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Matrix 

Different philosophies lie behind the detecting and correcting error patterns in a 
real communication channel. The sceptic points in choosing an efficient code, 
specifically the matrix type-B code, were pointed out in Refs. l and 2. 

Some more points are shown here. As a result the matrix type-B code is 
found to be a "best choice". Some more theoretical aspects for this code are also 
given. These are useful for the realization and testing of an encoding-decoding 
algorithm with IC's used in a unique way for its implementation. 

KEY WORDS: Matrix type-B code; mitroid; optimum bribing; asymptotic 
behavior; and implementation procedure method. 

1. INTRODUCTION 

As it is known from our previous research, (1"2) matrix codes have a great 
advantage among other codes used for error control in a real com- 
munication channel. This is why they are described as a "best choice" 
codes. 

In general the idea behind a matrix code can be tested in two ways. By 
building up equipment, in otherwords, by hardware and/or by producing a 
software package. The problem considered here is to find a decoding 
algorithm for a special case of the matrix type-B code and implement it by 
means of hardware (with logical IC's) in a real communication channel. In 
addition, the encoding-decoding (codec) apparatus is of main importance 
to both sender and receiver. 

The investigation reported in the present paper is a continuation on 
the fundamental matrix type-B codes. (3) 

The error patterns for correction to be considered are discussed briefly 
in Section 2. Some theoretical aspects necessary for the discussion of the 
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Fig. 1. Thechanne lE-D queueingfinitesystem. 

decoding algorithm of Section 4 are given in Section 3. Then the 
implementation structure with IC's of the encoder-decoder is described in 
Section 5. In Sections 6 and 7, results are stated concerning the theoretical 
and the technical contents presented on all the previous sections. The work 
leading to these results was done independently by the author and some of 
this research (as i.e. the decoder, Theorem 4, comparisons between other 
burst correcting codes, et. al.) is new. Therefore, we can point out in view 
of these that the paper contributes much to the existing knowledge of the 
technical and theoretical matters of the matrix codes. 

The best known methods of structuring elementary matrix and con- 
catenated matrix codes, such as matrix type-B, matrix type-C, powerful 
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Fig. 2. Encoder. 
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product, and quadratic residue etc., are presented in Refs. 1-4. We 
investigated the independent behavior of the E-DS in Ref. 4, (Fig, 1.), and 
saw how the matrix codes link together with other communication systems 
under the beady eye of a communication designer engineer. (5~ 

In Ref. 4, we discussed the details of implementing an encoder. A 
block diagram of the encoder is shown in Fig. 2. and the sequential circuit 
encoder is shown in Fig. 3. Further on in this paper we comptete the study 
of matrix type-B code by giving the experimental results of the matrix type- 
B decoder system as shown in Fig. 4. 
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2. THE ERROR PATTERNS 

Until now in our research described in Refs. 1-3, we discussed a num- 
ber of cases concerning different types of error patterns. They are: 

Case 1. A single random error. For  the signal S, 

n 

S ~ I  0 1 0 1 1  1 1 1 0 ( J  
I I  

O" e 

we have the probability P(n, ae), where n - - the  signal length and cry--the 
number of the erroneous digits. In this case cr~ = ar = 1. 

Case 2. Random errors t or more, where case of t = l  is the 
previous trivial case of this category. For the signal S, 

S - 4 1 0 1  0 1 1 1 1  1 0 0  
U I I  

we have probability P(n, a,) with at > 1. 

Case 3. Multiple (dependent) errors. 

A. For  the signal S, 

S ~ I  0 t 0 1 1  1 t 1 0 0  
T 

O- b 

we have a burst of errors, with probability P(n, %). 

B. For  the signal S, 
S - . I  0 1 0 1 1 1 1 1 O 0  

t - - - 3  f I 

0 " b l  O-b2  
I ........ I 

O" c 

we have two bursts of errors O-bl and O'b2 which form a cluster of 
errors. 

Case 3 is the most interesting case as we can see in the following sec- 
tion. 

Let the code have the relative probability of error correction ability 
e(n, ~e). 

Then we shall have for the channel C, 

C ~ P(n, a~) 
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and for the code C, 
C --+ e(n, ~re). 

