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Almost all game tree search procedures used in Artificial Intelligence are 
variants on minimaxing. Until recently, it was almost universally believed that 
searching deeper on game trees with such procedures would in general yield a 
better decision. However, recent investigations show that there are many 
"pathological" game trees for which searching deeper consistently degrades the 
decision. 

This paper investigates one possible cause of pathology. In particular, a 
class of games that is normally pathological is shown to become 
nonpathological when the games are modified so that game positions can be 
reached by more than one path. This result suggests that in general, pathology is 
less likely when game positions can be reached by more than one path. This 
may be one reason why games such as chess and checkers are nonpathological. 
In addition, this result supports the hypothesis (9} that pathology is less likely 
when sibling nodes have similar minimax values. 

This paper also investigates a possible cure for pathology--an alternative 
to minimaxing called probability estimation which has been shown to avoid 
pathology and thus produce more accurate decisions than minimaxing on at 
least one pathological game. {1~) The current paper shows that depending on 
what evaluation function is used, probability estimation can also produce more 
accurate decisions than minimaxing on at least one nonpathological game. 
Probability estimation or other related procedures could conceivably become 
attractive alternatives to minimaxing if suitable tree pruning procedures could 
be developed for use with them. 
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1. INTRODUCTION 

Almost all game tree search procedures used in Artificial Intelligence are 
variants on the following process: the tree is searched to some arbitrary 
depth, a static evaluation function is used to compute approximations of the 
utility values of the nodes at that depth, and minimaxing is used to compute 
approximations of the utility values of shallower nodes. 

Until recently, there was almost universal agreement that increasing the 
depth of the search would improve the quality of the decision. This property 
was dramatically illustrated in games such as chess and checkers using game 
playing computer programs. (4'19'21) However, recent investigations by 
Nau ~7'8'13) demonstrated the existence of many game trees that are 
"pathological" in the following sense: as long as the search does not reach 
the end of the game tree (in which case a correct decision can be 
guaranteed), searching deeper consistently degrades the quality of the 
decision. 

Pathology hs been further investigated by Beal, (2) Bratko and Gams, ~5) 
Pearl, (~7) and Nau. ~  The current paper extends our knowledge of 
pathology in two directions, as described in sections 1.1 and 1.2. 

1.1. Underlying Causes of Pathology 

Since the discovery of game tree pathology in 1979, ~) a major open 
question has been why it occurs in some games and not others. In particular, 
why does it not occur in games such as chess and checkers? One possible 
reason is the following hypothesis: 

Hypothesis I. In games such as chess and checkers, moves consist of 
small incremental modifications to a playing board. In a strong (or weak) 
position, most of the available moves are likely to lead to strong (or weak) 
positions; and thus the relative strength of a node in the game tree depends 
on the strength of its parent. Perhaps this property precludes pathology. 

In a paper investigating this hypothesis, ~ pathology was shown to 
occur in a class of games (which we call P-games) in which the values of 
nodes depended only slightly on the values of their parents. When the games 
were modified to increase the amount of this kind of dependency, the 
resulting class of games (which we call N-games) was not pathological. Thus 
the hypothesis holds in at least one case. 

A subsequent paper "1) contained theorems and statistical studies 
supporting the following hypothesis: 

Hypothesis 2. Pathology will occur when sibling nodes in a game 
tree have relatively independent values, and the reason why Hypothesis 1 
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holds is that the incremental behavior it describes causes the values of sibling 
nodes to be highly correlated. 

If Hypothesis 2 is indeed correct, pathology ought to be unlikely under 
any conditions that cause the values of sibling nodes to be closely correlated; 
and incremental variations in node strength are not the only way this can 
occur. For example, if sibling nodes have several children in common (so 
that the game "tree" is actually a game graph), then they will have highly 
correlated values. To verify Hypothesis 2, it is important to investigate 
whether or not pathology occurs under such conditions. The current paper 
does this by modifying the class of P-games (which are known to be 
pathological) in such a way that sibling nodes have many children in 
common. The resulting class of games (which we call G-games) is shown to 
be nonpathological. 

