset {wzu"w3v"w~ ! a ~ 0}.

Otherwise, the path must contain two nodes labeled <,,~) and \w.,\ such
that Wl, w2 ~ LA for some A E VM and no intermediate node has a label in
V p - Z. We could apply to <w.,) a production derived from the same
hyperrules that one applied to <wa) and continue in this way until we generate
some <w3) with w 3 in LA. Repeating the process as long as we choose, we see
that L(G) is infinite.

On the other hand, if no complete derivation tree has a path with q or
more nodes, then L(G) is finite. Hence we can tell whether L(G) is finite.

4. RELATIONS BETWEEN WR8 A N D OTHER FAHILIES

In this section we show WR~ to be contained in two familiar families of
languages.

First we show that WRB is a subfamily of the family of indexed languages
-- the languages defined by indexed grammars, m by nested stack automata, I~)
and by Ol (outside-in) macrogrammars, m,12) It appears simpler and more
enlightening to use macrogrammars.

We shall discuss macrogrammars briefly and informally. A very careful
and rigorous treatment appears in Ref. 11.

A rnaerogrammar contains three disjoint sets of symbols--a finite
vocabulary Z of terminals, a finite vocabulary I of function letters ranked by
a function p, and a finite set V of variables. Terms are defined inductively.
Any member of Z u V is a term, as is any zero-place function letter A
[i.e., A e I a n d p(A) = 0]. Ifc~ and/~ are terms, so is ~/~. l f~l , ~, are terms,
n >~ 1, F e I, and p(F) = n, then F(cq ,..., c~,) is a term. A macrogrammar
consists of Z, I, p, and V plus a start symbol e usually taken to be 0-place
[i.e., a ~ l a n d p(~r) = 0] and a finite set P of productions of the forms Z --~ Yl
and F(xl ,..., x ,) -+ Y2, where F, Z ~ I, p (Z) = 0, p(F) = n, the x~ are all
distinct members of V (so xi -~ xj for i r j), and Yl and Y2 are terms such that
Yl ~ ([kJ Z) + and y~ ~ (I u Z u {xz , x~}) +.

8281314-3

306 Greibach

Derivations in a macrogrammar could go from the outside in or the
inside out, with different results. We shall only consider outside-in,
OI, derivations since those yield precisely the indexed languages. I f
F(xl x,O ~ y is a production, c~1 c~n are terms, and y' is obtained f rom
y by substituting al for x~ [i.e., y' = h(y) , where h(xO = a~, 1 <~ i <~ ti, and
h is the identity elsewhere], then F(c~l ~) =~ y'. I f Z - + 3' is a rule,
p(Z) = O, then Z ~ y. I f u * v and x and y are terms, then xuy --- xvy.
We extend :* to =-* in the usual way. Then the language generated by G is
L(a) = {w E 2 ~ 1 ~ :~- * w).

For example, the set {a "2 I n) 1} is generated by the macroproductions
a -~ F(a, a), F(xa, x2) ~ F(xlxzaa, x~aa), and F (x l , x~) ~ x l . The string a 9
is obtained:

cr , f (a , a) ~ f (a 4, a ~) ~ F(a 9, a 5) ~ a 9

Theorem 4.1. The family WR8 is contained in the family of indexed
languages. Given a normal regular-based grammar G, we can construct a OI
macrogrammar G such that L(G) = L(G).

Proof. We can assume that G = (VM, Ve, 27,, PM, P~,, ~) is factored.
Let V~ = {A1 An}. Each metavariable A~ will become an n-place function
letter in (3 and each protovariable Z will be represented in (; by a zero-place
letter Z and an n-place letter 2. We shall generate in C, terms such as
A~(~ , an) where each c~ is in LA~ and G is currently applying a production
to (~) . The idea is that a hyperrule such as (A~) -~ aA2(A~aA2Az) with
LA~A~A ~ C_ LA~ would become a macroproduction

Al(x l , x2 , x~) --+ a x i A l (y 1 , y., , xlax2xl)

and the y~ would generate members of LA~ �9 This will not quite work- -we need
outside-in derivation to make proper duplicates but in order to expand y~

f irst , we would have to use inside-out derivation. So our construction must
become more complicated.

Let T be the set of all vectors (Bz ,..., Bn) with each B~ in VM �9 Let
V = {xl x~} and

I = { A ~ , A ~ . t] I ~.-i ~ n , t ~ T } u { S o }

U { Z , 2 , 2 ~] Z e Vp -- Z , t ~ T} ~A(S,S~l t ~ T}

with p(A~) = p(A~.d = p(2) = p(2~) = n and p(Z) = O for A~e VM,
Z ~ V ~ , - - 2 : , t ~ T . Now a term A~.~(~ ,oh) with t = (B z B,) but
B~ = Ai will mean that we want to expand (~) next, ~ is in L e for i 4: j,
and we are trying to expand =~ to a member of LA~.

The macroproductions that simulate PM are relatively easy to state. I f

Some Restr ict ions on W - G r a m m a r s 307

1 ~< k ~. n, t = (B~ ,..., B,,) e T, Bk - : A~. but Bi is arbitrary l\~r i : k.

then we need all possible product ions

where t ' = (C1,..., C,,), C k - Bk-- A~., Yk-= x~, and for i-.~ k either
C~ =- Bt and yi = x~ or else y~ = wx~ and C~ --,- wBi is a metaproduct ion
in PM �9 We also need for to = (Az, A2 ,..., A,) the product ion

Ak,to(xl x,~) --+ Ak(xl , x ,)

Similarly, for Z e Vp -- X and t = (B~ , B,) we need all product ions

1. Z - -~ 2~(wl , w,O where B j - * w j , wj e Vp ~ f o r l ~ j ~ n .

2. 2~(x~ ,..., x ,) - ,- 2 t , (y~ ,..., y ,) where t ' = (C~, . . . ,C ,) and for
1 ~<j ~ n either Cj---=Bj and yj = xj or else yj =-w~x3 and
Cj --,- w~Bi in PM.

Fo r to = (A1 , . . , A ,) we need 2to(X1 ,..., x,O --," 2 (x l , x,O.
Each hyperrule in Ph yields a number o f macroproduct ions . Instead o f

giving the general form, which would bristle with subscripts, let us give
two examples, for n = 3. Suppose Ph contains

<A2} --~ A~a<aAzA2) b<A3A2a}A1

and LaAzA 2 C_LAx and LAaAoaC_ LAz. Then we have all possible macro-
product ions

A2(xz , x2 , x~) --~ x2aAz,t(axlx2 , u2 , u~) bA2,~(vl , x~x2a, v~)xl

where t = (A1, Be, B3); r = ((71, A2, C3); vl , vs, u2, u~ e Vp+; and B2 --+ u~,
B3 -+ u~, (71 --+ v l , and C~ --~ v3 are in PM" Similarly, if Z ~ Vp and we have
a hyperrule

Z ~ aA2<bA~Azb> A~Z

with Lc~zAzb CC L % , we have all possible macroproduct ions

2(x~ , x~ , x~) --~ ax2A~a(uz , uz , bxzxzb) x~Z

with t = (B1, B2, A3); uz, u~ e Z+; and Bz --+ uz, B2 -> u2 in PM �9
The reader can verify tha t the OI mac rog rammar so constructed

generates L(G). []

Corollary. WRB is properly contained in the family o f context-sensitive
languages.

308 Greibach

A language L in WRB is, as we saw, context-sensitive and so can be
recognized by a nondeterministic multitape Turing machine which needs
at most E w] tape squares to accept w. In fact, L can not only be recognized,
nondeterministically, in linear space but also in linear time. For IVR~ is
contained in 22, the family of languages accepted in realtinw by nondeter-
ministic multitape Turing machines. Languages in Y are called quasireahhne.
More rigorous definitions of multitape Turing machines, nondeterminism,
realtime, and quasirealtime can be found in Ref. 8.

