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In this paper the interaction between Minkowski algebra, nondiscrete cellular 
topologies and some well known basic cellular image processing operations is 
investigated. It is shown that some useful topological measures can be extracted 
from these basic image operations and that these operations can be viewed from 
a nonalgebraic and purely topological point of view. 
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1. I N T R O D U C T I O N  

There seems to be little awareness within the mathemat ica l  communi ty  as to 
the many  diverse appl icat ions  of  topology in the areas of  pat tern recognit ion 
and image processing. In fact, appl icat ions  of  topology outside the realm of  
mathemat ics  is general ly thought to be either rare or nonexisting. We hope to 

remedy this si tuation a little by presenting several image processing 
operat ions that  permit  image processing algori thms to be considered from a 
purely topological  point  of  view. In par t icular ,  we use topological  notions to 
define highly paral lel  neighborhood operat ions for filtering, da ta  compression 
and image matching.  Some of  these operat ions will be novel, while others 
date back to Minkowski ' s  development  of  the geometry of  numbers  in 1897. 
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A digital image is obtained by sampling brightness, reflectivity or 
absorption values of photographs, outdoor scenes or real objects and quan- 
tizing these values to a finite number of binary places. The resulting digitized 
image can then be viewed as a subset of Euclidean n-space having integer 
valued coordinates. The elements of these image lattices are called cells or 
points. 

High speed computers are used to manipulate and transform these 
digital images in order to compress or smoothen data, identify, classify 
and/or track objects, or to perform other desired tasks. A typical sequence of 
these manipulations, or image processing algorithms, may consist of noise 
filtering, thresholding and background removal. This sequence may then be 
followed by such processes as thinning, edge detection or skeletonizing in 
order to obtain shape descriptors and/or achieve data compression. The 
geometric properties inherent in the transformed objects usually serve as a 
basis for object classification. Of special importance are such topological 
properties as nearness, ~7~ connectivity, ~2'16'~8) path connectivity, (~8~ 
genus, (8'11) homotoppy, ~3) and dimension. (5) In this paper we are not 
directly concerned with these notions. However, we would like to note that 
many of these concepts are either mathematically imprecise or not well 
defined in much of the current image processing literature. This is partially 
due to the fact that many researchers view digital images as "subspaces" of 
E n. In this case a notion such as connectivity for discrete sets is contrary to 
the standard mathematical definition of connectedness. It will follow from 
our definition of cellular topologies that "discrete" sets can indeed have 
connectivity properties relating to the real world. 

Current image processing algorithm development is not based on an 
efficient mathematical structure that is designed specifically for image 
manipulation, feature measurement extraction and analysis. In general, each 
researcher develops his own set of ad hoe image processing tools, usually at 
great expense. Furthermore, many image processing algorithms presently 
employed are often extensions of one dimensional signal processing 
algorithms heuristically applied to the n-dimensional case. These methods 
generally require excessive computer time and memory since each computer 
instruction typically affects only one or two pieces of data of the entire 
image array. The topological neighborhood approach discussed in this paper 
is highly parallel in nature and can act on an image as a whole. It thus has 
real time capabilities and is highly suited to processor size and time 
constrained applications. Also, the topological interpretation suggested here 
has the potential of providing a geometric basis for a rigorous mathematical 
foundation of an image processing algebra. 

The approach is based on von Neumann's concept of cellular 
automata. (3'19) Each point or cell of an image is subjected to a sequence of 
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transformations, where the transformed value of the cell depends on the 
values of the cells in its neighborhood. The transforms (operations) are 
defined in terms of the topology of cellular spaces and their origins can be 
traced to the works of Blaschke, m and Minkowski. C6a'~o) 

Finally, it is our hope that this paper will catch the attention of 
mathematicians interested in applying their knowledge to the many problems 
faced by the image processing and pattern recognition community. 

2. CELLULAR TOPOLOGIES 

The cellular automata of von Neumann (3~ and Moore, (12) and digital 
images share a common framework. Each image point can be viewed as a 
cell in a given state. By defining neighborhood relationships and cell tran- 
sition functions on an image in terms of these neighborhood relationships, 
the configuration of the cell states in an image can be changed to a new con- 
figuration. 

In this essay we shall consider transition functions that will change 
images in a predictable and useful fashion. Because of the dependence of 
these transition functions on the values of cells within the neighborhood of a 
range cell, these functions are also known as neighborhood transforms. 
Before describing neighborhood relations and operations, we shall define and 
give examples of topological spaces that provided the underlying geometric 
foundation for image processing. 

