
International Journal of Computer and Information Sciences, Vol. 12, No. 6, 1983

On Game Graph Structure
and Its Influence on Pathology 1

Dana S. Nau 2

Received February 1983; revised September 1983

Almost all game tree search procedures used in Artificial Intelligence are
variants on minimaxing. Until recently, it was almost universally believed that
searching deeper on game trees with such procedures would in general yield a
better decision. However, recent investigations show that there are many
"pathological" game trees for which searching deeper consistently degrades the
decision.

This paper investigates one possible cause of pathology. In particular, a
class of games that is normally pathological is shown to become
nonpathological when the games are modified so that game positions can be
reached by more than one path. This result suggests that in general, pathology is
less likely when game positions can be reached by more than one path. This
may be one reason why games such as chess and checkers are nonpathological.
In addition, this result supports the hypothesis (9} that pathology is less likely
when sibling nodes have similar minimax values.

This paper also investigates a possible cure for pathology--an alternative
to minimaxing called probability estimation which has been shown to avoid
pathology and thus produce more accurate decisions than minimaxing on at
least one pathological game. {1~) The current paper shows that depending on
what evaluation function is used, probability estimation can also produce more
accurate decisions than minimaxing on at least one nonpathological game.
Probability estimation or other related procedures could conceivably become
attractive alternatives to minimaxing if suitable tree pruning procedures could
be developed for use with them.

KEY WORDS: Artificial intelligence; decision analysis; decision trees; games;
game trees; minimaxing; pathology; problem solving; search.

~This work was supported by NSF Grant MCS-8117391 to the Laboratory for Machine
Intelligence and Pattern Analysis at the University of Maryland.

2 Computer Science Department, University of Maryland, College Park, Maryland 20742.

367

0091 7036/83/1200-0367503.00/0 �9 1983 Plenum Publishing Corporation

828/12/6 1

368 Nau

1. INTRODUCTION

Almost all game tree search procedures used in Artificial Intelligence are
variants on the following process: the tree is searched to some arbitrary
depth, a static evaluation function is used to compute approximations of the
utility values of the nodes at that depth, and minimaxing is used to compute
approximations of the utility values of shallower nodes.

Until recently, there was almost universal agreement that increasing the
depth of the search would improve the quality of the decision. This property
was dramatically illustrated in games such as chess and checkers using game
playing computer programs. (4'19'21) However, recent investigations by
Nau ~7'8'13) demonstrated the existence of many game trees that are
"pathological" in the following sense: as long as the search does not reach
the end of the game tree (in which case a correct decision can be
guaranteed), searching deeper consistently degrades the quality of the
decision.

Pathology hs been further investigated by Beal, (2) Bratko and Gams, ~5)
Pearl, (~7) and Nau. ~ The current paper extends our knowledge of
pathology in two directions, as described in sections 1.1 and 1.2.

1.1. Underlying Causes of Pathology

Since the discovery of game tree pathology in 1979, ~) a major open
question has been why it occurs in some games and not others. In particular,
why does it not occur in games such as chess and checkers? One possible
reason is the following hypothesis:

Hypothesis I. In games such as chess and checkers, moves consist of
small incremental modifications to a playing board. In a strong (or weak)
position, most of the available moves are likely to lead to strong (or weak)
positions; and thus the relative strength of a node in the game tree depends
on the strength of its parent. Perhaps this property precludes pathology.

In a paper investigating this hypothesis, ~ pathology was shown to
occur in a class of games (which we call P-games) in which the values of
nodes depended only slightly on the values of their parents. When the games
were modified to increase the amount of this kind of dependency, the
resulting class of games (which we call N-games) was not pathological. Thus
the hypothesis holds in at least one case.

A subsequent paper "1) contained theorems and statistical studies
supporting the following hypothesis:

Hypothesis 2. Pathology will occur when sibling nodes in a game
tree have relatively independent values, and the reason why Hypothesis 1

Game Graph Structure and Its Influence on Pathology 369

holds is that the incremental behavior it describes causes the values of sibling
nodes to be highly correlated.

If Hypothesis 2 is indeed correct, pathology ought to be unlikely under
any conditions that cause the values of sibling nodes to be closely correlated;
and incremental variations in node strength are not the only way this can
occur. For example, if sibling nodes have several children in common (so
that the game "tree" is actually a game graph), then they will have highly
correlated values. To verify Hypothesis 2, it is important to investigate
whether or not pathology occurs under such conditions. The current paper
does this by modifying the class of P-games (which are known to be
pathological) in such a way that sibling nodes have many children in
common. The resulting class of games (which we call G-games) is shown to
be nonpathological.