It seems plausible that containment in 22 should be a consequence of the
last theorem. We conjecture that the indexed languages are indeed quasi-
realtime. However, to the best of the author's knowledge, this has never been
established in print and must be considered to be an open question. Thus
WRB _C .~ requires an independent proof.

We shall not give the full proof that WRB _C ~, since it is very long and
would lead us far afield of our goals. Instead we content ourselves with
sketching some of the ideas that make the proof "work."

Theorem 4.2. WR~C_22; given a normal regular-based grammar G,
one can construct a nondeterministic multitape Turing machine to accept
L(G) in realtime.

Proof. We only outline the necessary construction.
First, the results in Refs. 6-8 indicate that to show L in 22 it suffices to

exhibit a nondeterministic multitape Turing machine M and an integer k
such that M generates L and M generates ~' in time k I w ',. That is, linear time
is no more powerful than realtime for nondeterministic Turing machines.
The results of Refs. 8 and 18 show that, without loss of generality, we can
let M have any finite number of working tapes and any finite number of
read-write heads per tape. Thus, using auxiliary two-headed tapes, we can
copy and duplicate without loss of time.

We can assume L = L(G) for a reduced, factored, lossless, normal,
regular-based W-grammar G = (VM, Vp, ~, PM, PJ,, or). The idea is that
in any cycle M selects a hyperrule 7--+Y, a metaassignment h, and a
production 11(7) -+ tl(y) and applies this to h(7). What is involved in obtaining
t1(3') from y? Since each GA is regular, one can, nondeterministically, select
h(A) ~ LA in the time it takes to write ! h(A)], thus checking that h(A) ~ LA
causes no loss of time. If A appears twice in y, then M must duplicate h(A).
By using an auxiliary two-headed tape, Mcan write h(A) h(A) in time 2 [h(A)!.
It will need at most] VM E such tapes; at the end of each cycle M can erase
these tapes at the cost of doubling computation time.

The organization of this simulation is of some importance. There are
three main tapes, TL for the left part of the generated string, TR for the

Some Restrictions on W-Grammars 309

right part, and TC for the current section to be expanded. I f a protovariable Z
is being expanded, there is no problem selecting which hyperrutes are legal.
I f (w) is to be expanded, the contents of TC are written as (AWA) where
w ~ LA ; by suitably recoding one could write this in I w [tape squares. Thus
M can select a hyperrule (B) -~ y for L~ = LB without testing whether
w E LB. Since G is factored, if (fi) appears in the right-hand side of a
hyperrule, M knows at once the set V~ -- {A ~ V~r I L~ C LA} and knows that
if A r V~, then h(/3) ql LA for any metaassignment h. So M can select at
random A EVe and write (Ah(~)A) without inspecting h(~). This is a vital
point. The other point is that since G is lossless, when (w) is expanded w
remains behind in some form or other.

The order of expansion is of some significance. When the production
applied is Z ~ h(y) for Z E Vp -- 27 and h(y) ~ 27+, it does not matter which
part of h(y) is expanded next, so select the teftmost. That is, if y ~ uyv,
u ~ Z +, and y ~ (Vp -- 27) t9 {(w) t w EVe+}, put u on TL, v on TR, and the
appropriate encoding of (w) (i.e., (AWA) for w e LA) on TC. I f the hyperrule
is (A) -+ y, there is a slight catch. I f y = x(uAv)Z and TC contains (AWA)
(or (cWc) for L.~ = Lc), write h(x) on TL, h(z) on TR, and (~h(u)wh(v)B)
on TC for LuA~ C L~. Now the latter operation need take only L h(u)! + ! h(v)]
steps because TC can also be a two-headed tape, and because M does not
have to scan h(u) wh(v) to know that it is in L~.

One other point should be mentioned. I f the hyperrule ~ ~ y yields a
production with h(y) ~ ~+, M must guess whether or not TL has anything
left to expand. A wrong guess will cause M to block. I f M guesses that TL
has nothing to expand, it puts h(y) on the right of TL and it transfers
terminal symbols from the left of TR to the right of TL until it hits
~] = Z ~ g p - - ~ o r ~2 = (A W A) . Then it puts a barrier ~ on TL and puts 7
on TC. On the other hand, if M guesses TL contains a suitable ~, for
expansion, it puts h(y) on TR and transfers terminals from the right of TL
to the left of TR until either it empties TL or it encounters the barrier [] or
it finds 7. In the first two cases M blocks. In the last case M puts y on TC
and continues. This avoids repeated shuttling of symbols between TL and
TR--once a symbol goes from TR to TL it can never be moved until the final
cleanup.

Finally, the process starts with cr on TC and TL and TR empty and ends
when M guesses that only terminals remain. A wrong guess means a block.
In the final cleanup M transfers TL and TR minus barrier [] onto an output
tape. Since there can never be more barriers than terminals and since TL
and TR could have two heads, this takes at most 2 T w] steps for an output w
and so at worst increases the linear factor by one. The way to see that the
process is linear is t o count not the steps per cycle but the number of times
a symbol is "handled" (created, transferred from TR to TC, etc.), recalling

310 Greibach

that G is lossless; in the worst case no symbol is handled more than eight times
before yielding a new terminal on the output tape. []

Corollory 1. Each member of Iu can be expressed as the nonerasing
homomorph ic image of the intersection of three context-free languages.

Proof. This is true of .~.~s~ []

Corollary 2. WRB iS contained in the family of deterministic context-
sensitive languages.

Proof. This follows from Corollary 1, since the family of deterministic
context-sensitive languages is closed under intersection and nonerasing
homomorphism. []

5. N E G A T I V E RESULTS FOR WRB

We have examined what normal regular-based grammars can do, what
useful normal forms and reductions apply to them, and how easy they are to
generate or recongize. Now we discuss their limitations. First we exhibit a
language in W~s - - WR and then notice that the same arguments can exhibit
a language in . ~ - WRg. The languages are those of Examples 4 and 5.
Then we discuss briefly the closure properties of WR~ �9

Theorem 5.1. The language L = {az'~a2'~a3~'a4 '~] n .~ 1} is not in WR �9

Proof. The proof turns on some implications of the structure of L. First
notice that if L contains a subset {uzvl'~u2v2"u3v3'~u~ in ~ 1}, then we must
have Vl = v2 -= v3 = e for we cannot alter the occurrences of three symbols
and leave the fourth unchanged. A fortiori, L cannot contain an infinite
context-free or an infinite regular subset. ~5)

Part of a word in L may uniquely determine the rest. Given a word u
containing az , there is at most one v such that uv is in L. Hence if uvz and uv2
are in L, vz = v~ ; similarly, u~v and uzv in L implies u, = u2 if v contains a3.
The situation regarding middle sections is slightly more complicated. I f w
contains three distinct letters (i.e., w ~ az+a2+aa + u a~ +a3+a4 + • a~+a2+a3+a4+),
then there is at most one u and one v with uwv in L. I f u contains two letters,
then uwv c L uniquely determines wv and similarly for v and uw. So if any
three o f u~w~v~, u~w~vz, and u2w~v2 are in L, either wl = w~ or
(u~, vl) = (us, v~).

We also need the fact that although duplication does not preserve
regularity in general, if R is regular and R _C w* for any word w, then

Dup(R, k) = {yk [y c R)

is regular for any k >~ 1. Also note that no subword with more than one letter

Some Restrictions on W-Grammars 311

can be duplicated in L, so if we use a hyperrule with two occurrences of a
metavariable A, we may as well assume that L~ _C a~+ for some i.