Cellular automata and cellular image processing algorithms are based 
on the notion of neighborhood operations. This suggests that we study the 
topology of images by first choosing a subset of cells to serve as 
neighborhoods, and then carry over unaltered all other notions of topology. 
For this reason topological spaces will be defined in terms of basic open 
neighborhoods. 

Henceforth R and Z will denote the set of real numbers and integers, 
respectively. Let Z k denote the Cartesian product of k-copies of Z. With 
each p =  (Pl,P2 ..... Pk) C Zk we associate the cell with center p, e(p), 
defined by 

c(p) = {qlq = (ql, qz,..., qk), qi C R, IPi - q,I <. ~ and 1 ~< i K k} 

The set of all k-dimensional cells is denoted by C k and defined as Ck= 
te(p) l p E z a } .  Topological spaces obtained by endowing C k with a 
topology are called cellular spaces. 

We now give examples of cellular spaces based on neighborhood 
configuration most frequently used in present day neighborhood image 
processing. 

828/12/6 5 
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2.1. The von Neumann Topology 

Let L -- {--1, 0, 1 } and p-= (Pl, P2,..., Pk) ~ Zk. 
N[e(p)]--or simply N ( p ) - - o f  e(p) E C k is defined by 

The neighborhood 

N(p) = 

k 

{c(p)} if ~ Pi is odd 

{c(Pl , . . . ,Pi-  1 , p i + n ,  Pi+~ ..... pk) l l <<, i<~ k a n d n E L }  

otherwise 

The collection N =  {N(p) l p C Z k} is a neighborhood basis for a 
topology and the topology thus derived is called the yon Neumann topology 
for C k. 

Suppose p = ( i , j ) E Z  2 and q = ( i , j , k ) C Z  3. Then the possible 
neighborhoods of c(p) and c(q) are shown in Figs. la  and lb, respectively. 
The cruciform neighborhood shape in Fig. la is due to von Neumann, (3~ 
hence the name for this topology. 

Definition. A cell (point) in the von Neumann space is called even if 
the sum of its coordinates is even, otherwise it is called odd. 

We note that if e(p) is odd, then the closure of N(p) is a cruciform 
neighborhood, and if e(p) is even, then te(p)} is closed. 

It is also not difficult to show that in the yon Neumann topology, sets 
are connected if and only if they are path-connected. However, we shall not 
use this fact and therefore omit its proof. As an example, the set A c C 2 
shown in Fig. 21 is connected and hence path-connected. On the other hand, 
the configuration C = A  U B shown in Fig. 2b is not connected since 
A ~ C I ( B ) = C I ( A ) ~ B = O ,  where C1 denotes closure. This separation 
due to diagonally adjacent cells has resulted in numerous investigations [see 
Refs. (15-18)]. 

c(p) odd c(p) odd 
c(p) even c(p) even 

(a) (b) 

Fig. 1. (a) The von Neumann neighborhoods if k = 2, and (b) if k = 3. 
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A A 

C = A u B  

(b) 

Connectivity in the von Neumann topology: the set 

(a) 

Fig. 2. 
A in (a) is connected and the set C in (b) is separated. 
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2.2. The Moore Topology 

The Moore topology for C k is obtained by defining the neighborhood of 
a cell c(p), p = (Pl ..... p J ,  as follows: 

{e(Pl + 11, P2 + 12 ..... P, + I,)lli ~ L} i fp t  is even 

N(p) = for each i = 1, 2,..., k 

{e(p)} i fpi  is odd for at least one i 

As before, the collection N =  {N(p) lp ~ Z k} forms a neighborhood 
basis. The topology generated by this neighborhood system is called the 
Moore topology. 

The two possible neighborhood configuration of this system for C 2 are 
shown in Fig. 3 where the shaded cell represents e(p). 

In a Moore space a point is even if each of its coordinates is even, 
otherwise it is called odd. Implications of using the neighborhood 
configuration N(p) (p even) for cellular automata were first investigated by 
Moore. (3,12) 

Note that in the Moore topology two diagonally adjacent cells can form 
a connected set. 

THE MOORE NEIGHBORHOODS 

e (p )  odd c (p )  even 

Fig. 3. The Moore neighborhoods if k =  2. 
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2.3. The 2*-Topology 

Thus far every topology for C k was generated by two distinct 
ne ighborhood  configurations. We now define a more complex topology that 
is based upon a greater variety of neighborhood configurations. 

