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The creation of physical behavior by computational means has been approached 
differently by industrial and artificial intelligence robotics. Industrial robotics, 
considering fast response of a robot its most important characteristic, has 
equipped the robot with predefined, specific behavioral trajectories resulting in 
fast but inflexible behavior. Artificial intelligence robotics, claiming flexibility as 
the paramount robot feature, has employed inferred behavior whereby the robot 
itself determines behavioral patterns for tasks based on the robot's general 
knowledge about a task domain. Response is now flexible, but the response time 
is commonly badly degraded. This work defines an action propensity "skill" 
which generates flexible and fast behavior. Flexibility is achieved by attaching 
"perceptions" in skills to guide behavior; fast response results from the direct 
activation of skills. The acquisition and generalization of skills happens under 
the supervision of a human teacher in an advice-taking mode into which the 
robot shifts from the execution mode after recognizing lacking competence for a 
given task. This paper defines such skills, describes an implemented skilled 
robot system, and discusses some simulation results. 

KEY WORDS: Skill acquisition; intelligent behavior; procedural knowledge; 
robotic planning; supervised learning. 

1. iNTRODUCTION 

The creat ion of  nontriviaI  physical  behavior  by art if icial  means,  an otd 
problem for the imaginat ive engineering mind, received new impetus with the 
invention of  the computer .  Different ways  of  weighting two conflicting 
features, efficiency and flexibili ty,  have bifurcated research into industr ial  
and art if icial  intelligence (AI)  robotics.  Research  of  the former has been 
satisfied with robots  that  can repeatedly  perform predefined specific t rajec-  
tories, while the sine' qua non of AI  robot ics  has been a system's  abi l i ty  to 
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create necessary trajectories itself using general knowledge about a given 
task domain. 

Both approaches have their strengths and weaknesses. While the 
industrial robot's response is fast, it is rigid; and while the response 
capability of an AI robot is general with respect to a given task domain, it is 
so at the expense of badly degraded response time caused by planning before 
acting. Due to usually exponentially increasing planning time, so far 
designed AI robots have been confined to strongly restricted task domains. 

This work aims at a more balanced system where both generality and 
speed of response are taken into account. This is achieved by employing an 
evolving set of general action propensities. These action propensities, 
henceforth called "skills," are generated and transmitted to the robot in 
advice-taking mode by a human teacher. 

The robot recognizes when it lacks a necessary skill for a (sub)task and 
then asks its master to teach a new skill. Due to generality of skills and their 
hierarchical and modular structure, although such a robot will initially 
frequently request help, its need for help will gradually decrease while its 
competence increases. 

Undoubtedly the important feature, the one by which such an approach 
stands or falls, is the degree of generality skills capture. Intelligence implies 
flexibility, and unless each skill can take care of a set of different situations 
of a given task domain, skills represent just a collection of generators of ad 
hoc behavioral patterns. 

The solution of flexibility and generality of skills in this work is to 
abandon the prevailing view of both industrical and AI robotics that 
generators of trajectories (programs or plans) refer to specific cartesian or 
joint coordinate points. Skills refer, instead, indirectly to state of the 
surrounding worls through the act of "perceiving." Rather than having 
control information attached as absolute values in the bodies of skills, 
control information for skills is mediated by perceptual expert procedures 
whose calls are attached to the bodies of skills. Perceptions yield generality, 
since a proximal perception such as touch is invariant over mutual 
displacements of a perceiver and a perceived object, and a distal perception 
such as vision is in addition invariant over distancies between the perceiver 
and the perceived object. 

Such skills are general when contrasted with programs used in 
industrial robotics in the same way as computer programs using variables as 
placeholders of concrete values are more general than calculators. Calls of 
perceptual experts, too, are place-holders of possible perceivable states of the 
world. The state of the surroundings at the moment of behaving provides 
concrete "values," an interpretation, for skills. 

The purpose of this work is to define such a skill and implement and 
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simulate it as an interactive robot-man system. The robot's competence is 
then almost entirely dispersed in an evolving set of perception-controlled 
skills; it possesses only a minimal declarative world model for orienting 
purposes. The robot's response for tasks within the robot's competence is 
fast. Since the robot "perceives" its environment, it can also interact in 
dynamic worlds. 

In brief, the salient ideas of this work are (i) to use perceptions to 
directly guide behavior (based on actual states of the surrounding world) and 
(ii) to form a human-robot advice-taking system in which the robot's 
competence is gradually increased in the most efficient form (as procedural 
skills). 

