
International Journal o f Computer and Information Sciences, VoL 13, No. 4, 1984

Parallel Solution of

on a Tree Machine

Roy P. Pargas 1

Received June 1983; revised July]984

Recurrences

The recurrence
X 0 = a 0

x, - ai + bix~_ l, i = 1, 2,..., n - 1

requires O(n) operations on a sequential computer. Elegant parallel solutions
exist, however, that reduce the complexity to O(log N) using N>/n processors.
This paper discusses one such solution, designed for a tree-structured network
of processors.

A tree structure is ideal for solving recurrences. It takes exactly one sweep
up and down the tree to solve any of several classes of recurrences, thus guaran-
teeing a solution in O(log N) time for a tree with N >~ n leaf nodes. If n exceeds
N, the algorithm efficiently pipelines the operation and solves the recurrence in
O(n/N + log N) time.

KEY WORDS: Tree machine; parallel computation; recurrences.

1. I N T R O D U C T I O N

C o n s i d e r the f i r s t -o rder l inear r e c u r r e n c e

X 0 = a 0

(1)
x i = a i + b i x i _ l , i = 1, 2 n - 1

where n /> 1 represen t s the n u m b e r of t e rms of the r e cu r r ence and ai and bi

a re real scalars. T h e so lu t i on of Eq. 1, i.e., the set of va lues

(Xo, x l , x2,..., xn 1), is o b t a i n e d in a s t r a i g h t f o r w a r d m a n n e r by a sequen-

Department of Computer Science, Clemson University, Clemson, South Carolina 29631.

251

0091-7036 /84 /0800-0251503 .~0 /0 �9 1984 Plenum Publ ishing Corpora t ion

252 Pargas

tial algorithm requiring a total of n - 1 multiplications and n - 1 additions,
i.e., O(n) operations, and little can be done on a sequential computer to
improve the algorithm complexity. Elegant parallel solutions exist,
however, that reduce the complexity to O(log N) using N>~n processors.
This paper discusses one such solution, designed for a tree-structured
network of processors.

Solving recurrences quickly is important because recurrences are so
often components of larger problems. A tridiagonal linear system of
equations, for example, can be transformed into several recurrence
problems. Solving the recurrences provides a solution to the linear system.

A tree structure is ideal for solving recurrences. It takes exactly one
sweep up and down the tree to solve any of several classes of recurrences,
thus guaranteeing a solution in O(log N) time for a tree with N>~n leaf
nodes. If n exceeds N, the algorithm efficiently pipelines the operation and
solves the recurrence in O(n/N+ log N) time.

This paper has four major parts. A description of the tree machine
model used is presented in Section 2. The general tree algorithm, RECUR,
is described and proven correct in Section 3. Recurrences to which RECUR
is applicable are described in Section 4. These include first-, second- and
higher-order linear recurrences, and recurrences of the form:

Xo = ao

xi=(ai+bixi 1)/(ci-]-dixi 1) i=1 ,2 , . . . ,n - -1
(2)

Extensions and variations of RECUR are presented in Section 5. Finally,
conclusions and general remarks are given in Section 6.

Parallel solutions of linear recurrences have been studied before. In a
paper on the parallel solution of tridiagonal linear systems, Stone (1)
introduced a method called recursive doubling, which allows one to solve
linear recurrences of all orders in O(log N) steps on a parallel processor of
the ILLIAC-IV type. The method was generalized by Kogge and Stone (2)
and by Kogge. (3) They described a broad class of functions that enjoy
special composition properties and to which the method is applicable.
Kogge (4) also described how to pipeline the method to obtain the maximal
computational rate.

Studies on the relationship between computation time and number of
processors when solving recurrences (5 lo) have resulted in bounds on the
number of processors required to minimize the time to solve first-order
linear recurrences and bounds on the time required to solve the problem
given a fixed number of processors. Except for the algorithm described by
Gajski, (9~ the algorithms were designed for an idealized N-processor
machine on which there is no contention for memory (to obtain either

Parallel Solution of Recurrences on a Tree Machine 253

instructions or data), any number of processors and memories may be used
at any time, and communication among processors involves no delay. Our
approach is different in that we start with a well-defined processor network,
i.e., a tree network, and this defines the manner in which processors may
communicate with each other.

Therefore, two general approaches to the problem have emerged. The
first one uses function composition systematically to reduce the dependen-
cies among the variables of the linear recurrence. (1-4'9) Furthermore,
algorithms are described with a specific parallel processor structure in
mind. The second approach reorders the arithmetic operations required to
solve the linear recurrence and distributes them among the available
processors in order to minimize computation timeJ 5 8~ The algorithms are
not designed for a specific parallel processor. This paper adopts the former
approach.

Interest in tree-structured parallel processors has grown in the past
five years. Mag6 (H'12) has proposed a cellular computer organized as a
binary tree of processors, which allows simultaneous evaluation of
expressions stored in the leaf cells of the tree. It directly executes functional
programming languages, a class of languages developed by Backus, ~13~ in
which the expression of parallelism is natural. Tolle (14~ has proposed a
similar tree-structured cellular computer with more powerful, but more
complex, cells. In both designs, processors contained in the tree cells are
capable of independent operation, thus providing the potential for parallel
computation. Williams (~5~ studied parallel associative searching algorithms
and presented several techniques to predict and analyze the amount of time
and storage required by the algorithms on a tree machine. Frank ~6~
designed a virtual memory for a tree machine such as Mag6's. Koster (~7~
and Mag6, Stanat, and Koster (~8) developed methods for obtaining upper
and-lower bounds of the execution time of programs run on the machine
proposed by Mag6. Their analysis carefully accounts for communication
and storage management costs. Parallel algorithms for tree machines have
also been developed by Browning (19~ for a variety of applications, including
sorting, matrix multiplication, and the color cost problem; and by Bentley
and Kung ~2~ for searching problems. Leiserson (2~) studied systolic trees
and how to maintain a priority queue on one.

2. T H E T R E E M A C H I N E (T M)

The model tree machine, TM (shown in Fig. 1), on which we describe
algorithms is a special-purpose tree network of processors similar to, but of
a much simpler structure and less powerful than, the general-purpose
machines proposed by Mag6 or Tolle. Branches of the tree are two-way

828/13/4-2

254 Pargas

C

T

L

Fig. 1. Model of a tree machine. The top node is called the C-cell, interior nodes
are called T-cells, and the leaf nodes are called L-cells.

communication links. Leaf and nonleaf processing elements are called L-
cells and T-cells respectively. Attached to the root cell, functioning as the
root cell's parent, is a cell called Control (C-cell).