The set C 1 becomes a topological space if for each p C Z we define 
neighborhoods in C ~ by 

t { c ( p - 1 ) ,  c(p), c ( p + l ) }  i f p i s e v e n  

N(p)  = t {c(p)} if p is odd 

The topology generated is called the two-neighborhood topology for C 1. 
For k > 1 we define the 2k-neighborhood topology (or simply 2 k- 

topology) for C k as the product topology of the two-neighborhood space C ~. 
The four different neighborhood configurations for the 22-space C 2 are 
shown in Fig. 4. The shaded cell represents the cell c(i, j )  ~ Nit(i ,  j )] .  In this 
topology some diagonally adjacent cells are connected. 

3. NEIGHBORHOOD TRANSFORMS 

If  x = c(p) and y --- c(q) are two points in a cellular space, then their 
sum is the point x + y defined by x + y = e(p + q). The difference x - y is 
defined by x - y = c(p - q), and if k E Z, then the scalar product kx is the 
point kx = c(kp). 

Definition. Let X =  C k be a cellular space and W =  
{ c ( p l , p 2 , . . . , p k ) ~ X l p i C L  }. The window at x E X  is defined as W ( x ) =  
/ x + Y l Y ~ W}. The basic neighborhood system associated with X is said to 
satisfy the window condition if it satisfies the following two properties: 

(1) N ( x ) c  W(x) for every x E X  

(2) if z ~ U(x) C3 N(y) ,  then x E W(z) and y E W(z) 

Hereafter we shall always assume that X is a cellular space whose 
neighborhood system satisfies the window condition. Note that the discrete 
space and our examples of cellular spaces satisfy the window condition. 

Fig. 4. The 2 k basic neighborhoods if k = 2. 
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Note, The power set of X will be denoted by P(X). If A c X, then 
Int(A) denotes the interior of A, CI(A) the closure of A, and C(A) the 
complement of A. 

Definition. An image is an element of P(X) and the complement of 
the image is its background. An image transformation on X is a function 
P(X) -~ P(X). 

Definitions of a set in terms of a given set can be viewed as image 
transformations. Thus Int, C 1 and C can all be thought of as image transfor- 
mations. For instance, Int: P(X) ~ P(X) is the transformation defined by Int: 
A ~ Int(A ). 

Composition of image transformations will be denoted by ".".  In 
particular, Int .  C I ( A ) =  Int[Cl(A)]. If T1,..., T n are image transformations, 
then the composition T, �9 T,_I �9 .... �9 T~ will be denoted by I~ '=1Ti .  If all 
the Ti's represent the same transformation T, then for n/> 0 we define T ~ = 
Hn=l T i with T~ 

Definition. A window configuration w is a function w: X~P(X)  such 
that x C w(x) c W(x). 

If B c X, let I(w, B) denote the set I(w, B) = {w(x) I w(x) n B 4= 0}. A 
window relation for A c X  is a set R(w,A) obtainable from I(w,A) and/or 
I[w, C(A)] by intersection, union or complementation. Thus, 
C(I[w, C(A)])= {w(x) lw(x)cA } and C[I(w,A)]= {w(x)lw(x)nA = O /  
are two examples of window relations for A. In particular, I(w,A) is a 
window relation for A. 

A local operator or window operator is a function L: I(w,X)-~P(X) 
such that O 4= L(w(x)) c W(x). 

Definition. An elementary neighborhood transform T is an image 
transformation defined locally in terms of a window configuration w, a 
window relations R(w, .) and a local operator L. Explicitly, T (A)=  
{bib ~ L(w(x)), w(x) ~ R(w,A)}. 

A neighborhood transform is an image transformation that can be 
expressed as a composition of elementary neighborhood transforms. 

The importance of neighborhood transforms in image processing is their 
potential for simultaneous (parallel) application to the neighborhood of every 
cell of an image. More specifically, elementary neighborhood transforms are 
the only image transformations that can be performed by a cellular image 
processing computer with window W as one-step transformations in parallel. 

Example. Some obvious examples of elementary neighborhood 
transforms are Int, C I and C. For example, if L[w(x)] = w(x)= N(x), then 
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T(A) = {bib E L[w(x)], w(x) E C(I[w, C(A)])} = {bib E N(x), N(x) cA}  = 
Int(A). Similarly, let w(x)= N(x) and L[w(x)] = {x}. Then C I ( A ) =  {blb E 
L[w(x)], w(x) E I(w,A)}. 