These two probabilites then have to match in order to correct the 
errors. So: 

P(n, ae) < e(n, a~) Vae, n (1) 

The probability P(n, ~ )  for a given channel is obtained almost always 
experimentally. 

3. S O M E  T H E O R E T I C A L  ASPECTS OF M A T R I X  TYPE-B CODES 

Good codes for error control in a digital communication system are 
those characterised by their ability, at the receiving apparatus, to be good 
enough to define the exact syndrome (i.e. the ratio of the correct check 
digits vector to the recalculating check digits vector). Such a code is the 
matrix type-B code with column and diagonal parity checking. The follow- 
ing definition gives an algebraic characterization of the matrix type-B code, 
which represents the matrix behavior of the code. 

Defini t ion.  The matrix type-B code has the following form: 
[ g ( x ) - T h e  matrix codebook information digits =aij (usually a matrix 
n=nsxm)] .  

gd(x) =f~_g(x)~ = ~, aij (mod-2) - Cd 
i = k  

i s a i j = o { i > m  j < n  k ~ l , m ~  
i>m j < n  26~l,n~ 

where: d=  1 + Wm + n -1~ ,  the diagonal parity checks calculated this with 
either left or right direction and: 

i=  l, m (rood-2) - Cc g~(x) = f~g(x)~ = ~ aij J = 2 

where: ~ = 1 +n, the column parity checks. Then the universal matrix type- 
B code, U(x), becomes; 

U(x) = ~ ,  

Ig~(x) 

Where: ns-codeword of g(x), m-number of codewords in g(x). 

828/13/4-6 
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An [ (m = 4 ) ( n ~ =  8)]] matrix type-B code is: 

0 1 1 1 0 0 0 0 1 1 1 ~gd(x)~ 

Example. 

= 

0 1 1 1  1 0 1  

0 0 1 0  0 0 1  

0 1 1 0  1 0 0  

0 0 0 0  1 1 0  

0 0 1 1  1 1 0  

0 

0 
g(x) 

1 

1 

o 

The definition and the example shows that the matrix type-B code 
breaks the continuous signal sequence of the information digits into sec- 
tions or blocks, n s, making a data codebook matrix and then operates on 
the unique matrix. 

T h e o r e m  1. A matrix type-B code with n , > m  has a minimum 
bound burst correcting ability b, ns >~ b and/or a random number of digits 
in the guard space equal to or greater than m. 

Proof. For burst errors (using orthogonal or double checking of the 
errors) we have a number of check space vectors, F, as: 

F =  C~+ C d = 2 n s +  (m-- 1) 

then this holds: 

which is guaranteed by, 

so that finally: 

2n~ + (m - 1 )/> 2~r e = 2b 

2n s ~ 2b 

n~>~ b 

which is the desired conclusion, with b as the burst length given by the real 
channel. We correct random errors m or greater in the guard space, 
because we have n s actual correcting pair vector equations and some more 
diagonal correcting vector equations that can correct random errors accor- 
dingly. II 

In light of this theorem we can prove the following corollaries: 
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Corollary 1. The burst error correction of the matrix type-B code 
is greater than the Reiger bound. 

Proof. From the comparison of two Theorems: Theorem 1 in which 
b = n~, and from the Reiger bound (given from Theorem 4.15 (5)) in which 
b<~(n-k/2) (where n=codeword  length, k=informat ion  digits in a 
codeword) follows that, at least, we have the same results or the matrix 
type-B code has greater correcting ability. Because, for all n, pairs we may 
have the same pairs in the cyclic codes but there are some with diagonal 
correcting vector equations from which we can correct more errors. | 

C o r o l l a r y  2. The burst error correction of the matrix type-B code 
is greater than the Weyner-Ash bound. 

Proof. Cyclic and convolutional codes have similar error correcting 
capabilities and same fundamental limitations. Convolutional codes are 
correcting less information digits than the cyclic codes. In Corollary 1, we 
prove that matrix type-B code have greater ability than cyclic codes and 
that the matrix type-B code has the greater ability. | 

Later in this section one can see examples showing another way of 
proving Corollaries 1 and 2. 

Corollary 3. Matrix type-B codes are good for synchronization 
recovery, because they are easily self-synchronizable codes. 