1.2. An Alternative to Minimaxing

Pearl (17) has suggested that pathology might be avoided by using an
evaluation function which returns the probability that a node is a forced win,
and replacing the minimax decision procedure by a procedure which treats
the evaluation function values as independent probabilities. The first
investigation of this proposed approach was done by Nau, (m who modified
Pearl's suggestion by using an evaluation function which returned values
between 0 and 1 to approximate the probability that a node is a forced win.
On N-games the probability of choosing a correct move using this
"probability estimation" approach was almost exactly the same as it was
when minimaxing was used. On P-games, probability estimation avoided
pathology and usually gave a higher probability of correct decision than
minimaxing. 3

The current paper compares the quality of the decisions produced by
probability estimation on G-games to the quality of decisions produced by a
minimax search to the same depth, using two different evaluation functions.
For one of the evaluation functions, probability estimation outperforms
minimaxing, and for the other one, minimaxing outperforms probability
estimation. This provides a second known case in which probability
estimation outperforms minimaxing, and other approaches are currently
being investigated which may do even better in many situations. (1'~2'~8) If
tree pruning strategies similar to alpha-beta or SSS* can be found for any of

3 The paper also compared probability estimation to minimaxing in terms of the number of
games each could win over the other. Although the results of this experiment were incon-
clusive, further studies (~2) have shown probability estimation to win significantly more P-
games than minimaxing does.

370 Nau

these decision strategies, they might become attractive alternatives to
minimaxing for certain applications.

1.3. Outline

Section 2 of this paper contains some preliminary definitions. Section 3
describes P-games and G-games, and the evaluation functions we use for
these games. Section 4 investigates how the probability of choosing a correct
move varies with search depth on G-games when minimaxing is used, and
compares the results of this investigation with the corresponding results (9) for
P-games. Section 5 compares probability estimation with minimaxing on G-
games, and Section 6 contains concluding remarks.

2. PRELIMINARY DEF IN IT IONS

By a game we mean a zero sum, perfect information game between two
players. The play must alternate strictly between them, and at each game
position there may be only finite many possible moves among which to
choose.

Let G be the game graph for such a game. Each node of G corresponds
to a game position, which consists both of what the game board looks like
and who is to move. Each arc of G corresponds to a move in the game. The
root node, root(G), corresponds to the game's beginning, and each leaf node
(node with no children) corresponds to one possible way the game might
end. Associated with each leaf node are the payoffs the two players receive
for that particular ending to the game.

By depth(g) we mean the length of the shortest path from root(G) to the
node g, (i.e., the least number of moves it takes to get to the game
position(g), and by depth(G) we mean

max{depth(g) I g is a node of G}.

By the subgraph rooted at g we mean the subgraph of G whose nodes are g
and all of its descendants. The depth of this subgraph we call height(g).

If g is a node in G, the utility value u(g) is the payoff which the player
who moves to g would receive if both players played perfectly from g on.
Since G is a zero sum game, the payoff for the player's opponent would be
-u(g). Utility values may be computed using the following "negamax"
formula(6):

u(g) = the payoff for the player who moves to g if g is a leaf

= -max{u(h)] h is a child of g} otherwise.
(i)

Game Graph Structure and Its Influence on Pathology 371

An evaluation function for G is any real-valued function e(g) intended
to return an approximation of u(g). Ideally, e(g) would return exactly u(g),
but evaluation functions are usually somewhat (and sometimes drastically)
in error. For example, evaluation functions for chess are notoriously inac-
curate in the endgame. ~z2)

Other approximations to u(g) may be computed by computing e(h) for
all nodes h of some fixed depth d in the subgraph rooted at g and putting
these approximate utility values into the negamax formula to compute values
for the shallower nodes of the subgraph. The value computed for g in this
way, which we call the depth d minimax value of g, is

m(d, g) = e(g) if d = 0
or (2)

= - m a x { r e (d - 1, h)] h is a child of g}

otherwise. Pruning procedures such as alpha-beta, (6'~4) SCOUT, (~5) SSS*, (2~
and B*, (3) have been developed to speed the computation of re(d, g).

A common way to choose a move at a node g is to choose whichever
child h of g has the highest depth d - 1 minimax value re(d- 1, h). If more
than one child of g has this value, the choice is made at random among all
children of g having this value. This is called a depth d minimax search,
since it involves evaluating the nodes at depth d in the subgraph of G rooted
at g.