The transform G(A)={blbEN(a),  a E A }  is an elementary 
neighborhood transform. In order to verify this, let w(x)--- {x}, L[w(x)] = 
N(x) and R(w,A)=I(w,A). Note that G(A) is the smallest open set 
containing A. 

The transform F = C �9 G �9 C is an example of a neighborhood transform 
that transforms A into the largest closed set contained in A. In particular, we 
have the relationship 

F(A) c A  c G(A) 

We cnclude this section by defining two fundamental neighborhood 
transforms. 

Definition. The dilation transform D is the image transformation 
defined by D(A)=G(A)UCI(A).  The shrinking transform is the image 
transformation S defined S = C �9 D �9 C. 

Theorem 1. The transforms D and S are elementary neighborhood 
transforms. 

Proof. (1) Let w(x)= {x}, L[w(x)]=N(x)U { y [ x E N ( x ) n N ( y ) }  
and T(A)={b[bEL[w(x)], w(x) EI(w,A)}. Since N(x)cG(A) and 
{y[x E N(x) ~ N(y)} c CI(A) whenever w(x) E I(w, A), T(A) c D(A). 

In order to show that D(A) c T(A), let b E D(A). Then either b E G(A) 
or b E C I ( A )  or both. If bEG(A), then bEN(x) for some x E A .  But 
N(x) cL[w(x)] c T(A) for every x E A .  Hence bE T(A). If  b E  CI(A),  then 
N(b)~A 4=0, Hence there is an x E N ( b ) N A  and, therefore, x C N ( b ) n  
N(x) with {x / = w(x) E I(w, A). Thus, b E { y I x E N(y) n N(x)} c T(A). 

(2) To prove that S is an  elementary neighborhood transform, reverse 
the roles of w, L and R by letting w(x)=N(x)U { y l x E N ( x ) n N ( y ) } ,  
L[w(x)]=lx} and T ( A ) = { b l b E L [ w ( x ) ] ,  w(x)EC(I[w,C(A)])}. The 
argument for showing that T(A)= S(A) is now similar to the argument in 
part (1). II 

Theorem 2. a E D(b) if and only if b C D(a). 

Proof. If a = b, there is nothing to prove. Suppose b 4: a C D(b). Then 
either a E G(b) or a E C 1 (b). If a E G(b), then a E N(b). Hence b E C 1 (a) c 
D(a). If a E C l ( b ) ,  then b EN(a)cD(a).  Thus a ED(b) implies that 
b E D(a). The proof of the converse is analagous. II 

The next theorem is a direct consequence of the definition of D and S. 
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Theorem 3. Let A c X .  Then: 

(1) S(A)=F(A)C~Int(A) 
(2) S(A)cInt(A)cA cCI(A)cD(A)  
(3) If A is open (closed), then D(A) and S(A) are closed (open) 

EXAMPLE. Let X = C 2 have the von Neumann topology and let A c X 
be the shaded region shown in Fig. 5a. The region A represents a digitized 
version of a tank. The "holes" (unshaded cells) in the tank and the isolated 
shaded cell represent "noise" (artifacts) introduced by the digitization 
process. 

Figures 5b and c show the effects of applying G and D to A, respec- 
tively. Note that D(A) is simply connected (both as a subset of E 2 and as a 
subset of C2!). Roughly speaking, D removes small holes and produces a 
"smoother" looking version of A. On the negative side, the shaded isolated 
cell has been dialated and the cavity beneath the gun has disappeared. 

The shrinking transform S has just the opposite effect (Fig. 5d). The 
isolated cell has disappeared and cavities have been enlarged. Note also that 
the gun, which represents a cavity in C(A), has vanished. 

The principle behind the above dilation and shrinking transforms is 
quite old (see Ref. 6) and can be traced to Minkowski's work on the 
geometry of numbers, a~ To be more explicit, ifA and B are two sets in E k, 
then the Minkowski sum of A and B is defined vectorially as A X B = 
{a + b [ a CA, b C B} [see Ref. (6), p. 13]. Minkowski substraetion is defined 
in terms of complementation [Ref. (6), p. 142] by A/B =C[C(A) X (-B)] ,  
where --B = {bj-b ~ B}. The connection between Minkowski's algebra and 
neighborhood transformation is given by the next theorem. 

Theorem 4. If X is a yon Neumann space, then D(A)=A X N(O) 
and S(A) = A/N(O). 