2. THE CONVENTIONAL AI ROBOT IN BRIEF 

The conventional AI robotics approaches behavior generation from the 
viewpoint of inferrence. A paradigmatic AI robot system represents a triplet 
(PS, WM, M) of a problem solver PS, a symbolic representation of a task 
domain WM (world model), and a monitor M. The world model usually 
describes both the current state of the task domain and the ways the robot's 
operators change states. 

A task is commonly expressed as a utopian state of the task domain. 
PS, then, reflects on WM, testing alternative sequences of operators, in an 
attempt to find a plan as a sequence of operators whose execution will 
transform the initial state of the task domain into the utopian state. When a 
successful plan is found, it is passed to M which interprets the plan, executes 
its operators, and continuously checks the correctness of the ongoing 
execution. 

This approach carries some fundamental problems. For one, how to 
avoid the combinatorial explosion in search of operator sequences while 
expanding a task domain. This concern is so paramount that the planning 
speed of a robot system is commonly used to judge the quality of proposed 
systems. For example, Sacerdoti "1) reports how by imposing a semantic 
dimension "criticality" upon operators of STRIPS he was able to drasticly 
reduce the planning speed in his ABSTRIPS system. But still it took over 6 
minutes for ABSTRIPS to find a plan of 11 operators. (For the same plane 
STRIPS used over 20 min.) 

Another major problem of inferred behavior is how to guarantee the 
reliability of WM on which the control information of generated plans is 
based, and what precautions to implement in M to handle inevitable 
occasional mismatch between the model and reality. ~2'5'1~ This problem 
results from the bifurcation of the behavioral world into external or actual 
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world states, and their internal or believed representations in the world 
model. Since plans thoroughly rely on specific believed states of the world, 
rather than actual states, surprises cannot be totally avoided. 

In inferred behavior architectural problems are also formidable. 
Building of a complete discrete world model poses hard problems even for 
restricted task domains. Fahlman, (1~ for instance, reports how tedious it is to 
arrest in a WM the effect of gravitation to rathers simple block constructs. 
How might a robot infer how to tie shoelaces! 

Tangwongsan and Fu (13) introduce an interesting deviation from the 
paradigmatic robot system, in fact a system which in part resembles our 
system. A human teacher provides example plans for tasks, and the robot 
attempts to utilize them in analogous tasks. Chaining of operators in the plan 
formation phase is thus avoided and "planning" is greatly speeded up, as the 
authors demonstrate. The remaining main difference with our work is that 
while their system utilizes plans, operator sequences referring to states of a 
world model, our system, to repeat, utilizes skills which are controlled by 
actual world states. Section 8 compares the supervised learning strategies of 
both systems. 

Contrast then inferred behavior with human behavior. Everyday human 
behavior does not derive from thorough use of inference. We make plans, to 
be sure, but only on a gross level while leaving control details in the care of 
sense-controlled skills. This behavioral strategy is particularly good in that it 
allows us to cope with the boundless world and drastically reduce surprises. 
An extensive use of skills also results in efficient behavior. In the formation 
of these skills repetition, imitation, trial-and-error, and other noninferential 
means play major roles. Such natural skills this work attempts to imitate by 
computational means. 

3. TASK EXPRESSIONS IN A SKILL SYSTEM 

In a skill system a task is expressed as a list of requests. Each request 
indicates a subtask for a robot, and the robot uses the request in 
associatively fetching the corresponding skill, a behavioral expert for solving 
the subtask. 

Assume a robot has been built to work as a servant in a house; it 
should manipulate objects in the house as requested. In fact, this task 
domain was used in the simulation. Below appears an example task 
expression requesting the robot to bring a chair from room 204 into the 
robot's initial room and to leave it by a table. "*"  indicates the robot's 
response to requests. 
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(! GO INTO R204) 
*OK. AND THEN? 
(! TAKE A CHAIR)  
*OK. AND THEN? 
(! COME BACK) 
*OK. AND THEN? 
(! GO TO A TABLE) 
*OK. AND THEN? 
(! LEAVE THE CHAIR BY THE TABLE) 
*OK. AND THEN? 
NIL 

The robot has "understood" the master's requests, enclosed in 
parentheses, in the sense that it has found corresponding skills. A failure in 
the fetching of a skill would initiate the teaching process. The master's NIL 
signals the end of the task expression. Should the robot be frequently 
requested to perform such tasks, the skill sequence above could be stored in 
the general form for bringing a named object from a named target room into 
the robot's initial room. 