I f L is in Wg, we can assume that L = L(G) for a reduced, factored,
lossless, normal, regular-based grammar G = (VM, V~, Z, PM, Ph, ~) such
that the rules of Pn are of the forms

--~ w, V - + u(w>, 7, --* u Y

f o r w ~ (V i w Z) + , u E (V g W Z) * , a n d v E Vv - - Z o r 7 = (A > f o r A E V M.
Observe that since G is lossless and factored, if (wl> ~ * z, z ~ 2:+, and

w i E L A , then z can be factored z = zlwzz2wl "" z~wtzk+~ in such a way that
for any w2 ~ L A , (w2> ~ * ZlW~Z2 "'" ZkW2Zk+l and k = 1 if no duplications
occur. Also, if (wi> =~* (UWlV> without duplications and w~ and uw~v ~ L ~ ,
then (wi) =~* (UnWl v'n) for all n >~ 1.

First we show that a is really the only useful protovariabte in G. For
Z ~ V e - - Z , A ~ V i , a n d w e L A , l e t ~ v (Z) = { (u , v) lu, v ~ Z + , a ~ * u Z v } .
Now protovariables behave like nonterminals in an ordinary context-free
grammar, so L(G) contains uL(Z)v for each u, v ~ 7r(Z). Because G is reduced,
L (Z) ~ ~ . v~ zr(Z), either~r(Z) = {(uo, Vo)} [i.e., I ~r(Z)i = 1] or L(Z) = {wo}
[i.e.,] L(Z)I = 1]. In the first case we can add {~ ~ uoyvo I Z --~ y is in Ph}
and then remove Z from G. In the second case we can replace Z by w o on the
right-hand side of hyperrules and eliminate all hyperrules containing Z;
however, if Z appears in a word of LA and A appears in some (8>, we may
have to add Z- -~ % as the only hyperrule involving Z. In the latter case
we regard Z as a specially tagged version of w 0 and so, in effect, in 2+. Thus
in the subsequent argument we lose no generality by assuming Vp = Z' u {~}.

Recall that a metavariable A appears independently in a hyperrule
--+ y i fA appears in y but not in 7- We now observe that we can assume that

metavariables do not appear independently in hyperrules of G. Suppose
a - -) - U l A "'" u k A u k + l (f l) and A does not appear in ui , uk+i or ft. As
mentioned before, if k / > 2, we can assume that L,~ _C a~+ for some i and
rearrange the rule as cr ~ uxu2 "'" ukA~:U~+l (f l) . For metaassignment h and
(h(fl)> ~.. * w, w ~ Z +, h(uz ... uT~) Dup(L~ , k) h(uk+l)w is an infinite regular
subset of L(G), a contradiction. Suppose cr --~ u(fl> is a hyperrule and u and]3
contain A. As before, we can assume u = ui A~ and fl -~ A~fll where k, r ~> I
and A does not appear in u~, u~, or fli- I f (wx~h(fli)> ~ * z ~ ~+ for wi ~ LA
and a metaassignment h, we can factor z = zzwt ~ ... z~w~z~+x such that

<w~"h(~l)> *~ z l w ~ ' " z , w 2 % + ~

for any w~ E L~ , and zzw2 ~ z~w~z~+i ~ w~z l "'" z~+i. Thus

h(ul) Dup(L~ , k 4- rs) z l ... z~+l

3t 2 Greibach

is an infinite regular subset of G. By examining the case ~ -+ u(/3) where A

appears in fi but not u and all the cases \ B \ -+ v where A B and ,4 appears

in y, we find in all cases, if G conta ins a creat ive hyperrule, then L(G)
conta ins an infinite regular subset of the form x D u p (L , . k) y where

LA C a / for k) 2. Hence we can assume that no metavar iab le appears
independent ly in a hyperrule.

W e can also e l iminate rules (A) ~ u(f l) where A does not appea r in ft.
As noted, we can assume tha t u e (I w {A}) + and f i e I + Suppose there is a
me taass ignment h and a str ing v e l + such tha t ~ * * v(h(A)) . Then
vh(u)L(~) C_ L(G). Ei ther i L (~) I = 1 or there are unique v and h with
c~ ~ * v (h(A)) . In the first case we replace (A) --~ u(f i) by (A) --~ uw o for
L(/3) = {Wo} and in the second case we remove (A) ~ u(/3) and add

- , vh(u)<~>.

Thus we can assume tha t G conta ins only hyperrules o f the forms

~r --~ w, cr --+ u(w)v , (A) .--+ xAy , (A) --, x(v~Av~)

for w ~ 1+; u, v e Z* ; x, y, u 1 , V 2 ~ (.S k) {A})*. In the last case we can assume
vlv~ ~ e, for x = v~ = v~ = e would be t r ivial ((A) --+ (A)) and v~ = vz = e

but x v a e would, if used, p roduce an infinite regular subset o f the fo rm

W1X*W 2

Since L(G) = L is infinite, there mus t be a w e I + such that L (w) is
infinite and ~ --~ u (w) v is a rule. Any der iva t ion f rom (w) mus t look like

for ui ~ I * , w~, x ~ l + , where each w~ is a p rope r subs t r ing o f w , and for
each i we can fac tor x as x = x~w~ ... x~w~x~+l where i f w~, v are in LA, then

(v) ~ * XaV "" x~vx~+~. Since there are no independen t metavar iab les in P~ ,
there are only finitely m a n y der iva t ions o f size n f rom (w) . Since VM is finite,
i f L (w) is infinite, we mus t have

0)

for w l , w2, x ~ I ~ ; u~, u~ e Z'*; and wl and w2 in LA for the same meta-
var iable A. Then e ~ * uu~(wl)z, (w l) ~ * u2(wz), and (w2) ~ * x. Fur the r -

more , w2 = v~w~v~ , v~v2 v a e, and x = xlw2kx2 where (v) ~ * xlvkx2 for any
v in LA. I f wl conta ins two or more letters, no dupl ica t ions occur in the
der iva t ions f rom (w l) and (w2) and k = 1. Then {uulu~'~wlv2'~x2z I n ~ 1} is
a subset o f L for v~v~ :/= e, which is impossible .

I f w2 = ai ~, then w~ = a~ ~ and 1 ~< r ~ s. In this case L conta ins bo th
uuix~a~kx2z and uu~u~x~agkx2z. I f uu~ or a~x2 con ta in two or more letters, the

Some Restrictions on W-Grammars 3~3

middle of the string is determined, so u2xza~ k = xlair~, which is impossible
since the words have different lengths; otherwise, xla~ ~ contains three or
more symbols, so uut -- uulu,, and x,,z - a~t'>~kx2z, which is also impossible.

Thus if wl contains two or more letters or w,, contains only one letter, we
obtain a contradiction. Notice that once the bracketed portion of a derivation
has two or more letters, this condition persists. Hence if there is a derivation
f rom (w) of length 21 Feet[-q- 3 or greater, then (1) must occur with wl
containing one letter. Thus derivations from (w) cannot be longer than
21 VML + 2. This contradicts the fact that L (w) is infinite. D

Corollary 1. WRB- WR ~ ~.

Proof. Example 4 shows that L is in WR~ �9

Remark. The argument above shows that if f l ,.f2 , f3 , andf~ are strictly
increasing functions from the positive integers into the positive integers, then
WR cannot contain any infinite subset ~,~ ~r ~,x~h(")~(n)~f-~('~)"~,(~),z- -a- -4 In >~ 1}.

