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Recurrences 

The recurrence 
X 0 = a 0 

x, - ai + bix~_ l, i = 1, 2,..., n - 1 

requires O(n) operations on a sequential computer. Elegant parallel solutions 
exist, however, that reduce the complexity to O(log N) using N>/n processors. 
This paper discusses one such solution, designed for a tree-structured network 
of processors. 

A tree structure is ideal for solving recurrences. It takes exactly one sweep 
up and down the tree to solve any of several classes of recurrences, thus guaran- 
teeing a solution in O(log N) time for a tree with N >~ n leaf nodes. If n exceeds 
N, the algorithm efficiently pipelines the operation and solves the recurrence in 
O(n/N + log N) time. 
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1. I N T R O D U C T I O N  

C o n s i d e r  the  f i r s t -o rder  l inear  r e c u r r e n c e  

X 0 = a 0 

(1) 
x i = a i + b i x i _ l ,  i =  1, 2 ..... n -  1 

where  n />  1 represen t s  the  n u m b e r  of  t e rms  of  the  r e cu r r ence  and  ai and  bi 

a re  real  scalars.  T h e  so lu t i on  of  Eq.  1, i.e., the  set of  va lues  

(Xo, x l ,  x2,..., xn 1), is o b t a i n e d  in a s t r a i g h t f o r w a r d  m a n n e r  by  a sequen-  
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tial algorithm requiring a total of n - 1 multiplications and n - 1 additions, 
i.e., O(n) operations, and little can be done on a sequential computer to 
improve the algorithm complexity. Elegant parallel solutions exist, 
however, that reduce the complexity to O(log N) using N>~n processors. 
This paper discusses one such solution, designed for a tree-structured 
network of processors. 

Solving recurrences quickly is important because recurrences are so 
often components of larger problems. A tridiagonal linear system of 
equations, for example, can be transformed into several recurrence 
problems. Solving the recurrences provides a solution to the linear system. 

A tree structure is ideal for solving recurrences. It takes exactly one 
sweep up and down the tree to solve any of several classes of recurrences, 
thus guaranteeing a solution in O(log N) time for a tree with N>~n leaf 
nodes. If n exceeds N, the algorithm efficiently pipelines the operation and 
solves the recurrence in O(n/N+ log N) time. 

This paper has four major parts. A description of the tree machine 
model used is presented in Section 2. The general tree algorithm, RECUR, 
is described and proven correct in Section 3. Recurrences to which RECUR 
is applicable are described in Section 4. These include first-, second- and 
higher-order linear recurrences, and recurrences of the form: 

Xo = ao 

xi=(ai+bixi 1)/(ci-]-dixi 1) i=1 ,2 , . . . ,n - -1  
(2) 

Extensions and variations of RECUR are presented in Section 5. Finally, 
conclusions and general remarks are given in Section 6. 

Parallel solutions of linear recurrences have been studied before. In a 
paper on the parallel solution of tridiagonal linear systems, Stone (1) 
introduced a method called recursive doubling, which allows one to solve 
linear recurrences of all orders in O(log N) steps on a parallel processor of 
the ILLIAC-IV type. The method was generalized by Kogge and Stone (2) 
and by Kogge. (3) They described a broad class of functions that enjoy 
special composition properties and to which the method is applicable. 
Kogge (4) also described how to pipeline the method to obtain the maximal 
computational rate. 

Studies on the relationship between computation time and number of 
processors when solving recurrences (5 lo) have resulted in bounds on the 
number of processors required to minimize the time to solve first-order 
linear recurrences and bounds on the time required to solve the problem 
given a fixed number of processors. Except for the algorithm described by 
Gajski, (9~ the algorithms were designed for an idealized N-processor 
machine on which there is no contention for memory (to obtain either 
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instructions or data), any number of processors and memories may be used 
at any time, and communication among processors involves no delay. Our 
approach is different in that we start with a well-defined processor network, 
i.e., a tree network, and this defines the manner in which processors may 
communicate with each other. 

Therefore, two general approaches to the problem have emerged. The 
first one uses function composition systematically to reduce the dependen- 
cies among the variables of the linear recurrence. (1-4'9) Furthermore, 
algorithms are described with a specific parallel processor structure in 
mind. The second approach reorders the arithmetic operations required to 
solve the linear recurrence and distributes them among the available 
processors in order to minimize computation timeJ 5 8~ The algorithms are 
not designed for a specific parallel processor. This paper adopts the former 
approach. 

Interest in tree-structured parallel processors has grown in the past 
five years. Mag6 (H'12) has proposed a cellular computer organized as a 
binary tree of processors, which allows simultaneous evaluation of 
expressions stored in the leaf cells of the tree. It directly executes functional 
programming languages, a class of languages developed by Backus, ~13~ in 
which the expression of parallelism is natural. Tolle (14~ has proposed a 
similar tree-structured cellular computer with more powerful, but more 
complex, cells. In both designs, processors contained in the tree cells are 
capable of independent operation, thus providing the potential for parallel 
computation. Williams (~5~ studied parallel associative searching algorithms 
and presented several techniques to predict and analyze the amount of time 
and storage required by the algorithms on a tree machine. Frank ~6~ 
designed a virtual memory for a tree machine such as Mag6's. Koster (~7~ 
and Mag6, Stanat, and Koster (~8) developed methods for obtaining upper 
and-lower bounds of the execution time of programs run on the machine 
proposed by Mag6. Their analysis carefully accounts for communication 
and storage management costs. Parallel algorithms for tree machines have 
also been developed by Browning (19~ for a variety of applications, including 
sorting, matrix multiplication, and the color cost problem; and by Bentley 
and Kung ~2~ for searching problems. Leiserson (2~) studied systolic trees 
and how to maintain a priority queue on one. 

2. T H E  T R E E  M A C H I N E  ( T M )  

The model tree machine, TM (shown in Fig. 1), on which we describe 
algorithms is a special-purpose tree network of processors similar to, but of 
a much simpler structure and less powerful than, the general-purpose 
machines proposed by Mag6 or Tolle. Branches of the tree are two-way 

828/13/4-2 



254 Pargas 

C 

T 

L 

Fig. 1. Model of a tree machine. The top node is called the C-cell, interior nodes 
are called T-cells, and the leaf nodes are called L-cells. 

communication links. Leaf and nonleaf processing elements are called L- 
cells and T-cells respectively. Attached to the root cell, functioning as the 
root cell's parent, is a cell called Control (C-cell). 