After recognizing NIL the system executes the retrieved skills sequen- 
tially. During the execution perceived aspects of the surroundings are 
recorded in the robot's memory, and the robot can later recall those percepts. 
Notice that in the example, recalling of the memory is necessary in order 
that the robot can return into the initial room. In some other cases recalling 
may be optional. For example, as a result of the example task the robot 
stores in the memory the fact that a chair is now located in the robot's initial 
room. A later request to find chair could trigger a recollection of that fact, 
and the robot could go to check that room first before a search of a chair. 

4. SUPERVISED LEARNING IN A SKILL SYSTEM 

For each request the robot attempts to retrieve associatively the 
corresponding skill; the failure in a fetch initiates the teaching cycle. A 
request is first parsed into its deep case representation of the general form 
((verb)(casel}(case2) ...). For example, the deep structure of ([ GO INTO 
R204) is 

((VERB GO) (DESTINATION (PREP INTO) (NOUN R204))) 

This request has a single case, DESTINATION; other possible cases 
are AGENT, OBJECT, TRAJECTORY, INSTRUMENT, and 
LOCATION. To facilitate associative retrieval, skills are stored as ordered 
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pairs ((request pattern), (skill definition)). Both request patterns and skill 
definitions are subject to supervised generalization. 

The request pattern of a skill is initially identical to the deep structure 
of a specific request, namely that whose failed retrieval was resolved by 
acquiring that new skill. Thus if (! GO INTO R204) was the first instance of 
requesting the robot to go into any named room, a new skill was promted 
from the master and stored as ((go-into-pattern [R204]), (go-into-skill 
[R204])), where the pattern is the one shown above. Brackets indicate names 
of applicable objects. 

The robot's competence increases through skill generalization and skill 
acquisition, both under the supervision of the master. Skill generalization 
focuses on generalizing both request patterns and applicable object names. 
The former uses a few heuristic rules in rating "closeness" of deep structures 
and request patterns. A "close" instance calls for the master's opinion, and if 
he approves the semantic equivalence, the stored request pattern is 
generalized accordingly. Two requests are considered "semantically 
equivalent" when a same skill definition (structurally) applies to both. 

In the current implementation, requests have been strongly restricted 
permitting only use of verbs, nouns, and prepositions and similar qualifiers. 
Request pattern generalization is confined into finding synonyms among 
verbs and prepositions. For example, if the robot is taught to go into R204 
as explained above and it is later requested (! WALK INTO R204), the deep 
structure of the request and go-into-pattern qualify as being "close" because 
their single cases, DESTINATION, match. If the master confirms the 
semantic equivalence~ the stored request pattern is modified into: 

((VERB (GO WALK)) (DESTINATION (PREP INTO) (NOUN R204))) 

The more interesting domain of supervised skill generalization focuses on the 
ways the robot gets gradually acquainted with objects in its surroundings. In 
contrast to conventional programming, typology of objects is not initially 
fixed in this case, but rather it develops with the acquisition and 
generalization of skills. Thus when the robot was taught to go into R204, it 
learned a skill and a piece of information that R204 is a "go-into-able" 
object. When it is later taught to apply the same skill to other room names 
as well, the robot learns the equivalence relation "go-into-able" of room 
names. 

A developing hierarchy called a logical taxonomy of concepts (LTOC) 
represents such an evolving typology of objects. An instance of an LTOC 
reflects the applicability ranges of so far acquired and generalized skills. The 
growth of an LTOC is controlled by the attachment of new object 
names--provided by the master, or new generic names greated by the 
generalization process--in an inclusion hierarchy. 
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SOMETHING 

I 
L00K~FOR-ABLE 

CHAIR DOOR 

Fig. 1. LTOC aEer learning (! LOOK FOR DOOR), 
(! LOOK FOR CHAIR), and (! PICK UP CHAIR), 

To give a flavor of the generalization of the applicability ranges of 
skills, assume a robot possesses only the two skills shown schematically 
below, and its LTOC is the one in Fig. 1. 

(((look-for-pattern [LOOK-FOR-ABLE]), 
(took-for-skill-definition [LOOK-FOR-ABLE])) 

((pick-up-pattern [CHAIR]), 
(pick-up-skill-definition [CHAIR]))) 

This state of the robot's competence indicates that the robot has been 
requested (! LOOK FOR CHAIR), (! LOOK FOR DOOR), and (! PICK 
UP CHAIR). It is not known in what order and how often the requests have 
been expressed. Furthermore, the master has, after a promt, confirmed the 
semantic equivalence of (! LOOK FOR CHAIR) and (! LOOK FOR 
DOOR), indication that the same skill applies to both, and the skill 
generalization process has generated a generic name LOOK-FOR-ABLE. At 
this point the robot "knows" that chairs are objects that are both "look-for- 
able" and "pick-up-able," but doors are only "look-for-able." 

