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We introduce some ideal from the theory of approximate reasoning and from 
possibility theory based on fuzzy sets. We shown how these ideas can form the 
basis for building classification models which enable one to use imprecise infor- 
mation in their construction. 
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1. INTRODUCTION 

The problem of classification objects, of which pattern recognition and 
multicriteria decision-making are special applications, is one which 
permeates much of the current technical literature. 

Much of the information which can be of use in classification 
techniques may not be used because of its soft or imprecise nature. A 
significant improvement to classification procedures would be the ability to 
include all the available information whether hard or soft. 

In a number of articles (concluding with Ref. 21) Zadeh has developed 
a theory of approximate reasoning based upon fuzzy subset theory (see 
Ref. 22 for a complete listing of Zadeh's work). This theory has the ability to 
handle both soft and hard data as well as various types of uncertainty. Many 
aspects of this development can be incorporated into a general classifier 
which has the ability to include all types of information which may be of use 
to a person trying to classify some objects. Sanchez ~8) has used this 
methodology for medical diagnosis which is essentially a pattern recognition 
problem. Yager (1~ has used aspects of this theory in formulating 
solutions to multiple-criteria decision problems. 
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In this manuscript, which is somewhat tutorial in nature, we shall use 
Zadeh's theory of approximate reasoning to supply a general framework for 
classification problems. This framework will be broad enough to include 
imprecise as well as precise granules of information which may be of 
assistance in the classification of objects. 

We shall first begin with a discussion of aspects of fuzzy set theory and 
approximate reasoning which will be of use in the construction of our 
general classifier. 

2. FUZZY SUBSETS, LINGUISTIC, VARIABLES AND POSSIBILITY 
THEORY 

Assume U is a set of elements a fuzzy subset A is a subset of U in 
which the membership grades lie in the unit interval instead of the usual 
binary set {0, 1 }. Thus, a fuzzy subset A can be characterized as a mapping 

A: [0, iI 

in which for each u E U, A(u) indicates the degree of membership of u in the 
subset A. The larger the value A (u), the stronger the membership. A calculus 
has been developed by Zadeh for manipulating fuzzy subsets. (6) Assume A 
and B are two fuzzy subsets of U, then 

(1) the intersection C --A ~ B  is also a fuzzy subset of Usuch that 
C(u) = A(u) A B(u), where A = min 

(2) the union D = A U B is also a fuzzy subset of U such that 
D(u) = A(u) V B(u), where V =  max 

(3) the complement A' is also a fuzzy subset of U where 
A'(u)  = 1 - A ( u ) .  

(4) A", where n/> 0, is also a fuzzy subset of Uwhere 
A"(u) = (A(u))". 

A significant use of fuzzy subsets is its ability to represent concepts in 
which there exists some imprecision with respect to its definition. For 
example, if U is a set of heights and A is the concept of tall, than fuzzy 
subsets allows us to represent this idea in a more natural manner than 
ordinary set theory. 

A primary application of fuzzy subsets is in the representation of 
linguistic variables. Assume M is a variable, such as the gas mileage on a 
car. Let U be the set of values which M can assume. U is referred to as 
universe of discourse of M. In many instances, an exac tor  precise value for 
M cannot be obtained, but instead some imprecise or inexact value for M is 
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available. For example, the miles per gaUong for a particular type car may 
be stated as "high" or "low" or "about  20 miles per gallon." Using fuzzy 
subsets we can express this information in an analytic manner which will 
enable us to manipulate these imprecise values. In particular, if we know that 
the miles per gallon is to "about  20," we can represent this information by 
assigning the value F to M, where F is the fuzzy subset of U representing the 
value "about  20." More generally, if M is a variable taking values in the 
universe of discourse U, using linguistic values for M allows us to indicate 
either precise 2 or imprecise values for M by setting 

M =  F, 

where F is a fuzzy subset of U. 
Following a suggestion by Zadeh, (2~ the statement that M = F has the 

effect of acting as a restriction on the values which M can assume. In 
particular, the information that M = F associates with the variable M is a 
possibility distribution over U, such that for each u E U, H~(u), the 
possibility that M = u, is equal to F(u). In the simplest case the statement 
M = u~ implies that the possibility of M assuming any value other than that 
of u i is zero, while the possibility of assuming the value u i is one. Thus, by 
using fuzzy subsets to represent linguistic values for variables we can convert 
information into a possibility distribution for that variable over its universe 
of discourse U. 

The possibility distribution is a generalization of the concept of ease 
with which M can assume a particular value in U given the known infor- 
mation about M. 

3. CYLINDRICAL EXTENSIONS AND FUZZY SUBSETS OVER 
DIFFERENT SETS 

In the previous section we defined the operations of union and inter- 
section of fuzzy subsets in the case when both subsets are defined over the 
same set. In this section, we shall extend these operations to the case when 
the fuzzy subsets are defined on different sets. 

Definition. Assume U and V are two sets, let A be a fuzzy subset of 
U, the cylindrical extension of A to U • V, denoted A is defined as the fuzzy 
subset of U • V, such that 

Y(u,  v) = A (u). 

2 A precise value for M, for example, M = 50 where 50 C U can be expressed as the fuzzy 
subset {1/50}. 
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Example. Assume U =  {1, 2, 3} and V =  {a, b}, let 

.9 
A =  ' 2 ' 3  

then the cylindrical extension of A to U • V is 

l .5 .5 .9 .9 1 1 l 
"4= (1, a ) '  (1, b ) '  (2, a ) '  (2, b ) '  (3, a ) '  (3, b) 

Again, assuming U and V are two sets, let A and B be fuzzy subsets of  
U and V, respectively, we define the intersection and union of A and B as 
follows. 

(1) Intersection 

C = A n B, where C is a fuzzy subset of U • V 

such that, 

C(u, v) =A(u)  A B(v). 

Using the notation of cylindrical extensions 

C = A n B where 

iT and/Y are the cylindrical extensions of A and B to U • V. 

(2) Union 

D = A n B, where D is a fuzzy subset of U • V such that, 

D(u, v) = A ( u )  V B(v). 

Using the notation of cylindrical extension 

D = A U / ~  

The opposite of the operation of cylindrical extension is the concept of 
the projection of a fuzzy subset. 

Definition. Assume G is a fuzzy subset of U X tl ,  the projection of G 
on U, denoted Proj G, is a fuzzy subset of U defined as follows: 

on U 

proj G(u) = Sup G(u, v) 
o n U  v C V  
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Example .  U =  {1, 2, 3} V = { a , b }  

let 

G___ 
.7 .6 .9 .5 .8 .1 ) 

(1, a ) '  (2, a ) '  (3, a ) '  (1, b ) '  (2, b ) '  (3, b) 

.7 .8 .9 
F = P r o j  G =  1 '  2 '  3 

o n  u 

4. FUZZY LOGIC 

The fuzzy logic developed by Zadeh (21) is the logic of approximate 
reasoning. Its constituents are a set of translation rules and a set of rules of 
inference. The translation rules consists of a set of procedures for modifying 
or forming composite propositions out of basic propositions. The rules of 
inference are procedures for making logical deductions f r o m  fuzzy 
propositions. 

We shall first briefly define some of the translation rules that will be of 
interest to us. 

Assume X, Y, and Z are variables taking values in the universe of 
discourses U, V, and W respectively. Let F, G, and H be fuzzy subsets of 
U, V, and W, respectively. 