When describing algorithms, cells are sometimes referred to by their
level in the tree. The L-cells are on level 0, the lowest row of T-cells is on
level 1, the root T-cell is on level log N, and the C-cell is on level
(log N) + 1, where N is the number of L-cells in the tree. Two-way com-
munication among the cells is conducted through the tree branches; a T-
cell may communicate with its parent and two children and an L-cell may
communicate with its parent; a C-cell communicates with the root T-cell
and with external storage. An L-cell may communicate with another L-cell
by sending information up the tree through the sending L-cell's ancestor T-
cells and then back down again to the receiving L-cell.

In principle, all cells operate asynchronously. However, the algorithms
presented can be more easily understood if we view the operation as
proceeding in synchronous upward and downward sweeps. We note,
however, that this synchrony is not a necessary feature of TM. An example
of a task requiring a downward sweep is that of broadcasting information
to all L-cells. The C-cell sends information to its child the root cell, which
sends the information to its two children, which send the information to
their children, and so on, until the information is simultaneously received
by the L-cells. An example of a task requiring an upward sweep is that of
adding the values stored in the L-cells with the C-cell receiving the sum.

There is one important condition we impose on the programming of
the tree cells: all cells of the same type must execute identical programs.

Parallel Solution of Recurrences on a Tree Machine 255

The main reason for this is practicality. The programming task is sim-
plified, and feasible, because the programmer must write no more than
three programs, one each for the C-cell, T-cells, and L-cells.

3. T H E B A S I C TREE A L G O R I T H M : R E C U R

3.1. Descr ip t ion of R E C U R

The purpose of this section is to present, and prove correct, the tree
algorithm, RECUR. RECUR is intended to be a general algorithm,
applicable to a variety of recurrences. Examples of these recurrences are
presented in Section 4.

We start with the following definitions.

Def in i t i on 1. A recurrence expression, RE, is the pair (C,-) where

C = {C~jI i>~j>~ - 1 }

and " ." is a binary operator on the elements of C. The operator ".", which
we call composition, must satisfy the following property:

Ci, j 'Cj, k=Ci, k, i>~j>~k>~ - 1

We call the subset

C,= {Cu_ ~ I i~>0}

the initial values of RE, and the subset

C,,={C,_~Ji>~O}

the solution set of RE.

Almost always, we are interested only in a finite subset of C, defined as
follows.

D e f i n i t i o n 2.
(Cn, ") where

A recurrence expression of size n, REn, is the pair

Cn = {Cidl n - 1 >~i>~j>~ - 1 }

The corresponding initial and solution sets are

Cln = {C i , i _ l] n - 1 ~>i>~0}

256

and

Cs~-- {C,,_1 In -11> i>~0}

With these definitions, the following lemmas are easily shown true.

kernma 1. For all i and j such that i>~j>~ -1,

Ci, j = Ci, i �9 Ci, j = Ci, j �9 C:,j

Proof. Follows immediately from Definition 1. |

k emma 2. Composition is associative, i.e.,

(C,,j" Cj, D" C~,~ = C,,:.(Cs, k" C~,3

for all i>~ j>~k >~l>~ -1.

Proof. From Definition 1, we know that

(Ci,s" Cs,D" C~,~ = Ci,~" C~,z = Cu

and that

Pargas

Ci, j ' (f j , k " C k , l) ~ . Ci, j ' f j , l = Ci, l

Hence, the lemma is true. |

Recurrence problems typically require computing for the solution set
Cs, given only the initial set C~n. A straightforward sequential solution to
this problem is provided by the algorithm in Fig. 2. For example, if n = 4
and we want to solve for C3,,, the sequential algorithm determines the
elements of Csn in a manner suggested by

C 3 , 2 " (C 2 , 1 (C l , o ' C o , _ 1))

Csn = { Co,_ 1 }
fo r i=1 to n-1 do

Ci,_ l = Ci, i_ 1 �9 Ci_1,_1
Add Ci ,_ l to t h e s e t CSn
e n d

Fig. 2. Sequential algorithm to solve a
recurrence problem.

Parallel S o l u t i o n o f Recur rences on a Tree M a c h i n e 257

i.e., first obtain C1,_1 = C1,0Co, i, then C2, 2 = C2,1"C~_1, and finally
C3,_ ~ = C3,2' C2,_ 1- (Note that one element of Csn, i.e., C0,_ 1, was initially
available.) The associativity of ".", however, allows us to modify the order
in which the partial results are obtained. We may opt to solve for C3,_ ~ in
the following manner instead:

(C3,2 C2,~) (Cl.o Co _1)

C3,1"C1, 1

C3,- 1

This suggests that we may independently (and simultaneously) solve for
C3,1 and CL_I, and then solve for C3, l. This is the basis for the parallel
algorithm, RECUR.

Consider a tree machine with N L-cells and let Li be the ith L-cell
counting from the right. Let n = N be the size (i.e., number of terms) of a
recurrence expression (C,, ") as described in Definition 2. The initial values
Ct,, = { Ci, i_ 1, 0 ~< i ~< n - 1 }, are stored one per L-cell with C~,~_ 1 stored in
L~. Figure 3 shows the initial state of an 8-L-cell tree machine.

The object is to solve for the set Csn. Figure 4 shows the instructions
executed by the L-, T-, and C-cells. We study the execution of RECUR by
stepping through the instructions and observing how cells interact with
each other.

RECUR consists of an upward and a downward sweep through the
tree. The L-cells start the upward sweep by sending the values they contain
to their parents (line ll). L~ sends up Ci, i_~ and waits to receive two
solution values, C~_ 1 and C~_ 1, 1, during the downward sweep (line 12). A
T-cell first waits to receive a value each from its left and right children
(line tl). When the values arrive, a T-cell applies the composition operator
" '", and sends the result to its parent (line t2). The sweep continues
upward with each T-cell sending a value (the result of composition) to its
father. The upward sweep ends with the C-cell receiving the value Cn_ 1,-1
from the root T-cell (line cl).

C7,6 C6,5 C5,4 C4,3 C3,2 C2,1 C],0 CO,-]

Fig. 3. Distribution of the initial values Ci,, 1 among the L-cells for n = 8. Co,_1 is
stored in the rightmost L-cell, C~. 0 in the next L-cell to the left, and so on .

258

L cell:

T cell:

C cell:

/ 1 send (Ci , i_ 1)
/ 2 receive (Ci,_1, Ci_1,_1)

t 1 L.receive (C i , j) , R.receive (Cj, k)

t 2 P.send (e l , i �9 Ci, k)
t 3 P.receive (C i ,_ l , Ck ,_ l)
t 4 C i , - 1 = Ci, k �9 C k _ l
t 5 L.send (Ci ,_ l , C j ,_ I) , R.send (Cj,_I ,

c I receive (Cn_ l ,_ l)

c 2 send (Cn_l ,_ l , C_1,_1)

Fig. 4. L-, T-, and C-cell programs for RECUR.