3. P-GAMES AND G-GAMES

This section describes the two classes of games (P-games and N-games)
that are compared in this paper, and the evaluation functions used for these
games. Since P-games have been amply described elsewhere, ~9'1~) their
description here is rather cursory.

A P-game is played between two players. The playing board for the
game is a list of 2 N elements (we use N = 10). Each element is either - 1 or
1. The value of each element is determined before the beginning of the game
by making it a 1 with some fixed probability p and a - 1 otherwise,
independent of the values of the other elements. We use p = (3 - VZ5-)/2
0.382, which results in each side having about the same chance of
winning. ~~

To make a move in the game, the first player removes either the left half
of the list (the first 2 N- 1 elements) or the right half (the last 2 u - I elements).
His opponent then removes the left or right half of the remaining part of the
list. (The rules can be generalized for branching factors greater than 2, but
we are concerned only with the binary case.) Play continues in this manner

372 Nau

with each player selecting the left or right half of the remaining part of the
list until a single element remains. If this element is a 1, then the player who
made the last move wins; otherwise his opponent wins.

The game tree for a P-game is a full binary game tree of depth k. Thus
the same player always has the last move no matter what course the game
takes. We call this player Max and his opponent Min.

In games such as chess and checkers the game graph is not a tree, since
several different nodes may have some of the same children. The G-games
also have this property.

The playing board for a G-game is a list of k + 1 elements, where k > 0
is an integer. The playing board is set up by randomly assigning each
element the value 1 with probability r or the value - 1 otherwise, for some
fixed r (we use r-= 1/2). A more (for either player) consists of removing a
single element from either end of the list (see Fig. 1). As with the P-games,
the game ends when only one element is left. If it is a 1, then Max (the
player who moved last) wins; otherwise Min wins.

In both P-games and G-games, the only possible payoffs for a player
are 1 (or "win") and - 1 (or "loss"). Thus it is easy to prove by induction
that every node g in a P-game or G-game either has u(g) = 1 (in which case
g is a forced win node), or u(g) = - 1 (in which case g is a forced loss node).

(+1 -1 +1 +1 -1)

(+1 -1 +1 +1) (-1 +1 +1 -1)

(+1 -1 & + l + 1 ~ + 1 +1 -1)

A A A

Fig. 1. A game graph for a G-game of depth 4. The initial playing board appears at the
root of the graph. Since the depth is even, Max is the second player. Max has a forced win
in this particular game graph, as indicated by the solution graph drawn in boldface.

Game Graph Structure and Its Influence on Pathology 373

3.1. Evaluation Functions

Let G be a game tree for a b-ary P-game or G-game, and g be a node in
G. Note that the number of elements in g is 2 height(g) if G is a P-game, and
height(g) + 1 if G is a G-game. If Max has the move to g, then the more "1"
elements there are in g the more likely it is that g is a forced win. If Min has
the move to g, then the more " - 1 " elements there are in g the more likely it
is that g is a forced win. Thus an obvious evaluation function for G is

where

the number of elements in g having value v(g)
el(g) = the number of elements in g

11 if Max has the move to g
v(g) = _ otherwise

As will be shown in Section 4, in G-games u(g) is heavily influenced by
the values of the two or three elements at the center of g. Thus a more
accurate evaluation function for G-games can be created by defining

1 ~ (n)(lifxi=v(g), else0), e2(g)=2 -~i~o i

where x0, x~,..., x n are the elements of g. e 2 is considerably more accurate on
G-games than e 1, because it gives considerably more weight to the elements
near the center of the list than it does to the elements near either end of the
list.

4. PROBABILITIES OF CORRECT DECISION

Let g be a node of height k having one forced win child gl and one
forced loss child g2, and suppose that a depth d minimax search is used to
choose between g2 and g2. Then the correct decision is to move to gl . Now,
gl will always be chosen if re(d-1, g~)> re(d-1, g2), and g~ will be
chosen half of the time if m(d-1, g l) = re(d-1, g2). Thus the correct
decision will be made with probability

D a=Pr[m(d-1, g,)>m(d-1, g2)]
(3)

+~Pr[m(d-1, gl)=m(d-1, g2)].

Suppose a depth d minimax search is done at a node g of height k in a
P-game. The probability of correct decision for this situation has been deter-

374 Nau

mined mathematically. ~9) In particular, when k is larger than about 7 or 8
pathology occurs, in the following sense: as long as the search does not go
closer than one move away from the end of the game (i.e., as long as
d < k - 1), the probability of correct decision decreases as the search depth
increases.