1.2. An Alternative to Minimaxing 

Pearl (17) has suggested that pathology might be avoided by using an 
evaluation function which returns the probability that a node is a forced win, 
and replacing the minimax decision procedure by a procedure which treats 
the evaluation function values as independent probabilities. The first 
investigation of this proposed approach was done by Nau, (m who modified 
Pearl's suggestion by using an evaluation function which returned values 
between 0 and 1 to approximate the probability that a node is a forced win. 
On N-games the probability of choosing a correct move using this 
"probability estimation" approach was almost exactly the same as it was 
when minimaxing was used. On P-games, probability estimation avoided 
pathology and usually gave a higher probability of correct decision than 
minimaxing. 3 

The current paper compares the quality of the decisions produced by 
probability estimation on G-games to the quality of decisions produced by a 
minimax search to the same depth, using two different evaluation functions. 
For one of the evaluation functions, probability estimation outperforms 
minimaxing, and for the other one, minimaxing outperforms probability 
estimation. This provides a second known case in which probability 
estimation outperforms minimaxing, and other approaches are currently 
being investigated which may do even better in many situations. (1'~2'~8) If 
tree pruning strategies similar to alpha-beta or SSS* can be found for any of 

3 The paper also compared probability estimation to minimaxing in terms of the number of  
games each could win over the other. Although the results of  this experiment were incon- 
clusive, further studies (~2) have shown probability estimation to win significantly more P- 
games than minimaxing does. 
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these decision strategies, they might become attractive alternatives to 
minimaxing for certain applications. 

1.3. Outline 

Section 2 of this paper contains some preliminary definitions. Section 3 
describes P-games and G-games, and the evaluation functions we use for 
these games. Section 4 investigates how the probability of choosing a correct 
move varies with search depth on G-games when minimaxing is used, and 
compares the results of this investigation with the corresponding results (9) for 
P-games. Section 5 compares probability estimation with minimaxing on G- 
games, and Section 6 contains concluding remarks. 

2. PRELIMINARY DEF IN IT IONS 

By a game we mean a zero sum, perfect information game between two 
players. The play must alternate strictly between them, and at each game 
position there may be only finite many possible moves among which to 
choose. 

Let G be the game graph for such a game. Each node of G corresponds 
to a game position, which consists both of what the game board looks like 
and who is to move. Each arc of G corresponds to a move in the game. The 
root node, root(G), corresponds to the game's beginning, and each leaf node 
(node with no children) corresponds to one possible way the game might 
end. Associated with each leaf node are the payoffs the two players receive 
for that particular ending to the game. 

By depth(g) we mean the length of the shortest path from root(G) to the 
node g, (i.e., the least number of moves it takes to get to the game 
position(g), and by depth(G) we mean 

max{depth(g) I g is a node of G}. 

By the subgraph rooted at g we mean the subgraph of G whose nodes are g 
and all of its descendants. The depth of this subgraph we call height(g). 

If g is a node in G, the utility value u(g) is the payoff which the player 
who moves to g would receive if both players played perfectly from g on. 
Since G is a zero sum game, the payoff for the player's opponent would be 
-u(g). Utility values may be computed using the following "negamax" 
formula(6): 

u(g) = the payoff for the player who moves to g if g is a leaf 

= -max{u(h) ] h is a child of g} otherwise. 
(i) 
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An evaluation function for G is any real-valued function e(g) intended 
to return an approximation of u(g). Ideally, e(g) would return exactly u(g), 
but evaluation functions are usually somewhat (and sometimes drastically) 
in error. For example, evaluation functions for chess are notoriously inac- 
curate in the endgame. ~z2) 

Other approximations to u(g) may be computed by computing e(h) for 
all nodes h of some fixed depth d in the subgraph rooted at g and putting 
these approximate utility values into the negamax formula to compute values 
for the shallower nodes of the subgraph. The value computed for g in this 
way, which we call the depth d minimax value of g, is 

m(d, g) = e(g) if d = 0 
or (2) 

= - m a x { r e ( d -  1, h)] h is a child of g} 

otherwise. Pruning procedures such as alpha-beta, (6'~4) SCOUT, (~5) SSS*, (2~ 
and B*, (3) have been developed to speed the computation of re(d, g). 