Pargas

Ck,- I)

The subscripts used in the algorithm are purely for ease of presen-
tation. A cell is not aware of the identity of the value that it contains. From
our global point of view, however, we are able to make a few conclusions
regarding the upward sweep.

Lemma 3. Let the initial values, Cl,, of a recurrence expression of
size n be distributed among the L-cells of a tree machine, so that Li con-
tains C u_ l, 0 ~< i ~< n - 1. Let T be an arbitrary T-cell with children TL and
TR. Let Li and Lj+I be the leftmost and rightmost L-cells in T's left sub-
tree, and let Lj and Lk +1 be the leftmost and rightmost L-cells in its right
subtree (see Fig. 5). Then, during the upward sweep of the algorithm
RECUR,

T R

I

t L i+ 1 L . I Lk+ I

Fig. 5. Let T be an arbitrary T-cell with left and right children TL and TR, respec-
tively. Let the leftmost and rightmost leaves of TL be Li and Lj+ 1 and let the leftmost
and rightmost leaves of T R be Lj and Lk +1.

Parallel Solution of Recurrences on a Tree Machine 259

(a) T receives Cid from its left child, T r,
(b) T receives C~,k from its right child, TR, and
(c) T sends Ci, k = Ci j ' Cj, k to its parent.

ProoL Proof by induction on the level number of the T-cells.

Basis. Let T be a level 1 T-cell, i.e., T's children are L-cells (Fig. 6).
Because there is only one L-cell in T's left subtree, L i = L j + I . Hence,
i= j + 1 - - > j = i - 1 . The value that T receives from its left child is
Cu_ ~ = C~d, proving part (a). Similarly, there is only one L-cell in T's
right subtree, Lj = Lk+1. Hence, j = k + 1 = > k = j - 1 . The value that T
receives from its right child is Cjd_ 1 = Ci,~, proving part (b). Finally, line t2
of Fig. 4 shows that T computes Ci, k= C~,jCzk and sends C~,k to its
parent, proving part (c).

Hypothesis. Assume the lemma true for all T-cells on level h, h/> 1.

Conclusion. Consider a T-cell on level h + 1. Li and Lj+I are the
leftmost and rightmost L-cells in the subtree of which TL is a root. By
hypothesis, TL sends C~d to T, proving part (a). Similarly, Lj and Lk+l are
the leftmost and rightmost L-cells in the subtree of which TR is a root. By
hypothesis, TR sends Cj,k to T, proving part (b). Finally, line t2 of Fig. 4
guarantees that T then sends C~,k to its parent, proving part (c). This
lemma is summarized in Fig. 7a. |

Lemma 4. Let C be the C cell of the tree machine described in
Lemma 3. At the end of the upward sweep of RECUR, C receives the
element C, _ 1,- 1.

ProoL Let T be the root T-cell. Then i = n - 1 and k = -1 . Lemma 3
tells us that the root T-cell sends the element Ci, k = C,_ 1,-1 to its parent,
C. Line cl of Fig. 4 tells us that C receives the pair. |

Li=L/* I L/=L k§ 1

Fig. 6. If T's children are L-cells,
then 7~s left child must be Li=Lj+ ~
and T's right child must be Lj = Lk+ l-
Therefore, i = j + 1 and j = k + 1.

260 Pargas

(~~(ci' k) ~ C ~ , - 1 ' Ck,-1)

(Ci,_l, C . ~ (C, 1" Ck 1)

Fig. 7. (a) During the upward sweep, T receives Cij from its left child, receives Cj, k
from its right child, and sends Ci,k = Cij' Cj,k to its parent. (b) During the downward
sweep, the same T-cell, T, receives (C~,_~,Ck,_1) from its parent, computes
Cj_I=Cj, k'C~_I, and sends (C~_l, Cj,_I) to its left child and (Cj,_I, C~_1) to its
right child.

During the upward sweep, several elements of Cs, were solved. One of
them, C~_ 1,-1, was received by the C-cell. During the downward sweep,
we solve for the remaining elements of Csn, with each T-cell providing one
solution value.

The downward sweep begins when the C-cell sends the pair (Cn_ 1,-l,
C 1,-1) to the root T-cell (line c2). The first component is the value the C-
cell received during the upward sweep; the second is a constant known a
priori by the C-cell. In general, a T-cell that received the value Cij and Cj, k
from its children during the upward sweep receives the values Ci,_l and
C~_1 from its father during the downward sweep (line t3). The T-cell uses
Ck,_ 1 to solve for Cj,_I = Cj,e' Ck_, (line t4) and sends the values C,,_1
and Cj_ 1 to its left child, and the values Cj,_ 1 and Ck_ 1 to its right child
(line ts). The downward sweep ends when the ith L-cell receives C,,_1 and
Ci-1,-1 (line/2).

As with the upward sweep, T-cells and L-cells are unaware of the iden-
tities (subscripts) of the values they receive. However, the following lemma
identifies them for us.

Lemma 5. Let 'T be the T-cell described in Lemma 4, i.e., during
the upward sweep of RECUR, T received Cij and Cj, k from its left and
right children, respectively. Then, during the downward sweep,

(a) T receives (Ci,_l, Ck, 1) from its parent,
(b) T sends (Ci, 1, Cj_1) to its left child, and
(c) Tsends (Cj, 1, Ck,_l) to its right child,

Proof. Proof by induction on the level number of the T-cells.

Basis. Let T be the root T-cell, i.e., T is on level log N. T received
Cij = C,_ ~,j and Cj, k = Cj_I from its left and right children during the

Parallel Solut ion o f Recur rences on a Tree M a c h i n e 261

upward sweep. Hence, i = n - 1 and k = -1 . During the downward sweep,
T receives Cn _ 1,- z = C~,_ 1 and C_ i,- 1 = Ck,_ 1 from the C-cell, proving
part (a). Line t4 of Fig. 4 shows that T computes Cj, ~ using Cj,~ and
Ck_ z. In line t 5, T sends (C~_1, Cj, 1) to its left child and (Cz_ 1, Ck, 1)
to its right child, proving parts (b) and (c).

Hypothosis. Assume the lemma true for all T-cells on level h ~< log N.