I f we add one more coordinate, as , we can use the arguments of
Theorem 5.1 to show that the resulting language is not in WR~.

Theorem 5,2. The language f, = {al'~a2'~a~'~a4'~as'~ln ~ 1} is not in

WRB-

Proof. We adopt the argument in Theorem 5.1. Note that our remarks
on the structure of L also apply to/2 and in addition if{uav~"u2v2'~uzva~u4v4'~u51
n >/ 1} C /], then vx ~ v2 = v3 ~ v4 = e.

I f s is in W~n, we can assume L = L(G) for a reduced, factored, lossless,
normal, regular-based W-grammar G = (VM , Ve , 2 , PM , Pn , or) obtained
using the constructions of Theorems 3.1 and 3.2.

First we notice that at most one variable per hyperrule can be "usable."
Suppose cr ~ * u l (wl) u2(wz)u3 for u l , u2, u3 ~ 2 " , W1, W 2 E: Vp +. Then
u l L (w l) u~L(wz}uz C L so either] L(wl)[~ 1 or] L(w2)[= 1. I f x a L (w)
and w ~ L ~ , there is a factorization x = xxw' . . xkwx~+~ such that
xaw' "" x~w'x~+z is in L (w ') for all w' in L~. Hence if L (w) = {x}, we could
replace (t3) in a hyperrule by Xlfl "'" x~x~+~. So if G has a hyperrule
"Y - + Y~<fll) y~{/3z) y~, there is either a string c~ ~ (V~ w V~)+ such that we
can replace the hyperrule either by ~ --+ y~(/3~) y~o~y~ or by y -+ y~yz (f i~) y z .
Similarly, if ~r ~ * uiZuzYu a for Z, Y ~ V e - ~ , either I L(Z)I = 1 or
t L(Y)I --=- I and analogously for cr ~ * UlZU~(W)U ~ or ~r =,* ua(w) u~Zua.

We can eliminate protovariables and independent metavariables f rom
hyperrules, using arguments analogous to those in the proof of Theorem 5.1.
We can finally conclude that the hyperrules of G are in the forms

c~ ~ w, ~ --, u(w)v , (A) -+ u~(v~Av~)u~, (A) ~ uiAu~

for w ~ Z'+; u, v e Z*; Ul , U 2 ~ (S k.J {A})*; [1/) 2 e (~ t) {A})+,

3t4 Greibach

Again we observe that we must have L(w) infinite for some w ~ Z'+
with a ~ u (w) v in Ph. Hence there must be arbitrarily long derivations from
(w) and so derivations of at least 2 I VM I + 3 steps. But such a derivation
can be divided:

(2)

where Ul, uz, wl, w2, z1 , 2"2 , X ~ .~Y~*, W 1 , W 2 ~ LA for some A, and either
w2 = aft or Wl contains two or more letters. We can factor x :=- xlw2~'x~ so
that (v) =>* xlz~x2 for each z e LA.

I f W~ = aft, then w~ --- a~ ~ for 1 ~ r ~< s and both uu~xla~~x.~v~v and
uu~u2x~a~x2v~v are in s To avoid the sort of contradiction we obtained
before, we must have uu~ ~ a~*, v~v E as*, i = 3, Xl ~ a2+a3 *, and x2 ~ a3*a4 +.
We must have u2 ~ az+a2 + and v., ~ a4+as + to balance the increase in the a3's.
But since w~ = az ~ ~ LA and any duplications in (az ~) ~ * u2(a3')v~ must
take place wholly within brackets, we have (az ~) ~ * uz(a~t)vz for some
a3 ~ ~ L A . But then uu~u~u~xza~x~v~v~vzv is in L, an obvious contradiction.

On the other hand, if Wl contains two or more letters, no duplications
occurred in (w~} ~ * u~(w~}v2 or (w~) ~ * x~w~x~, k = 1, and w~ = zzwzz~,
v~v~ ~ e. Then we have

{~2bll~12nXlZl~WlZ2nX2U2"l)lV] n ~ 1} _C/~

a contradiction.

Corollary 1. WRB C ~.

Corollary 2. WRB is properly contained in the family of index languages.

Proof. The language L is clearly generated by the macroproductions
S --+ F (a l , as , a3, a4, as),

and

F (x 1 , x~ , x z , x4 , xs) --~ F (a l x x a e x 2 a 3 x 3 a 4 x 4 a s x s)

F(XIX2X3X4X5)--->X1X2X3X4X5 []

We conclude our discussion of normal regular-based W-grammars with
some brief comments on their closure properties. Roughly speaking, WRn is
closed under operations involving symbol replacement but not under those
depending on the order of symbols. Thus W ~ is closed under nonerasing
homomorphism, substitution, and nested iterated substitution but not under
intersection with regular sets.

Definition 5.1. A homomorphism h is nonerasing if h(w) v~ e for w :~ e.

Some Restr ict ions on W - G r a m m a r s 315

De~nition 5.2. Let Z be a finite vocabulary. A substitution -: on Z* is
defined by associating a language ~-(a) = La to each a ~ Z, extending r to Z*
by r(e) = {e} and ~-(xy) = r(x) ~-(y) for x, y c X*, and finally for L ~ Z*,
letting ~-(L) = Uw~z ~-(w). The substitution ~- is nonerashTg if e r ~-(a) for each
a s Z; it is nested if a ~ ~-(a) for each a E Z. A family of languages N~ is closed
under nonerasing substitution if whenever L e L~', L C Z*, and r is a nonerasing
substitution with ~-(a) E ~ for each a ~ Z, then ~-(L) ~ SF.

Definition 5.3. Let Z be a finite vocabulary and ~- a substitution on X*.
I f ~'(a) _C Z* for each a c Z, and L _C X*, let T~ = L, and ~-"+I(L) = ~'(rn(L))
for n >~ 0. We call ~'~(L) = Un~>z ~-"(L) an iterated substitution and if ~- is
(nonerasing) nested, then ~ is a (nonerasing) nested iterated substitution.
A family of languages 5(' is closed under (nonerasing) nested iterated substi-
tution if whenever L e ~ , L __C Z*, and -r is a (nonerasing) nested substitution
with r(a) C Z* and ~-(a) e SF for each a ~ Z, then T~(L) is in ~e.

Theorem 5.3. The family WRB is closed under nonerasing substitution
and nonerasing, nested, iterated substitution but not under intersection with
regular sets.

Proof. Let L ~ WRB, L C Z +, and let r be a nonerasing substitution
such that ~-(a) ~ WRB for each a E Z. We wish to use the same sort of con-
struction as for context-free grammars. However, we must use distinct
terminals as well as distinct variables in order to prevent using a production
available for ~-(a) while generating a word in r(b) for a :~ b. So we "pa in t"
~-(a) and ~-(b) different "colors."

For a, b ~ Z (a, b may be equal or unequal) let (a, 1) and (a, b) b e
new symbols. Let h and hb be homomorphisms given by h(a) = (a, 1) and
hb(a) = (a, b) for a ~ X. Let Zb = {(a, b) I a ~ Z} and Z 1 = {(a, 1) I a ~ Z}.
Now renaming all symbols with new and distinct names obviously does not
affect membership in W~B. Hence the language L~ = h(L) is in WRy, as are
the languages La = h~(r(a)) for each a ~ Z.