A common way to choose a move at a node g is to choose whichever 
child h of g has the highest depth d -  1 minimax value re(d-  1, h). If  more 
than one child of g has this value, the choice is made at random among all 
children of g having this value. This is called a depth d minimax search, 
since it involves evaluating the nodes at depth d in the subgraph of G rooted 
at g. 

3. P-GAMES AND G-GAMES 

This section describes the two classes of games (P-games and N-games) 
that are compared in this paper, and the evaluation functions used for these 
games. Since P-games have been amply described elsewhere, ~9'1~) their 
description here is rather cursory. 

A P-game is played between two players. The playing board for the 
game is a list of 2 N elements (we use N =  10). Each element is either - 1  or 
1. The value of each element is determined before the beginning of the game 
by making it a 1 with some fixed probability p and a - 1  otherwise, 
independent of the values of the other elements. We use p = (3 - VZ5-)/2 
0.382, which results in each side having about the same chance of 
winning. ~~ 

To make a move in the game, the first player removes either the left half 
of the list (the first 2 N- 1 elements) or the right half (the last 2 u - I  elements). 
His opponent then removes the left or right half of the remaining part of the 
list. (The rules can be generalized for branching factors greater than 2, but 
we are concerned only with the binary case.) Play continues in this manner 
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with each player selecting the left or right half of the remaining part of the 
list until a single element remains. If this element is a 1, then the player who 
made the last move wins; otherwise his opponent wins. 

The game tree for a P-game is a full binary game tree of depth k. Thus 
the same player always has the last move no matter what course the game 
takes. We call this player Max and his opponent Min. 

In games such as chess and checkers the game graph is not a tree, since 
several different nodes may have some of the same children. The G-games 
also have this property. 

The playing board for a G-game is a list of k + 1 elements, where k > 0 
is an integer. The playing board is set up by randomly assigning each 
element the value 1 with probability r or the value - 1  otherwise, for some 
fixed r (we use r-= 1/2). A more (for either player) consists of removing a 
single element from either end of the list (see Fig. 1). As with the P-games, 
the game ends when only one element is left. If it is a 1, then Max (the 
player who moved last) wins; otherwise Min wins. 

In both P-games and G-games, the only possible payoffs for a player 
are 1 (or "win") and - 1  (or "loss"). Thus it is easy to prove by induction 
that every node g in a P-game or G-game either has u(g) = 1 (in which case 
g is a forced win node), or u(g) = - 1  (in which case g is a forced loss node). 

(+1 -1 +1 +1 -1) 

(+1 -1 +1 +1)  (-1 +1 +1 -1) 

(+1 -1 & + l  + 1 ~ + 1  +1 -1) 

A A A  

Fig. 1. A game graph for a G-game of depth 4. The initial playing board appears at the 
root of the graph. Since the depth is even, Max is the second player. Max has a forced win 
in this particular game graph, as indicated by the solution graph drawn in boldface. 
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3.1. Evaluation Functions 

Let G be a game tree for a b-ary P-game or G-game, and g be a node in 
G. Note that the number of  elements in g is 2 height(g) if G is a P-game, and 
height(g) + 1 if G is a G-game. If  Max has the move to g, then the more "1"  
elements there are in g the more likely it is that g is a forced win. If  Min has 
the move to g, then the more " - 1 "  elements there are in g the more likely it 
is that g is a forced win. Thus an obvious evaluation function for G is 

where 

the number of  elements in g having value v(g) 
el(g)  = the number of  elements in g 

11 if Max has the move to g 
v(g) = _ otherwise 

As will be shown in Section 4, in G-games u(g) is heavily influenced by 
the values of  the two or three elements at the center of  g. Thus a more 
accurate evaluation function for G-games can be created by defining 

1 ~ (n)(lifxi=v(g), else0), e2(g)=2 -~i~o i 

where x0, x~,..., x n are the elements of  g. e 2 is considerably more accurate on 
G-games than e 1, because it gives considerably more weight to the elements 
near the center of  the list than it does to the elements near either end of  the 
list. 