Conclusion. Let T be a T-cell on level h - 1. By hypothesis, T's
parent sends (Ci,_I, Ck_l) to T, proving part (a). Lines t4 and t5 show
that T sends (C~,_~, Cj,_I) to its left child and (Cj_z, Ck,_l) to its right
child, proving parts (b) and (c). This lemma is summarized in Fig. 7b.

Lemma 6 shows that the solution set Csn is received by the L-cells at
the end of the downward sweep.

Lernma 6. During the downward sweep, L i receives Ci_ 1 and
Ci-1,-l~

Proof. In general, during the upward sweep, T receives C~,j and Cj, k
from its left and right children. Lemma 5 states that the same T returns
Ci,_ 1 and Cj, l to its left child and Cj_ 1 and Ck_ 1 to its right child. We
need to show that, regardless of whether L~ is a left or a right child, Li
receives C~,_ 1 and Ci_ 1,- 1.

If Li is the left child of T, then C~,i_I=C~j= > i - 1 = j . Lemma 5
states that T returns C~_1 and Cj,_I = C~_ 1,-1 to L~. If Li is the right child
of T, then Ci, i_I=Cj, k= >i=j and i - l = k . Lemma 5 states that T
returns Cj, 1= C~_1 and Ck,_l = C~_1,_1 to L , Hence, the lemma is
true. |

C7, -1

C7,6 C6,5 C5,4 C4,3 C3,2 C2,1 C1,0 C0,-1

Fig. 8. Full upward sweep of RECUR for N = n = 8.

262 Pargas

~C-1 ,-1
/~L,xC 7, -1

C3,-1 ~,,~'.... C-1,-1

C5,-1 / ~ C 3 , - 1 C1 , -1 "~~ C-1,- 1

C6,-1 C5,-1 C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1 C-1 ,-1
C7,-1 C6,-1 C5,-1 C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1

Fig. 9. Full downward sweep of RECUR for N= n = 8.

L i now holds the element Ci, i (as well as Ci_1,_1). The L-cells, therefore,
collectively hold Csn and the recurrence problem is solved. Figures 8 and 9
show the full upward and downward sweeps for n = 8. Lemmas 3, 4, 5, and
6 together prove the following theorem.

Theorem 1. RECUR correctly solves a recurrence of size n on a
tree machine with N = n leaf cells in a single sweep up and down the tree.

3.2. Analysis of RECUR

Analyzing RECUR is straightforward and simple. The time complexity
of RECUR on a tree machine can be measured by (a) the amount of time
involved in moving data from cell to cell, i.e., communication time, and (b)
the number of arithmetic operations performed by the tree cells. We make
the following assumptions refarding communication.

1. A cell can send one unit of data (e.g., one floating point number)
to another cell in one time step.

2. A cell can send data to, and receive data from, each of its parent
and children in the same time step.

3. Ceels operate synchronously. This allows us, for example, to
imagine all of the L-cells sending information to their parents
simultaneously.

Parallel Solut ion of Recurrences on a Tree Mach ine 263

A tree machine with N L-cells has log N levels of T-cells. During the
upward sweep, each L-cell and each T-cell must send [Ci, j] units of data to
its parent. Similarly, during the downward sweep, the C-cell and each T-
cell must send 2 I CijI units of data to its children. Because we assume that
cells on the same level operate simultaneously,

C(n)= (IC/jI + 2 ICi, jl)(log N + 1) (3)

describes total communication time.
Let aL, and rnL, be the number of additions and multiplications,

respectively, performed by a single L-cell during the upward sweep. Let ara
and told be similarly defined for the downward sweep. Let the
corresponding values for the T- and C-cells be aTu , mrs, ara, mTd, ac, ,
inc,, aca, and rnca. Then the total number of parallel additions performed
during both sweeps of RECUR is

A(n) = (aL~ + aca+ ac, + aca) + (aru + aTa) log N (4)

where a parallel addition is one row of cells executing one addition.
Similarly, the total number of parallel multiplications performed is

M (n) = (m c u + m L a + m c , + m c d) + (m r u + m r a) l o g N . (5)

RECUR, therefore, is O(log N).
Note that only the T-cells performed any computation. Each T-cell

performed composition (-) once during the upward sweep and once during
the downward sweep. Thus

a ru = a rd = number of additions in " ."

mr , = mra = number of multiplications in " ."

a L u = a L d = a c u = a c d = m L u : t o L d = m c u : m C d : 0

(6)

Equations 4 and 5 are deliberately made more general, however, to accom-
modate variations to RECUR described in Section 5. For specific
recurrence expressions, we need only determine the I Cij[, and the various
a's and m's to obtain the communication and operation counts. All of this
is summarized in Fig. 10.

264 Pargas

SWEEP COMMMUNICATION L T C

up

down

ICi,jl (Io 9 N * 1) aLu aTu(Iog N) acu
mLu mTu(Iog N) mcu

21Ci,jl(Iog N + 1) aLd aTd(IOg N) aCd
mLd mTd(IOg N) mCd

Fig. 10. This figure summarizes the number of communication steps and arithmetic
operations required by RECUR for a specific application. I C J is a measure of the
number of components (e.g. real numbers) represented by the element Cij. The
variables a and m stand for additions and multiplications. The subscripts L, T, and C
indicate the cell in which the operation is performed. Finally, the subscripts u and d
stand for upward and downward sweeps.

4. APPLICATIONS OF RECUR

Section 3 presented the algori thm R E C U R in general. In this section,
we apply R E C U R to specific recurrences. For a given recurrence, we must
precisely describe the meanings of:

(a) the set of objects, Cn

(b) the set of initial values, Ctn

(C) the set of solution values, Csn, and

(d) the composi t ion operator, -

Once this is done, R E C U R provides the general manner in which data are
moved up and down the tree.

4.1. First-Order Linear Recurrences

Consider the first-order linear recurrence shown in Eq. 1. Our objec-
tive is to obtain the values xe, 0 ~< i ~< n - 1. For the sake of uniformity, we
modify Eq. 1 by defining

xo=ao+box 1 (7)

where bo = 0 and x _ 1 is a d u m m y variable. Equat ion 1 can now be restated

xi=ai+bixi_l , i = 0 , 1,..., n - 1 (8)

which expresses each xi as a function of xi_ 1. It is also possible to express
x~ as a function of xj for all j ~< i. Trivially,

x i = 0 + lxi (9)

Parallel Solution of Recurrences on a Tree Machine 265

which expresses x~ as a function of itself. In addition,

Xi = ai + b ix i - 1
= (a~ + biai_ 1) + (bibe_ 1) xi_ 2

(ai + biai_ 1 + bibi- 1 ai 2) + (bibi_ 1hi- 2) xi_ 3

(i~1 ~_i)(=~j_l_)
= a~+ ar bs + b, xj

r = j + l s = r + l s 1

(lo)

for all j, - 1 ~< j < L This expansion is obtained by repeatedly applying the
following rule:

if x~ = a + bxj

and x j = a ' + b'xk

then x~ = (a + ba') + (bb') xk

(11)

With this rule as a foundation, we may now define the sets C., Cl., and
Cs., as the composition operator in the context of first-order linear
recurrences.