So we may assume we have normal regular-based W-grammars

G1 = (VM,1 , gP,1,21, PM,1, eh,l, o'1),
a,~ : (vM.o , v,.o, , & , PM.o , ~ . ~ , ~)

such that L~ L(GO, L,, = L(G~) for a ~ Z' and

fora, b ~ X , a @b.
To obtain (7 such that L(G) = ~-(L), we let G have as metaproductions

PM ~--- PM.1 U PM,,~
ct~

316 Greibach

and as hyperrules

Then.

and

�9 Ph = Ph,1 U Pl,,a I0 {(a, i) --+ g. i a ~ Z'} w {(a, b) --+ a i a, b ~ Z}
a6:Z

v-~= v~. ,U vM v,,:-- v,,., U v,,.ouz
a~Z a~X'

If r is nested, then we obtain O with L(G) = r~ (L) by selecting as
hyperrules

tsh = Pt~ w {(a, 1)---> a] a e Z } o {(a, b) --~ ~ l a, b ~ Z }

we let G = (VM , Vp , Z , PM , Ph , ~0"
We show that WRB is not closed under intersection with regular sets by

recalling that L = {a~"az"aa~a4"as n [n ~ 1} is not in WRB. On the other hand,
let Z = {az, a~, as, a4, as} and

L = {xzazx2a2xaaax4a4xsa~ I 3n ~ O, Vi, [xi I = n, xi ~ Z*}

and R = al+az+a3+a~+as + . Then L = L 1 n R and R is regular. But LI can be
generated by a normal regular-based W-grammar with metavariable N,
protovariables ~ and Z, metaproductions N ~ Z , N ~ Z N , and hyperrules

--+ (N } , (N } --~ NazNa2Na~Na4Na~, ~ -§ ala2a3a4a~

and

Z - - + a i for 1 ~ < i ~ 5 U}

6. S IMPLE W - G R & M M A R S

A W-grammar is simple if it is s t r ic t - -each LA C Z~---and it is unary--

whenever (/3} appears anywhere in a hyperrule then fi = A for a meta-
variable A. Let Ws be the set of all languages generated by simple W-
grammars. It is evident that Ws --like WRB -- properly contains the family of
context-free languages; we shall show that WRB is properly contained in 4~.
We shall also see that WRn and Ws are incomparab le - -WR~- Ws v L

and Ws - - WR~ ~ ~;. Finally, we notice that Ws has no interesting closure
properties.

First we observe that�9 W s contains every language expressible as the
intersection of two context-free languages. This easy result contrasts with the

Some Restr ict ions on W - G r a m m a r s 317

surprising fact that Ws does not contain certain languages expressible as the
intersection of three context-free languages!

Theorem 6.1. If L1 and L2 are context-free, then L1 • L2 ~ Ws .

Proof. Let L1 = L(G1) and L., = L(G.,) for context-free grammars
G1 = (V1 ,2 , P1,SI) and G2 = (V2,~r, P2,S2) with V~c~ V., = Z. Let c~
be a new symbol and Ph = {e -+ ($1}, ($2} ~ $2}. Then L = L(G) for the
simple W-grammar

G = ((Va -- s u (V2 -- Z'),{cr} u s Z, Pz w Pz, P,~, or) D

Corollary 1. The family of context-free languages is properly contained
in Ws.

Corollary 2. Ws contains languages that are not indexed languages.

Proof. The family of indexed languages does not contain every language
of the form L 1 ~ L 2 for L~ and L2 context-free, m

Corollary 3. The language L -- {a{~a2'~a3~a4,a5 ~ i n >~ 1} is in WRB - Ws.

Proof. The language L is expressible as the intersection of two context-
free languages.

We shall show that Ws C ~ but the containment is not effective. For each
simple W-grammar G there is a nondeterministic multitape Turing machine M
accepting L(G) in realtime, but there is no algorithm to construct M from G.
Indeed, although each language in'Ws is recursive, each simple W-grammar
is not recursive in the following sense.

Theorem 6.2. The question "is w in L(G)" is undecidable for simple
W-grammars G.

Proof. For context-free grammars G 1 and G2 the question "L(G~)c~
L(G2) = ;~" is undecidable. 15~ We can assume that Gx = (V~, 2, P~, $1)
and G2 = (V2, Z', P2, $2) where V1 ~ V2 = Z'. Let or, a be new symbols.
We can construct from G1 and G2 a set of hyperrules P~ = {~ -~ (S~),
($2) -+ a} and a simple W-grammar

a = ((v~ - - Z') v (V~ - s {~} w 2 , & p~ w P~, p,~, ~)

Then a ~ L(G) if and only if L(GO n L(G2) v/= ~. Thus if membership were
decidable for simple W-grammars, emptiness would be decidable for
L(G1) N L(Ge). D

Despite Theorem 6.2, it is true that W s C.~. If we have a simple
W-grammar G (VM, V1,, ,Y,, PA~ , Ph , or) and let 7r(S) = ()Ar LA for

3~8 Greibach

S _C V~, then if we were given the set 5Pc = {S 2 V~ i ~r(S) @ ~ }, we could
construct a nondeterministic multitape Turing machine to accept LfG) in
realtime. Unfortunately, there is no algorithm to locate 5"a given G.

Let us see what could be done if a "birdie" told us the membership
of o%.

Theorem 6.3. Ws C_ ~A. Given a simple W-grammar G = (V~ , ~) , 2`,
PM, Ph, ~) and the set 5~G = {S C VM i OA~S L~ v ~ ~}, one can construct
a nondeterministic multitape Turing machine to accept L(G) in realtime.
I f G is lossless, it is not necessary to know 5Pc.

Proof. We only outline the necessary steps. As in the proof that
WR~ _C. ~, it suffices to construct a nondeterministic multitape Turing
machine M to generate L(G) in linear time--i.e. , there is an integer k such
that if W ~ L(G), M generates W in at most k I w I steps.

The machine M has as before a tape TL for the left part of the derived
string, a tape TR for the right part, a tape TC for the current protovariable
or hypernotion being expanded, and up to E V~] auxiliary two-headed tapes
for duplicating, and up to I VM] extra pushdown store tapes to check
membership in each 7r(S). On TC, M will have either Z for a protovariable Z,
or (S, w) for S e 5ca and w e rr(S) or S for S ~ ~c �9

Whenever M wants to apply a production ~,. ~ y with y ~ Z'- it again
guesses whether TL has any substrings to be expanded (protovariables or
hypernotions). I f it has none, M puts y on the right of TL and transfers
terminals from the left of TR to the right of TL until it hits a protovariable or
hypernotion ~, whereupon it places a barrier [] on TL and puts ~7 on TC.
I f M guesses that TL has a substring ~/to expand, it transfers terminals from
the right of TL to the left of TR until either it finds ~ and puts r] on TC or
it hits a barrier or empties TL, in which cases M blocks.

Suppose M has a protovariable Z on TC, and selects a hyperrule

Z ~ uo(A1) "'" um-l(Ar~)U~

I f m = 0 and uo ~ (2, w VM) +, M selects a corresponding production Z --+ uo'
for Uo' ~ .S + and behaves as above. I f m = 0 but u 0 contains a protovariable Y
and the corresponding production is Z --+ Uo' Yuo , M writes u o' on TL, u o on
TR, and replaces Z by Y on TC. I f m >~ 1, M selects a metaassignment h,
puts h(uo) on TL, Yl on TC, and h(uO~'2 "'" h(u~,_O 7~um on TL where for
each i either 7~ = S~, A~ e S~, h(A~)~ ~r(SO, and S~ ~ 5e~, o r else 7~ =
(S~, h(A~)), h(A~) c rr(S~), A~ ~ S~, and S~ e 5~'~ ; if A~ = A~, then S~ = S~.
Notice that if A; does not appear in any u~ and whenever A~ = A~ then
y~ == S,:, there is no need to compute h(A~); it suffices to select any S i e S~'~
with A~ e Sz. Also, each 7r(S) is quasirealtime (~ so (S~, h(A~)) can be written,
suitably encoded, in time I h(A~)].