(1) The proposition "X is F," (X = F), which assigns a linguistic value 
to X, translates into a possibility distribution Fix for X on U, such that for 
each u ~ U 

rS( ) = 

(2) The proposition 

X is not F, 

which again assigns a linguistic value to X, translates into a possibility 
distribution for X of H x on U such that for each u C U 

Fix(u ) = 1 -- F(u) .  

(3) The proposition 

X is very F, 
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which again assigns a linguistic value to X, translates according to Zadeh, 
into a possibility distribution for X of H x on U such that 

rfx(u) = F2(u). 

(4) The proposition 

X is sort of  F, 

translates into the possibility distribution defined by 

Hx(u ) = F 1/2 (u), 

Among other uses these translation rules enable us to define our infor- 
mation in terms of certain primary concepts which can be defined by a user. 
In a sense, these primary concepts from a linguistic scale which the describer 
uses to measure his other linguistic values. In the case of a variable 
corresponding to age, the primary terms can be, for example, young, old, 
middle age, etc. 

(5) The proposition 

X i s F a n d  Y i s G  

translates into the joint possibility distribution Hx, r of the binary variable 
(X; Y) on U •  V such that for each u E U and v C V, H x , r ( u , v ) =  
F(u)  A G(v), when X and Y are possibilistic independent. 3 The operation can 
be easily extended to n variables, X 1 is F 1 and X 2 is F 2 and X 3 is F 3 --- and 
Xn  is Fn translates into 

nx l , x  ~ ..... x,(Ul, u2,..., u , )  = Fl (u l )  A F2(u2) A ... A F , ( u , )  

(6) The proposition 

X i s F o r  Yis  G 

translates into the joint possibility distribution Hx, v of the  binary variable 
(X, Y) on U •  V such that for each u C U and v C V 

nxAu, v)=F(u) v G(v). 

This operation can also be easily extended to n variables. 

:t When X and Y are possibilitically dependent the marginat possibility G(v) must be replaced 
by the conditional possibility of v given u, G(v/u). 
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(7) The proposition 

I f X i s F t h a n  Y i s G  

translates into the conditional possibility distribution Hr/x on the set U • V 
such that 

(1) Hr/z(V/U)= (1 --F(u)+ G(v)) A 1. 

There are a number of alternative possible translations 
proposition, among those finding primary applications are: 

(2) Hv/x(V/u ) = (1 -F(u))  V G(v) 

(3) Hr/x(V/U ) = (r(u) A a(v)) V (1 --F(u)) 

(4) IIv/x(V/U ) = 1 if G(v) ) F(u) 

O(v) 
- F(u) otherwise 

Hv/x(V/u)= l if G(v) >/ F(u) (5) 

of this 

= G(v) otherwise. 

A number of authors have investigated the various properties of these 
differing interpretations of this proposition. (2'3'7'9) 

Note 1. Combinations of the above propositions are of course 
possible. For example, 

(X is very F or Y is G) and Z is H translates into: 

Hx.v,z(U, v, w) = (FZ(u) V G(v)) A H(z) 

The rules of fuzzy inference govern the deductions which can be made 
in approximate reasoning. (21) 

(I). The Entailment Principle. Assume F and G are fuzzy subsets of 
U such that for all u E U, F(u)~ G(u), that is F ~ G, than the entailment 
principle states that 

n . = e  Xlx=6. 

The entailment principle is a generalization of the ability to go from a 
very specific statement of fact to a less specific statement of fact while 
keeping within the truth. For example, the knowledge that X equals 7 implies 
that X is less than 10 is also true. 

828/10/2 6 
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The entailment principle is also related to the idea that possibilistic 
information is a reflection of putting restrictions on our possibilities. Thus, 
by using the entailment principle, we are in a sense not using all our infor- 
mation. 

(1t). The Projection Principle. Let X 1, X 2, .... X .  be a set of variables 
whose universe of discourse are UE, U2 ..... U.,  respectively. Assume P is a 
fuzzy proposition which implies that: 

IIx!,X2,..,+Xn ~ F~ 

where F is a fuzzy subset of U 1 • U 2 • ... • U~ = U. 
Let S = ( i l , i  z, i 3 ..... ik) be a subsequence of (1, 2 ..... n), let us denote 

X = (X1, X z ..... )2 , )  and (Xtl , Xi2,..., Xi~ ) = X s. 
We shall denote the projection of F on U, = Us, • Ui2 • . . .  • Uik, as 

P ro j ,F .  Proj,  F is a fuzzy subset of U s such that for any 

(us,, ui~,-.-, uzk) ~ Us 

Proj,  F(ui~, ui2, .... uik ) = S U P F  
over all points in U such that in the subsequence S 

the elements have the argument (uil, ui2 ..... uik) 

The projection principle asserts that 

I I x = F ~ I I x ,  = Proju F. 

Note .  The projection principle is in reality a special application of the 
entailment principle. 

Consider the variables X and Y defined on the base sets U and V. Let 

-Ix,y = F 

where F is a fuzzy subset of U • V. Consider the fuzzy subset G of U • V 
where 

G(u,  v) = Max F(u ,  v). 
fJEV 

we observe 

(1) FCG,  thus the entailment principle implies I Ix ,  v = G. 

(2) for a given value of u, G(u,  v)  is fixed. That is, G is just solely 
determined by its X value, Y is a dummy variable in G. Thus, we can say 
that if Fix. v = G this really implies a unique distribution over U s.t. Hx(u  ) = 
G(u, v) for any v. 

(3) G(u, v) is the projection on U. 
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Before proceeding with our rules for inference in approximate reasoning 
we must express some results from the calculus of possibility theory. 

Assume X and Y are two variables taking values in the sets U and V. 
Let Hv/x be the conditional possibility distribution associated with these 
variables, i.e., Hy/x(V/U ) indicates the possibility that Y =  v given X = u, thus 
it is defined for all elements in the set U •  V. Let H x be a marginal 
possibility distribution associated with the variable X, i.e., Hx(u ) indicates 
the possibility that X = u ,  thus H x is defined for all elements in U. 
Furthermore, let Fix, r be the joint possibility distribution associated with X 
and Y, i.e. Hx,r(u, v) indicates the possibility that X =  u and Y =  v, thus 
Fix. v is defined for all elements in U • V. As suggested by Zadeh (z~ and 
Hisdale <4> 

v) = f ix (u)  n 

More generally this can be expressed as 

Hx. r = Hv/x N Hx 

where / I  x is the cylindrical extention o f H  x to U X V. 

A special law of inference in fuzzy logic is the rule of fuzzy 
compositional inference, (~8) which is the application of the above relationship 
followed by the application of the projection principle. 

Assume we have two propositions P1 and P2, such that P~ translates 
into a possibility distribution on the set U associated with the variable X, i.e. 
X = g where g is a linguistic value representable as a fuzzy set G of U and 
therefore Hx(u)=G(u  ). Assume that P2 translates into a possibility 
distribution on U X V associated with the conditional variable Y/X, i.e., if 
X =  h then Y =  k, where h and k are linguistic values representable as the 
fuzzy subsets H and K over U and V, respectively, from our previous 
discussion of translation rules a choice of interpretation for implication leads 
to Hv/x(V/U ) = D(u, v), where for example D(u, v) = (1 -- H(u)) V K(v). 
From the previous relationship we can infer that 

nx, , . (u,  v) = n x ( u )  A ny /x (v /u)  

o r  

] I X ,  Y = H X  (-~ ~ f  Y/X ~ 

The projection principle allows us to infer a marginal possibility 
distribution Hr(v  ) of Y as 

llv(v ) = Max Ilx,v(u, v). 
UEU 
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We note we can then retranslate / /r(V) into a fuzzy subset F over V 
such that F(v) = IIF(V ), where F is representative of  some linguistic va luef .  