When describing algorithms, cells are sometimes referred to by their 
level in the tree. The L-cells are on level 0, the lowest row of T-cells is on 
level 1, the root T-cell is on level log N, and the C-cell is on level 
(log N ) +  1, where N is the number of L-cells in the tree. Two-way com- 
munication among the cells is conducted through the tree branches; a T- 
cell may communicate with its parent and two children and an L-cell may 
communicate with its parent; a C-cell communicates with the root T-cell 
and with external storage. An L-cell may communicate with another L-cell 
by sending information up the tree through the sending L-cell's ancestor T- 
cells and then back down again to the receiving L-cell. 

In principle, all cells operate asynchronously. However, the algorithms 
presented can be more easily understood if we view the operation as 
proceeding in synchronous upward and downward sweeps. We note, 
however, that this synchrony is not a necessary feature of TM. An example 
of a task requiring a downward sweep is that of broadcasting information 
to all L-cells. The C-cell sends information to its child the root cell, which 
sends the information to its two children, which send the information to 
their children, and so on, until the information is simultaneously received 
by the L-cells. An example of a task requiring an upward sweep is that of 
adding the values stored in the L-cells with the C-cell receiving the sum. 

There is one important condition we impose on the programming of 
the tree cells: all cells of the same type must execute identical programs. 
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The main reason for this is practicality. The programming task is sim- 
plified, and feasible, because the programmer must write no more than 
three programs, one each for the C-cell, T-cells, and L-cells. 

3. T H E  B A S I C  TREE A L G O R I T H M :  R E C U R  

3.1. Descr ip t ion  of  R E C U R  

The purpose of this section is to present, and prove correct, the tree 
algorithm, RECUR. RECUR is intended to be a general algorithm, 
applicable to a variety of recurrences. Examples of these recurrences are 
presented in Section 4. 

We start with the following definitions. 

Def in i t i on  1. A recurrence expression, RE, is the pair (C,-) where 

C =  {C~jI i>~j>~ - 1  } 

and " ."  is a binary operator on the elements of C. The operator ".", which 
we call composition, must satisfy the following property: 

Ci, j 'Cj, k=Ci, k, i>~j>~k>~ - 1  

We call the subset 

C,= {Cu_ ~ I i~>0} 

the initial values of RE, and the subset 

C,,={C,_~Ji>~O} 

the solution set of RE. 

Almost always, we are interested only in a finite subset of C, defined as 
follows. 

D e f i n i t i o n  2. 
(Cn, ") where 

A recurrence expression of  size n, REn, is the pair 

Cn = {Cidl n -  1 >~i>~j>~ - 1 }  

The corresponding initial and solution sets are 

Cln = {C i ,  i _  l ] n -  1 ~>i>~0} 
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and 

Cs~-- {C,,_1 In -11>  i>~0} 

With these definitions, the following lemmas are easily shown true. 

kernma 1. For all i and j  such that i>~j>~ -1,  

Ci, j = Ci, i �9 Ci, j = Ci, j �9 C:,j 

Proof. Follows immediately from Definition 1. | 

k emma  2. Composition is associative, i.e., 

(C,,j" Cj, D" C~,~ = C,,:.(Cs, k" C~,3 

for all i>~ j>~k >~l>~ -1. 

Proof. From Definition 1, we know that 

( Ci,s" Cs,D" C~,~ = Ci,~" C~,z = Cu 

and that 
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Ci, j ' ( f j ,  k " C k , l ) ~ .  Ci, j ' f j ,  l = Ci, l 

Hence, the lemma is true. | 

Recurrence problems typically require computing for the solution set 
Cs, given only the initial set C~n. A straightforward sequential solution to 
this problem is provided by the algorithm in Fig. 2. For example, if n = 4 
and we want to solve for C3,,, the sequential algorithm determines the 
elements of Csn in a manner suggested by 

C 3 , 2 " ( C 2 , 1 ( C l , o ' C o , _ 1 ) )  

Csn = { Co,_  1 } 
fo r  i=1 to n-1 do 

Ci,_ l  = Ci, i_ 1 �9 Ci_1,_1 
Add Ci ,_ l  to  t h e  s e t  CSn 
e n d  

Fig. 2. Sequential algorithm to solve a 
recurrence problem. 
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i.e., first obtain C1,_1 = C1,0Co, i, then C2, 2 = C2,1"C~_1, and finally 
C3,_ ~ = C3,2' C2,_ 1- (Note that one element of Csn, i.e., C0,_ 1, was initially 
available.) The associativity of ".", however, allows us to modify the order 
in which the partial results are obtained. We may opt to solve for C3,_ ~ in 
the following manner instead: 

(C3,2 C2,~) (Cl.o Co _1) 

C3,1"C1, 1 

C3,- 1 

This suggests that we may independently (and simultaneously) solve for 
C3,1 and CL_I, and then solve for C3, l. This is the basis for the parallel 
algorithm, RECUR. 

Consider a tree machine with N L-cells and let Li be the ith L-cell 
counting from the right. Let n = N be the size (i.e., number of terms) of a 
recurrence expression (C,, ") as described in Definition 2. The initial values 
Ct,, = { Ci, i_ 1, 0 ~< i ~< n - 1 }, are stored one per L-cell with C~,~_ 1 stored in 
L~. Figure 3 shows the initial state of an 8-L-cell tree machine. 

The object is to solve for the set Csn. Figure 4 shows the instructions 
executed by the L-, T-, and C-cells. We study the execution of RECUR by 
stepping through the instructions and observing how cells interact with 
each other. 

RECUR consists of an upward and a downward sweep through the 
tree. The L-cells start the upward sweep by sending the values they contain 
to their parents (line ll). L~ sends up Ci, i_~ and waits to receive two 
solution values, C~_ 1 and C~_ 1, 1, during the downward sweep (line 12). A 
T-cell first waits to receive a value each from its left and right children 
(line tl). When the values arrive, a T-cell applies the composition operator 
" '",  and sends the result to its parent (line t2). The sweep continues 
upward with each T-cell sending a value (the result of composition) to its 
father. The upward sweep ends with the C-cell receiving the value Cn_ 1,-1 
from the root T-cell (line cl). 