Proof. If we manage the first row or vector of the matrix to be of 
zero value then this can be used as a self-synchronizable criterion. This can 
be easily achieved if the first level of the quantizer is always zero. | 

T h e o r e m  2. Every matrix type-B code, as well as any other matrix 
code, is equivalent to a systematic code. 

Proof. There is a simple way (as the simple parity check codes) to 
find the parity check vectors for the code that follows the Hamming sense, 
when the data matrix a~ is given. Then each data digit can be checked by 
two linearly independent parity check elements. | 

T h e o r e m  3. Every matrix type-B code has the capability to 
produce series of concatenated codes. 

Proof. From the definition given when g(x)= Ce, where C e is an 
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inner code of any type (cyclic, convolutional, matrix or any other) then one 
obtains: 

led(x) l 

U(x)= ~ I 

This theorem implies the following corollaries: 

Corollary 4. Every matrix type-B code has the ability to produce 
good communication protocols. 

Proof. Forming the channel signal, S, one obtains: 

S ~ U ( x )  "= g a ( x ) + C e + g ~ ( x )  

C e z + C e  
if: 

eez = gd(x) + g~(x) 
is the external matrix type-B code. | 

We can see that each block of the protocol is defined and each one can 
be synchronized (see Corollary 3). 

Corollary 5. Simplification of the data matrix ~ag] of a cyclic 
matrix type-B code gives an echelon canonical form from which we can use 
only the parity checks and one obtains a powerful cyclic productive matrix 
type-B code. 

Proof. The combination of the two codes give a significant 
mathematical structure that can always be reduced to echelon canonical 
form and has a error probability lower than the probability of individual 
code types. This is the cyclic productive matrix type-B code that is more 
powerful than each one individually/2) | 

Corollary 6. Every matrix type-B code has the ability to produce 
good computer communication network protocols. 

Proof. Forming the channel signal protocol, Pr, one obtains: 

P r ~  U(x)+  ... -~ g a ( x ) + C e +  g~(x)+ "'" 

"--- CEz+CE+ "" 

Where the dots show the computer communication pattern criteria. | 
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Also as in Corollary 4 all the blocks are defined and exactly syn- 
chronized. 

For  our error correction needs we shall lay down the following 
theorem. 

T h e o r e m  4. Noise effects giving any type of errors (any type of 
error pattern), in the bound ae<~ns, for the matrix type-B codes, can be 
corrected by the code. 

Proof. From Theorem 1, any burst or cluster errors with ab~<ns, 
also any random error ar = 1 can be corrected. In general any random mul- 
tiple error at~<ns can be corrected and this is obvious because of the 
geometrical properties of the code, which are capable of correcting any 
type of error pattern less or equal to n,. i 

Theorem 4 shows that e(n, ae )=  1 for ae <~ ns and G e perhaps is any 
type of error pattern such as random, burst, or cluster. Further on we can 
consider any type of errors with length ns as a burst case as in Section 2. As 
we can see this result seems strange for other codes than elementary matrix 
(type-B and type-C) codes and as such it is open to criticism. 

Now we are ready to make a new comparison between the burst error 
correcting codes. 

In general the parity checks give a sort of picture of the burst and then 
the burst error correction is a relation of the parity checks and in extent a 
relation of the code structure (usually a geometrical property with good or 
no burst correcting ability). 

For  the bounds of the three main categories (1'2~ of the burst error 
correcting codes we shall limit ourselves to some exellent illustrative exam- 
ples: 

a. For  the cyclic codes given from the Reiger bound: b <<. ( n - k ~ 2 )  
(see Theorem 4.15 in Ref. 5): 
For  n = 15, k = 9 in a (n, k) = (15, 9) cyclic code we have: 

n - k  1 5 - 9  
b ~< - - ~  ~< ~ ~< 3 burst error digits 

b. For  the convolutional codes given from the Wyner-Ash bound: 
b ~<n 0 (See Theorem 4.18 in Ref. 5): 
For  L = 9 ,  u = 6 ,  k = 1 0  is n = ( L + k ) u = l t 4  for a 
(nn o, mko)= (3.9, 3.3) convolutional code we have: 

b ~< no ~ 3 burst error digits 
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Where L is length of a convolutional code (cc), no is length of the 
internal (basic parity check) matrix, h is codeword for the cc, mc is 
number of codewords of the internal matrix in a cc, k0 is number 
of codewords of the internal matrix in a cc, and u is parity checks 
added for a cc. 