Assuming the robot is then requested (! PICK UP BASKET), the skill 
retrieval would fail since BASKET is a so far unknown name. The skill 
generalization phase finds, however, the skill for picking up a chair to be a 
promising candidate for generalization, since the stored pick-up-pattern 
matches with the deep structure of the request, save the names CHAIR and 
BASKET. The master's affirmative answer results in the formation of a new 
generic name PICK-UP-ABLE. The remaining problem is the reciprocal 
relationship between LOOK-FOR-ABLE and PICK-UP-ABLE. This is 
resolved by the master's answer to the question whether a door is a PICK- 
UP-ABLE. A denial results in the state of skills shown below and LTOC in 
Fig. 2. 

(((took-for pattern [LOOK-FOR-ABLE]), 
(look-for-skill-definition [LOOK-FOR-ABLE])) 

((pick-up-pattern [PICK-UP-ABLE]), 
(pick-up-skill-definition [PICK-UP-ABLE]))) 

828/I0/2-4 
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SOMETHING 

I 
LOOK- FOR- ABLE 

PICK-UP- ABLE DOOR 

CHAIR BASKET 

Fig. 2. LTOC after learning 
(! PICK UP BASKET). 

Initially the robot's environment has no structure. Gradually objects 
begin to "depart" from this chaos when the robot learns to perform actions 
with them. Generic names engendered in the generalization process come 
close to what Gibson t4) calls "affordances"; their positions in LTOC 
indicate what actions their member names "afford." 

5. A SKILL SYSTEM 

The proposed skill system is a quadratuple SS = (q~s, LTOC, M, I), 
where q~s is a evolving collection of skills, LTOC is an evolving logical 
taxonomy of concepts, M is memory, and I is an interpreter. 

As already mentioned, the development of q~s and LTOC takes place 
when the robot does not find a skill for a request. The system then transfers 
into the supervised learning mode. In that mode the system first attempts to 
generalize the existing skills with the assistance of the master, and then, if the 
attempt fails, it asks the master to define a new skill. The skill definition 
rules are explained in the next section. 

The interpreter is composed of several procedures whose task is to 
receive and parse requests, retrieve the corresponding skills and control their 
executions. The interpreter also includes procedures for supervised learning, 
which are implicitly described before. 

In this chapter we outline memory and retrieval of its contents. Since 
the contents of memory is engendered by satisfied "perceptions," a brief 
discussion on the robot's perceptual faculty shall take place. Perceptions 
have the dual role in registering perceivable aspects of the surroundings and 
providing the control function for skills. 

The robot's perceptual faculty is composed of a set of distinct 
perceptual expert procedures, each proficient over a specific sensory 
invariance. At a calt an expert responds TRUE or FALSE depending on 
whether or not the invariance holds. (SEE TABLE) and (BODY-TOUCH 
FRONT) exemplify calls of two possible perceptual experts. The first expert 
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returns TRUE if at the moment of a call an image of a table occurs in the 
visual field; it otherwise returns FALSE. The second expert returns TRUE if 
the front of the robot's body is touching something. 

The robot's attention, when active, is always focused on only those 
aspects in the surroundings which serve as milestones in the execution of 
skills. That is, the robot, while executing skills, anticipates certain 
perceptions and perceives only anticipated facts. Anticipations are indicated 
by Boolean expressions of calls of perceptual experts and recallings of 
memory attached as preconditions and goal conditions of skills. When 
active, the system is thus continuously checking either a goat condition to 
discontinue a movement or a precondition to initiate one. 

The robot's memory records experiences of perceptions, and LTOC 
records experiences of acts. Perceptual experience is subdivided into the 
following three functionally distinct parts of memory. 

5.1. Perceptual Memory 

The robot's perceptual memory faithfully records, as a list, traces of all 
occurred percepts. A trace of a percept simple represents the call of a 
perceptual expert which returns TRUE. Traces are recorded in the order of 
their occurance. For example, the perceptual memory may contain traces: 

((BE-IN R204) (SEE TABLE) - . . )  

5.2. Propositional Memory 

The robot's propositional memory contains various propositions 
abstracted from the contents of the perceptual memory.  Abstractions are 
performed by expert procedures which independently watch conditions for 
abstraction in the perceptual memory. For example, the procedure for 
abstracting the property "location" would abstract and record in the 
propositional memory from the previous example the following proposition: 

(TABLE LOCATION R204) 

5.3. Orienting Map 

Spatial organization of the robot's environment is recorded in an 
orienting map. Assuming a house equals the robot's world, the adjacency 
relation of the rooms and an indication of their floor locations constitute a 
plausible orienting map; incidentally, such a map was used in the simulation. 