C7,6 C6,5 C5,4 C4,3 C3,2 C2,1 C],0 CO,-] 

Fig. 3. Distribution of the initial values Ci,, 1 among the L-cells for n = 8. Co,_1 is 
stored in the rightmost L-cell, C~. 0 in the next L-cell to the left, and so on .  
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L cell: 

T cell: 

C cell: 

/ 1 send (Ci , i_ 1 ) 
/ 2 receive (Ci,_1, Ci_1,_1 ) 

t 1 L.receive (C i , j ) ,  R.receive (Cj, k) 

t 2 P.send (e l ,  i �9 Ci, k) 
t 3 P.receive (C i ,_ l ,  Ck ,_ l )  
t 4 C i , -  1 = Ci, k �9 C k _ l  
t 5 L.send (Ci ,_ l  , C j ,_ I ) ,  R.send (Cj,_I , 

c I receive (Cn_ l ,_ l )  

c 2 send (Cn_l ,_ l  , C_1,_1) 

Fig. 4. L-, T-, and C-cell programs for RECUR. 
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Ck,- I ) 

The subscripts used in the algorithm are purely for ease of presen- 
tation. A cell is not aware of the identity of the value that it contains. From 
our global point of view, however, we are able to make a few conclusions 
regarding the upward sweep. 

Lemma 3. Let the initial values, Cl,, of a recurrence expression of 
size n be distributed among the L-cells of a tree machine, so that Li con- 
tains C u_ l, 0 ~< i ~< n - 1. Let T be an arbitrary T-cell with children TL and 
TR. Let Li and Lj+I be the leftmost and rightmost L-cells in T's left sub- 
tree, and let Lj and Lk +1 be the leftmost and rightmost L-cells in its right 
subtree (see Fig. 5). Then, during the upward sweep of the algorithm 
RECUR, 

T R 

I 

t L i+  1 L .  I Lk+ I 

Fig. 5. Let T be an arbitrary T-cell with left and right children TL and TR, respec- 
tively. Let the leftmost and rightmost leaves of TL be Li and Lj+ 1 and let the leftmost 
and rightmost leaves of T R be Lj and Lk +1. 
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(a) T receives Cid from its left child, T r, 
(b) T receives C~,k from its right child, TR, and 
(c) T sends Ci, k = Ci j '  Cj, k to its parent. 

ProoL Proof  by induction on the level number of the T-cells. 

Basis. Let T be a level 1 T-cell, i.e., T's children are L-cells (Fig. 6). 
Because there is only one L-cell in T's left subtree, L i = L j + I .  Hence, 
i= j +  1 - - > j = i - 1 .  The value that T receives from its left child is 
Cu_ ~ = C~d, proving part (a). Similarly, there is only one L-cell in T's 
right subtree, Lj = Lk+1. Hence, j =  k + 1 = > k = j - 1 .  The value that T 
receives from its right child is Cjd_ 1 = Ci,~, proving part (b). Finally, line t2 
of Fig. 4 shows that T computes Ci, k=  C~,jCzk and sends C~,k to its 
parent, proving part (c). 

Hypothesis. Assume the lemma true for all T-cells on level h, h/> 1. 

Conclusion. Consider a T-cell on level h + 1. Li and Lj+I are the 
leftmost and rightmost L-cells in the subtree of which TL is a root. By 
hypothesis, TL sends C~d to T, proving part (a). Similarly, Lj and Lk+l are 
the leftmost and rightmost L-cells in the subtree of which TR is a root. By 
hypothesis, TR sends Cj,k to T, proving part (b). Finally, line t2 of Fig. 4 
guarantees that T then sends C~,k to its parent, proving part (c). This 
lemma is summarized in Fig. 7a. | 

Lemma 4. Let C be the C cell of the tree machine described in 
Lemma 3. At the end of the upward sweep of RECUR, C receives the 
element C, _ 1,- 1. 

ProoL Let T be the root T-cell. Then i = n - 1 and k = -1 .  Lemma 3 
tells us that the root T-cell sends the element Ci, k = C,_  1,-1 to its parent, 
C. Line cl of Fig. 4 tells us that C receives the pair. | 

Li=L/* I L/=L k§ 1 

Fig. 6. If T's children are L-cells, 
then 7~s left child must be Li=Lj+ ~ 
and T's right child must be Lj = Lk+ l- 
Therefore, i = j + 1 and j = k + 1. 
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(~~(ci' k ) ~ C ~ , - 1 '  Ck,-1) 

(Ci,_l, C . ~  (C, 1" Ck 1 ) 

Fig. 7. (a) During the upward sweep, T receives Cij from its left child, receives Cj, k 
from its right child, and sends Ci,k = Cij' Cj,k to its parent. (b) During the downward 
sweep, the same T-cell, T, receives (C~,_~,Ck,_1) from its parent, computes 
Cj_I=Cj, k'C~_I, and sends (C~_l, Cj,_I) to its left child and (Cj,_I, C~_1) to its 
right child. 

During the upward sweep, several elements of Cs, were solved. One of 
them, C~_ 1,-1, was received by the C-cell. During the downward sweep, 
we solve for the remaining elements of Csn, with each T-cell providing one 
solution value. 

The downward sweep begins when the C-cell sends the pair (Cn_ 1,-l, 
C 1,-1) to the root T-cell (line c2). The first component is the value the C- 
cell received during the upward sweep; the second is a constant known a 
priori by the C-cell. In general, a T-cell that received the value Cij and Cj, k 
from its children during the upward sweep receives the values Ci,_l and 
C~_1 from its father during the downward sweep (line t3). The T-cell uses 
Ck,_ 1 to solve for Cj,_I = Cj,e' Ck_,  (line t4) and sends the values C,,_1 
and Cj_ 1 to its left child, and the values Cj,_ 1 and Ck_ 1 to its right child 
(line ts). The downward sweep ends when the ith L-cell receives C,,_1 and 
Ci-1,-1 (line/2). 

As with the upward sweep, T-cells and L-cells are unaware of the iden- 
tities (subscripts) of the values they receive. However, the following lemma 
identifies them for us. 