c. For the matrix codes given from Theorem 1: b ~< ns: 
For k = 9 ,  n = 18, n~=9 for a (n, k ) =  (18, 9) matrix type-B code 
we have: 

b ~< n s ~< 9 burst error digits 

Then from these examples and from Refs. 1 and 2 the matrix type-B 
code is advantageous over the other burst correcting codes. These examples 
and the examples given in Ref. 1-3 are useful in connection with the follow- 
ing theorem. 

Theorem 5. When comparing the three main categories of burst 
error correcting codes (cyclic, convolutional, and matrix) only one 
parameter can be varied at a time. Then we say that they have asymptotic 
behavior. 

Proof. We investigate the asymptotic behavior in the examples 
precited and in the examples given in Ref. 1 and 2. We can also see from 
these examples that only one parameter at a time can be examined. 

Another way to say this is that since each code lies on different 
philosophy and uses a number of different parameters for the geometrical 
consideration of the exact error correction but when compared they have 
one common (in size) parameter at a time. | 

4. ON D E C O D I N G  M A T R I X  T Y P E - B  C O D E S  

The decoding algorithm for a matrix type-B code is to link together 
equipment, like the matrix memory of data and the parity check memory, 
which usually placed in a chip or adjacent chips. However, the various 
ways of going about networking are numerous and complex. An ultimate 
solution, at present, anyway, which aims to solve such a problem is dis- 
cussed in this and the next sections. 

A. The Procedure of the Decoding Algorithm 

1. Assume that each time g(x)=aij=data matrix in columns or 
rows. This is choosen to be distinct and dependent by means of a 
mixture of standards to produce the parity check digits in specially 
designed hardware. Then a deterministic Marcov process is taking 
place. 
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2. Attempt at standardization correction procedure: 
a. One of the main points to remember is that a symbol at any 

position in the data matrix is subject to error. 
b. Only ~e ~< n, continuous and of any form errors are accepted 

for the procedure. 

3. Consider an array of many numbers as a single object that we 
denote by a single symbol. Relationships between variables can 
then be expressed in a clear and concise way. 

The combinatorial logic network is designed to compare the received 
and recalculated parity checks, to find the erroneous parity checks and 
from them to find the form and the error positions of the data symbols. 
Then the matrix logical circuit indicates and corrects each time the values 
of the error symbols. We note that in our example the errors must not 
occur one under the other. 

The reason is that each error vector is defined in a fixed way. So each 
pair of error parity check digits exactly defines the position of an error in 
the mitroid (see the next numerical example). 

It is easy for the reader to see the difficult problem of how to choose 
the set of parity check calculations and permutations. In practice we made 
this choice by an interesting way to be shown next. This is elucidated more 
by the following numerical example. 

B. Numerical Example 

If we sent the word "veto" and instead the word "visa" is received, it is 
obvious that the meaning of the message is quite different. Let us examine 
the meanings of these labels before proceeding in the encoder. With the 
presentation of the remaining steps in detail by the error correction 
procedure using the matrix type-B E(n~= 8)" ( m = 4 ) l  code, we can see 
how easily we can take the correct word sent by the encoder. 

We have 

0 0 0 0 0 1 0 0 0 0 1 , P R d  

/ 0 0  1 1 1 1 1 0 1 0 0  ~ Prsd 

v 0 0 0 1 0 1 0 1  v 

e O @ @ @ l @ l O  i 

t 0 1 1 1 1 0 @ 0  s 

o 0 0  0 0 1 0 0 @ a 

0 0  0 0 1 1 0 1 

0 1  1 1 1 0 1 0 

, Prsc 

PRc 
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Using EOR gates for comparison one obtains the erroneous parity checks 
for each pair Prsc, PRc, PRd, and Prsd. Here we need criteria to help us 
calculate the syndrome or decide which errors (or error) are in the 
message. 