828/10/2-4~ 
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For example, such an orienting map may then contain entries of the 
following kind: 

(R204 ADJACENT-TO (R205 R201)) 
(R204 FLOOR 1) 

�9 5.4. Logical Taxonomy of Concepts 

LTOC reflects the robot's action-based understanding of objects in the 
surroundings as already explained. The robot only "knows" to the extent it 
can do, and the more it is able to act on an object the more it "knows" about 
it. Initially, the robot is familiar with a single generic concept name 
SOMETHING. From that seed LTOC emerges under the influence of two 
complementary forces: one for breaking existing generic concept names 
under new created ones and one for gathering names under higher level ones. 
Figure 3 shows an advanced LTOC. Generic names (the ones between the 
"root" and the "leaves" of LTOC) indicate how acquired skills apply to 
known objects. $ROOM is the name of a reference variable used in 
indirectly referring to objects. 

Contents of memory and LTOC are retrieved in a uniform manner by 
calling function RECALL with a proper set of arguments. The role of 
recalling is similar to that of perceiving, viz. setting preconditions in skills. 
The basic form of recalling is: 

(RECALL ?(reference variable) [(intension 1) 
[EXCEPT (intension2)] ]) 

Its interpretation is: return those names of objects in LTOC which are 
siblings or offsprings of siblings of the reference variable and (optional) 
which satisfy intensionl, but (optional) reject the ones that satisfy 

SOMETHING 

L O O K - F O R ~ A L L  
SEAREH-ABLE 

GO-TO~RWAY 

DOOR PICK-UP-ABLE 
LEAVE-ABLE 

ELEVATOR 50-INTO-ABLE 

S R O ~  
R 202 R 205 

CHAIR BASKET BOOK 

Fig. 3. An advanced LTOC. 
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intension2. Recalled names will be bound to the reference variable as a list. 
If the recalled list is empty, the call evaluates FALSE, otherwise it evaluates 
TRUE. Below appear a few example recalls. Notice how indirect recalling is 
established by referring to an already "bound" reference variable: 

(RECALL ?ROOM BE4N FIRST) 
Recall the room in which you were first 

(RECALL ?ROOM ADJACENT-TO R202) 
Recall the rooms adjacent to R202 (as indicated in the Orienting Map) 

(RECALL ?ROOM ADJACENT-TO $ROOM) 
Recall the rooms adjacent to the rooms reference variable SROOM 
refers to. 

6. THE STRUCTURE OF SKILLS 

Three types of complex skills, each hierarchically defined using lower- 
Ievel skills or primitive skills are admissible. A primitive skill represents a 
movement coupled with a goal state recognizer--a Boolean expression of 
calls of perceptual experts---to discontinue the movement. In defining a skill, 
types can be freely mixed. The syntactic rule, its semantic interpretation, and 
an example are shown below for each skill type. The examples are drawn 
from the simulation. Notice that if a constituent tower-level skill does not 
obey the syntactic form of primitive skills, it refers to complex constituent 
skill available through a parse-fetch cycle. A precondition represents a 
boolean experession of calls of perceptual experts and/or recalls. AND~ 
operation is defaulted on the top level of a precondition. 

[PSI ((movement) UNTIL (goal state)) 
"Discontinue the (activated) movement when the goal state evaluates 
TRUE." 

Ex4: (MOVE-FORWARD UNTIL (BODY-TOUCH FRONT)) 

IS I t ((precondition) ~ (defining skill)(defining skill). . .)  
"If the precondition evaluates TRUE, perform the defining skilIs 
sequentially." 

Exl: ; skill for going into an adjacent room to a named room 
; 'recall the adjacent rooms and go into a closest one' 

(((RECALL ?ROOM ADJACENT-TO GO-INTO-ABLE)) 
(GO INTO $ROOM)) 

[$2] (EXCLUSIVE 
(precondition) ~ (defining skill)(defining skill) ... 
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Ex2: ; 

Is3] 

Ex3:; 

(precondition)-+ (defining skill)(defining skill).-- 
,.,) 

"Choose that one of exclusive skills whose precondition evaluates 
TRUE. Perform it as if it were a Sl-skill." 

skill for going into a named room, 
triggered by a specific request of the general form: 

; (! GO INTO GO-INTO-ABLE) 
'if you already are in the room then o.k., 
otherwise if you are on the same floor 
and in an adjacent room, go to the 
separating door, open the door, and enter' 
(EXCLUSIVE (((BE-IN GO-INTO-ABLE))-~ (DONE)) 