Some Restrictions on W-Grammars 319

I f TC contains (S, w), M selects a lossless hyperrule

(A) --+ uo(Ax) "'" u,~_z(A,,)u,,~

(A appears on the right) with A e S and a metaassignement h such that
h(A) = w. I f m = 0, M behaves as above. I f m = 1, there are three cases.
Suppose A is one of the Ai ; M selects any r with Ar = A. I f A does not appear
in any Us, M places h(Uo) 71"'" h(u,._l) on the left of TL, leaves 7,. = ,/S, w)
on TC, and puts h(ur) 7~+1 "'" h(u~,~_a) y~h(u,,) on TR, where the 7~ are selected
as before; on the other hand, if A -- A~ and A appears in some Us, M either
behaves as in the previous case, or puts h(uo) on TL, 71 on TC, and
h(ul) "" h(um) on TR where in this case Ys = Sr whenever At = A = A,..
I f A~ v ~ A for all A but A appears in some us, M puts h(uo) on TL,),~ on TC,
and h(Ul) "" h(u,~) on TR where the y,. are selected as before.

I f S appears on TC for S e 5fc., M selects a hyperrule

(A) -~ Uo(&) "'" u,,,_l(A,,)u,,~

with A ~ S such that A does not appear in any us. I f m = 0, M behaves as
before. If m ~ l, M selects a metaassignment h. I f At = A, M leaves 7,- =
on TC, puts h(uo) ~, ... h(ur_O on TL and h(ur) Yr+l "" h(u,,) on TR, where
now ~'s = .? whenever As = A = Ar . I f A; v~ A for all i, M p u t s h(uo) on TL,
~1 on TC, and h(uO "'" h(u,,) on TR.

The impor tant point here is that we use S as a new protovariabte
substituting for (A) when A e S and we guess that no product ion subse-
quently applied to (h(A)) will "deposi t" h(A) in unbracketed form. In such
a situation we do not need to know h (A) - j u s t the hyperrules applicable to
(h (A)) and this informat ion is given to us by g. When we use S instead o f
(h (A)) we say that h(A) ~ LB for all B ~ S and guess that we will never use
a hyperrule starting with (B) for B r S. Thus in effect we treat G as if it
were lossless. Since we can verify a guess that w ~ ~(S) in the time it takes
to write .(S, w), the same argument as before (Theorem 4.2) shows that M
operates in linear time.

N o w we examine some of the limits on simple W-grammars. On the one
hand, simple W-grammars can generate the intersection o f two context-free
languages and so can generate languages which are no t indexed languages.m
On the other hand, we shall see next that certain subsets of a * - - s u c h as
{a ~] n >~ 1} and {a 2"] n >~ 1}--are in WRn and even WR but no t W s .

Theorem 6.4. Let L _C a* be in Ws �9 I f L is infinite, it contains an infinite
regular set.

Proof. Let L = L(G) for the simple W-grammar G = (VM, Vp, Z,
PM, Ph , ~) and assume L _C a*. First, since the context-free languages are

320 Greibach

closed under intersection with regular sets, we can assume that for each
A ~ VM either LA _C a + or else LA _C L'*(Z' -- {a}) Z'*. Second, if LA C_
Z * (Z - {a})Z*, then for any hyperrule 7 - ~ u0<A~> "'" u,,,_l<A,,,\u,,~ either
the rule is never used or A cannot appear in any uj. T h u s \A \ could be
replaced by protovariables SA for A ~ S..~ , S.t C V,u , and S ~ ~ ,~/i; where ~'i:
is as before. Hence there is (but we may not be able to find it) an equivalent
W-grammar with each LA C a +. But a context-free subset of a* is regular. ~la)

Since we are only interested in an existence proof, we may as ~ell assume
that G is regular-based as well as strict and unary and so, by Theorems 3.1
and 3.2, also factored, lossless, and reduced.

Suppose that L does not contain an infinite regular set. If A is a meta-
variable appearing independently in a hyperrule, the arguments of
Theorems 5.1 and 5.2 show that L = L(G) contains a subset of the form

Wl Dup(LA , k)w2

for wa, w~ ~ Z'*, k >~ 1. Since LA C a + and LA is infinite, w~ Dup(LA, k)w2 is
an infinite regular subset of L. Hence, we can assume that there are no
creative hyperrules.

So for any n, G contains only finitely many derivations of length n or less.
I f cr ~ * x (w) y, (w) ~ * u(w)v , and (w) ~ * z for xy e a*; w, uv, z ~ a+;
then L contains the infinite regular subset xy(uv)* z. I f a =~ * xZy , Z ~ * uZv,
and Z ~ * w for Z e Vp -- Z'; x, y ~ a*; w, uv ~ a+; then L contains the infi-
nite regular subset xy (uv)* w. Finally, if cr =,* x (w i) y , (wit =,* u(w~)v,
and (w2) ~ * wwith Wl r w2 ; x , y ~ a*; uv, wl , w2, w ~ a+; and wa, w.~ ~ LA ;
then there is a factorization u = UlWlkU2, v = viw~v2 such that (z) ~ *
ulz~u2<w2) vlz~v~ for all z e LA . Hence (w2) ~ * uiw2~u~(w2) 14'lW2/U2 and so L
contains the infinite regular set xuvw(u~w2~'u~vzwe~v2) *. Thus no complete
derivation from (r can contain a path of length greater than I VM w Ve] § t,
so there are only finitely many complete derivations. Hence L -- L(G) is
finite. []

Corollary 1. W ~ and Ws are incomparable.

Proof. By Corollary 3 to Theorem 6.1, Ws -- We9 # ~ . On the other
hand, the language L = {a ~ I n ~> 1} is in W~n (and even W~) by Example 2
but is not in W s . []

Corollary 2. Ws is not closed under nonerasing homomorphism.

Proof. Let

Lz = c{a"ca'~+~c l n ~ 1}* k9 c(anca'~+~c} * a+c
and

Lz = {c} w caac{anca"-'.2c I n ~ 1}* w caac{anca"+Zc I n ~ 1}* a+c

Some Restrictions on W-Grammars 3ll

and h(a) = h(c) = a. Then LI and Lz are context-free, so L1 n L~ is in Ws but
h(La c~ L~) : {a"~ I n) 1} is not in Ws. ~_]

We now show that Ws does not contain all intersections of context-free
languages.

Theorem 6.5. The language

L ~a "a "a kb "b '~b ~c nc "c ~' : 1 , 1 2 3 1 2 3 1 2 3] n , m , k ~ l }

is not in Ws �9

Proof. Suppose L ----- L(G) for a simple W-grammar G ----- (VM, Ve, Z',
PM, Ph, or). The first part of our proof hinges on structural facts about L
similar to those employed in Theorems 5.1 and 5.2. First, L does not contain
any infinite context-free language. Second, if any three of uawlvl, uaw2vl,
u~wzv 2 , and u2w2v 2 are in L, either w I = W 2 or uz ---- us and vz ----- v2 �9 We shall
use these facts to narrow down the possibilities until we get L expressed as the
union of intersections of two context-free languages, and then use a result of
Liu and Weiner. t~6~

The arguments in the proofs of Theorems 5.1 and 5.2 show that we can
assume that G contains no protovariables except e and cr never appears on
the right-hand side of a hyperrule. If a complete derivation has a subpart
<w> ~ * u<w>v for uv ~Z~, then L(G) contains an infinite context-free
language, a contradiction. So we can assume that G has no hyperrule of the
form <A> ~ u<A>v. This is the key observation.