Symbolically we can represent the law of  compositional inference as 

P3 = P1 o P2 

or 

Y = F = G o D  

where 

F(v) = ny (v )=  Max [G(u)/X D(u, ~] = M~[nx(u)  A IIy~x(~lu)]. 

One further rule of  inference must be supplied. Assume PI  and P2 are 
two propositions or statements such that they both supply some information 
about the same variable, i.e., 

P ~ : X i s A  

P 2 : X i s B  

where A and B are two fuzzy subsets of  U, then these two statements jointly 
translate into the possibility distribution 

nx(u) = a (u) /~ B(u). 

A special case of  this occurs when 

P~ : I f X  is A x then Y = C~ 

P2 : I f X  is A 2 then Y =  C 2 

then this translates into 1-1r/x(v/u ) = Ol(U, v) A O2(u , v) where D 1 and D 2 are 
the translations of  each of  the statements. 

5. GENERAL CLASSIFICATION PROBLEM 

The general classification problem, which we shall describe will be 
shown to be amenable to solution techniques based upon fuzzy set theory. 

Assume we have a set of  categories W =  {Wl,W2 ..... wn}. Let X be 
X 1 , X  z ..... Xp be a class of  properties or characteristics useful in describing, 
defining or distinguishing between these categories. Assume that these 
characteristics are each measurable on the respective universes of  discourse 
U 1, U z ..... Up. Furthermore, assume we have a set of  rules, R, which based 
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upon the characteristics X~, X 2 ..... Xp describes the possibility of membership 
in the categories of W. The general classification problem involves the 
classification of some object, A, with respect to the categories of W, based 
upon the values of the object A with respect to the characteristics 
X1, X2 ..... Xp. 

In medical diagnosis, for example, ~8) W could be a set of diseases under 
consideration, the X's would be a class of characteristics associated with 
human well being, such as, temperature, blood pressure, blood count, etc., 
the sets of U ' s  would be scales on which these characteristics are measured, 
R would be the information describing the various elements of W in terms of 
values for the X's, that is, R is the experts information, in this case the 
doctors and finally A, would be a patient described in terms of his readings 
for the characteristics X1, X 2 ..... Xp.  In this case the problem would be to 
determine the possibility of A having the various diseases based upon the 
readings of the X;'s for A. 

As we shall shortly see an advantage of the fuzzy set approach will be 
our ability to represent a vast variety of forms of expert information in the 
construction of R. 

Assume V is some unobservable variable, which can take values in 
some set W. Let X~, X z,..., Xp be some set of observable values which can be 
related though R to our unobservable variable V. Then using this general 
classification approach, given a set of readings for the X's, we could 
determine possible values for the unobservable variable V. 

The general classification problem can be applied to problems involved 
in drilling for oil. In this case W would be a set of possible conditions a site 
could have with respect to the availability of underground oil. The X's would 
be a set of measurable characteristics which are related through R to the 
availability of oil. Then given the readings for a site in terms of its values for 
X we could then determine the possible structure of our site. 

Control systems can also be subsumed under this general problem (see 
MamdaniC6)). Decision problems can also be shown to be describable under 
this model. 

6. AN EXAMPLE OF THE FORM OF R 

The heart of our classification procedure consists of the set of rules R 
which relates the variable V to be classified to the observed variables 
X 1 , X 2 ..... Xp.  The rules which compose R are a reflection of the information 
available about the relationship between the X's and V. In many cases this 
information takes the form of imprecise observations made by an expert. The 
structure which we shall present affords us the opportunity to include this 
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type of information. It allows us to handle imprecise or precise valuations for 
the objects to be classified. 

In the case we shall study in this section we shatl assume R is made up 
of a collection of descriptors each of which is a granule of information (5"19) 
which describes the variable to be classified in terms of the characteristic 
variables, the X's. Mathematically these granules are mappings from fuzzy 
subsets of U~ • U 2 • .-- • Up into fuzzy subsets o f  W. 

As an illustrative example we shall consider the problem of an 
administrator whose task is to categorize candidates as to their successful 
performance on a job. Let the categories considered W, be 

W = (highly successful, marginally successful, failure). 

Assume the characteristics which the administrator considers as 
significant in the performance of the job to be college average and age. 

Based upon his experience our administrator can make some imprecise 
inferential observations on the success of a candidate. These observations are 
what we shall call information granules. 

An information granule in this ease could be d I : If a person has a high 
college average and is not old he will be highly successful. Using Zadeh's 
theory of approximate reasoning we can express this information as a fuzzy 
relationship on the appropriate sets. 

Let X1 be the variable corresponding to college average. For simplicity, 
we can assume it is measured on the set, 

U~= {0, t, 2 ,3 ,4}.  

Let X 2 be the variable corresponding to the age of the candidate, let it 
be measured on the universe of discourse 

U2=  {20,25,30,35,40}.  

We can express our descriptor or granule in propositional form as 

d~ : If X~ = high and X 2 = not old then V = highly successful. 

We can then express each of the linguistic values 
descriptor as a fuzzy subset of the appropriate base set. 

For example, 

Io o 0 5 Ii 
G t = h i g h c o l l e g e a v e r a g e =  0 '  1 '  2 '  3 '  4 

in the above 
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and if 

l 0  0 .3 .7 1 l 
o l d =  2 0 '  2 5 '  3 0 '  3 5 '  40  = F  

then 

I 1 1 .7 .3 0 l 
F ' = n o t o l d =  2 0 '  2 5 '  3 0 '  3 5 '  40 

and finally 

l 1 0 0 I 
Ka = very successful = very successful' marginal ' failure " 

Let X = {X 1, X 2 } and U = Ua • U 2 then X~ = high and X 2 = not old can be 
expressed as a fuzzy subset M~ of U such that 

M ~ ( x ,  y )  = G ( x ) / ' ,  F ' ( y )  for x C U~ and y ~ U 2. 

Thus our descriptor becomes, "if  X =  M x then V--K~" 
In our case we get as the possibility distribution for M~ : (u i E U). See 

Table I. 
Selecting an appropriate definition for the "if-then" translation we can 

express our descriptor as a possibility distribution S~ over U • W. 