(((NOT (BE-IN GO-INTO-ABLE)) 
(BE-ON-FLOOR-OF GO-INTO-ABLE) 
(BE-IN-ADJ-TO GO-INTO-ABLE)) 

(GO TO GO-INTO-ABLE-DOOR) 
(OPEN GO-INTO-ABLE-DOOR) 
(ENTER GO-INTO-ABLE)) 

(REPEAT-UNTIL (goal state)(defining skill)(defining skill)..-) 
"Until the goal state evaluates TRUE, repeatedly perform the 
defining skills." 

skill for searching a named object, 
triggered by  a specific request of the general form: 
(! SEARCH SEARCH-ABLE) 
'until you either see the object or 
no rooms are left, remember other rooms, 
go into a closest one, and look for the object there' 
(REPEAT-UNTIL (OR (SEE SEARCH-ABLE) 

(RECALL $ROOM)) 
(REMEMBER OTHER ROOMS) 
(GO INTO $ROOM) 
(LOOK FOR SEARCH-ABLE)) 

In [PS] or [$3] a goal condition, by definition, is attached to a 
movement or lower-level skills which drive the robot to a full evaluation of 
the condition. Since preconditions are not connected to such built-in 
behavioral solutions, general skills, called perceptual expectations, are 
reserved to dynamically solve the subproblems of unfulfilled preconditions. 
They perform such bodily movements that anticipated but unsatisfied 
preconditions would evaluate TRUE. The system automatically checks the 



Sense-ControUed Flexible Robot Behavior 1 17 

preconditions when a new skill is defined and asks for definitions for all 
unknown perceptual expectations. 

For example, Exl  may represent the perceptual expectation of (BE-IN- 
ADJ-TO GO-INTO-ABLE) perception used in Ex2. If the robot is requested 
to go into a named room, Ex2 is activated and the general concept name 
GO-INTO-ABLE is replaced with the requested room name. Should the 
robot be located on the same floor but not in an adjacent room to the target 
room, Exl will be called for execution causing Ex2, in this case, to recur- 
sively call itself. 

The use of perceptual expectations represents an implementation of a 
backward chaining execution of (situation) -~ (action) rules. A chaining can 
automatically expand itself because an unsatisfied precondition of a triggered 
perceptual expectation in turn activates other expectations and so forth. In 
contrast to customary backward chaining of production rules, there is no 
search involved in this backward chaining execution of skills, because a 
retrieval mechanism directly finds means (perceptual expectations) for 
unsatisfied situations (preconditions). 

7. ON IMPLEMENTATION AND SIMULATION 

A robot system as envisioned above has been implemented and its 
performance simulated in a fictional environment. The system itself was 
programmed in MTSLIPS language on an IBM S/370 M168 computer; the 
simulated world was programmed in FORTRAN language on a Tektronix 
4010 graphics terminal. The overall program, for the most part comprising a 
LISP interpreter, FORTRAN graphics routines, and skills, runs in about 
190 k bytes. 

The system has two distinct modes of performance: (i) in the interactive 
task definition and teaching mode a master requests tasks and advises the 
system, and (ii) in the execution mode the robot performs tasks. Figure 4 
depicts these two modes of performance. 

The master expresses a task as a list of requests, imperative natural 
language sentences. A parser first maps a request into its deep case structure, 
and then the retriever attempts to fetch a matching skill definition. The 
retriever accepts the first skill definition whose request pattern part matches 
the request, and then replaces all generic names in the skill with their 
instances in the request. If the retriever does not catch any skill, control is 
passed to the skill generalization module. 

The generalization module walks through the skills one by one in a 
search for a skill whose pattern would be "close" enough to the request to 
qualify as a candidate for generalization. Several heuristic rules are used for 
determining closeness. A necessary condition is a match between the deep 
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Fig. 4. Schematic description of the skill system. 

cases of the request and the pattern. Any promising candidate is displayed 
for confirmation. The master's acceptance results in the modification of the 
skill (and possibly LTOC). A failure passes control to the skill acquisition 
module. The acquisition module asks the master to define a new skill and 
displays the existing skills and the rules for well-defined skills. A new skill is 
appended to the tasklist and stored for future use. 

The master's NIL terminates a task definition and initiates the execution 
mode. In this mode the retrieved skills, organized as a list, are executed 
serially, and perceived facts of the surroundings are recorded in the robot's 
memory. Skills are hierarchically composed of lower-level skills; basic 
building blocks are primitive skills. Primitive skills are directly indicated in a 
skill definition and can thus readily executed. Higher-level component skills 
are indicated by macro names (generalized surface requests). The execution 
of a retrieved skill forms thus a sequence of parse-fetch cycles which is 
controlled by perceptions and recalling of memory and occasionally 
interrupted by the executions of primitive skills. 