We now examine the probability of correct decision in G-games. If g is
a node in a G-game, then we let g[i, j] be the descendant of g formed by
removing i elements from the left end of g and j elements from the right end
of g. Note that

(g[i,j])[u,v] = g[i+ u, j+ v]

The following theorem states that regardless of the value of d, the depth d
minimax value of g is always determined by a certain set of two or three
nodes of depth d in the subtree rooted at g.

Theorem 1.

m(d, g) = e(g) if d = 0

=-max le (g [d 2

Let g be a node of height k in a G-game. For 0 ~< d ~< k,

1 d-ill t [d l d+l]t I , ~ , e g 2 ' 2

if d > 0is odd

Proof.

max le(d ' d I ~] t m'nle(~[d+ 2 ~11 2 , 2

e (~ [~ "+~1)II~ ir~0iseve.

See the Appendix. []

Corollary 1.
O<d~k,

Let g be a node of height k in a G-game. Then for

u~_ max I. tgfd+, d- , 1 ~ ~ 1t "I~[~-~ ~§
if d > 0is odd

= m a x

u(g[~2 d+2

Game Graph Structure and Its Influence on Pathology 375

Proor Recall that e(g) is an approximation to u(g). Theorem 1 holds
even when this approximation is exact; i.e., when e(g) = u(g). []

Suppose we are searching to some depth d. If d is even, then from
Eq. (3) and Theorem 1 we get

D d = Pr [--max {e(gd, !), e(gd,z) } > --max {e(gd, 3), e(gd,4)}]
(4)

+ �89 Pr[--max{e(gd,i), e(gd,2)} = --max{e(gd,3), e(gd,4)}]

where gd,~ = gild/2, d/2 - 1], gd,2 = g~[d/2 - 1, d/2], gd,3 =g2[d/2,
d/2 - 1], and gd,4 = gi[d/2 -- 1, d/2]. But from Corollary 1 it follows that
u(gd,1) = u(ga,,2) = --1 and u(gd,3) = u(gd,4) = 1. Thus if i and j are even
and e is more accurate at depth i than j in the subtree rooted at g, then

and

--max{e(gf,1), e(gi,2)} > --max{e(gj,1), e(&,2)}

--max{e(gi,3), e(gi,4)} < --max{e(&-3), e(gj,4)}

whence D i > Dj. A similar conclusion can be obtained when i a n d j are odd.
The point of the above is that the quality of a decision in a G-game

using minimaxing depends solely on the accuracy of the evaluation function.
If the evaluation function is more accurate at large depths than small ones,
then a deeper search will help; if it is less accurate at large depths, then a
deeper search will hurt.

The evaluation functions el(g) and e2(g) basically compute weighted
averages of the values of all of the elements of g. But from Theorem 2, the
utility value of g does not depend on all of these elements, but only on the
two or three elements in the center of g. If the height of g is small, then there
will not be many elements other than these two or three, and so el(g) and
ez(g) will be quite accurate. However, if the height of g is large, then there
will be many elements other than the two or three relevant ones, so the two
evaluation functions will not be so accurate. They become monotonically
more accurate as the search depth increases, so pathology should not occur
in G-games when these evaluation functions are used.

The above statement can be verified by direct measurement. For each k,
the number of distinct G-game nodes of height k is exactly 2 k+l (because
each node of height k contains k + 1 elements, each of which may be a 1 or
--1). For some of these nodes, either both children are forced losses or both
children are forced wins--and at these nodes it does not matter what move is
chosen. Each remaining node g has one forced win child g~ and one forced
loss child g2. For these nodes we compute m (d - 1, &) and m (d - 1, g2)" If
out of a set of n nodes g we have m (d - 1, g~) > r e (d - 1, g2) for r of them

376

Table I. Probability of correct decision D as a function of
minimaxing with the evaluation function e l , for nodes of height

Natl

search depth d using
k in binary G-games. a

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 1 0 k = l l k = 1 2 k = 1 3

d = 1 0.750 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
d = 2 1.00 0.750 0.625 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
d = 3 1.000 1.000 0.750 0.563 0.531 0.500 0.500 0.500 0.500 0.500 0.500
d = 4 1.000 1.000 0.750 0.625 0.500 0.500 0.500 0.500 0.500 0.500
d = 5 1.000 1.000 0.750 0.563 0.531 0.500 0.500 0.500 0.500
d = 6 1.000 1.000 0.750 0.625 0.500 0.500 0.500 0.500
d = 7 1.000 1.000 0.750 0.653 0.531 0.500 0.500
d = 8 1.000 1.000 0.750 0.625 0.500 0.500
d = 9 1.000 1.000 0.750 0.563 0.531
d = 1 0 1.000 1.000 0.750 0.625
d = l l 1.000 1.000 0.750
d = 12 1.000 1.000
d = 13 1.000