Lemma 5. Let 'T be the T-cell described in Lemma 4, i.e., during 
the upward sweep of RECUR, T received Cij and Cj, k from its left and 
right children, respectively. Then, during the downward sweep, 

(a) T receives (Ci,_l, Ck, 1) from its parent, 
(b) T sends (Ci, 1, Cj_1) to its left child, and 
(c) Tsends (Cj, 1, Ck,_l) to its right child, 

Proof. Proof by induction on the level number of the T-cells. 

Basis. Let T be the root T-cell, i.e., T is on level log N. T received 
Cij = C,_  ~,j and Cj, k = Cj_I from its left and right children during the 
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upward sweep. Hence, i =  n -  1 and k = -1 .  During the downward sweep, 
T receives Cn _ 1,- z = C~,_ 1 and C_ i,- 1 = Ck,_ 1 from the C-cell, proving 
part (a). Line t4 of Fig. 4 shows that T computes Cj, ~ using Cj,~ and 
Ck_ z. In line t 5, T sends (C~_1, Cj, 1) to its left child and (Cz_ 1, Ck, 1) 
to its right child, proving parts (b) and (c). 

Hypothosis. Assume the lemma true for all T-cells on level h ~< log N. 

Conclusion. Let T be a T-cell on level h -  1. By hypothesis, T's 
parent sends (Ci,_I, Ck_l)  to T, proving part (a). Lines t4 and t5 show 
that T sends (C~,_~, Cj,_I) to its left child and (Cj_z, Ck,_l) to its right 
child, proving parts (b) and (c). This lemma is summarized in Fig. 7b. 

Lemma 6 shows that the solution set Csn is received by the L-cells at 
the end of the downward sweep. 

Lernma 6. During the downward sweep, L i receives Ci_ 1 and 
Ci-1,-l~ 

Proof. In general, during the upward sweep, T receives C~,j and Cj, k 
from its left and right children. Lemma 5 states that the same T returns 
Ci,_ 1 and Cj, l to its left child and Cj_ 1 and Ck_ 1 to its right child. We 
need to show that, regardless of whether L~ is a left or a right child, Li 
receives C~,_ 1 and Ci_ 1,- 1. 

If Li is the left child of T, then C~,i_I=C~j= > i - 1  = j .  Lemma 5 
states that T returns C~_1 and Cj,_I = C~_ 1,-1 to L~. If Li is the right child 
of T, then Ci, i_I=Cj, k= >i=j  and i - l = k .  Lemma 5 states that T 
returns Cj, 1= C~_1 and Ck,_l = C~_1,_1 to L ,  Hence, the lemma is 
true. | 

C7, -1 

C7,6 C6,5 C5,4 C4,3 C3,2 C2,1 C1,0 C0,-1 

Fig. 8. Full upward sweep of RECUR for N = n = 8. 
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~C-1 ,-1 
/~L,xC 7, -1 

C3,-1 ~,,~'.... C-1,-1 

C5,-1 / ~ C 3 , -  1 C1 , -1 "~~  C-1,- 1 

C6,-1 C5,-1 C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1 C-1 ,-1 
C7,-1 C6,-1 C5,-1 C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1 

Fig. 9. Full downward sweep of RECUR for N= n = 8. 

L i now holds the element Ci, i (as well as Ci_1,_1). The L-cells, therefore, 
collectively hold Csn and the recurrence problem is solved. Figures 8 and 9 
show the full upward and downward sweeps for n = 8. Lemmas 3, 4, 5, and 
6 together prove the following theorem. 

Theorem 1. RECUR correctly solves a recurrence of size n on a 
tree machine with N = n leaf cells in a single sweep up and down the tree. 

3.2. Analysis of RECUR 

Analyzing RECUR is straightforward and simple. The time complexity 
of RECUR on a tree machine can be measured by (a) the amount of time 
involved in moving data from cell to cell, i.e., communication time, and (b) 
the number of arithmetic operations performed by the tree cells. We make 
the following assumptions refarding communication. 

1. A cell can send one unit of data (e.g., one floating point number) 
to another cell in one time step. 

2. A cell can send data to, and receive data from, each of its parent 
and children in the same time step. 

3. Ceels operate synchronously. This allows us, for example, to 
imagine all of the L-cells sending information to their parents 
simultaneously. 
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A tree machine with N L-cells has log N levels of T-cells. During the 
upward sweep, each L-cell and each T-cell must send [Ci, j] units of data to 
its parent. Similarly, during the downward sweep, the C-cell and each T- 
cell must send 2 I CijI units of data to its children. Because we assume that 
cells on the same level operate simultaneously, 

C(n)= (IC/jI + 2  ICi, jl)(log N +  1) (3) 

describes total communication time. 
Let aL, and rnL, be the number of additions and multiplications, 

respectively, performed by a single L-cell during the upward sweep. Let ara 
and told be similarly defined for the downward sweep. Let the 
corresponding values for the T- and C-cells be aTu , mrs,  ara, mTd, ac, ,  
inc,,  aca, and rnca. Then the total number of parallel additions performed 
during both sweeps of RECUR is 

A(n) = (aL~ + aca+ ac,  + aca) + (aru + aTa) log N (4) 

where a parallel addition is one row of cells executing one addition. 
Similarly, the total number of parallel multiplications performed is 

M ( n ) = ( m c u + m L a + m c , + m c d ) + ( m r u + m r a ) l o g N .  (5) 

RECUR, therefore, is O(log N). 
Note that only the T-cells performed any computation. Each T-cell 

performed composition (-) once during the upward sweep and once during 
the downward sweep. Thus 

a ru = a rd = number of additions in " ."  

mr ,  = mra = number of multiplications in " ."  

a L u  = a L d  = a c u  = a c d  = m L u  : t o L d  = m c u  : m C d  : 0 

(6) 

Equations 4 and 5 are deliberately made more general, however, to accom- 
modate variations to RECUR described in Section 5. For specific 
recurrence expressions, we need only determine the I Cij[, and the various 
a's and m's to obtain the communication and operation counts. All of this 
is summarized in Fig. 10. 
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SWEEP COMMMUNICATION L T C 

up 

down 

ICi,jl (Io 9 N * 1) aLu aTu(Iog N) acu 
mLu mTu(Iog N) mcu 

21Ci,jl(Iog N + 1) aLd aTd(IOg N) aCd 
mLd mTd(IOg N) mCd 

Fig. 10. This figure summarizes the number of communication steps and arithmetic 
operations required by RECUR for a specific application. I C J  is a measure of the 
number of components (e.g. real numbers) represented by the element Cij. The 
variables a and m stand for additions and multiplications. The subscripts L, T, and C 
indicate the cell in which the operation is performed. Finally, the subscripts u and d 
stand for upward and downward sweeps. 