The performance of a skilled robot in a house was simulated on a 
Tektronix 4010 graphics terminal. The simulated house comprises three 
floors with six rooms on each and an elevator connecting the floors. The 
rooms contain randomly distributed tables, chairs, and baskets. The robot 
manipulates those objects as requested. 

Any implementation of a skilled robot system would require a careful 
design and implementation of task-dependent motor movements and 
perceptual expert procedures. They form a base for subsequent skill 
structures. Table I exhibits the motor movements of the simulated robot. 
Since the simulation displays the robot's movements on the graphics 
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Table I. Motor Movements of the Simulated Robot 

MOVE-FORWARD 
MOVE-BACKWARD 
MOVE-RIGHT 
MOVE-LEFT 
TURN-RIGHT 
TURN-LEFT 
WAIT 

Table II. Some Perceptual Experts of the Simulated Robot 

(SEE (object)) 
(SEE (room)-DOOR) 
(SEE (object) IN-FRONT-OF (object2)) 
(BE-IN (room)) 
(BE-IN-ADJ-TO (room)) 
(BE-ON-FLOOR-OF (room)) 

Table Ill. Elementary Skills of the Simulated Robot 

(GRASP-BACK <pick-up-able)) 
(GRASP-FRONT (pick~up-able)) 
(UNGRASP-BACK <pick-up-able)) 
(UNGRASP-FRONT (pick-up-.able)) 
(OPEN (door)) 
(CALL-ELEVATOR) 
(PUSH-BUTTON @oor-no)) 

>>> GIVE YOUR FIRST SENTENCE NOW. 

([ GO INTO R202) 

*OK. AND THEN? 

(~ TAKE TABLE) 

*OK. AND THEN? 

(~ GO INTO R204) 

*OK, AND THEN? 

(J LEAVE TABLE BY WALL) 

*OK. AND THEN? 

NIL 
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terminal, the simulated implementations of the movements correspond to 
respective displacements on the screen. 

Table II shows some of the implemented perceptual expert procedures. 
The simulated perceptual strategies necessarily differ radically from and have 
been often a great deal easier to implement than most real implementations. 
Particularly, the simulated vision is trivial in comparison with the 
corresponding real scene analysis procedures. (BE-IN (room)) calls a 
perceptual expert for recognizing whether or not the robot is located in the 
room indicated in a call. This expert could in a real implementation be 
transformed into a use of scene analysis by, say, marking the rooms with 
discriminative colors. Similarly, visually recognizing individual doors could 
be greatly alleviated by marking the doors with colors of the rooms they are 
leading to. 

In the simulation hypothetical detailed hand manipulations were evaded 
by implementing a set of elementary skills directly on the level of graphics 
routines. The robot was conceived as possessing two pairs of hands: one pair 
on the back for carrying objects, the other pair on the front for clearing the 
way, pushing buttons, and so forth. Table III exhibits the implemented 
elementary skills. 

The simulation demonstrated that complex flexible behavior over a 
nontrivial set of tasks can be generated by a small collection of general 
skills. In the simulation the robot in its most developed stage possessed 28 
general skills, the average complexity being five or so defining skills. The 
example skills of Sec. 6 represent typical simulated skills. The skills endowed 
the robot with the general competency to perform, among others, the task of 
Fig. 5 regardless how the robot was initially located and what obstacle 
existed on its way. The robot dynamically decided when to use the elevator. 

In another simulation instance the robot was requested to find a basket: 

(! FIND BASKET) 
(! PICK UP BASKET) 
(! COME BACK) 
(! LEAVE BASKET BY WALL) 
NIL 

Such a task fits well in the perception-controlled skill formalism. After 
checking that a basket was not located in the initial room, the robot recalled 
all rooms in the house and visited them one by one until it found a basket. 
When the robot was later requested to find a basket, it recalled the location 
of the previous basket and went straight to pick it up. 

In still another instance the robot was taught that "bringing" an object 
to a target room means finding such an object in a room other than the 
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target room and then carrying the object into the target room. The robot was 
then able to perform the following task: 

(! BRING CHAIR INTO R106 BY TABLE) 
NIL 

J/ippinen (v) contains more pictorial simulation results. 

8. S U P E R V I S E D  L E A R N I N G  REVIS ITED 

Together with the use of "perceptions" for run-time control of behavior, 
the other thrust of a skill system (SS) is to utilize supervised learning for 
increasing incrementally a robot's knowledge of the world in action form. 
Since the teaching method of SS resembles supervised learning device in 
Tangwongsan and Fu ~13) (T&F), it is of interest to compare the two 
strategies. 