" The results come from examining every possible node of height k.

a n d m (d - 1, g2) for s o f t h e m , t h e n the p r o b a b i l i t y o f co r r ec t dec i s ion is

D d = (r + s/2)/n.
T a b l e s I a n d II c o n t a i n the resu l t s o f s u c h m e a s u r e m e n t s us ing el a n d

e2, respec t ive ly . A s expec ted , p a t h o l o g y does no t o c c u r on any o f the G-

g a m e s tes ted.

Table II. Probability of correct decision D as a function of search depth d using
minimaxing with the evaluation function e 2, for nodes of height k in binary G-games. a

k = 3 k = 4 k = 5 k = 6 k = 8 k = 9 k = l O k = l l k = 1 2 k = 1 3

d = l 1.000 1,000 1.000 0.969 0,938 0.875 0.902 0.844 0,883 0.812 0.834
d = 2 1.000 1,000 1.000 0.969 0.938 0.875 0.883 0,848 0.871 0.814 0.838
d = 3 1.000 1,000 1.000 1,000 0,969 0.953 0,906 0,875 0.881 0.843 0.857
d = 4 1,000 1.000 1.000 1.000 0.969 0.938 0.875 0.883 0.848 0,871
d = 5 1.000 1.000 1.000 1.000 0.969 0.953 0.906 0,875 0.881
d = 6 1.000 1.000 1.000 1.000 0.969 0.928 0.875 0.883
d = 7 1.000 1.000 1.000 1.000 0.969 0.953 0.906
d = 8 1.000 1.000 1.000 1.000 0.969 0,938
d = 9 1.000 1.000 1.000 1.000 0.969
d = 10 1.000 1.000 1.000 1,000
d = l l 1.000 1.000 1.000
d = 12 1,000 1.000
d = 13 1.000

The results come from examining every possible node of height k.

Game Graph Structure and Its Influence on Pathology 377

5. T H E P R O B A B I L I S T I C D E C I S I O N P R O C E D U R E

So far, we have only discussed minimax decision procedures. Pearl a6'~7)
has proposed the following alternative to minimaxing. Suppose we have a
special evaluat ion function e*(g) which returns the probabi l i ty that a node g
is a forced win given some of its measurable features. Suppose further that
the probabil i t ies of sibling nodes being forced wins are a lways independent,
and that we have evaluated e*(g~) for every node gl at some depth d in the
subtree rooted at g. Then the probabi l i ty that g is a forced win can be
computed by applying the formula

Pr [g l is a win node] = I ~ { 1 - Pr [g2 is a win model]] g2 is a child of gl } (5)

to successively sha110wer nodes gl in the subtree.
This "probabi l i ty es t imat ion" procedure can be used even when e(g)

only approximates the actual probabi l i ty that g is a forced win given the
features examined. In such a case, it works as follows: use an evaluat ion
function e(g) which returns values between 0 and 1. Search the game tree to
some depth d, evaluat ing the nodes at this depth. Instead of using
minimaxing to compute values for the shallower nodes of the tree, compute
values for these nodes as if the computed values for their children were

Table IH. Probability of correct decision D as a function of search depth d using
probability estimation with the evaluation function e 1, for nodes of height k in binary

G-games. a

d = l 0.750 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
d = 2 1.000 0.875 0.688 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
d = 3 1.000 1.000 0.938 0.719 0.609 0.500 0.500 0.500 0.500 0.500 0.500
d = 4 1.000 1.000 0.875 0.828 0.641 0.570 0.500 0.500 0.500 0.500
d = 5 1.000 1.000 0.891 0.750 0.711 0.580 0.540 0.500 0.500
d = 6 1.000 1.000 0.828 0.801 0.672 0.650 0.564 0.532
d = 7 1.000 1.000 0.891 0.742 0.725 0.617 0.592
d = 8 1.000 1.000 0.840 0.812 0,672 0.646
d = 9 1.000 1.000 0.885 0,749 0.733
d = 10 1.000 1.0000 0.805 0.802
d = 1I 1.000 1.000 0.836
d = 12 1.000 1.000
d = 13 1.000

a The results come from examining every possible node of height k.