4. APPLICATIONS OF RECUR 

Section 3 presented the algori thm R E C U R  in general. In  this section, 
we apply R E C U R  to specific recurrences. For  a given recurrence, we must  
precisely describe the meanings of: 

(a) the set of objects, Cn 

(b) the set of initial values, Ctn 

(C) the set of  solution values, Csn, and 

(d) the composi t ion operator,  - 

Once this is done, R E C U R  provides the general manner  in which data  are 
moved up and down the tree. 

4.1. First-Order Linear Recurrences 

Consider the first-order linear recurrence shown in Eq. 1. Our  objec- 
tive is to obtain the values xe, 0 ~< i ~< n - 1. For  the sake of  uniformity, we 
modify Eq. 1 by defining 

xo=ao+box 1 (7) 

where bo = 0 and x _  1 is a d u m m y  variable. Equat ion  1 can now be restated 

xi=ai+bixi_l ,  i = 0 ,  1,..., n - 1  (8) 

which expresses each xi as a function of xi_ 1. It  is also possible to express 
x~ as a function of xj for all j ~< i. Trivially, 

x i = 0 + lxi (9) 
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which expresses x~ as a function of itself. In addition, 

Xi = ai + b ix i -  1 
= (a~ + biai_ 1) + (bibe_ 1) xi_ 2 

(ai + biai_ 1 + bibi-  1 ai 2) + (bibi_ 1hi- 2) xi_ 3 

( i~1 ~_i )(=~j_l_ ) 
= a~+ ar bs + b, xj 

r = j + l  s = r + l  s 1 

(lo) 

for all j, - 1 ~< j < L This expansion is obtained by repeatedly applying the 
following rule: 

if x~ = a + bxj 

and x j = a '  + b'xk 

then x~ = (a + ba') + (bb') xk 

(11) 

With this rule as a foundation, we may now define the sets C., Cl., and 
Cs., as the composition operator in the context of first-order linear 
recurrences. 

Let C~,j be the coefficients of the equation expressing xi as a function 
of xj. For example, for all i and j, ( - l~<j~<i-%<n-  1), C, is the set of 
ordered pairs: 

C . =  {Ci,j=(a, b) l xi=a+bxj} (12) 

From Eq. 10, we obtain an explicit formula for any element Cij: 

if i = j  then Ci, j = ( 0 , 1 )  

else Ci, j =  ai+ ~ ar I-~ bs + b, xj 
r = j + l  s = r + l  s 1 

(13) 

The set of initial values, Ct,, is the set 

c, .= =(a .  b )I (14) 

which are, indeed, the initial values provided by Eq. 8. The solution set, 
Cs,, is defined 

Csn = {Ci,_ 1 I O ~ i < ~ n -  1} (15) 
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It is not immediately obvious that this set is equivalent to the set of 
solution values xi, 0 ~< i ~< n - 1, satisfying Eq. 8. We observe from Eq. 13, 
however, that 

Ci ,_ l  = a i +  ar bs, b~ 
r=O s = r + l  s~O 

= a i +  a r bs, O 
r=O s = r + l  

(16) 

since bo= 0. Therefore, Ci_~ is the ordered pair (a, 0) such that 

x i = a + O x  I = a  (17) 

The first component of Ci,_ 1 is, indeed, the solution of xe. 
The final requirement is to define the composition operator ".". We 

use Eq. 11 to obtain 

i f  Ci, j : (a, b) 

and Cj,~ = (a', b') 

then C i j '  Cj, k = (a + ba' ,  bb ' ) .  

(18) 

We must now prove that composition, as defined by Eq. 18, satisfies the 
composition property. 

L e m m a  7. The composition operator, defined in Eq. 18, satisfies 
the composition property described in Definition 1. 

C i,k = C i, j " C j, k , - l <<. k <~ j <<. i <~ n - 1  

and 

P r o o f .  From Eq. 13, we know that 

i--1 i i I 
2 ar I-l b.  lq 

r = j + l  s=r+l s~j+l 

j - -I  j j ) 
Cj,k~--aj-~ 2 Clr H bs, ~I bs 

r = k + l  s=r+l s=k+l 
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From Eq. 18, we have 

(a JZ n )  bs + ar bs , 
r = k + l  s = r + l  

i i j - 1  j 

bs+aj II b,+ I1 bs 2 a~ II b,, 
s = j + l  s= j+ l  r=k+l  s = r + l  

Ci, j" Cj, k 

i i - I  i i 
= ai+ E ar H b s +  

r = j + l  s=r+l  s ~ j + l  
i ) 

Iq b~ Iq bs 
s ~ j + l  s = k + l  

( n = a i +  2 ar 
r = j + l  s = r + l  

i ) 
lq b, 

s = k + l  

t i--1 i i j--1 i i \ 
= a~+ 2 ar I~ b~+aj l~ b~+ 2 ar 1] b,, I-I b~ ) 

r = j + l  s = r + l  s = j + l  r = k + l  s = r + l  s = k + l  

=a~+ 2 ar lq bs, II b, 
r = k + l  s = r + l  s = k + 1  

~- Ci, k 

Now that the sets Cn, C~n, and Cs., and the operator" have been 
defined, the problem of solving the first n terms of a first-order linear 
recurrence can be couched in terms of an RE. (Definition 2) and the 
algorithm RECUR may be used to solve such a problem. The algorithm 
distributes the initial values C~. one to an L-cell, performs an upward 
sweep which sends Cn_ 1.-1 to the C-cell, and performs a downward sweep 
which sends Ci,_x and Ci_1,_1 to L~, O<<.i<~n-1. 