So for the Prsc and PRc pair using EOR one obtains: 

Prsc - , 0 0 0 0 1 1 0 1  

PRc ~ 0 1 1 1 1 0 1 0  

Iv, E O R ~ 0 1 1 1 0 1 1 1  

and for the PRd and Prsd one obtains: 

PRd ~ 0 0 0 0 0 1 0 0 0 0 1  

Prsd ~ 0 0 1 1 1 1 1 0 1 0 0  

Id, E O R - * 0 0 1 1 1 0 1 0 1 0 1  

Using Theorem 1 as one criterion and AND gates logic constructed in a 
mitroid structure as a second criterion one obtains the exact form and the 
positions of the errors from the noise effected digits: 

Iv ~ 1 1 1 1 1 1  

Id ~ 1 1 1 1 1 1  

Rw, AND--+I 1 1 1 1 1 

error pattern detected, exact positions of errors are given with 1, all others 
are 0. 

Then using each received digit, a~n (correct or not), and its check, Rw, 
as input to a EOR one always obtains in the output the correct digit, a m n  , 

a s :  

a ~  ~ 0 1 0 1  

Rw ~ 0 0 1 1  
c , erroneous case 

am, , E O R ~ 0 1 1 0  

The key of the error correction ability lies in the mitroid circuit. For the 
output of these gates gives the correct digit to be used, i.e. the digit the 
encoder sent. 

Where PRd represents recalculated diagonal parity checks, Prsc is 
received column parity checks, Prsd is received diagonal parity checks, PRc 
is recalculated column parity checks, I,,EOR is output of a EOR for com- 
parison for a Prsc and PRc position, and Id.Eog is output of a EOR for 
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comparison for a Prsd and PRd position. Rw,AN D represents output of an 
AND tbr a check position in the mitroid structure that gives a detected 
error and its position, a,,~,,EOR;~ is a correct or not information digit in the 
receiver apparatus, and am,,.EOR is an information digit after correction. 

It is in fact, understandable from this given example, taking into con- 
sideration the matrix type-B code, that we use the simple and 
straightforward Euclidean decoding algorithm described as calculation of 
syndrome, detection of error pattern, and correction of the detected error 
pattern. This decoding is simple to understand and it is also comparable in 
speed with other methods, so, it is the method we prefer in practice. 

5. I M P L E M E N T A T I O N  STRUCTURE OF THE DECODER 

Several key theorems were presented in Section 3. With the help of 
these theorems and the application of the encoding-decoding system (3,6~ 
given in Fig. 1., the reader should be able to gain further insight into the 
structure of the decoding. Using the simple and easily instrumented 
decoding algorithm given in the previous section we attempt to provide 
some proofs that lead to the simplest implementations. 

Theorem 6. All memory devices are assumed to contain zeros 
initially. 

Proof. Because the code information digits are always dependent on 
the state of the system and the process is a deterministic Markov process, 
then it is right at the start where the state condition to be Soon = 0. II 

It is also quite clear that the following theorem holds: 

Theorem 7. If a number of errors exist in the process the intersec- 
tion of Iv c~ Id is never empty. 

Proof. There exists an integer of N row data digits such that c~n~ ~< N 
is not empty. | 

If this theorem does not hold (if there are some errors and the inter- 
section of Iv c~Id is empty) it is meaningless to talk about decoding. But 
when the theorem holds, then as a consequence the behavior of the 
decoding circuitry is governed by the matrix code (Theorem 1) behavior. 
Furthermore an interesting result which we shall state here without proof, 
is that the behavior of the optimum bribing (packaging) procedure and the 
cost function of the code apparatus depends upon the bribing policy and 
the customers will. 
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According to this result, which we have just proved (theorem 7), it is 
desirable to have this algorithm constructed for a data flow in networks 
that achieve the maximum possible burst error correction. With this in 
mind we prove the following: 

Theorem 8. Every matrix type-B code should always satisfy its 
parity check equations during the processing. 

Proof. This is an immediate consequence of Theorems 1, 6, and 
7. I 

Looking upon circuitry, we have the a priori knowledge of the emitter 
process given by the circuit of Fig. 3. This circuit has one matrix level with 
two transformations. 