Table I. Possibility Distribution for  M 1 

(0, 2 0 ) =  u 1 M l ( u t )  = 0 (1, 20) = u 6 Ml(u6)  = 0 
(0, 2 5 ) =  u2 M~(u2) = 0 (1, 2 5 ) =  u 7 Mt(uT)  = 0 

(0, 30 = u3 M~(u3) = 0 (1, 30) = u 8 Ma(us)  = 0 
(0, 3s) = u, M~(u4) = 0 (1, 3S) = u~ M~(U~o) = 0 
(0, 40) = u~ M~(u,) = 0 (1, 40) = u~o M~(u,o) = 0 
(2, 20) = Ull ml(/,~l 1) z O (2, 20)  m ul  6 m l (U l7  ) = ,5 
(2, 25) = ul2 M,(u12 ) = 0 (3, 25) = u,7 M~(u,7) = .5 
(2, 30) = ut3 M~(u,~) = 0 (3, 30) = u~8 ?v/~(u~8) = .5 

(2, 35) = us4 MI(u~4) = 0 (3, 3 5 ) =  u~9 M~(u~9 ) = .3 
(2, 40) = u, ,  M~(u,~) = 0 (3, 40) = U2o M,(u2o ) = 0 
(4, 20) = u2, M~(u21 ) = 1 

(4, 25) = u~2 Ml(u2z  ) = 1 

(4, 30) = Uz3 Mi(uz~ ) = .7 
(4, 35) = uz4 M,(u~4 ) = .3 
(4, 40)  = u~5 MI(u~5 ) = 0 
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Table  II. Poss ibi l i ty  Distr ibution for S 1 

Wt = Very successful W~ = Marginal W s = Failure 

ul 1 I 1 
u2 1 1 1 
u 3 1 1 1 
u 4 1 i 1 
u~ 1 1 1 
u 6 1 1 1 
u 7 1 1 1 
u 8 1 1 1 
u 9 1 1 1 
u~ 1 1 1 
Uio 1 1 1 
ull 1 1 1 
ul2 1 1 1 
UIs 1 1 1 
ut4 1 I 1 
ul5 I 1 1 
ul~ 1 .5 .5 
u17 1 .5 .5 
u~8 1 .5 .5 
u19 1 .7 .7 
uz0 1 1 1 
u21 1 0 0 
u~2 1 0 0 
u23 1 .3 .3 
/'/24 1 .7 .7 
u25 1 1 1 

" I f  X is M~ t h e n  V is K~ t r a n s l a t e s  i n to  Fix,  v --- S~ ,  w h e r e  S~ is a fuzzy  

s u b s e t  o r  pos s ib i l i t y  d i s t r i b u t i o n  o f  U • W s u c h  t h a t  

&(w/u) = 1 A ( I  + IC,(w)) 

F o r  p o s s i b i l i t y  d i s t r i b u t i o n  for  S 1 s e e  T a b l e  II, 

T h u s  we  h a v e  s h o w n  o u r  d e s c r i p t o r  c a n  be  e x p r e s s e d  as  a pos s ib i l i t y  

d i s t r i b u t i o n  o v e r  U • W = U 1 • U 2 • W. 

A s s u m e  o u r  expe r t  ha s  a s e c o n d  d i s t i n c t  g r a n u l e  o f  i n f o r m a t i o n ,  d 2, 

d e n o t i n g  s o m e  f u r t h e r  i n f o r m a t i o n  w i th  r e spec t  to  the  r e l a t i o n s h i p  b e t w e e n  

o u r  c h a r a c t e r i s t i c  v a r i a b l e s  a n d  o u r  v a r i a b l e  to  be  c lass i f ied .  

F o r  e x a m p l e  

d2 " I f  X2 = ve ry  o ld  t h e n  V = fa i lure .  
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F i r s t  w e  n o t e  t h a t  a d e s c r i p t o r  o f  t h e  f o r m ,  

I f X  2 = F t h e n  V = K is e q u i v a l e n t  t o  

I f  X1 = Ua a n d  X z = F t h e  V = K .  

F o l l o w i n g  t h e  s a m e  p r o c e d u r e  as  a b o v e  w e  t r a n s l a t e  t h i s  d e s c r i p t o r  i n t o  

a f u z z y  s u b s e t  S 2 o v e r  U • W s h o w n  in  T a b l e  I I I .  

O u r  c l a s s i f i e r  R c a n  n o w  b e  c o n s i d e r e d  as  b e i n g  m a d e  up  o n  t h e  t w o  

p r o p o s i t i o n s  

T h u s  

R = d l  a n d  d 2. 

R = $ 1 ~ $ 2  

Table III. Fuzzy Subset S 2 over U x W 

S 2 

W1 W 2 W 3 

u I 1 ! 1 
u 2 1 1 1 
u 3 .91 .91 1 
u 4 .51 .51 1 
us 0 0 I 
u 6 ] 1 1 
u v 1 1 1 
u 8 .91 .91 I 
u 9 .51 .51 1 
ulo 0 0 1 
uli 1 1 1 
ul2 1 1 1 
u13 .91 .91 1 
ul 4 .51 .51 1 
u15 0 0 1 
ul6 1 1 1 
UI7 1 ] 
ul8 .51 .51 1 
U2o 0 0 1 
u2~ 1 ! 1 
u22 1 1 1 
u23 .91 .91 1 
/'/24 ,51 .51 1 
u25 0 0 I 
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w h e r e  u s i n g  the  i n t e r s e c t i o n  o f  t w o  fuzzy  sets  we get  

R (w/u)  = M i n  IS 1 (w/u),  S2(w/u)].  

I f  we h a d  m o r e  d e s c r i p t o r s  t h e n  we w o u l d  j u s t  f o r m  the  i n t e r s e c t i o n  o f  

all  t h e s e  de sc r i p t o r s .  T h u s  we see t h a t  R is a i n t e r s e c t i o n  o f  fuzzy  subse t  

e a c h  re f l ec t ing  the  i n f o r m a t i o n  supp l i ed  b y  a g r a n u l e  or  de sc r i p to r .  

F o r  t he  case  we are  s t u d y i n g  we get  R as  s h o w n  in T a b l e  IV.  

W e  c a n  n o w  g e n e r a l i z e  the  p r o c e d u r e  for  the  f o r m u l a t i o n  o f  the  

r e l a t i o n s h i p  R.  A s s u m e  we h a v e  n d e s c r i p t o r s  d l ,  d2,  d 3 ..... dn, p v a r i a b l e s  

X I , X  2 ..... Xp e a c h  m e a s u r e d  o n  U 1, U 2 ..... Up respec t ive ly ,  w h e r e  a 

d e s c r i p t o r  is o f  the  f o r m  

di: I f  (X  1 = A i  1 a n d  X 2 = A i  2 ...  a n d  Xp =Aip )  t hen  V = K  i. 

Table IV. R as an Intersection of Fuzzy Subset 

R 

W 1 W 2 W 3 

u 1 1 1 1 
u 2 ~1 1 1 
u 3 .91 .91 1 
u 4 .51 .51 1 
u5 0 0 1 
u 6 1 1 1 
u7 1 1 1 
u 8 .91 .91 1 
u 9 .51 .51 1 
Uio 0 0 1 
ull 1 1 1 
u~2 1 1 1 
u13 .91 .91 1 
ul4 .51 .51 1 
u15 0 0 1 
u16 1 .5 .5 
ux7 1 .5 .5 
u18 .91 .5 .3 
u19 .51 .51 .7 
u2o 0 0 1 
u21 1 0 0 
u22 1 0 0 
u23 .91 .3 .3 
u24 .51 .51 .7 
u25 0 0 1 
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The A # s are fuzzy subsets of the Uj's and K i is a fuzzy subset of W. Each 
descriptor reflects into a fuzzy subset Si on the variable ( W 1 , X 2  ..... Xp,  V) 

over the set U •  ( U = U I X U 2 •  such that S i ( y  i , y 2 , y 3  ..... 

yp, W ) =  1 A ( ( 1 - - M i ( y i ,  y 2 ..... yp) + Ki (w))  for each y i E  Ui and w E  W, 
where 

Min [A ij(Yj)]. M i ( Y l  , Y2 ..... YP) = j= 1,2 ..... p 

Finally 

R = $ 1 ( 3 S 2 ~ . . .  ~ S ,  

where R is a fuzzy subset of U X W where 

R(w/y)= Min [Si(w/y)] 
i = 1 , 2  . . . . .  n 

for e a c h y E U a n d  w E  W. 