Let C~,j be the coefficients of the equation expressing xi as a function
of xj. For example, for all i and j, (- l~<j~<i-%<n- 1), C, is the set of
ordered pairs:

C . = {Ci,j=(a, b) l xi=a+bxj} (12)

From Eq. 10, we obtain an explicit formula for any element Cij:

if i = j then Ci, j = (0 , 1)

else Ci, j = ai+ ~ ar I-~ bs + b, xj
r = j + l s = r + l s 1

(13)

The set of initial values, Ct,, is the set

c, .= =(a . b)I (14)

which are, indeed, the initial values provided by Eq. 8. The solution set,
Cs,, is defined

Csn = {Ci,_ 1 I O ~ i < ~ n - 1} (15)

266 Pargas

It is not immediately obvious that this set is equivalent to the set of
solution values xi, 0 ~< i ~< n - 1, satisfying Eq. 8. We observe from Eq. 13,
however, that

Ci ,_ l = a i + ar bs, b~
r=O s = r + l s~O

= a i + a r bs, O
r=O s = r + l

(16)

since bo= 0. Therefore, Ci_~ is the ordered pair (a, 0) such that

x i = a + O x I = a (17)

The first component of Ci,_ 1 is, indeed, the solution of xe.
The final requirement is to define the composition operator ".". We

use Eq. 11 to obtain

i f Ci, j : (a, b)

and Cj,~ = (a', b')

then C i j ' Cj, k = (a + ba' , bb ') .

(18)

We must now prove that composition, as defined by Eq. 18, satisfies the
composition property.

L e m m a 7. The composition operator, defined in Eq. 18, satisfies
the composition property described in Definition 1.

C i,k = C i, j " C j, k , - l <<. k <~ j <<. i <~ n - 1

and

P r o o f . From Eq. 13, we know that

i--1 i i I
2 ar I-l b. lq

r = j + l s=r+l s~j+l

j - -I j j)
Cj,k~--aj-~ 2 Clr H bs, ~I bs

r = k + l s=r+l s=k+l

Parallel Solution of Recurrences on a Tree Machine 267

From Eq. 18, we have

(a JZ n) bs + ar bs ,
r = k + l s = r + l

i i j - 1 j

bs+aj II b,+ I1 bs 2 a~ II b,,
s = j + l s= j+ l r=k+l s = r + l

Ci, j" Cj, k

i i - I i i
= ai+ E ar H b s +

r = j + l s=r+l s ~ j + l
i)

Iq b~ Iq bs
s ~ j + l s = k + l

(n = a i + 2 ar
r = j + l s = r + l

i)
lq b,

s = k + l

t i--1 i i j--1 i i \
= a~+ 2 ar I~ b~+aj l~ b~+ 2 ar 1] b,, I-I b~)

r = j + l s = r + l s = j + l r = k + l s = r + l s = k + l

=a~+ 2 ar lq bs, II b,
r = k + l s = r + l s = k + 1

~- Ci, k

Now that the sets Cn, C~n, and Cs., and the operator" have been
defined, the problem of solving the first n terms of a first-order linear
recurrence can be couched in terms of an RE. (Definition 2) and the
algorithm RECUR may be used to solve such a problem. The algorithm
distributes the initial values C~. one to an L-cell, performs an upward
sweep which sends Cn_ 1.-1 to the C-cell, and performs a downward sweep
which sends Ci,_x and Ci_1,_1 to L~, O<<.i<~n-1.

4.2 . O t h e r a p p l i c a t i o n s

Table I shows seven types of recurrences that can be solved using
RECUR. For each problem, the crucial question is whether a composition
operator " ." can be defined which satisfies the composition property
(Definition 1). The ith initial value, Ci, i_ 1, and the definition of the com-
position operator for each of the seven types is given in Table II. For
example, recurrence type 1 of Table I produces the sum or the product of a
vector of scalars or matrices in O(log N) time. Note that, at no extra cost,
RECUR also gives all partial sums or products. The required composition
operation is given in line 1 of Table II. A T-cell merely sends to its parent
the sum or product of the values it receives from its children. In recurrence

268 Pargas

Table I. Seven Classes of Recurrence Types and the Domains
of the Variables Involved ='b

Recurrence Type

1. x i = a i o p l x i _ I
2. x i = a i o p 2 x i -1
3. x i=op3 (ai, Xi_l)
4. x i=ai . - t - b i x i _ 1
5. x i = a i O R (b i A N D x i 1)
6. x i = (a i + b i x i _ l) / (c i + d ~ x i 1)
7. x i = (a ~ O R b i A N D x i 0 A N D

NOT (ci O R d i A N D x i 1)

Domains of Variables

o p l = { x , + } , D a = D x = D 5
op2= {AND, OR, XOR}, D a = D : , = D 6
op3 = {rain, max}, D, = Dx = D 1
Da = Dx = D ~, D 5, Ob = D 5
Da = Dx = D 4, D 6, Db = 0 6
D~= Db = D~= Da= Dx= D 1

Da= Db = Dc= Da= Dx= D 2

a D~=real numbers; D2=Boolean values; D3=rea l m-vectors; D4=Boolean m-vectors;
D 5 = (m x m) real matrices; D 6 = (mx m) Boolean matrices; for D 3 through D 6, m >/1.

b The domain of the variables a and x (D, and Dx, respectively) are m-vectors or (mx m) real
matrices. The domain of the variable b, Db is the set of (m x m) real matrices.

classes 1, 2, and 3, the recurrence operator may be one of several.
Recurrence type 4 includes first-order linear recurrences. In the next sec-
tion, however, we see that recurrence type 4 also includes second- and
higher-order linear recurrences. Recurrence type 6 includes recurrences
known as partial fractions and continued fractions. Finally, RECUR may
also be used to solve recurrences involving Boolean variables. The rest of
this section briefly describes two specific applications of RECUR.