4. PROBABILITIES OF CORRECT DECISION 

Let g be a node of  height k having one forced win child gl and one 
forced loss child g2, and suppose that a depth d minimax search is used to 
choose between g2 and g2. Then the correct decision is to move to gl .  Now, 
gl will always be chosen if re(d-1, g~)> re(d-1, g2), and g~ will be 
chosen half  of  the time if m(d-1, g l ) =  re(d-1, g2). Thus the correct 
decision will be made with probability 

D a=Pr[m(d-1, g,)>m(d-1, g2)] 
(3) 

+~Pr[m(d-1, gl)=m(d-1, g2)]. 

Suppose a depth d minimax search is done at a node g of  height k in a 
P-game. The probability of  correct decision for this situation has been deter- 
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mined mathematically. ~9) In particular, when k is larger than about 7 or 8 
pathology occurs, in the following sense: as long as the search does not go 
closer than one move away from the end of the game (i.e., as long as 
d < k -  1), the probability of correct decision decreases as the search depth 
increases. 

We now examine the probability of correct decision in G-games. If  g is 
a node in a G-game, then we let g[i, j] be the descendant of g formed by 
removing i elements from the left end of g and j elements from the right end 
of g. Note that 

(g[i,j])[u,v] = g[i+ u, j+ v] 

The following theorem states that regardless of the value of d, the depth d 
minimax value of g is always determined by a certain set of two or three 
nodes of depth d in the subtree rooted at g. 

Theorem 1. 

m(d, g) = e(g) if d = 0 

=-max le (g [ d 2 

Let g be a node of height k in a G-game. For 0 ~< d ~< k, 

1 d-ill t [ d l  d+l]t I , ~  , e g  2 ' 2  

if d > 0is  odd 

Proof. 

max le(d ' d I ~ ] t  m'nle(~[d+ 2 ~11 2 , 2  

e ( ~ [ ~  "+~1)II~ ir~0iseve. 

See the Appendix. [] 

Corollary 1. 
O<d~k, 

Let g be a node of height k in a G-game. Then for 

u~_ max I. tgfd+, d- ,  1 ~ ~ 1t "I~[ ~-~ ~§ 
if d > 0is  odd 

= m a x  

u(g[~2 d+2 
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Proor Recall that e(g) is an approximation to u(g). Theorem 1 holds 
even when this approximation is exact; i.e., when e(g) = u(g). [] 

Suppose we are searching to some depth d. If d is even, then from 
Eq. (3) and Theorem 1 we get 

D d = Pr [--max {e(gd, !), e(gd,z) } > --max {e(gd, 3), e(gd,4)}] 
(4) 

+ �89 Pr[--max{e(gd,i), e(gd,2)} = --max{e(gd,3), e(gd,4)}] 

where gd,~ = gild/2,  d/2 - 1], gd,2 = g~[d/2 - 1, d/2], gd,3 =g2[d/2, 
d/2 - 1], and gd,4 = gi[d/2 -- 1, d/2]. But from Corollary 1 it follows that 
u(gd,1) = u(ga,,2 ) = --1 and u(gd,3) = u(gd,4) = 1. Thus if i and j are even 
and e is more accurate at depth i than j in the subtree rooted at g, then 

and 

--max{e(gf,1), e(gi,2)} > --max{e(gj,1), e(&,2)} 

--max{e(gi,3), e(gi,4)} < --max{e(&-3), e(gj,4)} 

whence D i > Dj. A similar conclusion can be obtained when i a n d j  are odd. 
The point of the above is that the quality of a decision in a G-game 

using minimaxing depends solely on the accuracy of the evaluation function. 
If the evaluation function is more accurate at large depths than small ones, 
then a deeper search will help; if it is less accurate at large depths, then a 
deeper search will hurt. 

The evaluation functions el(g) and e2(g ) basically compute weighted 
averages of the values of all of the elements of g. But from Theorem 2, the 
utility value of g does not depend on all of these elements, but only on the 
two or three elements in the center of g. If  the height of g is small, then there 
will not be many elements other than these two or three, and so el(g ) and 
ez(g ) will be quite accurate. However, if the height of g is large, then there 
will be many elements other than the two or three relevant ones, so the two 
evaluation functions will not be so accurate. They become monotonically 
more accurate as the search depth increases, so pathology should not occur 
in G-games when these evaluation functions are used. 