3 7 8 Nau

independent probabilities of the occurrence of forced wins. This amounts to
replacing the "negamax formula"

t e(g) if d = 0

m(d, g) = (- m a x { m (d - 1, gl)[gl is a child of g} otherwise
(6)

by the formula

te(g) if d = 0

p(d, g) = t [I {1 - p(d - 1, gl)l g, is a child of g} otherwise
(7)

We call p(d, g) the depth d probabili ty estimate for g.
The probabili ty of correct decision obtainable using probabili ty

estimation on G-games can be measured in the same way that it was
measured for minimaxing. For each node of height k having one forced win

child gl and one forced loss child g2, we compute p (d - 1 , g~) and

p(d - 1, g2). If out of a set of n nodes g we have p(d - 1, gl) > p(d - 1, g2)
for r of them and p (d - l , g l) = p (d - l , gz) for s of them, then the

probabili ty of correct decision is Dd=(r+s/2) /n . The results of
measurements using the evaluation functions e~ and e 2 are given in Tables III

and IV, respectively.

Table IV. Probability of correct decision D as a function of search depth d using
probability estimation with the evaluation function e 2, for nodes of height k in binary

G-games. a

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k=10 k = l l k-=12 k=13

d = l 1.000 1.000 1.000 0.969 0.938 0,875 0.902 0.844 0.883 0.812 0.834
d = 2 1.000 1.000 1.000 0.969 0.938 0.875 0.902 0.844 0.883 0.812 0.834
d = 3 1.000 1.000 1.000 1.000 0.953 0.898 0.902 0.844 0.883 0.813 0.834
d = 4 1.000 1.000 1.000 0.969 0.906 0.906 0.844 0.883 0.813 0.835
d = 5 1.000 1.000 0.969 0.906 0.906 0.844 0.883 0.813 0.835
d = 6 1.000 1.000 0.922 0.906 0.844 0.891 0.813 0.825
d= 7 1.000 1.000 0.906 0.844 0.887 0.813 0.837
d = 8 1.000 1.000 0.844 0.889 0.816 0.837
d = 9 1.000 1.000 0.989 0.813 0.842
d= 10 1.000 1.000 0.832 0.845
d= 11 1.000 1,000 0.861
d= 12 1,000 1.000
d= 13 1.000

a The results come from examining every possible node of height k.

Game Graph Structure and Its Influence on Pathology 3 7 9

Table V. Percentage difference 1 0 0 % x {DI I I -D~/DI I I, where D I and Dll I are the
values of D given in Tables I and III, respectively.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = l O k = l l k = 1 2 k = 1 3

d = 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
d = 2 0.0% 16.7% 10.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
d = 3 0.0% 0.0% 25.1% 27.7% 14,7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
d = 4 0.0% 0.0% 16.7% 32.5% 28.2% 14.0% 0.0% 0.0% 0,0% 0.0%
d = 5 0.0% 0,0% 18.8% 33.2% 33.9% 16.0% 8.0% 0,0% 0.0%
d = 6 0.0% 0.0% 10.4% 28.2% 34.4% 30.0% 12.8% 6.4%
d = 7 0.0% 0.0% 18.8% 31.8% 36,5% 23.4% 18.4%
d = 8 0.0% 0.0% 12.0% 29.9% 34.4% 29.2%
d = 9 0.0% 0.0% 18.0% 33.0% 38.0%
d = 10 0.0% 0.0% 7.3% 28.3%
d = 1 1 0.0% 0.0% 11.5%
d = 12 0.0% 0,0%
d = 13 0.0%

P r o b a b i l i t y e s t i m a t i o n a n d m i n i m a x i n g c a n n o w be c o m p a r e d to each

o t h e r by c o m p u t i n g the re la t ive d i f fe rences be t ween c o r r e s p o n d i n g en t r i es in

T a b l e s I a n d I I I a n d the re la t ive d i f fe rences be t ween c o r r e s p o n d i n g en t r i es in

T a b l e s II a n d IV. Th i s is d o n e in T a b l e s V a n d VI, r espec t ive ly . A s can be

seen, p r o b a b i l i t y e s t i m a t i o n does be t t e r t h a n m i n i m a x i n g w h e n e 1 is used,

a n d wor se t h a n m i n i m a x i n g w h e n e~ is used.