Table II. Definit ion of Composition Operator for Seven Recurrence Classes a

Ci, i - 1 Ci, j" Cj,k : Ci,k

1. a i

2. a i

3. a~
4. (ai, bi)
5. (ai, bl)
6. (at, bt, el, di)

7. (ai, bi, ci, di)

a . a ' = a o p l a'
a . a' = a op2 a'
a . a ' = o p 3 (a , a ')
(a, b). (a', b') = (a + ba', bb')
(a, b). (a', b') = (a OR b AND a', b AND b')
(a, b, c, d). (a', b', c', d')

=(ac' +ba', ad' +bb', cc' +da', cd' +db')
(a , b , c , d) . (a ' , b ' , c ' d')

= (a AND c' OR ba', a AND d' OR b AND b',
c AND e' OR d A N D a', c AND d' OR d A N D b')

a For each recurrence class shown in Table I, the corresponding set of initial values, C~,,, and
the composition operator, . , is given. For example, for first-order linear recurrences (Table I,
recurrence class 4), the set C~, is the set of pairs (a , bi) and composition is defined as
follows: (a, b). (a', b ') = (a+ba' , bb').

Parallel Solut ion of Recurrences on a Tree Machine 269

4.2.1. Second-Order Linear Recurrences

We want to solve a recurrence of the form

X 0 ~--- a 0

xl = al + bl Xo (19)

x i = a i + b i x i _ l + c i x i _ 2 , 2<~i<~n-1

For the sake of uniformity, we redefine Eq. 19 thus:

x o = a o + b o x - l + C o X 2

x l = a l + b l x o + c l x 1 (20)

yi=aiq-bixi_l-}-cixi_2, 2<~i<~n-1

where bo = co = cl = 0, and x ~ and x_2 are dummy variables. Equation 20
can now be rewritten

x i=ai+b~x i_ l +cix l_2 , O<~i<~n-1 (21)

In order to use RECUR, we employ a change of variables:

Yi = (x i , 2ci 1) 1

Ai=(ai , ai_l) i
(22)

for - 1 ~ i ~ n - 1 . This allows Eq. 21 to be rewritten as

Y i = A i + B i Y i 1, - l < ~ i < ~ n - 1 (23)

Equation 23 is a first-order linear recurrence with matrix coefficients and
RECUR can be applied directly. Third- and higher-order linear recurrences
can be transformed in a similar manner.

4.2.2. Fractions

RECUR may also be used to solve recurrences of the form

x, = (a i + b,x~_ 1)/(c~ + d~xi_ 1) (24)

Note that Eq. 24 is called a partial fraction if b~ = 0, and a continued frac-
tion if ci = 0. Lines 6 of Tables I and I I summarize the steps we need to

828/13/4-3

270 Pargas

take in order to apply RECUR. The ith initial value, C u_ 1, is the 4-tuple
(a~, b , ci, d~). A T-cell receives (a, b, c, d) and (a', b', c', d') from its left and
right children and sends

(ac' + ba', ad' + bb', cc' + da', cd' + db') (25)

to its parent. At the end of the downward sweep, L~ receives Ci,_ t and
C/_ 1,- ~. Ce, 1 is the 4-tuple (a, 0, c, 0) where xi = a/c. L~ must perform an
extra division to obtain x~.

5. EXTENSIONS

RECUR has been described for the case where n, the size of the
recurrence, equals N the number of leaf cells in the tree machine. In this
section, we describe three interesting variations of RECUR: (a) how the
extra (empty) L-cells are to be programmed if n < N, (b) how to solve two
or more recurrences of the same type simultaneously, and (c) how to
pipeline operations to achieve maximum productivity if n > N.

5.1. Empty L-Cells

The need to solve a recurrence may merely be one of many steps of a
complex process. If such a process is being executed on a general purpose
tree machine, such as that proposed by Mag6, it may not be possible to
guarantee that, when the time for solving the recurrence arrives, the data
which comprise the initial values are stored in contiguous L-cells. Some of
the L-cells may be idle, or active but not meant to participate in the
recurrence solution. RECUR easily handles such situations. The sole
requirement is that the Cij are distributed from right to left, i.e., Co,_~ is
stored in the rightmost participating L-cell, Cl,o be stored in the next par-
ticipating L-cell to the left, and so on. We call all nonparticipating L-cells
"empty". Surprisingly, the T-cell algorithm described in Fig. 4 does not
need to be modified. The empty L-cells, however, must be initialized and
must perform a minor role.

Figure 11 shows two nonempty L-cells containing C u_ 1 and C i_ 1 , i -2 ,

send:

receive:

Fig. 11.

L i empty empty empty Li_ 1

Ci,i-1 Ci-1 ,i-1 Ci-1 ,i-1 Ci-1 ,i-1 Ci-1 ,i-2

Ci,-1 Ci-1 ,-1 Ci-1 ,-1 Ci-1 ,-1 Ci-1 ,-1
Ci-1, -1 Ci-1, -1 Ci-1, -1 Ci-1, -1 Ci-2 ,-1

All empty cells between Li and Li 1 send up Ci t,i i and receive Ci_ i, 1.

Parallel Solution of Recurrences on a Tree Machine 271

] ,

2.

3.

4.

UPWARD SWEEP DOWNWARD SWEEP

receive from send to receive from send to
LCHILD RCHILD PARENT PARENT LCHILD RCHILD

Ci,i Ci,i Ci,i Ci,-1, CI,- 1 Ci,- 1, Ci,- 1 Ci,- 1, Cl,- 1
Ci,/ Ci, j Ci,] Ci,- l ' C],-1 Ci-1, Ci,-1 Ci,-1" C],-1
Ci, i Ci, k Ci, k Ci,- l ' Ck-1 Ci,-l" Ci,-1 Ci,-l" Ci-1
Ci,j Cj, k Ci, k Ci,-1, Ck,-1 Ci,- 1" Cj,-1 Cj,-I ' Ck,-1

Fig. 12. Four possible situations a T-cell may find itself in. (1) All L-cells below a T-cell are
empty. (2) At least one L-cell in the T-cell's left subtree is occupied. (3) At least one L-cell in
the T-cell's right subtree is occupied. (4) At least one L-cell in each of the T-cell's subtrees is
occupied.

1 ~< i ~< n - 1, respectively. All empty L-cells in between should be initialized
with Ci_ 1,i-1. If so, Lemma 1 guarantees that

C i , i - 1 " C i - 1,i - 1 ~ C i , i - 1 a n d Ci 1 , i - 1 " C i - 1 , i - 2 ~- C i - 1 , i - 2

During the upward sweep, a T-cell that receives C~_ 1,i-1 from one of its
children, in effect, sends to its parent the pair received from the other child.
At the end of the downward sweep, the "solution" received by an empty L-
cell is the solution of the first nonempty L-cell to its right. Hence, the non-
empty L-cells in Fig. 11 all receive (Ci_l, 1, Ci-i,-1). Figure 12 shows 4
possible courses of action a T-cell may take during the upward and
downward sweeps, depending upon the status of the L-cells beneath it. It
should be emphasized that the status of the L-cells beneath a T-cell is
transparent to the T-cell. Figures 13 and 14 show the complete execution of
RECUR for n = 5 on a tree with 8-L-cells.