The above statement can be verified by direct measurement. For each k, 
the number of distinct G-game nodes of height k is exactly 2 k+l (because 
each node of height k contains k + 1 elements, each of which may be a 1 or 
--1). For some of these nodes, either both children are forced losses or both 
children are forced wins--and at these nodes it does not matter what move is 
chosen. Each remaining node g has one forced win child g~ and one forced 
loss child g2. For these nodes we compute m ( d -  1, &)  and m ( d -  1, g2)"  If  
out of a set of n nodes g we have m ( d -  1, g~) > r e ( d -  1, g2) for r of them 
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Table I. Probability of correct decision D as a function of 
minimaxing with the evaluation function e l ,  for nodes of height 

Natl 

search depth d using 
k in binary G-games. a 

k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = 1 0  k = l l  k = 1 2  k = 1 3  

d =  1 0.750 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
d = 2  1.00 0.750 0.625 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
d = 3  1.000 1.000 0.750 0.563 0.531 0.500 0.500 0.500 0.500 0.500 0.500 
d = 4  1.000 1.000 0.750 0.625 0.500 0.500 0.500 0.500 0.500 0.500 
d = 5  1.000 1.000 0.750 0.563 0.531 0.500 0.500 0.500 0.500 
d = 6  1.000 1.000 0.750 0.625 0.500 0.500 0.500 0.500 
d = 7  1.000 1.000 0.750 0.653 0.531 0.500 0.500 
d = 8  1.000 1.000 0.750 0.625 0.500 0.500 
d = 9  1.000 1.000 0.750 0.563 0.531 
d = 1 0  1.000 1.000 0.750 0.625 
d = l l  1.000 1.000 0.750 
d =  12 1.000 1.000 
d =  13 1.000 

" The results come from examining every possible node of height k. 

a n d  m ( d -  1, g2) for  s o f  t h e m ,  t h e n  the  p r o b a b i l i t y  o f  co r r ec t  dec i s ion  is 

D d = (r + s/2)/n. 
T a b l e s  I a n d  II  c o n t a i n  the  resu l t s  o f  s u c h  m e a s u r e m e n t s  us ing  el a n d  

e2, respec t ive ly .  A s  expec ted ,  p a t h o l o g y  does  no t  o c c u r  on  any  o f  the  G- 

g a m e s  tes ted.  

Table II. Probability of correct decision D as a function of search depth d using 
minimaxing with the evaluation function e 2, for nodes of height k in binary G-games. a 

k = 3  k = 4  k = 5  k = 6  k = 8  k = 9  k = l O  k = l l  k = 1 2  k = 1 3  

d = l  1.000 1,000 1.000 0.969 0,938 0.875 0.902 0.844 0,883 0.812 0.834 
d = 2  1.000 1,000 1.000 0.969 0.938 0.875 0.883 0,848 0.871 0.814 0.838 
d = 3  1.000 1,000 1.000 1,000 0,969 0.953 0,906 0,875 0.881 0.843 0.857 
d = 4  1,000 1.000 1.000 1.000 0.969 0.938 0.875 0.883 0.848 0,871 
d = 5  1.000 1.000 1.000 1.000 0.969 0.953 0.906 0,875 0.881 
d = 6  1.000 1.000 1.000 1.000 0.969 0.928 0.875 0.883 
d =  7 1.000 1.000 1.000 1.000 0.969 0.953 0.906 
d = 8  1.000 1.000 1.000 1.000 0.969 0,938 
d = 9  1.000 1.000 1.000 1.000 0.969 
d =  10 1.000 1.000 1.000 1,000 
d = l l  1.000 1.000 1.000 
d =  12 1,000 1.000 
d = 13 1.000 

The results come from examining every possible node of height k. 
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5. T H E  P R O B A B I L I S T I C  D E C I S I O N  P R O C E D U R E  