Proof. Let w(x) = {p ]IP - x] ~< 1 }. If a C Y is even, then w(a) = N(a) 
and if a is odd, then w(a)=Cl[N(a)]. Thus, Ua~A w(a)=  G(A)U CI(A) = 
D(A). On the other hand, 

A XU(O)={a+blbCU(O), aCA} 

={plpCN(O) X {a} ,aEA}={plpCw(a) ,aCA}= U w(a) 
CIEA 

Therefore, A X N(0) = D(A). 
Using this fact and complementation, we obtain A/N(O)= 

C[C(A) X X(0)] -- C{D(A)]} = S(A). | 
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c (0) ~ The Silhouette A Representing a Low Resolution linage of A Tank 

(a) 

ilIffl IJllll IFIIII I1111J llflll ll//lIIlll llilll illlll lilt11 llIll llqll IIII JIJlll IIIIII llLl~rrll 

IIIIII lllllllllIlllll_ frill 
IILLI 

llllll riiJr~ ~IIIII 

IIIIlllJlll llIIfl llIllr IIII[I IH IIIIII ll11L1 111111 lllrll llrlIJ 
C (A] 

(b) 

IIIIII Ifllfl I[llll 

Illlf~ 

D(2*) G(A) u C1 (A) 

(c) 

S(A) = F(A) n Int(A) 

(d) 

Fig. 5. The effects of the transforms G, D, and S. (a) The original image A; (b) the 
transformed image G(A); (c) the transformed image D(A); and (d) the transformed 
image S(A ). 
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Obviously, similar results can be obtained for other cellular spaces. 
Several theorems in this section classified some specific image 

transforms as neighborhood transforms. In practice it is often very difficult 
and tedious to determine whether or not a given image transform is a 
neighborhood transform. For this reason it would be valuable to have 
solutions to the following problem: 

Problem I. Develop necessary and sufficient conditions for 
classifying neighborhood transforms. 

4. TOPOLOGICAL FILTERS 

As we observed in the last section, the transform D smoothens images, 
removes small holes, but enlarges the image and isolated cells beyond their 
actual size. At the other extreme, S erodes an image and creates large 
cavities. Thus it becomes natural to consider compositions of these 
transforms in order to obtain an intermediate effect of these two extremes. 

Definition. If  A ~ X, then the exterior hull of A is denoted by E(A)  
and defined by E(A)  = S �9 D(A).  The interior hull I (A)  of A is defined as 
I (A)  = D . S(A) .  

Example. Figure6a shows the exterior hull of A, where A is the 
image shown in Fig. 5a. The neighborhood transform E is a noise filter since 
it removes small noisy holes and smoothens the image. Note that E(A)  is 

_ _ m  

Fig. 6. (a) The exterior filter E(A) and (b) the interior filter 1(.4). 
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about the same size as A and that the isolated cell has not been enlarged. 
Similar observations can be made for the interior hull of A (Fig. 6b). Even 
though cavities still appear enlarged, erosion is not as severe as for S(A). 
Observe also that the front and rear end of the tank appear more rounded 
(smoother). 

Because of its ability to remove concavities without reducing 
convexities, the transform E is a good noise filter in a noisy environment 
such as real-world active target tracking, where targets often appear as 
convex objects. Active sensors are generally capable of measuring the 
intensity of the reflected signal as well as the phase or time delay between 
the transmitted and received pulses. The intensity (energy) of the return 
provides a relative measure of the surface reflectivity and the phase can 
provide either an absolute or relative measure of range. Thus a 3-dimensional 
image (in C 3) can be obtained from actively sensed data with the third coor- 
dinate obtained from the range information. 

Figure 7a represents an actively sensed image of a tank in a noise free 
environment. Figure 7b is the thresholded (clipped) version of Fig. 7a at 
about ~ the height of the tank. 

Adding random Gaussian distributed noise to the scence represented in 
Fig. 7a results in Fig. 8a. The thresholded version of Fig. 8a corresponding 
to Fig. 7b is shown in Fig. 8b. 

Endowing C 3 with the von Neumann topology and applying the 
transform I to Fig. 8a yields the scence shown in Fig. 9a. The tresholded 
version of Fig. 9a is shown in Fig. 9b. Of special interest are the differences 
of the planar regions in the threshold planes of Figs. 7b and 9b since these 
regions could be used for image matching. Note for example that Fig. 9b 
exhibits a hole in the region determined by the threshold plane. 