~ 4, -1

empty C4, 3 C3, 2 C2,1 C1,0 empty C0,_I empty

Fig. 13. Upward sweep of RECUR for n = 5 on an 8-L-cell tree machine.

272 Pargas

(
~C-1, -1

/~C4, -1
C1,-1 ~ C - 1 , - 1

C4,-1 C3,-1 C2,-1 C1 ,-1 C0,-1

Fig. 14. Downward sweep of RECUR for n = 5 on an 8-L-cell tree machine.

5.2. Solving Several Independent Recurrences Simultaneously

RECUR is, in fact, more powerful than so far described. If there are
enough L-cells to accommodate the initial values of two or more
recurrence expressions of the same type (with one L-cell containing at one
initial value of one recurrence) we may solve all recurrences
simultaneously.

Let the initial values of two or more recurrences be distributed among
the L-cells from right to left. Figure 15 shows two recurrences, one occupy-
ing the rightmost 3-L-cells, the other occupying the leftmost 5-L-cells. We
may consider the entire set of values to be the initial values of one large
recurrence and apply RECUR to all of the L-cells. This is because the first
initial value of each recurrence, Co. 1, which expresses Xo as a function of

C4,3 C3,2 C2,1 C1,0 C0,-1 C2,1 C1,0 C0,-1

Fig. 15. Distribution of the initial values of two recurrence expressions on a single
tree machine. Once recurrence occupies the leftmost five L-cells, the other occupies
the rightrnost three L-cells. The value C0_1 (in the fifth L-cell from the left)
prevents the terms of the recurrence on the left to be affected by the terms of the
recurrence on the right.

Paral le l Solution of Recurrences on a Tree Machine 273

the dummy variable x 1, disengages each recurrence from every other and
we are sure that the terms of one recurrence will not be affected by the
terms of another. We may therefore load as many recurrences as the L-cells
can hold, apply RECUR, and in a single sweep, solve all recurrences
simultaneously.

5.3. Not Enough L Cells

A slight modification of RECUR allows the number of solved terms of
the linear recurrence to exceed the number of L-cells. Let n and N (n > N)
be the number of terms of the linear recurrence and the number of L-cells,
respectively. We distribute the initial values among the L-cells from right to
left (as before) and repeat when the leftmost participating L-cell is filled.
This continues until we run out of values. Some of the L-cells may be
empty, if so required; empty L-cells should be initialized as described in
Section 5.1. Figure 16 shows one distribution of n = 10 initial values among
N = 8 L-cells. In general, if all L-cells participate, each L-cell holds Fn/N]
initial values. The modified cell programs are shown in Fig. 17. It makes
use of Hoare's guarded command,(22) a form of a conditional useful when
programming communicating processes.

Briefly, each L-cell holds mas = In~N] initial values. At the end of
execution, each L-cell will have received max pairs of solutions (one pair
for each initial value). An L-cell's task is to send the initial values, one at a
time, to its parent, and to receive the solution values when they arrive. If
all operations are synchronized, the first solution pair should arrive at an
L-cell 2 (l o g N + l) time units after the first initial value is sent. This
corresponds to the time required for the first "wave" of initial values to
reach the C-cell and back. Let the initial values contained in an L-cell be
stored in an array INIT(I : max). The solution values received by an L-cell
will be stored in array SOLN(I: max, 1: 2). Line 15 instructs an L-cell to
attempt to send the ith initial value to its parent and if successful, to
increment i. Line l 6 instructs an L-cell to attempt to receive two solution
values from its parent and if successful, to increment j, Execution ter-

Fig. 16. One possible distribution of the initial values of a recurrence expression
when n, the number of terms of the recurrence, exceeds N, the number of L-cells of
the tree machine. Empty cells may be scattered throughout.

d b c;b d b d b
C5,4 C4,3 C3,2 empty C 2 , 1 C 1,0 C0,-1 empty

empty C9,8 empty C8, 7 C7,6 empty empty C6, 5

274 Pargas

L cell

/ 1 max = rn/N7

12 /=1, j=l

/ 3 do fo reve r

/4]>max --> ex i t

15 /_<max send (t N I T (i)) - -> i=i§

16 /_<max receive (SOLN(/ ,1) S O L N (/ , 2)) - - > i=i§
/ 7 end

T cell

t 1 max= rn/N 1

t 2 i=1,]=t, upbuf='empty ', downbuf='empty"

t 3 do forever

t 4 j>max - -> exit

t 5 /_<max g upbuf='empty" & L. receive(Cleft) g R. reeeive(Cright)
- -> SAVE(])=Crlght, Tt=Cleft , Cright, upbuf='fuIl '

t 6 /<max g upbuf='full ' g P.send(Tl)

- -> i=i § upbuf='empty'
t 7]_<max g downbuf='empty" g P,receive(Tl, T3)

--> downbuf='empty ', T2=SAVE(/) �9 T3
t 8]<max 8 downbuf='full ' g L.send(T1, T3) g R.send(T2, T3)

- ->]=] * l , upbuf='empty'
t 9 end

C celt
cl Cprev=C-1,-I
c 2 do forever

c 3 receive (Ccurr)

c 4 Ccurr=Ccurr'Cprev
c 5 send (Ccurr, Cprev)

c 6 Cprev=Ccurr

c 7 end

Fig. t7. L-, 7"-, and C-cell programs for RECUR when n > N,

minates when j exceeds" max, indicating that all solutions have been
received.

The C-cell's task is to receive a value and to return a pair of values
that will trigger the solution of other values. The C-cell first initializes the
variable Cprev to C 1,- 1- If we assume no empty L-cells, the first value the
C-cell receives (as it executes line c 3 of Fig. 17) is CN_ i,-~ (Lemma 4). The
C-cell returns (as it executes line cs) C ~ _ ~ _ t and C_1,_l. The second
value the C-cell receives (which is the end product of the second "wave" of
values initiated by the /,.cells) is C2N-1,~-~ and returns C2N-~,-1 and

Parallel Solution of Recurrences on a Tree Machine 275

CN-1,-1" In general, the ith value the C-cell receives is CiN-1,(i-1)N--1 and
returns Ciu-1,-~ and C(i-~)U-l,-1. Because the entire operation is
pipelined, a C-cell is receiving values as fast as it is sending them.