4.2 .  O t h e r  a p p l i c a t i o n s  

Table I shows seven types of recurrences that can be solved using 
RECUR. For each problem, the crucial question is whether a composition 
operator " ."  can be defined which satisfies the composition property 
(Definition 1 ). The ith initial value, Ci, i_ 1, and the definition of the com- 
position operator for each of the seven types is given in Table II. For 
example, recurrence type 1 of Table I produces the sum or the product of a 
vector of scalars or matrices in O(log N) time. Note that, at no extra cost, 
RECUR also gives all partial sums or products. The required composition 
operation is given in line 1 of Table II. A T-cell merely sends to its parent 
the sum or product of the values it receives from its children. In recurrence 
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Table I. Seven Classes of Recurrence Types and the Domains 
of the Variables Involved ='b 

Recurrence Type 

1. x i = a i o p l  x i _  I 
2. x i = a i o p 2  x i -1  
3. x i=op3  (ai, Xi_l) 
4. x i=ai . - t -  b i x i _  1 
5. x i = a i O R ( b i A N D x i  1) 
6. x i = ( a i + b i x i _ l ) / ( c i + d ~ x i  1) 
7. x i = ( a ~ O R b i A N D x i  0 A N D  

NOT (ci O R d i A N D x i  1) 

Domains of Variables 

o p l = { x , + } , D a = D x = D  5 
op2= {AND, OR, XOR}, D a = D : , = D  6 
op3 = {rain, max}, D,  = Dx = D 1 
Da = Dx = D ~, D 5, Ob = D 5 
Da = Dx = D 4, D 6, Db = 0 6 
D~= Db = D~= Da= Dx= D 1 

Da= Db = Dc= Da= Dx= D 2 

a D~=real  numbers; D2=Boolean values; D3=rea l  m-vectors; D4=Boolean m-vectors; 
D 5 = (m x m) real matrices; D 6 = (mx m) Boolean matrices; for D 3 through D 6, m >/1. 

b The domain of the variables a and x (D, and Dx, respectively) are m-vectors or (mx  m) real 
matrices. The domain of the variable b, Db is the set of (m x m) real matrices. 

classes 1, 2, and 3, the recurrence operator may be one of several. 
Recurrence type 4 includes first-order linear recurrences. In the next sec- 
tion, however, we see that recurrence type 4 also includes second- and 
higher-order linear recurrences. Recurrence type 6 includes recurrences 
known as partial fractions and continued fractions. Finally, RECUR may 
also be used to solve recurrences involving Boolean variables. The rest of 
this section briefly describes two specific applications of RECUR. 

Table II. Definit ion of Composition Operator for Seven Recurrence Classes a 

Ci, i -  1 Ci, j" Cj,k : Ci,k 

1. a i 

2. a i 

3. a~ 
4. (ai, bi) 
5. (ai, bl) 
6. (at, bt, el, di) 

7. (ai, bi, ci, di) 

a . a ' = a o p l  a' 
a . a' = a op2 a' 
a . a ' = o p 3 ( a , a ' )  
(a, b). (a', b') = (a + ba', bb') 
(a, b). (a', b') = (a OR b AND a', b AND b') 
(a, b, c, d). (a', b', c', d') 

=(ac'  +ba',  ad' +bb',  cc' +da',  cd' +db')  
( a , b , c , d ) . ( a ' , b ' , c '  d') 

= (a AND c' OR ba', a AND d' OR b AND b', 
c AND e' OR d A N D  a', c AND d' OR d A N D  b') 

a For each recurrence class shown in Table I, the corresponding set of initial values, C~,,, and 
the composition operator, . ,  is given. For example, for first-order linear recurrences (Table I, 
recurrence class 4), the set C~, is the set of pairs ( a ,  bi) and composition is defined as 
follows: (a, b). (a', b ' ) =  (a+ba' ,  bb'). 
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4.2.1. Second-Order Linear Recurrences 

We want to solve a recurrence of the form 

X 0 ~--- a 0 

xl = al + bl Xo (19) 

x i = a i + b i x i _ l + c i x i _ 2 ,  2<~i<~n-1 

For the sake of uniformity, we redefine Eq. 19 thus: 

x o = a o + b o x - l + C o X  2 

x l = a l + b l x o + c l x  1 (20) 

yi=aiq-bixi_l-}-cixi_2, 2<~i<~n-1 

where bo = co = cl = 0, and x ~ and x_2 are dummy variables. Equation 20 
can now be rewritten 

x i=ai+b~x i_ l  +cix l_2 ,  O<~i<~n-1 (21) 

In order to use RECUR, we employ a change of variables: 

Yi = ( x i ,  2ci 1) 1 

Ai=(ai ,  ai_l) i 
(22) 

for - 1  ~ i ~ n - 1 .  This allows Eq. 21 to be rewritten as 

Y i = A i + B i Y i  1, - l < ~ i < ~ n - 1  (23) 

Equation 23 is a first-order linear recurrence with matrix coefficients and 
RECUR can be applied directly. Third- and higher-order linear recurrences 
can be transformed in a similar manner. 

4.2.2. Fractions 

RECUR may also be used to solve recurrences of the form 

x, = (a i + b,x~_ 1)/(c~ + d~xi_ 1) (24) 

Note that Eq. 24 is called a partial fraction if b~ = 0, and a continued frac- 
tion if ci = 0. Lines 6 of Tables I and I I  summarize the steps we need to 

828/13/4-3 
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take in order to apply RECUR. The ith initial value, C u_ 1, is the 4-tuple 
(a~, b ,  ci, d~). A T-cell receives (a, b, c, d) and (a', b', c', d') from its left and 
right children and sends 

(ac' + ba', ad' + bb', cc' + da', cd' + db') (25) 

to its parent. At the end of the downward sweep, L~ receives Ci,_ t and 
C/_ 1,- ~. Ce, 1 is the 4-tuple (a, 0, c, 0) where xi = a/c. L~ must perform an 
extra division to obtain x~. 

5. EXTENSIONS 

RECUR has been described for the case where n, the size of the 
recurrence, equals N the number of leaf cells in the tree machine. In this 
section, we describe three interesting variations of RECUR: (a) how the 
extra (empty) L-cells are to be programmed if n < N, (b) how to solve two 
or more recurrences of the same type simultaneously, and (c) how to 
pipeline operations to achieve maximum productivity if n > N. 