Using the transform E instead of I produces the configurations shown 
in Figs. 10a and b. Observe the likeness of the images in the threshold planes 
of Fig, 7b and 10b. 

Unlike E, such filberts as local averaging do not exhibit the ability to 
totally remove noise which is either uncorrelated or correlated in one 
direction (Fig. 1 la and b). 

An important and interesting problem is the classification of images 
that remain invariant under neighborhood transforms. Before considering 
images that remain invariant under the transforms E and I, we recall the 
definition of regular sets: 

Definition. An open set A is called regular if A = Int[Cl(A)]. A 
closed set A is called regular i fA = C1 [Int(A)]. 

The properties of regular sets summarized in the next theorem are well 
known [cf. Ref. (4)]. 
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(a) 

/ /  ] 

/ 7 ] L ~ / ~ / / / / / / / / / / M / / / / / / / / /  
/ /  / / / / / / /  , / /  / 

/_J~,'CT_ZU_JI l/I/l /1 I / / / / / / /  h \ I \ 

/ ~ / / / / / / / / / / / / / !  f / l l  I / \ Y / / / / / / / /  
L.l~////////////[/ / / ~LL~LI'/z'// ~ Z _ Z _ ~ / / / / / / / / / / / / / !  ! ! / f / / ~  

///////// 
/./////Li'J/////// 

//////~2LL/~.///////////.~z",// 
////~J_xC////////////{///////// 

Fig. 7. 

(b) 

(a) An actively sensed image in a noise free environment and (b) a thresholded 
version of Fig. 7a. 
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Fig. 8. (a) Gigure 7a in noisy environment and (b) thresholded version of Fig. 8a. 
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(a) 

(b) 

Fig. 9. (a) Figure 8a after applying the filter I and (b) the thresholded version of Fig. 9a. 
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(a) 

Fig. 10. (a) Figure 8a after applying the filter E and (b) The thresholded version of 
Fig. 10a. 
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(a) 

(b) 

Fig. 11. (a) Figure 8a after local averaging and (b) The thresholded version of Fig. 1 la. 
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Theorem 5. 

(1) If A is closed, then Int(A) is regular. 

(2) I rA is open, then CI(A) is regular. 

(3) If A is open (closed) and regular, then C(A) is closed (open) and 
regular. 

(4) If A and B are open and regular sets, then A c B if and only if 
c1( ) Cl(B). 

(5) If A and B are closed and regular sets, then A ~ B if and only if 
Int(A) ~ Int(B). 

(6) If A and B are closed and regular sets, then A U B is a closed and 
regular set. 

(7) If A and B are open and regular sets, then A ~ B is an open and 
regular sets. 

Theorem 6. I fA  is open and regular, then E ( A ) = A .  I fA is closed 
and regular, then I (A)= A. 

Proof If A is open, then D(A) = CI(A). But then E(A) = S �9 D(A) = 
Int[Cl(A)] and the result follows since A is regular. 

If A is closed, then S(A) = Int(A). Hence 1(14) = O �9 S(A) = C 1 lint(A)]. 
Again by regularity, C1 lint(A)] =A.  This proves Theorem 6. 

By combining Theorems 5 and 6 further results may be obtained. For 
instance, if A is closed, then Int(A) remains invariant under E. Similarly, if A 
is open, then the interior hull of CI(A) is CI(A). 

The proof of Theorem 6 in conjunction with the next theorem show that 
E and I map open (closed) sets to open (closed) sets. 

Theorem 7. If A is closed, then E(A)=F[G(A)]  and if A is open, 
then I (A )=  G[F(A)]. 

Proof. If A is closed, then D(A) = G(A). Hence E(A) = S �9 D(A) = 
FIG(A)]. Similarly, if A is open, then S(A)---F(A) and I ( A ) = D .  S (A)=  
G[F(A)]. This proves Theorem 7. 

Theorem 8. S ( A ) c I ( A ) ~ A c E ( A ) c D ( A ) .  

Proof. E ( A ) = S . D ( A ) c D ( A )  by Theorem3. Now let a C A .  Then 
N(a) ~D(A) .  Hence a ~ {a I = S[N(a)] ~ S .  D(A). Therefore, A ~E(A) .  
The proof that S ( A ) c I ( A ) c A  is similar and therefore omitted. This 
establishes Theorem 8. 