1st Transformation: 

�9 Data entrance and parity checks calculation 2nd Transformation: 

�9 Data and parity checks transfer to the channel process 

In searching for an optimal decision at any stage of the process, one 
needs only to look for a decision that will optimize the activities in the sub- 
sequent stages of the decoder given by the Fig. 4. It follows that a step-by- 
step process can be carried out in the process period. Further on for the 
implemendation using the logic and consequently the truth tables given in 
"Texas Instruments Semicoductor Components Data Book Two. Digital 
Integrated Circuits" July 1971, as we used for the emitter, we obtained the 
following detail circuit (Fig. 5) for the decoder apparatus. 

For this circuit we have three matrix level actions with two matrix 
transformations as: (see Fig. 5) 

1st matrix level 

�9 Data and parity checks storage, recalculation of parity checks and 
comparison to see the erroneous parity checks and error warning. 

�9 1st transformation of data and transmitted parity checks (MUX) 
with the main clock. 

2nd matrix level 

�9 Positions and forms of data errors, ready for error correction and 
error warning. Error correction or retransmission request. 

�9 Error correction with a small period of the main clock. 
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3rd matrix level 

�9 Final correct data matrix. 

�9 2nd transformation of data (MUX) with the main clock. 

Furthermore, we have the switching-clock system and the clock driver 
system logic for the decoder system designed experimentally, which are not 
shown here. 

Instead of giving a proof of the validity of these rules of the actions 
and transformations, we remind the reader that such transformations and 
actions are just a systematic way of carrying out the substitution steps 
illustrated earlier for the burst error corrections. 

In our experimental decoder apparatus for a E(ns= 8) ' (m = 4)~ code 
the regular working data clock rate was: 

Re. = 0.557 1 x 103 bits/s 

At this rate we had a good performance of error correction. This perfor- 
mance was maintained for data rate experimentally varied between the 
bounds: 

(0.25 x 0.5)- 1 x 103 < R c < (0.35 x 0.1 ) -  1 x 106 bits/s 

6, C O M M E N T S  A N D  D ISCUSSIONS 

Theorem 4 has some rather surprising consequences in comparison 
with the other correcting code philosophies. It states that regardless of how 
a matrix type-B code is used or how noisy is the channel, the error correc- 
tion probability is proportional to ns and independent of type of error pat- 
tern. This fits very well to most real channels that are affected by bursts of 
noise and loss of synchronization. That is, P(n, at), is determined primarily 
by the number of parity cheek digits and the way of their calculation. These 
would act as giant data thorax for the network, which give the interesting 
geometrical property (locus) that the error positions have to be on one or 
more of the intermediate parallel data vector lines. 

7, APPLICATIONS IN C O M P U T E R  S Y S T E M S  

As computer controlled information, computer programs, and com- 
puter communication networks become an increasingly important part of 
the real world today, the protection and error control within the computers 
and in digital communications becomes increasingly vital to any infor- 
mation system. 
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A matrix type-B code can be used as a protector and error control 
cipher security method to any text editor. Major applications are within 
systems where an efficient code is needed due to the importance of high 
quality information transmission as are military applications and practical 
commercial networks. They can also be used for forward error correction 
(in an optimum way) in modems or network ports for character and block 
error protection in order to provide important time savings in the 
transmission of the communicating messages. Further on, the algorithms 
for correction used by the matrix codes can be implemented as part of a 
software package to achieve the previous results. 

To our knowledge, however, there are no commercially available 
systems using the matrix type-B, or more complicated matrix type correc- 
tion codes. 

8. CONCLUSION 

The most elementary description of matrix codes, the mathematical 
construction of matrix type-B code and an easy decoding algorithm of the 
mentioned code has been illustrated. 

The matrix type-B code implemented with IC's for one simple 
representative case has been solved and tested with data. Further, it can be 
easily checked that if we now apply the results of Section 5 to any ns to any 
matrix type-B (or type-C) code, then the extension to this implementation 
procedure method is obvious. Also this method is general and any matrix 
code is valid to provide a deterministic process of an encoding-decoding 
model. This is sufficient because the coding rule has its domain sequences 
of block length n, and for such deterministic processes it can be obviously 
extended. 
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