5.1. Empty L-Cells 

The need to solve a recurrence may merely be one of many steps of a 
complex process. If such a process is being executed on a general purpose 
tree machine, such as that proposed by Mag6, it may not be possible to 
guarantee that, when the time for solving the recurrence arrives, the data 
which comprise the initial values are stored in contiguous L-cells. Some of 
the L-cells may be idle, or active but not meant to participate in the 
recurrence solution. RECUR easily handles such situations. The sole 
requirement is that the Cij are distributed from right to left, i.e., Co,_~ is 
stored in the rightmost participating L-cell, Cl,o be stored in the next par- 
ticipating L-cell to the left, and so on. We call all nonparticipating L-cells 
"empty". Surprisingly, the T-cell algorithm described in Fig. 4 does not 
need to be modified. The empty L-cells, however, must be initialized and 
must perform a minor role. 

Figure 11 shows two nonempty L-cells containing C u_ 1 and C i_  1 , i -2 ,  

send: 

receive: 

Fig. 11. 

L i empty empty empty Li_ 1 

Ci,i-1 Ci-1 ,i-1 Ci-1 ,i-1 Ci-1 ,i-1 Ci-1 ,i-2 

Ci,-1 Ci-1 ,-1 Ci-1 ,-1 Ci-1 ,-1 Ci-1 ,-1 
Ci-1, -1 Ci-1, -1 Ci-1, -1 Ci-1, -1 Ci-2 ,-1 

All empty cells between Li and Li 1 send up Ci t,i i and receive Ci_ i, 1. 
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] ,  

2. 

3. 

4. 

UPWARD SWEEP DOWNWARD SWEEP 

receive from send to receive from send to 
LCHILD RCHILD PARENT PARENT LCHILD RCHILD 

Ci,i Ci,i Ci,i Ci,-1, CI,- 1 Ci,- 1, Ci,- 1 Ci,- 1, Cl,- 1 
Ci,/ Ci, j Ci,] Ci,- l '  C],-1 Ci-1, Ci,-1 Ci,-1" C],-1 
Ci, i Ci, k Ci, k Ci,- l '  Ck-1 Ci,-l" Ci,-1 Ci,-l" Ci-1 
Ci,j Cj, k Ci, k Ci,-1, Ck,-1 Ci,- 1" Cj,-1 Cj,-I '  Ck,-1 

Fig. 12. Four  possible situations a T-cell may find itself in. (1) All L-cells below a T-cell are 
empty. (2) At least one L-cell in the T-cell's left subtree is occupied. (3) At least one L-cell in 
the T-cell's right subtree is occupied. (4) At least one L-cell in each of the T-cell's subtrees is 
occupied. 

1 ~< i ~< n - 1, respectively. All empty L-cells in between should be initialized 
with Ci_ 1,i-1. If so, Lemma 1 guarantees that 

C i ,  i -  1 " C i -  1,i - 1 ~ C i ,  i -  1 a n d  Ci 1 , i -  1 " C i -  1 , i -  2 ~-  C i  - 1 , i -  2 

During the upward sweep, a T-cell that receives C~_ 1,i-1 from one of its 
children, in effect, sends to its parent the pair received from the other child. 
At the end of the downward sweep, the "solution" received by an empty L- 
cell is the solution of the first nonempty L-cell to its right. Hence, the non- 
empty L-cells in Fig. 11 all receive (Ci_l, 1, Ci-i,-1). Figure 12 shows 4 
possible courses of action a T-cell may take during the upward and 
downward sweeps, depending upon the status of the L-cells beneath it. It 
should be emphasized that the status of the L-cells beneath a T-cell is 
transparent to the T-cell. Figures 13 and 14 show the complete execution of 
RECUR for n = 5 on a tree with 8-L-cells. 

~ 4, -1 

empty  C4, 3 C3, 2 C2,1 C1,0  empty  C0,_I  empty  

Fig. 13. Upward sweep of RECUR for n = 5 on an 8-L-cell tree machine. 
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( 
~C-1,  -1 

/~C4,  -1 
C1,-1 ~ C - 1 , - 1  

C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1 

Fig. 14. Downward sweep of RECUR for n = 5 on an 8-L-cell tree machine. 

5.2. Solving Several Independent Recurrences Simultaneously 

RECUR is, in fact, more powerful than so far described. If there are 
enough L-cells to accommodate the initial values of two or more 
recurrence expressions of the same type (with one L-cell containing at one 
initial value of one recurrence) we may solve all recurrences 
simultaneously. 

Let the initial values of two or more recurrences be distributed among 
the L-cells from right to left. Figure 15 shows two recurrences, one occupy- 
ing the rightmost 3-L-cells, the other occupying the leftmost 5-L-cells. We 
may consider the entire set of values to be the initial values of one large 
recurrence and apply RECUR to all of the L-cells. This is because the first 
initial value of each recurrence, Co. 1, which expresses Xo as a function of 

C4,3  C3,2  C2,1 C1,0  C0,-1  C2,1 C1,0  C0,-1  

Fig. 15. Distribution of the initial values of two recurrence expressions on a single 
tree machine. Once recurrence occupies the leftmost five L-cells, the other occupies 
the rightrnost three L-cells. The value C0_1 (in the fifth L-cell from the left) 
prevents the terms of the recurrence on the left to be affected by the terms of the 
recurrence on the right. 
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the dummy variable x 1, disengages each recurrence from every other and 
we are sure that the terms of one recurrence will not be affected by the 
terms of another. We may therefore load as many recurrences as the L-cells 
can hold, apply RECUR, and in a single sweep, solve all recurrences 
simultaneously. 

5.3. Not Enough L Cells 

A slight modification of RECUR allows the number of solved terms of 
the linear recurrence to exceed the number of L-cells. Let n and N (n > N) 
be the number of terms of the linear recurrence and the number of L-cells, 
respectively. We distribute the initial values among the L-cells from right to 
left (as before) and repeat when the leftmost participating L-cell is filled. 
This continues until we run out of values. Some of the L-cells may be 
empty, if so required; empty L-cells should be initialized as described in 
Section 5.1. Figure 16 shows one distribution of n = 10 initial values among 
N =  8 L-cells. In general, if all L-cells participate, each L-cell holds Fn/N] 
initial values. The modified cell programs are shown in Fig. 17. It makes 
use of Hoare's guarded command,(22) a form of a conditional useful when 
programming communicating processes. 