Cellular Topology Application in Image Processing 451 

Theorem 9. E2(A) = E ( A )  and [2(A)=I(A). 
Proof. Obviously 12(A)=I[I(A)] cl (A) .  On the other hand, 

I .  I(A) = DIS .  D[S(A)]) = D{E[S(A)]} ~ D[S(A)] = I(A) 

A similar argument shows that EZ(A)=A. This establishes Theorem 9. 

Theorem 10. I[D(A)] = D ( A )  and E[S(A)] = S(A). 

ProoL Clearly, I[D(A)] cD(A).  But I[D(A)] = D [ S .  D(A)] = 
D[E(A)] D D(A). Hence I[D(A)] = D(A). 

Similarity, S(A) cE[S(A)] and E[S(A)] = S[D. S(A)] = S[I(A)} c 
S(A). Therefore E[S(A)] = S(A). This proves Theorem 10. 

The above theorems classify many but not all images that remain 
unchanged by the transforms E and L This leaves us with the following 
problem. 

Problorn 2. Classify all images that remain invariant under the 
transformations E and S. 

5. NEIGHBORHOOD REDUCTION AND RECONSTRUCTION 

Neighborhood reduction is a data compression device. This technique, 
defined in terms of neighborhood transforms, reduces the image to a few 
cells. Reacquisition of the original image from the reduced image can be 
accomplished via neighborhood reconstruction. Thus, neighborhood 
reduction compresses data without loss of information. The basic idea of 
neighborhood reduction and reconstructions stems from Miller's research on 
image convolutions, (9) 

Definition. Let i be a nonnegative integer and A c X. The ith 
reduction of A is defined as Ri(A ) = S i (A)~  C . I .  Si(A). The neighborhood 
reduction of A is the disjoint union R(A)= 0 Ri(A). 

Since Si(A) = {a E A d Di(a) c A }  and Ri(A) = S i (A)~  C{D[Si+I(A)]}, 
we can express Ri(A ) in set theoretic terms as Ri(A ) = {a lDi (a)cA  and 
Di+l(b)c/zA whenever bED(a)}. This last expression provides a clearer 
view of the geometric manipulations that are required in order to obtain 
Ri(A ). The next example should elucidate the importance of neighborhood 
reductions. 

Example. Let A be the image shown in Fig. 6a with the isolated 
shaded cell deleted. Figure 12 shows A (dotted outline) superimposed on 

828/12/6 6 
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Fig. 12. The neighborhood reduced image R(A). 

R(A). In order to show the position of Ri(A ) with respect to A, we labeled 
the cells of Ri(A ) by i (i = 0, 1, 2, 3). Note that Ri(A ) = O for i > 3. 

An important observation is that the reduction R(A) consists of only 44 
cells. This is less than 1/3 of the 159 cells composing the image A. Another 
useful observation is that R(A) can be viewed as a weighted skeleton of A, 
where a cell of the skeleton has weight i if it belongs to Ri(A). As can be 
inferred from the reconstruction procedure, the largest numbered cells 
correspond to the bulk of the image, while the cells with small weights 
correspond to the finer features. In tracking an object such as a moving 
target, it is often sufficient to only track cells with large weights, thus 
allowing further data reduction. 

Definition. The interior radius m(A) of A is defined as re (A)= 
max{i I Di(a) c A, a C A } if the maximum exists, otherwise re(A) = ~ .  

The exterior radius M(A) of A is defined as M(A)= min{i I A c Di(a), 
a ~ A } if the minimum exists, otherwise M(A) = oo. 

It follows that O<~rn(A)~M(A). Also, M(A)< m if and only if A is 
finite. However it is possible that m(A) < oo even though M(A) --- oo. Unless 
otherwise stated, we shall always assume that m(A) < m. This complies with 
the spirit of image processing by computer where images are always finite. 

Definition. Let A c X  and 0 <~k<~m(A). The kth partial 
reconstruction r k of A from R(A) is defined as 

m(A ) 

rk(A) = U Di[Ri(A)] 
i = m ( A ) - k  

Theorem 11. rm(~)(A ) =A. 

Proof. If p~R i (A  ), then Di (p )cA .  Hence Di(Ri(A))cA for each 
i~> 0 and, therefore, r,~(A)(A ) c A .  
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r I (A) 

Fig. 13. The partially reconstructed image r,(A). 