The T-cell program is more complex than either the L- or the C-cell
programs. The reason is the need to prevent deadlock. One of the T-cell's
two tasks is to receive values from it children, operate on the values, and
send the result to its parent. The other task is to receive two solutions from
its parent, create a third solution, and send two solutions to each of its
children. Lines t5 through t8 precisely describe the T-cell's function.
Deadlock is prevented through the use of auxiliary buffers. Instructions t5
through t8 have the following meanings.

ts: If the output buffer to the parent (upbuf) is empty and the T-cell
successfuly receives values from each of its children, save the
value from the right child (for the downward sweep), operate on
the values received, and mark upbuffull. If the attempt to receive
values is unsuccessful, abandon the statement and try one of the
other instructions.

t 6: If the output buffer to the parent is full and the T-cell successfully
sends a values to its parent, increment i and mark upbuf empty.
We are now ready to receive another pair of values from the
hildren. If the attempt to send is unsuccessful, abandon the
statement and try one of the others.

t7: t8: Similar to t5 and 16 but controlling the downward sweep.
Deadlock is prevented through the use of a flag downbuf

It is important that a T-cell be able to abandon a SEND or RECEIVE
instruction if it is not successful.

Analysis of this variation of R E C U R is straightforward. We may think
of waves of values starting from the L-cells, reaching the C-ceel, and retur-
ning. Assuming synchrony, the first wave returns to the L-cells k(log N + 1)
time units after it left, for some constant k. From that time on, a new wave
arrives at the L-cells after every k time units. Hence, the total time is

T(N, n) = k(log N+ ([-n/N-] - 1)) = O(log N+ rn/N-~) (26)

to solve for the first n terms of a recurrence on a tree machine with N L-
cells.

6. C O N C L U S I O N S

The tree structure is a natural tool for solving recurrences. On a tree
with N leaf processors (L-cells), the general tree algorithm RECUR solves

276 Pargas

the first n terms of a variety of recurrence problems in a single sweep up
and down the tree, i.e., in O(log N) time, provided n ~< N. If n > N, RECUR
solves the recurrence in groups of N. Because the operations in RECUR
are pipelined, RECUR requires O(log N+ Fn/N-]) time.

Tree branches have long held the reputation of being bottlenecks when
data are moved among the tree processors. Almost counter intuitively,
when solving recurrences, the tree branches provide an excellent (and, we
believe, the ideal) means for combining and distributing partial results. The
efficiency of RECUR is a result of the ease with which data are moved
among the tree processors. If N = n, each interior tree processor determines
exactly one solution value and the total work is evenly divided among, and
quickly solved by, the processors.

7. ACKNOWLEDGMENTS

Many thanks to Gyula Mag6 for his many helpful comments on
earlier versions of this paper and for designing the machine that makes
algorithms such as RECUR possible.

REFERENCES

1. H. S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system
of equations. J. of the ACM 20(2):27-38 (1973).

2. P. M. Kogge and H. S. Stone, A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Trans. on Computers C-22(8):786-793 (1973).

3. P. M. Kogge, Parallel solution of recurrence problems. IBM J. of Res. and Develop.
18(2):138-148 (1974).

4. P. M. Kogge, Maximal rate pipelined solutions to recurrence problems. In Proc. of the
First Annual Symp. on Computer Arch., G. J. Lipovski and S. A. Szygenda, (eds.),
Gainesville, Florida, 71-76 (1973).

5. S. C. Chen, Time and parallel processor bounds for linear recurrence systems with con-
stant coefficients. In Proc. of the Inter. Conf., P. H. Enslow Jr. (ed.), 196-205,

6. S. C. Chen and D. J. Kuck, Time and parallel processor bounds for linear recurrence
systems. IEEE Trans. on Computers C-24(7):701-717 (1975).

7. S. C. Chen and A. H. Sameh, On parallel triangular system solvers. Proc. of the Sagamore
Computer Conf. on Parallel Proc., 237-238 (1975).

8. S. C. Chen, D. J. Kuck, and A. H. Sameh, Practical parallel band triangular system
solvers. ACM Trans. on Mathematical Software 4(3):270-277 (1978).

9. D. D. Gajski, An algorithm for solving linear recurrence systems on parallel and pipelined
machines. IEEE Trans. on Computers C-30(4):190-206 (1981).

10. L. Hyafil and H. T. Kung, The complexity of parallel evaluation of linear recurrences. J. of
the ACM 24(3):513-521 (1977).

11. G. A. Mag6, A network of microprocessors to execute reduction languages. Two parts.
Inter. J. of Computer and Infor. Sci. 8(5):349-385 (1979); 8(6):435-471 (1979).

Parallel Solut ion of Recurrences on a Tree Mach ine 277

12. G. A. Mag6, A cellular computer architecture for functional programming. Spring COM-
PCON. VLSI: New Architectural Horizons, 179-185 (1980).

13. J. Backus, Can Programming be liberated from the von Neumann style? A functional style
and its algebra of programs. Comm. of the A C M 21(8):613-641 (1978).

14. D. M. Tolle, Coordination of computation in a binary tree of processors: an architectural
proposal. Ph .D. dissertation, Department of Computer Science, University of North
Carolina at Chapel Hill, (1981).

15. E. H. Williams Jr., Analysis of FFP programs for parallel associative searching. Ph.D. dis-
sertation, Department of Computer Science, University of North Carolina at Chapel Hill,
(1981).

16. G. A. Frank, Virtual memory systems for closed applicative language interpreters. Ph.D.
dissertation, Department of Computer Science, University of North Carolina at Chapel
Hill, (1979).

17. A. Koster, Execution time and storage requirements of reduction language programs on a
reduction, machine. Ph.D. dissertation, Department of Computer Science, University of
North Carolina at Chapel Hill, (1977).

18. G. A. Mag6, D. F. Stanat, and A. Koster, Program execution on a cellular computer:
some matrix algorithms (In Preparation).

19. S. A. Browning, Computations on a tree of processors. Proc. of the Caltech Conf. on VLSI,
453~478 (January 1979); also in Chap. 8 of Intro. to VLSI Systems, by C. Mead and L.
Conway, Addison-Wesley, Reading, Massachusetts, (1980).

20. J. L. Bentley and H. T. Kung, A tree machine for searching problems. Proc. of the Inter.
Conf. on Parallel Processing, 257-266 (1979).

21. C. E. Leiserson, Systolic priority queues. Proc. of the Caltech Conf. on VLSI, 199-214
(January 1979).

22. C. A. R. Hoare, Communicating Sequential Processes. Comm. of the ACM 21(8):666-677
(1978).