Briefly, each L-cell holds mas = In~N] initial values. At the end of 
execution, each L-cell will have received max pairs of solutions (one pair 
for each initial value). An L-cell's task is to send the initial values, one at a 
time, to its parent, and to receive the solution values when they arrive. If 
all operations are synchronized, the first solution pair should arrive at an 
L-cell 2 ( l o g N + l )  time units after the first initial value is sent. This 
corresponds to the time required for the first "wave" of initial values to 
reach the C-cell and back. Let the initial values contained in an L-cell be 
stored in an array INIT(I :  max). The solution values received by an L-cell 
will be stored in array SOLN(I:  max, 1: 2). Line 15 instructs an L-cell to 
attempt to send the ith initial value to its parent and if successful, to 
increment i. Line l 6 instructs an L-cell to attempt to receive two solution 
values from its parent and if successful, to increment j, Execution ter- 

Fig. 16. One possible distribution of the initial values of a recurrence expression 
when n, the number of terms of the recurrence, exceeds N, the number of L-cells of 
the tree machine. Empty cells may be scattered throughout. 

d b c;b d b  d b  
C5,4 C4,3 C3,2 empty C 2 , 1 C 1,0 C0,-1 empty 

empty C9,8 empty C8, 7 C7,6 empty empty C6, 5 
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L cell 

/ 1 max = rn/N7 

12 /=1, j=l 

/ 3 do fo reve r  

/4 ]>max --> ex i t  

15 /_<max send ( t N I T ( i ) )  - ->  i=i§ 

16 /_<max receive (SOLN(/ ,1)  S O L N ( / , 2 ) ) - - >  i=i§ 
/ 7 end 

T cell 

t 1 max= rn/N 1 

t 2 i=1, ]=t, upbuf='empty ', downbuf='empty" 

t 3 do forever 

t 4 j>max - ->  exit 

t 5 /_<max g upbuf='empty" & L. receive(Cleft) g R. reeeive(Cright) 
- -> SAVE(])=Crlght, Tt=Cleft ,  Cright, upbuf='fuIl '  

t 6 /<max g upbuf='full ' g P.send(Tl)  

- -> i=i § upbuf='empty' 
t 7 ]_<max g downbuf='empty" g P,receive(Tl, T3) 

--> downbuf='empty ', T2=SAVE(/) �9 T3 
t 8 ]<max 8 downbuf='full ' g L.send(T1, T3) g R.send(T2,  T3) 

- ->  ]= ] * l ,  upbuf='empty' 
t 9 end 

C celt 
cl Cprev=C-1,-I 
c 2 do forever 

c 3 receive (Ccurr) 

c 4 Ccurr=Ccurr'Cprev 
c 5 send (Ccurr, Cprev) 

c 6 Cprev=Ccurr 

c 7 end 

Fig. t7. L-, 7"-, and C-cell programs for RECUR when n > N, 

minates when j exceeds" max, indicating that all solutions have been 
received. 

The C-cell's task is to receive a value and to return a pair of values 
that will trigger the solution of other values. The C-cell first initializes the 
variable Cprev to C 1,- 1- If we assume no empty L-cells, the first value the 
C-cell receives (as it executes line c 3 of Fig. 17) is CN_ i,-~ (Lemma 4). The 
C-cell returns (as it executes line cs) C ~ _ ~ _ t  and C_1,_l.  The second 
value the C-cell receives (which is the end product of the second "wave" of 
values initiated by the /,.cells) is C2N-1,~-~ and returns C2N-~,-1 and 
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CN-1,-1" In general, the ith value the C-cell receives is CiN-1,(i-1)N--1 and 
returns Ciu-1,-~ and C(i-~)U-l,-1. Because the entire operation is 
pipelined, a C-cell is receiving values as fast as it is sending them. 

The T-cell program is more complex than either the L- or the C-cell 
programs. The reason is the need to prevent deadlock. One of the T-cell's 
two tasks is to receive values from it children, operate on the values, and 
send the result to its parent. The other task is to receive two solutions from 
its parent, create a third solution, and send two solutions to each of its 
children. Lines t5 through t8 precisely describe the T-cell's function. 
Deadlock is prevented through the use of auxiliary buffers. Instructions t5 
through t8 have the following meanings. 

ts: If the output buffer to the parent (upbuf) is empty and the T-cell 
successfuly receives values from each of its children, save the 
value from the right child (for the downward sweep), operate on 
the values received, and mark upbuffull. If the attempt to receive 
values is unsuccessful, abandon the statement and try one of the 
other instructions. 

t 6: If the output buffer to the parent is full and the T-cell successfully 
sends a values to its parent, increment i and mark upbuf empty. 
We are now ready to receive another pair of values from the 
hildren. If the attempt to send is unsuccessful, abandon the 
statement and try one of the others. 

t7: t8: Similar to t5 and 16 but controlling the downward sweep. 
Deadlock is prevented through the use of a flag downbuf 

It is important that a T-cell be able to abandon a SEND or RECEIVE 
instruction if it is not successful. 

Analysis of this variation of R E C U R  is straightforward. We may think 
of waves of values starting from the L-cells, reaching the C-ceel, and retur- 
ning. Assuming synchrony, the first wave returns to the L-cells k(log N + 1) 
time units after it left, for some constant k. From that time on, a new wave 
arrives at the L-cells after every k time units. Hence, the total time is 

T(N, n) = k(log N+ ([-n/N-] - 1)) = O(log N+ rn/N-~) (26) 

to solve for the first n terms of a recurrence on a tree machine with N L- 
cells. 

6. C O N C L U S I O N S  

The tree structure is a natural tool for solving recurrences. On a tree 
with N leaf processors (L-cells), the general tree algorithm RECUR solves 
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the first n terms of a variety of recurrence problems in a single sweep up 
and down the tree, i.e., in O(log N) time, provided n ~< N. If n > N, RECUR 
solves the recurrence in groups of N. Because the operations in RECUR 
are pipelined, RECUR requires O(log N+ Fn/N-]) time. 

Tree branches have long held the reputation of being bottlenecks when 
data are moved among the tree processors. Almost counter intuitively, 
when solving recurrences, the tree branches provide an excellent (and, we 
believe, the ideal) means for combining and distributing partial results. The 
efficiency of RECUR is a result of the ease with which data are moved 
among the tree processors. If N = n, each interior tree processor determines 
exactly one solution value and the total work is evenly divided among, and 
quickly solved by, the processors. 
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