So far, we have only discussed minimax decision procedures.  Pearl  a6'~7) 
has proposed  the following alternative to minimaxing.  Suppose we have a 
special evaluat ion function e*(g) which returns the probabi l i ty  that  a node g 
is a forced win given some of  its measurable  features. Suppose further that  
the probabil i t ies  of  sibling nodes being forced wins are a lways independent,  
and that  we have evaluated e*(g~) for every node gl at some depth d in the 
subtree rooted at g. Then the probabi l i ty  that  g is a forced win can be 
computed by applying the formula  

Pr [ g l is a win node] = I ~  { 1 - Pr [ g2 is a win model]] g2 is a child of  gl } (5) 

to successively sha110wer nodes gl  in the subtree. 
This "probabi l i ty  es t imat ion"  procedure  can be used even when e(g) 

only approximates  the actual  probabi l i ty  that  g is a forced win given the 
features examined. In such a case, it works as follows: use an evaluat ion 
function e(g) which returns values between 0 and 1. Search the game tree to 
some depth d, evaluat ing the nodes at this depth. Instead of  using 
minimaxing to compute  values for the shallower nodes of  the tree, compute  
values for these nodes as if the computed values for their children were 

Table IH. Probability of correct decision D as a function of search depth d using 
probability estimation with the evaluation function e 1, for nodes of height k in binary 

G-games. a 

d = l  0.750 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
d = 2  1.000 0.875 0.688 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
d = 3  1.000 1.000 0.938 0.719 0.609 0.500 0.500 0.500 0.500 0.500 0.500 
d = 4  1.000 1.000 0.875 0.828 0.641 0.570 0.500 0.500 0.500 0.500 
d = 5  1.000 1.000 0.891 0.750 0.711 0.580 0.540 0.500 0.500 
d = 6  1.000 1.000 0.828 0.801 0.672 0.650 0.564 0.532 
d =  7 1.000 1.000 0.891 0.742 0.725 0.617 0.592 
d =  8 1.000 1.000 0.840 0.812 0,672 0.646 
d = 9  1.000 1.000 0.885 0,749 0.733 
d =  10 1.000 1.0000 0.805 0.802 
d =  1I 1.000 1.000 0.836 
d =  12 1.000 1.000 
d =  13 1.000 

a The results come from examining every possible node of height k. 
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independent probabilities of the occurrence of forced wins. This amounts to 
replacing the "negamax formula" 

t e(g) if d = 0 

m(d, g) = ( - m a x { m ( d -  1, gl)[ gl is a child of g} otherwise 
(6) 

by the formula 

te(g) if d = 0 

p(d, g) = t [ I  {1 - p(d - 1, gl)l g, is a child of g} otherwise 
(7) 

We call p(d, g) the depth d probabili ty estimate for g. 
The probabili ty of correct decision obtainable using probabili ty 

estimation on G-games can be measured in the same way that it was 
measured for minimaxing. For each node of height k having one forced win 

child gl and one forced loss child g2, we compute p ( d - 1 ,  g~) and 

p(d - 1, g2). If out of a set of n nodes g we have p(d - 1, gl) > p(d - 1, g2) 
for r of them and p ( d - l ,  g l ) = p ( d - l ,  gz) for s of them, then the 

probabili ty of correct decision is Dd=(r+s/2) /n .  The results of 
measurements using the evaluation functions e~ and e 2 are given in Tables III 

and IV, respectively. 

Table IV. Probability of correct decision D as a function of search depth d using 
probability estimation with the evaluation function e 2, for nodes of height k in binary 

G-games. a 

k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k=10  k = l l  k-=12 k=13 

d = l  1.000 1.000 1.000 0.969 0.938 0,875 0.902 0.844 0.883 0.812 0.834 
d = 2  1.000 1.000 1.000 0.969 0.938 0.875 0.902 0.844 0.883 0.812 0.834 
d = 3  1.000 1.000 1.000 1.000 0.953 0.898 0.902 0.844 0.883 0.813 0.834 
d = 4  1.000 1.000 1.000 0.969 0.906 0.906 0.844 0.883 0.813 0.835 
d = 5  1.000 1.000 0.969 0.906 0.906 0.844 0.883 0.813 0.835 
d = 6  1.000 1.000 0.922 0.906 0.844 0.891 0.813 0.825 
d=  7 1.000 1.000 0.906 0.844 0.887 0.813 0.837 
d = 8  1.000 1.000 0.844 0.889 0.816 0.837 
d = 9  1.000 1.000 0.989 0.813 0.842 
d= 10 1.000 1.000 0.832 0.845 
d=  11 1.000 1,000 0.861 
d=  12 1,000 1.000 
d= 13 1.000 

a The results come from examining every possible node of height k. 
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Table V. Percentage difference 1 0 0 %  x {DI I I -D~/DI I  I, where D I and Dll  I are the 
values of D given in Tables I and III, respectively. 