In order to show that A c rm(A)(.4), let A i = {a I there exists b C A with 
a C D i ( b ) c A } .  Since A = A  o, A = U A  i. Now let a ~ A  and k =  
max{ilaEAi}.  Thus a C D k ( b ) c A  for some b E A .  Suppose there is a 
c ~ D(b) such that Dk+~(e) c A .  By Theorem 2, b C D(c). But then Dk(b) c 
Dk+l(e). Therefore a E Dk+l(c) c A  and a CA~+~, contradicting the fact 
that k was maximal with respect to this property. Hence b C Rk(A ) and 
a ~ Dk(b) c Dk[Rk(A)] c rm(a)(A). This proves Theorem 11. 

It now follows that the definition of r k provides an algorithmic method 
of reconstructing A - - o r  specific subsets of A--knowing only R(A). As an 
example, Figure 13 shows the first partial reconstruction r~(A) of A, where 
R(A) is as in the previous example. 

6. NEIGHBORHOOD METRICS 

A neighborhood metric is a metric between two images A and B that 
can be computed in terms of neighborhood transforms. The metric we are 
about to define was first proposed by Blaschke, ~1) and is based on 
Minkowski's idea of engulfing by dilation. ~6'1~ 

Definition. The Minkowski distance between two images A and B in a 
cellular space is defined as 

d(A, B) = min{k I A c Dk(B) and B c Dk(A)} 

It is interesting to note that Blaschke actually calls this distance the 
"neighborhood" distance between A and B. Hadwiger ~6) observes that the 
analog of this distance for general metric spaces is the Hausdorff distance 
between sets, which was first formulated by Pompeju. r Hadwiger also 
shows that the Minkowski distance has some interesting properties with 
respect to unions and dialations. We summarize some of this results in the 
next theorem. 
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Theorem 12. Let Y c P ( X )  consist of finite images and let 
A, B, C, D E K Then 

( t )  d is a metric on Y 

(2) d(A UB, CUD)~max{d(A, C),d(B,D)} 
(3) d(AUB, A)<d(A,B) 
(4) d(a U B, C) <~ d(A, B) + d(B, C) 
(5) d(A XB, CXD)<d(A ,C)+d(B ,D)  
(6) d(A,B)=d(Ak, B k) 

Perturbations affect the Minkowski metric severly, d(A, B) may be large 
even though A and B represent the same configuration. This is the case when 
A occupies a different location than B. For this reason the Minkowski metric 
has not been a useful image matching device. However, the Minkowski 
distance can be employed in defining a more applicable neighborhood 
distance. 

Definition. The Minkowski similarity s between images is defined by 
s(A, B) = min{d[A, To(B)] I v C X}, where d denotes the Minkowski distance 
and Tv(B ) = A • {v }. 

Since every "vector" v in C ~ can be expressed as a finite sum of unit 
vectors with integral coefficients, T o is a neighborhood transform. Hence s is 
a neighborhood distance. Also, since s[A, Tv(A)] = 0 and s(A, B) <~ d(A, B), 
s is translation invariant and a more discriminating masure of similarity 
than d. 

Although the Minkowski similarity solves the problem caused by trans- 
lation, it also introduces a new problem, namely the search for an optimal 
algorithm that will find v such that d[A, To(B)] is minimal. Furthermore, s is 
neither rotation nor reflection invariant. It would therefore be useful to have 
a solution of the following problem. 

Problem 3. Are there neighborhood metrics that are rotation, tran- 
slation and reflection invariant? 

Because of its dependence on the elementary neighborhood transform D, 
the Minkowski distance exhibits various interesting properies some of which 
were summarized in Theorem 12. Some of these proprties are also inherited 
by s. The solution of the next problem would provide further interesting and 
useful properties. 

Problem 4. Find relationships between the Minkowski measures and 
neighborhood transforms whose elementary factorizations involve D and S. 
What are the implications of these relationships? 
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We conclude this exposition by posing one final problem concerning 
neighborhood distances. Solutions to this problem could prove extremely 
useful in pattern recognition. 

Prob lem 5. Define optimal neighborhood metrics between images in 
terms of  the weights of  neighborhood reduced image skeletons and list their 
special properties. 

This paper provides only an introduction to the study of  the interaction 
of  cellular topology and image processing. Further results and topics relating 
to this subject could have been included. However, we hope that the topics 
covered and the level of  discussion will provide sufficient stimulus for further 
exploration of  this subject by the mathematical community.  

CONCLUSION 

We have shown that there is a firm connection between certain basic 
image operations, special topological spaces and metrics. To what extend 
knowledge of  such connections will prove useful in actual image processing 
remains to be seen. However, since such connections do exist, we feel 
confident that further exploration of  this subject will indeed provide new 
insights and techniques. 
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