7. CLASSIFYING OBJECTS 

Having developed a classifier relationship R the next problem involves 
the classification of a particular object. In our general case an arbitrary 
object which is to be classified is characterized by its values for the X's. 
Assume 

Xl = A ~  

X: = A *  

=A;, 

where A* is a fuzzy subset of U t indicating the value o f X  i for our object. 
Thus our object is defined by the Pary variable X = (X  1, X z ..... Xp), 

where X = M*. M* is a fuzzy subset of U 1 • U z • ... X Up defined as M* = 
/T* c3 A* (-3 A* N ~T, where 

M * ( Y l ,  Yz, Yp) = Min [Ai(Y;) ] 
i =  1 . . . .  ,p 

for Yi C U i. Again denoting U =  U~ • U 2 • . . .  • Up we have the following 
information: 

P1 : H x  = M *  and P2 : IFlv/x "= R 

where M* is a fuzzy subset of U and R is a fuzzy subset of U • W. 
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We can now apply the rule of fuzzy compositional inference to get V* 
the possibility distribution associated with our object: 

V* = K*, 

where K* is a fuzzy of W s.t. 

K*(w)  = Max(M*(u) A R(W/U)) 

We interpret K* as a the possibility distribution on the variable V over 
the set W. This distribution associates with every w ~ W the possibility of it 
being the classification of the object being studied. 

For the example we were studying in the previous section let us assume 

X l = 3 = l O  0 0 1 0 l 
0 ' 1 ' 2 ' 3 ' 4  

l ~ 1 7 6 1 7 6 1 7 6  
40 

Thus we can calculate M* as 

M*(3'30)=M*(uls)=lM*(ui) = 0 i 4: 18. i.e., M* = l ( 3 ~ 3 ~  I . 

Applying this set to our fuzzy classifier R we obtain the following 
possibility distribution for our object: 

K*(Wl) = .91 

K*(W2) = .5 

K*(W3) = .5. 

Thus, the possibility our candidate will be very successful is .91, while 
the possibility of him being marginally successful or a failure is .5. 

The output of our fuzzy classifier is a possibility distribution H over the 
set W where for any w E W, H(w) indicates the possibility of the classified 
object being in category w. Assume L is a subset of IV, for some purposes 
we may be interested in expressing the possibility of our object comming 
from the set L. The calculus of possibility theory developed by Zadeh ~2~ 
suggests a manner of doing this. In particular, if tr indicates the object to be 
classified and if H o is the possibility distribution over W obtained from our 
classifier then 

p o s s { o  c L t = [r /o (w)] .  
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More generally, if L is a fuzzy subset of W, with membership function L(w), 
then 

Poss{o E L} = Max[//o(w) A L(w)]. 
w E W  

For other purposes we may be interested in determining the certainty with 
which we can say o E L, where L may be a fuzzy subset of W. Zadeh ~5) 
suggests a means of measuring this certainty, 

CERT{a E L} = INF[(1 - H~(w)) V L(~o)] 

For the special case when L = {w. } we can obtain the certainty that a is w i 
a s  

CERT{ais  wi} = INF [1--Ho(w)]  = 1--  Max [HQ(w)]. 
w E W - - w  i w ~ W - - w  i 

Thus in our example the certainty the candidate will be very successful is .5. 

8. CONSIDERATIONS IN THE CONSTRUCTION OF R 

In constructing the classifier R there are a number of factors to be 
considered, particularly with respect to the determination of the translation 
rule for the "if-then" type proposition. We noted in an earlier section that 
there are a number of possible ways of translating "if-then." Among the 
factors useful in determinning which rule to use to translate this type of 
proposition are scale information, degree of restriction, implicit meaning, 
default evaluation, and ease of computation. In this section we shall 
investigate these considerations. 

The construction of a classifier of the type we have described requires 
the user to supply information on the membership values for the linguistic 
variables which make up the information granules which compose our 
classifier R. We have tacitly assumed that these pieces of information are 
supplied from an absolute scale having values in the unit interval. In many 
cases it may be difficult to get the expert to supply information in this detail. 
We shall investigate the possibilities of supplying information in less detail. 

We note that R = O k Di, where Di is the translation of the i th i=1  

descriptor. Furthermore, if B is the combined characteristic of the object 
than 

V = A = B o R  

where A( w) =  Maxu~,[B(u ) A R(w/u)] is the possibility distribution of the 
classification of the object. 
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Fact 1 - - i f  B and R are drawn from the same ordinal scale than we can 
perform the operations necessary to obtain A. 

Thus the compositional inference operation just requires an ordinal 
scale (actually all we need is a lattice). 

Furthermore, since 

k 

R = O D  i 
i-1 

where R(w/u)= Min Di(w/u ) we can conclude: 

Fact 2 - - I f  each of the Di have membership grades drawn from the 
same ordinal scale we can perform the operations necessary to calculate R 
from these granules. 

Thus the construction of R from the Di's just requires an ordinal scale 
(actually again all we need is lattice). 

We shall now look into the scale requirements necessary for the 
formulation of the various definitions of implication from the basic 
constituents. 

Assuming our implication statement is 

"if X = F then V = G," 

we see the following: 

Fact 3 - - i f  F and G have membership grades drawn from the same 
ordinal scale with a maximum element, we can perform the operations 
necessary to calculate the implication 5, defined by 

1. D(w/u)= 1 if G(w) >/ F(w) 

= G(w) if F(u) > G(w). 

Fact 4 - - I f  F and G have membership grades drawn from the same 
scale which is ordinal and has a negation defined on it we can perform the 
necessary operations to calculate implications 2 and 3 defined by 

2. D N F ' U G  
D(w/u) = Max[1 -- F(u), G(w)] 

3. D = ( F O G ) U F '  

D(w/u) = Max([ r (u)  A G(w)], 1 - F ( u ) ] )  
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Fact 5-- implicat ions 4 and 1 require a ratio and absolute scale respec- 
tively to perform the necessary operations. 

Fact 6 - - t h e  construction of the m-ary variable X =  (X 1 = F1 )  and 
(X 2 = F2) -.. and (X~ = F , )  just requires the membership grades of each of 
the F 's  to be drawn from the same ordinal scale. 

Based upon these observations we can conclude: (i) If we use 
implication 5 we can construct and apply our classifier using a finite linear 
ordered scale to measure the membership grades for our basic elements, (ii) 
for implications 2 and 3 we need a finite a finite linear ordered scale with 
negation defined on it; (iii) for implications 4 we need a ratio scale (iv). For 
implication 1 we need an absolute scale. 

It should be noted that while it is easier to obtain an ordinal scale than 
a ratio scale, and still more difficult to obtain an absolute scale, having an 
absolute scale enables us to perform linguistic hedges such as "very" to 
modify the values of our variables. 