k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = l O  k = l l  k = 1 2  k = 1 3  

d =  1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
d = 2  0.0% 16.7% 10.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
d = 3  0.0% 0.0% 25.1% 27.7% 14,7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
d = 4  0.0% 0.0% 16.7% 32.5% 28.2% 14.0% 0.0% 0.0% 0,0% 0.0% 
d = 5  0.0% 0,0% 18.8% 33.2% 33.9% 16.0% 8.0% 0,0% 0.0% 
d = 6  0.0% 0.0% 10.4% 28.2% 34.4% 30.0% 12.8% 6.4% 
d = 7  0.0% 0.0% 18.8% 31.8% 36,5% 23.4% 18.4% 
d = 8  0.0% 0.0% 12.0% 29.9% 34.4% 29.2% 
d = 9  0.0% 0.0% 18.0% 33.0% 38.0% 
d =  10 0.0% 0.0% 7.3% 28.3% 
d = 1 1  0.0% 0.0% 11.5% 
d =  12 0.0% 0,0% 
d = 13 0.0% 

P r o b a b i l i t y  e s t i m a t i o n  a n d  m i n i m a x i n g  c a n  n o w  be  c o m p a r e d  to each  

o t h e r  by  c o m p u t i n g  the  re la t ive  d i f fe rences  be t ween  c o r r e s p o n d i n g  en t r i es  in 

T a b l e s  I a n d  I I I  a n d  the  re la t ive  d i f fe rences  be t ween  c o r r e s p o n d i n g  en t r i es  in 

T a b l e s  II  a n d  IV. Th i s  is d o n e  in T a b l e s  V a n d  VI,  r espec t ive ly .  A s  can  be  

seen, p r o b a b i l i t y  e s t i m a t i o n  does  be t t e r  t h a n  m i n i m a x i n g  w h e n  e 1 is used,  

a n d  wor se  t h a n  m i n i m a x i n g  w h e n  e~ is used.  

Table Vl. Percentage difference I O 0 % x ( D I I I - D I ) / D I I I ,  where D I are Dll  I are the 
values of D given in Table I and III, respectively. 

k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = l O  k = l l  k = 1 2  k = 1 3  

d = l  
d = 2  
d = 3  
d = 4  
d = 5  
d = 6  
d = 7  
d = 8  
d = 9  
d =  10 
d = I 1  
d = 1 2  
d = 1 3  

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.2% -0.5% 1.4% -0.2% -0.5% 
0.0% 0.0% 0.0% 0.0% -1.7% -5.8% -0.4% -3.5% 0.2% -3.6% -2.7% 

0.0% 0.0% 0.0% -3.1% -6.5% -3.4% -3.5% 0.0% -4.1% -4.1% 
0.0% 0.0% -3 . t% -9.4% -6.5%-11.4% -2.5% -7.1% -5.2% 

0.0% 0.0% -7.8% -9.4%-12.9% -5.0% -7.1% -5.4% 
0.0% 0.0% -9.4%-15.6% -8.5%-14.7% -7.6% 

0.0% 0.0%-15.6%-11.1%-15.8%-10.8% 
0.0% 0.0%-10.2%-18.7%-13.1% 

0.0% 0.0%-16.8%-15.5% 
0.0% 0.0%-13.9% 

0.0% 0.0% 
0.0% 
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6. CONCLUSION 

This paper has investigated some of the conditions responsible for the 
occurrence or absence of pathology in game trees, and has also examined an 
alternative to minimaxing. We now discuss the results of these investigations. 

6.1. Conditions which Cause Pathology 

Since the discovery of game tree pathology in 1979, (7) a major open 
question has been why it occurs in some games and not others. 