Table Vl. Percentage difference I O 0 % x (D I I I - D I) / D I I I , where D I are Dll I are the
values of D given in Table I and III, respectively.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = l O k = l l k = 1 2 k = 1 3

d = l
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9
d = 10
d = I 1
d = 1 2
d = 1 3

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.2% -0.5% 1.4% -0.2% -0.5%
0.0% 0.0% 0.0% 0.0% -1.7% -5.8% -0.4% -3.5% 0.2% -3.6% -2.7%

0.0% 0.0% 0.0% -3.1% -6.5% -3.4% -3.5% 0.0% -4.1% -4.1%
0.0% 0.0% -3 . t% -9.4% -6.5%-11.4% -2.5% -7.1% -5.2%

0.0% 0.0% -7.8% -9.4%-12.9% -5.0% -7.1% -5.4%
0.0% 0.0% -9.4%-15.6% -8.5%-14.7% -7.6%

0.0% 0.0%-15.6%-11.1%-15.8%-10.8%
0.0% 0.0%-10.2%-18.7%-13.1%

0.0% 0.0%-16.8%-15.5%
0.0% 0.0%-13.9%

0.0% 0.0%
0.0%

380 Nau

6. CONCLUSION

This paper has investigated some of the conditions responsible for the
occurrence or absence of pathology in game trees, and has also examined an
alternative to minimaxing. We now discuss the results of these investigations.

6.1. Conditions which Cause Pathology

Since the discovery of game tree pathology in 1979, (7) a major open
question has been why it occurs in some games and not others.

It was previously hypothesized (1~) that pathology should be less likely
when the values of sibling nodes are closely correlated. This hypothesis was
shown to hold for certain games (9'11~ using one way of achieving correlation
among sibling nodes: incremental variation in the strength of nodes as a
game progresses. This kind of behavior occurs in games such as chess and
checkers, and thus may be one explanation for why those games are not
pathological.

If the above hypothesis is correct, then it should hold no matter how the
correlation in values of sibling nodes is achieved. In this paper, we have
shown that the hypothesis holds for some games using a different way of
achieving correlation among sibling nodes: by giving them common
descendants. Since games such as chess and checkers exhibit this kind of
behavior too, this may be another reason why those games are not
pathological.

It should be noted that none of these studies deal with what happens
when a game tree search reaches a leaf node. Thus they do not conflict with
Pearl's conjecture (17~ that another reason for the absence of pathology in
chess, checkers, and similar games is the occurrence of leaf nodes at all
levels of the game tree. There may very well be a number of factors whose
presence can preclude pathology.

6.2. An Alternative to Minimaxing

The other topic discussed in this paper is a game tree decision
procedure called "probability estimation" which is distinctly different from
minimaxing. This decision procedure was compared with minimaxing on G-
games. On G-games, it performs better than minimaxing if the evaluation
function e I is used and worse than minimaxing if e 2 is used.

Purdom (12) has pointed out that minimaxing is the best way to combine
values at a node if those values are exact. The values obtained using e 2 are
certainly not exact, but they are more accurate than those obtained using e~.

Game Graph Structure and Its Influence on Pathology 381

This may explain why minimaxing did better in relation to probability
estimation when e2 was used than it did when el was used.

This paper shows that if an appropriate evaluation function is used,
probability estimation does significantly better than minimaxing on G-games.
Probability estimation can do better than minimaxing on P-games as
well, (11'12) and recent results show that there are also other decision
procedures which outperform minimaxing under various conditions. (1'1~'18)
One large drawback of all of these procedures is that tree pruning procedures
such as alpha-beta cannot be used with them. One or more of these
approaches might become attractive alternatives to minimaxing if suitable
tree pruning procedures can be found.

APPENDIX

Proof of Theorem 1 (by induction on d). If d=0 , then m(d,g)=e(g)
by Eq. (2). Let 0 ~< i < k, and suppose the theorem holds for d = i. We must
show that it holds for d = i + 1. From Eq. (2),

m(i + 1, g)=-max{m(i, g[1,0]), m(i, g[0, 1])}

Case 1. If i + l is even, then i is odd.
assumption,

m(i + l, g)=--max)--max le (g[1,

e (g[1,

o] [i + 1 i -
2 '

[i - 1 i +
O] [' 2

-max le (~I0'11 [i~-'' '-2

e (gIO' 11 ['-1~ ' '+2

__ m.x l_m~x le (g['2 ~ ;-
l ([,+1 i+l])

- max e g 2 ' 2 '

=rain lmax le(g[~-3'i-12]) ' e

I (g [' + ' + ~])
max e 2 ' 2 , e

So from the induction

'1)
11)I
1)]

382 Nau

;~axlef~[i~12'2i~11t'

rain le tg [i~ i--1 --1 ' 2 l~ 'e~[i

so the theorem holds for d -~ i + 1, if i + 1 is even.