The role of a hypernotion <w> in a derivation depends on only two
things. It must arise from a hyperrule <C>-+ u<A>v with A #: C, i.e.,
A independent and w in L , . Then the rule applied to <w> comes from a
hyperrule --+ u0<Az> ... u,,~_l(Am>u~ where Ai @ B for all i and w ~ L~.
Then (w) disappears. We call A the first metavariable of (w) and B the
second. For any other w' in LA c~ Ln, (w') could play the role of (w2 in that
derivation.

Suppose cr ~ * x(wl) y; (wl) : -~* u(w2)v; (wz) ~ * w; x , y ~ Z * ; uv,
w e Z + ; and both (Wl) and ~w2) have first metavariable A and second
metavariable B. Then (Wl) arose from a hyperrule (C) -+ ~(A//3, A @ C,
and a metaassignment h with h(A) = w~, yielding a production, (h(C)) -+
h(oc)(w~) h(fl). If we let ha(A) = w2 and h~(D) = h(D) for A @ D, then
(h(C)) ~ hl(~)(w2) h~(~) is also a production. I f (w~) appears in ha(a) or
hz(fl), we can derive w from it and otherwise proceed as in the original
derivation. Hence, there are x', y' ~ Z* with cr =~* x'(w~) y'. Similarly there
are u', v' with u'v '~.S* such that (w~) ~ * u'(w~)v'. Thus L(G) would
contain an infinite context-free language.

We can likewise argue that if (wa) :~ (w2) :~ "'" ~ (w~), we can

8 2 8 / 3 [4 - 4

322 Greibach

assume that n ~<[VM i ' - k 2, for otherwise there is a shorter derivation
from (wl) to (wn). Hence we can assume that no derivation tree has a path
longer than p2 + p + 1, where p = [V~ [-~ + 2.

We can obtain from a complete derivation in G a skeleton derivation
tree T as follows. The root of T is labeled e. Instead of a node labeled (w) we
have (A, B) where A and B are the first and second metavariables of w,
respectively. I f the production applied to (w) came from a hyperrule
(B) --~ uo(A 1) ... u,,_l(A,n)u,~ and ui ---- Zil "'" Z i ~ , each Zi e V:u w 2, then
(A, B) has m + 27i~ o ri sons labeled Z01 Z0% , (A t , B 1) , 211 , . . . , etc., for
appropriate B,:. The nodes labeled Zi~- are, of course, leaves.

I f a leaf labeled B has a father labeled (A, B), then no brother can be
labeled (B, A1). In this case, to form a member of L(G), B can be replaced by
all and only members of LA n Ls provided all brothers labeled B and uncles
labeled A are replaced by the same member of LA n LB �9 Similarly, if a leaf
labeled B has a brother labeled (B, A), it can be replaced by all and only
members of LA N LB provided the same replacement is made to any brother
labeled B and to any son of (B, A) labeled A. Now in all these cases if
members o f LA n Ln can be duplicated, then LA n LB _C a + for some letter
a e Z' and the same is true for anything lying in between these duplications.
Thus we can rearrange leaves so that a leaf labeled B is adjacent to all its
brothers labeled B; we can also move the duplicated "uncles" or "nephews"
next to B and replace the whole mess by one leaf labeled Dup(LA n LB, k)
for an appropriate k.

I f a leaf labeled B has no father labeled (A, B) or brother labeled
(B, A), it and its brothers labeled B can be replaced by any member of
Ln = LB n Ls. Again they can be collected and replaced by Dup(L~ n LB, k).

I f we read off the labels on the leaves of T, we now get a language
Lr C L(G) of the form

LT = Wo Dup(Lz n Lt', k l) "'" w m - t Dup(L~ n L~', k~)wm C_ L(G)

where w~ E ~*, ki >~ 1, and each L~, L~' is context-free. First, notice that if
k~ /> 2, then L~ n L~' _C a* for some a ~ Z', and since L~ n a + is regular,
Li n Li ' and so Dup(L~ n L~', k~) is regular and hence context-free. Thus we
can in effect assume Lr is expressed as

Lr = wo(Lz n Lz') ... wm_l(L~ n L~')w~

for L~, L~' context-free.
Next, notice that wi(L~+ 1 n L'~+I) = (w,L~+l n w~L~+z) and each w~Li+x ,

wiL~+z is context-free. Thus we can assume Lr is expressed as

Lr = (Lz n LI ') ... (L,~ n L~')

Some Restrictions on W-Grammars 323

each L i , Li' is context-free. Finally, notice that we must have t Li n L~' i -- 1
for all but one i. So we can assume that Lr is the intersection of two context-
free languages.

Now we saw that we can assume that no tree has a path of length more
than p2 -k P + 1. Hence there are finitely many trees 7"1 ,..., Tq such that

q

L(G) -= ~ LT,, Lr, = Lil n Liz
i=1

for L~z, L ~ context-free, 1 ~< i ~ q.
Now Liu and Weiner a6) have shown that

~1 7~2 ~3 ~1 n9 ~3 {a I a s a a b 1 b~ b~ I nz, n~, n~ ~ 1}

is not expressible as the intersection of two context-free languages. Their
arguments can be modified to show that L cannot be expressed as the union
of a finite number of intersections of two context-free languages. This gives us
our contradiction. []

This language L of Theorem 6.5 is expressible as the intersection of
three context-free languages, the first comparing the al's and bl's and b2's and
c2's, the second comparing the a2's and b2's and b3's and c3's , and the third
comparing the al's and cl's and a3's and b3's.

Corollary 1. Ws does not contain all languages expressible as the
intersection of three context-free languages.

Corollary 2. Ws is incomparable with the intersection closure and with
the Boolean closure of the context-free languages.

Proof. The language {a'~In ~ 4, n not prime} is in Ws as shown by
Example 3 but cannot be in the Boolean closure of the context-free
languages. []

Corollary 3. Ws is not closed under inverse homomorphism or under
intersection with regular sets.

Proof. Let L be defined as in Theorem 5.5 and let Lz, L2, L~ be three
context-free languages such that L = Lz n L 2 c~ Ls �9 For each i let L = L(Gi)
for a context-free grammar G~ = (V~, Z', P~, S~) with V~ n Vj = Z for
i =/: j. Let d, cr be new and

P~ = {or --> (S~>, ($2) --" S2($2>d, <S~> --+ d}

and let G be the simple W-grammar

G : ((1/1 -- ~) w (V~ -- r) , Z u { ~ , d } , ~ w { d } , e l w e~, eh , ~)

324 Greibach

Then L(G) = {'~t"~d ''+1 i /'t ~ O, W ~ L} and Ldd = L(G) ~ Z-~tkl. If c=u is new
and h(a) = a, for a ~ Z, h(~a) = c~dd, then

L 1 = h-I(L(G)) = ~al"a2 ma3~bl''b.,-''b3~cl''c~'''c~'-13 ! n. m. k ' 1 }/~:~

The arguments used to show L ~ Ws can also be used to show Ldd and L~ not
in Ws �9 []

We could continue in this vein to establish other nonclosure properties
of W s . We summarize:

Theorem 6.6. Ws is not closed under: union, concatenation, nonerasing
homomorphism, inverse homomorphism, and intersection with regular sets.

Thus Ws does not possess any of the "AFL'" closure properties
(union, concatenation, Kleene + , nonerasing homomorphism, inverse
homomorphism, and intersection with regular sets) except Kleene § Since
is an AFL and every member of ~ is the nonerasing homomorphic image of
the intersection of three context-free languages, Cs~ the proof of Corollary 3
of Theorem 6.5 can be used to show that ~ is the least AFL containing W s
and each member o f ~ can be expressed as lh(h~(L)) for L ~ Ws and hi and h~
nonerasing homomorphisms.