It was previously hypothesized (1~) that pathology should be less likely 
when the values of sibling nodes are closely correlated. This hypothesis was 
shown to hold for certain games (9'11~ using one way of achieving correlation 
among sibling nodes: incremental variation in the strength of nodes as a 
game progresses. This kind of behavior occurs in games such as chess and 
checkers, and thus may be one explanation for why those games are not 
pathological. 

If  the above hypothesis is correct, then it should hold no matter how the 
correlation in values of sibling nodes is achieved. In this paper, we have 
shown that the hypothesis holds for some games using a different way of 
achieving correlation among sibling nodes: by giving them common 
descendants. Since games such as chess and checkers exhibit this kind of 
behavior too, this may be another reason why those games are not 
pathological. 

It should be noted that none of these studies deal with what happens 
when a game tree search reaches a leaf node. Thus they do not conflict with 
Pearl's conjecture (17~ that another reason for the absence of pathology in 
chess, checkers, and similar games is the occurrence of leaf nodes at all 
levels of the game tree. There may very well be a number of factors whose 
presence can preclude pathology. 

6.2. An Alternative to Minimaxing 

The other topic discussed in this paper is a game tree decision 
procedure called "probability estimation" which is distinctly different from 
minimaxing. This decision procedure was compared with minimaxing on G- 
games. On G-games, it performs better than minimaxing if the evaluation 
function e I is used and worse than minimaxing if e 2 is used. 

Purdom (12) has pointed out that minimaxing is the best way to combine 
values at a node if those values are exact. The values obtained using e 2 are 
certainly not exact, but they are more accurate than those obtained using e~. 
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This may explain why minimaxing did better in relation to probability 
estimation when e2 was used than it did when el was used. 

This paper shows that if an appropriate evaluation function is used, 
probability estimation does significantly better than minimaxing on G-games. 
Probability estimation can do better than minimaxing on P-games as 
well, (11'12) and recent results show that there are also other decision 
procedures which outperform minimaxing under various conditions. (1'1~'18) 
One large drawback of all of these procedures is that tree pruning procedures 
such as alpha-beta cannot be used with them. One or more of these 
approaches might become attractive alternatives to minimaxing if suitable 
tree pruning procedures can be found. 

APPENDIX 

Proof of Theorem 1 (by induction on d). If d=0 ,  then m(d,g)=e(g) 
by Eq. (2). Let 0 ~< i < k, and suppose the theorem holds for d = i. We must 
show that it holds for d = i + 1. From Eq. (2), 

m(i + 1, g)=-max{m(i, g[1,0]), m(i, g[0, 1])} 

Case 1. If i + l  is even, then i is odd. 
assumption, 

m(i + l, g)=--max )--max le (g[1, 

e (g[1, 

o ] [ i +  1 i -  
2 ' 

[ i -  1 i + 
O] [ ' 2 

-max le (~I0'11 [i~-'' '-2 

e (gIO' 11 [ '-1~ ' '+2 

__ m.x l_m~x le (g['2 ~ ;- 
l ( [,+1 i+l]) 

- max e g 2 ' 2 ' 

=rain lmax le(g[~-3'i-12 ] ) '  e 

I ( g [ ' + ' + ~ ] )  
max e 2 ' 2 , e 

So from the induction 

'1) 
11)I 
1)] 



382 Nau 

;~axlef~[ i~12'2i~11t' 

rain le tg [ i~  i--1 --1 ' 2  l~ 'e~[  i 

so the theorem holds for d -~ i + 1, if i + 1 is even. 

Case 2. If i +  I is odd, then i is even. So from the induction 
hypothesis, 

m(i+l,g)=-max le(g[1, O][2,21 ) 

= m . ~ l e l g [ ~  ~ 

minle(g[i+42 ' 7 i - - 2 ] ) '  e(g[ i2'Ti+2]) 
i i + 2 ]  

rain le(g[i+22 , ~ ] ) ,  r(g[i22, i241) I 

so the theorem holds for d=i§ 1, if i +  1 is odd. Therefore, by 
mathematical induction, the theorem holds for 0 ~< d ~< k. [] 
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