In addition various other procedures we may want to perform on our 
model are more readily performable if our information is absolute. 

Unless otherwise specified we shall assume we have our basic infor- 
mation drawn from an absolute scale. 

We note that the effect of an "if- then" granule is to supply some 
restriction on the possible values of the consequent based upon the value of 
the antecedent. In making an "if- then" statement there is some implicit idea 
of tightness of connection between consequent and antecedent/14~ The 
following relationships have been shown to hold between the various forms 
of implication. (2' 14~ 

Theorem. Assume A and B are two fuzzy subsets of U and W, 
respectively, consider the fuzzy implication, "if X = A then Y = B," let Ri be 
the resulting possibility distribution of this proposition via translation rule i, 
then 

1. R I ~ R 2 ~ R 3  

2. R 4 ~ R  5 

3. R I ~ R  ~ 

The effect of this theorem is that R 1 is a least-restrictive type of 
implication. Thus, in situations in which the expert is not very strong in the 
statement of  his descriptor we may want to use R1. On the other hand if the 
implication is meant to infer a very tight connection between antecedent and 
consequent we may want to use R 3. A fuller discussion of these 
considerations can be found in Ref. 14. The main emphasis of that discussion 
is that the selection of the translation rule must take into consideration the 
tightness between antecedent and consequent implied by the expert. 
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Another factor of significance in the construction of the classifier 
relationship R, from the individual descriptors, di, is the evaluation of the 
consequent for default of the antecedent. That is, given a descriptor if X = A 
then Y = B, what do we mean to happen if X = not A. 

Theorem. The translation of the proposition 

"if X = A than Y = B" 

is equivalent to the translation of 

if X = A then Y = B and if X = not A than Y = W, 

where A and B are fuzzy subsets of U and W, for all five of our translation 
rules. 

Proof: 

1. Rule 1 - - i fA  then B ~ R ( o g / u ) =  1 A (I - A ( u ) + B ( w ) )  

if .~ then W ~ R * ( w / u ) =  I A (i + A ( u ) ) =  1 

R(w/u)  and R*(w/u)  = R(w/u)  A 1 = R(w/u)  

2. Rule 2 - - i f A  then B ~ R ( o g / u ) =  (1 - A ( u ) )  VB(w) 

if~T then W ~ R * ( o o / u )  = (A(u) + 1) A 1 = 1 

R(w/u)  and R*(w/u)  = R(w/u)  A 1 = R(~o/u) 

The cases for rules 3, 4, and 5 can be similarly shown. 

In some cases we may want to overide this default consideration by 
explicitly inserting the evaluation of Y given not A for X. Thus in the 
construction of R we must give consideration to what effect we want if not A 
is the value of X. 

Baldwin ~2) raises some questions on the computational considerations 
associated with the compositional inference. 

Consider an information granule "if X I = A  1 and X 2 = A 2  ... and 
Xp =Ap then V = B " ,  where A 1 , A  2 ..... Ap are fuzzy subsets of U 1, U 2 ..... Up, 
respectively, and B is a fuzzy subset of W. If n 1, n 2 ..... np are the respective 
cardinalities of U1, U2 ..... U,, then U----- U1 • U2 X Up is a set of cardinality 
n~ X n2 X ... X nn=n .  In many cases n could get very large and cause 
computational problems. Baldwin t2) suggests some interesting alternatives in 
trying to solve this problem. 
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9. ANOTHER METHOD OF CONSTRUCTING R 

A different method of constructing R has been suggested by Mamdani (6) 
and studied by Baldwin. (2) 

In this method, ifA~ and B~ are fuzzy subsets of U and W, respectively, 
then the descriptors 

d l :  if X = A  i then Y = B  1 

d2: if X = A  2 then Y = B  2 

d n if X = A  n then Y = B ,  

are combined to form the classification relationship R by 

tt 

R = U A i •  where [A~• 

We shall call the translation of "if X = A  then Y = B "  via this rule 
Mamdani's implication. 

In many cases of interest to us the antecedent of the descriptor di, 
X = A  i, is represented by the conjunction of the form X I = A i ~  and 
X 2 = A i 2  "'" and X k = A i k  where A/j is a fuzzy subset of Uj, then 
X =  [X1 ,X  ~ ..... Ark] and A i = A i l f 3 A i 2 ( 3 . . .  ~ A i k  is a fuzzy subset of 
U =  U~ • U 2 • U~. Baldwin (z) has shown certain practical computational 
advantages of Mamdani's approach to the construction of R. 

Thoorom. (From Baldwin(2)). Assume R is constructed as above, 
assume an object has readings, X 1 = P~, X 2 = P2 "'" X~ = Pk, where Pi is a 
fuzzy subset of Ui, let P = F~ c3ff 2 ~ ... ~ f i ,  then the fuzzy compositional 
inference 

Q = P o R  

is equivalent to 

Q = 0 [0 (P i  o Du) ] 
i = 1 , 2  . . . .  ,n  

where 

Dij =A~ 7 X Bz.. 

The computational advantages shown by Baldwin raises the question 
under what conditions is Mamdani's approach to the construction of R valid 
in the light of Zadeh's rules of inference in approximate reasoning. 

828 /10 /2  7 
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Consider again the set of n descriptors dl ,  d 2 ..... d n, each of which is an 
implication of the form" if X = A ~ the Y -  B~," after translating each of these 
propositions into a possibility distribution R ; ,  using one of the five rules for 
translation suggested by Zadeh, we can obtain R as 

The question 
mulation 

R =  ~'] R i 
i = 1  

of interest is under what consideration is Marndani's for- 

R = N A t •  i 
/=1  

a good approximation to the above. In order to study this problem we shall 
use as our translation rule for 

"if  X = A then Y =  B"  

the rule suggested by Zadeh, (18) that the implication is translated as 
(A • B)t ._)A'= ( A ~ B ) t . . ) A ' ,  where the overbar indicates the cyclindrical 
extension and prime the negation. 

We shall consider first the case when we have three descriptors than 
generalize. 

Assume A1,AE,A 3 are fuzzy subsets of U and B1,BE,B 3 are fuzzy 
/ A/ i subsets of W and let A l, 2, A3 be the negation of A 1,A3, and A3, respec-' 

tively. 
Consider three descriptor 

d 1 : if X = A 1 then Y--  B 1 

d2: if X = A  2 then Y = B  2 

d 3 : i f X = A 3  then Y--B3  

in this case 

R = ( ( A ~ B O W A ' I ) ~ ( ( A z ~ B 2 ) W A ' z ) N ( ( A 3 ~ B 3 ) W A ' 3 )  

R ---- ( A I O B I O A 2 ( - ) B 2 ( " ) A 3 O B 3 ) k - )  ( A I ~ B I ~ A 2 ~ B 2 ~ A ' 3 )  

t )  (.41 ~ B  a ~A'2 ~ A 3  ~ B 3 ) k J  (A~ ~ B ~  ~ A '  z AA'3) 

w (,t'1 ~ A 2 O B E  (hA3 ~ B 3 )  k_) (A i ~ A  z ~ B  z ~A'3) 

~J (A'I NA'z ~ A 3  ~ B 3 )  U (A'i ~A ' z~A '3 ) .  