Case 2. If i + I is odd, then i is even. So from the induction
hypothesis,

m(i+l,g)=-max le(g[1, O][2,21)

= m . ~ l e l g [~ ~

minle(g[i+42 ' 7 i - - 2]) ' e(g[i2'Ti+2])
i i + 2]

rain le(g[i+22 , ~]) , r(g[i22, i241) I

so the theorem holds for d=i§ 1, if i + 1 is odd. Therefore, by
mathematical induction, the theorem holds for 0 ~< d ~< k. []

REFERENCES

1. B. W. Ballard, Non-Minimax Search Strategies for Minimax Trees: Theoretical Foun-
dations and Empirical Studies, Technical Report, Duke University, Durham, North
Carolina (July 1983).

Game Graph Structure and Its Influence on Pathology 383

2. D. Beal, An Analysis of Minimax, in Advances is Computer Chess 2, M. R. B. Clarke
(ed.) University Press, Edinburgh (1980).

3. H. Berliner, The B* Tree Search Algorithm: A Best-First Proof Procedure, Artificial
Intelligence (12):23-40 (1979).

4. A. W. Biermann, Theoretical Issues Related to Computer Game Playing Programs,
Personal Computing, pp. 86-88 (September 1978).

5. I. Bratko and M. Gains, Error Analysis of the Minimax Principle, in Advances in
Computer Chess 3, M. R. B. Clarke (ed.) Pergamon Press, London (1982).

6. D. E. Knuth and R. W. Moore, An Analysis of Alpha-Beta Pruning, Artificial Intelligence
(6):293-326 (1975).

7. D. S. Nau, Quality of Decision Versus Depth of Search on Game Trees, Ph.D. Disser-
tation, Duke University, Durham, North Carolina (August 1979).

8. D. S. Nau, Pathology on Game Trees: A Summary of Results, Proc. First Annual
National Conference on Artificial Intelligence, Stanford, California, pp. 102-104 (1980).

9. D. S. Nau, An Investigation of the Causes of Pathology in Games, Artificial Intelligence
(19):257-278 (1982). (An abstract of this paper will appear in Zentralblatt fuer
Mathematik in 1983.)

10. D. S, Nau, The Last Player Theorem, Artificial Intelligence (18):53-65 (1982). (An early
version is available as Technical Report TR-865, Computer Science Department,
University of Maryland, February 1980).

11. D. S. Nau, Pathology on Game Trees Revisited, and an alternative to Minimaxing,
Artificial Intelligence (21)1, 2, 221-244 (March 1983). (Also available as Technical
Report TR-1187, Computer Science Department, University of Maryland, July 1982.)

12. D. S. Nau, P. W. Purdom, and C. H. Tzeng, Experiments on Alternatives to Minimax
(inpreparation) (1983).

13. D. S. Nau, Decision Quality as a Function of Search Depth on Game Trees, Journal of
the ACM (October 1983) (to appear) (An early version is available as Technical Report
TR-866, Computer Science Department, University of Maryland, February 1980.)

14. N. J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto (1980).
15. J. Pearl, Asymptotic Properties of Minimax Trees and Game-Tree Searching Procedures,

Artificial Intelligence (14):113-138 (1980).
16. J. Pearl, Heuristic Search Theory: Survey of Recent Results, Proc. Seventh Internat. Joint

Conf. Artif. Intel., Vancouver, Canada, pp. 554-562 (August 1981).
17. J. Pearl, On the Nature of Pathology in Game Searching, Artificial Intelligence

(20):427453 (1983). (An early version is available as Technical Report UCLA-ENG-
CSL-82-17, School of Engineering and Applied Science, University of California, Los
Angles.)

18. A. L. Reibman and B. W. Ballard, Non-Minimax Search Strategies for Use against
Fallible Opponents, National Conference on Artificial Intelligence, Washington, DC,
pp. 338-342 (1983).

!9. A. L. Robinson, Tournament Competion Fuels Computer Chess, Science
(204):1396-1398 (1979).

20. G. C. Stockman, A Minimax Algorithm Better than Alpha-Beta?, Artificial Intelligence
(12):179-196 (1979).

21. T. R. Truscott, Minimum Variance Tree Searching, Proc. First Internat. Symposium on
Policy Analysis and Information Systems, Durham, North Carolina, pp. 203-209 (June
1979).

22. T. R. Truscott, Personal communication (January 1981).

828/12/6 2