In the last section we examine some of the open problems on the
relationship between W s , ~., and some subclasses of W-grammars.

7. F U R T H E R Q U E S T I O N S

The study of regular-based and simple W-grammars leads to many other
questions, some of them on the precise relationship between W s and WR8 and
various welt-known families of languages, and others regarding extensions of
W-grammars.

We saw that finiteness is decidable for normal regular-based W-grammars
and that members of WRB are quasirealtime. It is likely that both statements
apply also to macrogrammars and to indexed languages. That is, we conjec-
ture that finiteness is decidable for macrogrammars (under either the
outside-in or inside-out definitions) and that indexed languages are quasi-
realtime, i.e., belong to ~.

The exact relationship between the family J of indexed languages and
WR~ is unknown. We know that WRB C J but do not know exactly how
WRB should be extended to obtain J . One possibility is that J is the closure
of WRB under finite state translations; that does not seem too likely, however.
In view of the similarities between the operations of factored, normal,
regular-based W-grammars and those of macrogrammars, it seems plausible
that some natural relationship between WRB and J exists.

Some Restrictions on W-Grammars 325

The relationship between W-grammars--and W~ in particular and
various tree manipulating systems might be a fruitful area of research.

Several families of languages are closely related to Ws: o~, tile family of
languages accepted by nondeterriainistic multitape Turing machines in
realtime, 22, the family of languages accepted by nondeterministic two
pushdown store machines in realtime, W=, the family of languages by unary
W-grammars, and WNL, the family of languages generated by normal lossless
W-grammars. It is fairly evident that:

1. Ws ~ Wu C .~ C_ WNL C TIME(n2), where TIME(n 2) is the family of
languages accepted by nondeterministic multitape Turing machines
in time proportional to the square of the length of the input.

2. .~2 _C W~,.

3. .~ is the closure of Ws under nonerasing finite-state translations.

We conjecture that WNL ----- 2. The difficulty lies in hyperrules such as
(A) ~ (uAv) which might require checking membership of w, uwv, uuwvv,
etc. in a context-free language and thus scanning a word w more than a fixed
number of times. Thus the approach used in showing WRn C A and Ws C .~
yields at best time n 2. It seems plausible that a tighter construction would
yield WNL C_ .~. On the other hand, Ws C oA,, if and only ifA 2 ---- ~: the latter
question is still open.

There are various ways in which the concept of a W-grammar or double-
level grammar can be generalized. There does not seem too much point in
extending unrestricted W-grammars since they already represent all
recursively enumerable sets quite conveniently. However, extensions of some
of the restricted families, particularly of WR9, might prove useful.

For a family of languages ~ we can speak of an c~a-based double-level
grammar as a sixtuple (VM, Vp, L', P~,, or,/x), where VM, Vp, Z', P~, and c~
are as before and/z maps each A in VM into a language/z(A) e c~a. One might
treat probabilistic regular-based double-level grammars in which distri-
butions were attached to the regular languages t~(A), to the assignment
function ~, or to the use of hyperrules--or even to all three. One might also
consider double-level Lindenmeyer systems in which each /z(A) is an OL
language and the derivation process required simultaneous expansion of each
protovariable or hypernotion in the string (cf. Rozenberg and Doucet(2~)).

There are two obvious ways in which the derivation process could be
extended. One might allow the expansion of a protovariable within a
hypernotion--e.g., (aZb) ~ (ay(bcZ)b)--or allow tz(A) to contain nested
hypernotions--e.g., (ab(baa)(a(a))) - -and then use either outside-in or
inside-out derivations. Another possibility is to allow words in /z(A) to
contain a fixed number of occurrences of a special comma symbol. Then if

326 Greibach

wl, w~, wa and ~, fl, 7 are words in/x(A), a hyperrule (A) ~ AI(A')A2(A3, A2)
would correspond to productions

@1, w~, w~) -~ wl(wl, w2, w~) w2(w~, w~)
and

(~,/3, 7) -~ ~(~, fi, 7) fi(7, fi).

Some of these ideas might shed light on the relationship between We~ and J .

R E F E R E N C E S

1. A. V. Aho, "Indexed grammars--an extension of context-free grammars," JACM
15:647-671 (1968).

2. A. V. Aho, "Nested stack automata," JACM 16:383-406 (1969).
3. A. V. Aho and J. Ullman, The Theory of Parsing, Translation attd Compili,g, Volume I:

Parsing (Prentice-Hall, 1972).
4. John Luther Baker, "Some formal properties of the syntax of ALGOL 68," Doctoral

Dissertation, University of Washington (1970).
5. Y. Bar-Hillel, M. Perles, and E. Shamir, "On formal properties of simple-phrase

structure grammars," Z. Phonetik, Sprachwiss., Kommunikationsforseh. 14:143-172
(1961).

6. R. V. Book, "Grammars with time functions," Doctoral Dissertation, Harvard Univer-
sity (1969).

7. R. V. Book, "Time-bounded grammars and their languages," JCSS 5:397-429 (1971).
8. R. V. Book and S. A. Greibach, "Quasi-realtime languages," Mathematical Systems

Theory 4:77-111 (1970).
9. G. de Chastellier and A. Colmerauer, "W-grammar," in Proc. ACM National Con-

ference (1969), pp. 511-518.
10. J. C. Cleaveland and R. C. Uzgalis, "What every programmer should know about

grammar," Modeling and Measurement Note No. 12, Computer Science Department,
University of California, Los Angeles (t973).

11. M. J. Fischer, "Grammars with macrolike productions," Doctoral Dissertation,
Harvard University (1968).

12. M. J. Fischer, "Grammars with macrolike productions," in Proc. IEEE Ninth Annual
Symposium on Switching and Automata Theory (Schenectady, New York, October
1968), pp. 131-142.

13. S. Ginsburg, S. A. Greibach, and M. A. Harrison, "One-way stack automata," JACM
14:389-418 (1967).

14o S. Ginsburg and H. G. Rice, "Two families of languages related to ALGOL," JACM
9:350371 (1962).

15. J. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata
(Addison-Wesley, 1969).

16. L. Y. Liu and P. Weiner, "An infinite hierarchy of intersections of context-free lan-
guages," Mathematical Systems Theory 7:185-192 (1973).

17. A. W. Mazurkiewicz, "A note on enumerable grammars," Information and Control
14:555--558 (1969).

18. A. R. Meyer, P. C. Fischer, and A. L. Rosenberg, "Turing machines with several
read-write heads," Proc. IEEE Eighth Annual Symposium on Switching and Automata
Theory (1967), pp. 148-154.

Some Restrictions on W-Grammars 327

I9. P. Nauer (ed.), "Revised report on the algorithmic language ALGOL 60," Comm.
A C M 6:1-17 (1963).

20. A. Nerode, "Linear automaton transformations," Proc. Amer. Math. Soc. 9:541-544
(1958).

21. G. Rozenberg and P. Doncet, "On O-L languages." Itformation and Control 19:302-
318 (1971).

22. M. Sintzolr, "Existence of van Wijngaardcn's synta• for every rccursively cnumcrable
set," Ann. Soe. Sci. de Bruxeth,s Z:t 15 118 (1967).

23. R. E. Stearns and P. M. Lewis, "Property grammars and table machines," b~formation
and Control 14:524-549 (1969).

24. A. van Wijngaarden (ed.), "Report on the algorithmic language ALGOL 68," Nume-
rische Mathematik 14:79-218 (1969).

25. Peter Wegner, "The Vienna definition language," Computing Surveys 4:5-63 (1972).