R = T 1 k._) T2U T3LA T4k._.) T 5 t.) T6k.. ) TTk.. ) 7'8" 
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We make the following assumptions 

I. A a i . _ ) A 2 k - ) A 3 = U  

! / 
II. A1c(A2(")A3) 

From assumption I, T 8 = q~ 
From assumption II 

Furthermore 

thus 

T 4 = A  1 ~ B ~  ~A~zC3A'  3 = A  I ~ B  1 

T 7 =A~ OA~ ~ A  3 ~ B  3 = A  3 (3B 3 

T6 = A'~ ~ A 2  ~ B 2  ~A '3  =A2 ("3 B z 

TI ~ T4 hence T 1 U  T 4 = T 4 

hence T 4 U T2 = T4 

hence T 4 L i T  3 = T  4 

hence T 5 k i T  6 = T  6 

3 3 

R = T4 k-) T6 U T7 = U (Ai (q Bi )  = U (Ai X Bi). 
i = 1  i = 1  

We can generalize this result: 

165 

"if  X =  A i then Y =  B i , "  

the conjunction of these implications can be represented in the form 

K 

U [A, x B,] 
i = l  

Theorem. Assume A 1 , A  2 ..... A k are fuzzy subsets of U and 
B~, B2,..., B ,  are fuzzy subsets of W, if we have K fuzzy implications of the 
form 
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if the conditions 

are satisfied. 

(1) 

(2) 

K 

U A t = U  
i = l  

For each i, i = 1, 2 ..... K 

K 

Aic N 
j : l , j r  

Corollary. Assume U is a finite dimensional set. If  we know the 
consequent for each u E U than we can use the above techniques. 

Furthermore if Ut{=lAi 4= U, but the second condition is satisfied our 
model becomes 

K K 

R = U (A, XBi)U U (Ai). 
i = 1  i = 1  

Thus, if we can obtain a good covering of the set U in the sense of satisfying 
conditions 1 and 2 then Mamdani 's  approach is acceptable. 

10. ALTERNATIVE APPROACHES TO CLASSIFICATION 

The exist alternative approaches to the classification problem using 
fuzzy subset theory. One approach is due to Baldwin (1) another has been 
suggested by Yager. (12) Before discussing these approaches we must present 
some further operations involving fuzzy sets. 

Assume A and B are two fuzzy subsets of U. The compatibility of B 
with A is defined as 

Comp[B/A] = tB(u) A(u) for u C U, 

which is a fuzzy subset of the unit interval. The above compability can be 
interpreted as the truth of the statement X = B given the proposition X = A. 

Assume we have a proposition 

(X is Q) is T 

where Q is a fuzzy subset of U and T is a linguistic truth value, a fuzzy 
subset of the unit interval, the translation of this proposition (21) is 

X i s  Q+ 
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where Q+ is also a fuzzy subset of U having membership 

Q+(u) = T(a(u)) for u ~ U 

Assume T1 and T 2 are two linguistic truth values, fuzzy subsets of the 
unit interval, corresponding to the truth of two propositions P1 and P2; 
V(P~)= T~ is the truth of proposition P~ similarly the truth of P2 is 
v(P2)= T 2. The truth of the combined proposition "P1 and P2," denoted 
v(P~ and P2) = T3, is also a linguistic truth value defined such that 

T2(y ) = Max[Tl(l) A T2(k)] 

overall I, k ~ [0, 1] such that 

l A k = y .  

The truth of the disjunction, "P~ or P2," denoted V (P~ or P 2 ) =  T4 is 
defined as 

T4(y ) = Max[Tl(l ) A T2(K)]. 

over all l, k E [0, 1] such that 

I V k = y .  

With this background we can now define Baldwin's (1~ approach to fuzzy 
inference. 

have proposition P1 describing some form of fuzzy Assume we 
implication, 

"if X=A then Y=B," 

where A and B are fuzzy subsets of U and V, respectively. Assume we have 
another fuzzy proposition, X = C, indicating the evaluation of X. 

Baldwin ~) suggests the following procedure for finding the restriction 
on Y based upon these two propositions. 

(1) Find T =  iC(w)/A(w)}, the truth of X = A  given X =  C. 

(2) Let H be the fuzzy relationship on [0, 1] • [0, 1] indicating the 
Lukasiewicz implication, 

H ( a , b ) = l A ( 1 - a + b )  a, b C  [0, 1]. 

Calculate the fuzzy subset W of the unit interval, 

W =  To H, 
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where 

(3) 

Yager 

W(b) = Max IT(a) A H(a, b)] 
a~[0,1] 

Since W is the  truth of the proposition Y = B, hence using truth 
function modification we get Y =  B +, as our restriction on the variable Y, 
where 

B + ( v ) =  W[B(v)] for each v ~ V. 

If we have K fuzzy implication statements each of the form "if  X = Ai 
then Y =  Bi," as we would have if we building a fuzzy classifier, then we 
proceed as follows: 

(1) For each implication statement calculate 

Ti = Comp[Bi/C] = t C(w) t 
I Bi(w) t 

(2) For each implication calculate the value Wi, 

Wi= Tio H 

(3) Calculate the restriction due to each implication 

Bi+(v) = Wi[Bi(v)]. 

(4) The restriction on Y, Q, is equal to 

Y= a =B+~ OB+2 (3 OB~ 

where 

Q(v) = Min [Bi + (v)]. 

If in our fuzzy classifiers the antecedent, X = A ,  is a compound 
statement of many properties, Baldwin's procedure handles this as follows: 

Assume: PI:  If X I = A  1 and X2-~A2"" and Xp=Ap then Y = B ,  
with X 1 = C1, X 2 = CE, X v = C v, where A l and C1,A2 and C2 ..... Ap and Cp, 
are fuzzy subsets of U1, Us,..., U v, respectively. 

The procedure suggested by Baldwin is a follows: 

(1) Let 

Mi= Comp[Ai/Ci] = t Ci(u) f 
f Ai(u) t u 
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(2) Calculate the conjunction of these truth values to give us the truth 
value associated with this implication 

T(y) = Max [Min[Mi(aj) ] ] 

over allaj E [0, 1 ] i = 1 ..... k 

Min aj = y 

(3) Proceed as above using T. 

The approach suggested by Yager ~12) though somewhat similar to that 
suggested by Baldwin assumes that the effect of the compatibility between A 
and C is to determine the importance of the constraint imposed upon the 
consequent. 

Again given 

i f X = A  then Y = B  

where X = C, Yager's method proceeds as follows 

(1) Calculate 

T= Comp[A/C], 

however here T is interpreted as the importance associated with satisfying 
the consequent, 

(2) Calculate the fuzzy subset Q of ~'; defined by 

Q =B r, 

then 

Y = Q is the restriction imposed on Y by this information. 

11. SPECIFICITY OF OUR CLASSIFICATION 

By whatever method we use to model a problem, as a result of our 
classification procedure we obtain a possibility distribution Q over the set W 
of classification categories such that Q(w) indicates the possibility that 
w C W is the classification of the object. 

If Q has membership grade of one for one element and zero for all the 
other elements this indicates that our model is very specifically pointing to 
one value of W as the classification of the object we are studying. 
Yager ~11'15~ has suggested a measure of specificity to be associated with a 
possibility distribution. 
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Assume Q is a possibility distribution defined over the finite set W, let 
Q,, be the a level set of Q, 

Q,~= {w I w ~  w, Q(w) >/a} 

then the specificity of Q is defined as 

W) .amax 1 
S(Q, = J0 card Q. 

where a max is the maximal membership grade in Q and card lQ ~1 is the 
number of elements in Q, .  We note that S(Q, W) assumes its largest value 
of one when Q = { 1/wi} for some wi E W and it assumes its minimal value 
of zero when Q = ~.  We note that if Q is normal, has possibility for one for 
at least one element, then if Q c B, S(Q, S) >1 S(B, S). Furthermore, Q = W, 
has specificity of 1/n, where n is the number of elements in W. 

In a certain sense the specificity is a measure of the amount of infor- 
mation we have about the classification of our object with respect to the set 
W. The larger S(Q, W) the more we know about which category in W our 
object belongs. We note that if the specificity is low, less than 1In our model 
is telling us less information about which category of W our object belongs 
to than if we did not even use the model. This situation would indicate that 
our model needs to be revised to include a descriptor to give some infor- 
mation about objects of the type we are just trying to classify. 

In some cases we must make some decision as to the most possible 
category in which our object lies. In general the selection is to choose the 
element with the largest grade of membership in Q. The specificity would 
measure the confidence we have in selecting this element. 

12. VERIFICATION OF THE RELATIONS 

Having constructed a classifier based upon an expert's descriptor 
granules we may be interested in determining how good this model is 
working. In order to do this we must again introduce the concept of 
compatibility between two fuzzy sets. Assume we have a fuzzy subset A of 
W which we call our reference set. Let B also be a fuzzy subset of U. The 
compability of B with the reference A is defined ~21~ to be 

T= Comp[B/A] = tA(u) t 

which is a fuzzy subset of the unit interval indicating the truth of the 
statement X = B given that X = A is true. 
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Example 

.1 .6 1 I 
ltl R2 1"/3 

ut U2 113 

1. .61I 
T =  . 5 '  1 ' .8 

Assume we have a classifier R, then given an object a~ to be classified if 
we apply the rules of  fuzzy logic 

a 1 o R  = B  1 

where B I is the fuzzy subset of  W indicating the category to which this 
object is to be classified. Assume that  further investigation leads to the 
knowledge that  the true classification of  the object a~ is A 1 . We can use the 
compabil i ty  to measure  the degree to which the model was correct. Therefore 

T, = Comp[B  J A  1] 

measure the performance  of  the relation R. I f  we have a sample of  n objects 
each generating measures  of  T~, T 2 ..... T n, respectively, we would like to find 
the mean performance of our model. 

Consider a fuzzy subset T of the unit interval Yager (13) has suggested a 
real number  measure of  the value of this fuzzy number.  Let Tt,~] be the a 
level set associated with T, 

TE,, I = {t/T(t)  >~ a, t E I}, 

let M[Tt~I]  be the mean value of  Tf~l and let a max be the max imum grade 
of membership  of any element in T. Then 

F[T] -- 1 j.om.x m[Tr,q] da 
a m a x  o 

acts as a representative value for T. 
Fur thermore  Yager ~13) has shown that  if T =  T 1 + T 2 + ...  + T,Jn, then 

F ( T )  = F(T1) q- F(T2) q - " "  + F(Tn)  

n 
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Considering our situation in which we have n samples each of which 
has a truth value of 77, we can use the above procedure to obtain an overall 
average measure of the performance of our classifier. 

13. PROBABILISTIC INFORMATION 

In some cases the information granules supplied by the expert may 
involve probabilistic information. For example, a doctor may say that if the 
blood pressure is high and the temperature is low then the disease w~ is very 
likely. We shall describe a procedure for handling this type of information in 
our classifier. Our procedure will be based upon some ideas on probabilistic 
information granules developed by Zadeh. t~9) 

Assume V is a variable taking values in the base set W. Let F be a 
fuzzy subset of W. Furthermore assume 2 is a linguistic probability, for 
example, likely, unlikely, about .7. 2 can be represented as a fuzzy subset of 
the unit interval. 

Consider a statement 

V i s F i s 2 ,  

for example the candidate is successful is likely. Zadeh (x) has suggested that 
such a statement has the effect of inducing a possibility distribution over the 
set of probabilities that can be associated with W. Let S be the set of all 
probability distributions which can be associated with the elements of W. 
The above information granule induces a possibility d i s t r ibu t ion / /over  the 
set S such that for each p C S 

H ( p ) = 2  (w~w (P(wi) . F(wi))) 

Thus V is F is 2 induces the possibility d i s t r ibu t ion / /over  S. 
Consider the granule 

V is G, 

we can consider this as a special case of the above in the following manner. 
Let Pi E S be the probability distribution in which the probability of w~ is 
one. Then V is G can be said to induce the possibility distribution//G over S 
in which 

ll~(Pi) = G(wi) for wi E W and Pi E S s.t. Prob(wi) = 1 

and 

Ha(P) = 0 for all other p C S 
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We can now apply these ideas to the formulation of  classification 
models. 

Considering W to be our set of  categories used for classification and 
X =  (XI ,X2 ..... Xq) our classifying variables measured on the set U =  
U~ X Uz X ... • Uq, assume we have as one of  our descriptors a statement 

dl : I f X  = M t h e n  (V = F is )~), 

where M is a fuzzy subset of  U, F is a fuzzy subset of  W and 2 is a linguistic 
probability. F rom the above discussion we note that V is F is )!, induces a 
possibility d i s t r ibu t ion / / r  over the set S of  probabilities associated with W. 
Then the above descriptor is translated into a fuzzy relationship, D 1 on 
U X S which is defined by 

DI(u, p)  = 1 A (1 -- M(u) + IIv(p)  ). 

Consider a second descriptor of  the form 

d 2 : I f X  = L then V = G, 

where L is a fuzzy subset of  U and G is a fuzzy subset of  IV. As we 
suggested above, V = G can also be represented as a fuzzy subset of  the set 
S of  probability distributions on IV, 11 o as defined above. Thus again we can 
then represent D 2 as a fuzzy subset of  U • S. 

Then our classification relation 

R = D I C ~ D  2 

is also a fuzzy subset of  U • S. 
An object to be classified can be represented by a fuzzy subset H of  U 

which indicates the evaluation of  its properties. Then we can apply the law 
of  fuzzy compositional inference which says 

V = B = H o D ,  

where B is a fuzzy subset of  S such that 

B(p)  = M a6xv [H(u ) A D(u, p)].  

Thus as a result of  applying the classifier to our object we obtain as the 
classification a possibility distribution over the set S of  probability 
distribution associated with the elements of W. Using linguistic approx- 
imation techniques we may be able to retranslate the statement V = B into a 
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statement  V = E is 2~, where E is a fuzzy subset of  W and 2~ is a linguistic 

probabi l i ty .  

14. CONCLUSION 

W e  have tr ied to develop the necessary structure for a general 

classif icat ion procedure  based upon fuzzy set. This procedure  enables one to 
use imprecise  informat ion in the const ruct ion o f  the model.  I t  also enables 
one to handle  imprecise  evaluat ions  for the character is t ics  to be determined,  
Since it is re la t ionship based,  the character is t ic  var iables  can be drawn from 
a nonnumeric  scale. It should be noted that  another  form of  classif icat ion 
based on d iscr iminant  analysis  requires numeric  scales. The output  of  our 
model  is a poss ibi l i ty  dis t r ibut ion associa ted  with the categories  an object  

can be a member .  
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