Both systems employ a teaching strategy which might be called 
"learning by imitation" (through verbal means, to distinguish it from more 
common learning by imitation where a trainee perceives actions of a 
competent trainer). Learning by imitation constitutes a large portion of the 
acquisition of knowledge in action form particularly for the child but also for 
the adult. An apprenticeship represents a contractual assignment to utilize 
learning by imitation. The strategy is valuable vehicle for transferring advan- 
tageous behavioral patterns through generations, since a trainee does not 
have to perform inferrence to learn those patterns--it  is sufficient to be 
receptive. A great many of human skills, such as playing a musicaI 
instrument, tying shoelaces, driving a car, etc., have been acquired in this 
manner. 

Both T&F and SS choose imperative natural language sentences for 
expressing tasks for a robot. This is a deviant notation from traditional AI 
robotics where tasks are expressed as goal states of a task world. Imperative 
sentences are convenient and fit well in describing processes, while goal 
states express well end results of processes but fit poorly in describing 
processes themselves. For example, it is hard to express a juggling task as 
goal states, while imperative sentences signal the task unambiguously. T&F 
is more ambitious in task expressions than SS by allowing unrestricted 
sentences whereas SS requires task definitions be broken into lists of single 
clause sentences. Both systems choose the case grammar for expressing 
semantic deep representations of sentences. Deep case structures of 
imperative sentences are used in both systems for associating task 
expressions with learned action propensities. 

The main difference between the two systems deals with the nature of 
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acquired (taught) action propensities. While T&F adheres to the working- 
horse of AI robotics that a robot executes plans--operator sequences which 
refer to coordinate points in a world model--SS uses skills which refer to 
actual states of the environment through the act of "perceiving." Conse- 
quently, acquired action propensities of T&F are more specific and call for 
greater degree of abstraction to be usable in other tasks. Skills are more 
general pruning the need for abstraction. For example, a plan for the task 
"Go to a big box in Room6" in T&F defines operators for going from the 
initial coordinate point of the robot to a door, opening the door, going 
through it, closing it, and going to the coordinate point of a big box. (When 
the box was located in an adjacent room.) To apply the plan for analogous 
tasks T&F has to abstract away positions of the robot and a box. In SS the 
identical task is expressed as ((! GO INTO ROOM6) (! GO TO A BIG 
BOX) NIL). The two skills they trigger carry no information about 
positions. The first one will ask to look for a door, to go to it, to open it, and 
to go through it. The other skill employs similar strategy. 

SS performs an important form of abstraction in gradually building a 
taxonomy of manipulable objects while a robot learns new skills and is 
introduced new objects. A given stage of the taxonomy, then, explicitly 
defines semantics of objects operationally by indicating what actions they 
"afford." The robot learns hand-in-hand both skills and semantics of objects 
in supervised learning. It seems that T&F does not consider this learning 
facet, and semantics of objects is initially given and remain fixed. 

Finally, plans of T&F are clearly more powerful (or less confined) than 
skills of SS. Skills receive control information through senses, and the 
"reach" of any sense organ is necessarily geographically limited. Plans of 
T&F do not suffer such limitations since their control rely on a world model. 
For the task "Bring a chair into the current room," the robot of T&F would 
find from its world model the location of the closest chair, but the robot of 
SS has to trigger a search skill to guide the robot into rooms one a f te r  
another in search of a chair. Only by luck a found chair is the closest one. 

9. CONCLUSION 

To obtain a robot system whose response would be fast and flexible we 
have designed, implemented, and simulated a skilled robot. Since the robot 
performs almost no inference after receiving a task definition,its response is 
fast, in fact almost immediate. The robot relies minimally on a world model 
(only in orienting itself), and, accordingly, the robot's behavior is flexible 
even in a changing environment. 

Using perceptions for control and imposing hierarchy, skills can be 
defined to strongly capture regularities in behavior and, consequently, only a 
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small number of skills is sufficient in nontrivial task domains, as the 
simulation demonstrated. 

Undoubtedly, the greatest drawback of a skilled robot is its lack of 
inference. Albeit skills do generate correct (but not always optimal) behavior 
for tasks even in complex worlds, they do so in manner imposed on their 
general structures. At any moment in an ongoing behavior, a skill controls 
the behavior based on only the temporally present (or past) and 
geographically near states of  the world. But in no way can future or 
geographically distant states influence the behavior. A skilled robot would 
never insert a coin in a piggy bank for a future use. Compared with inferred 
behavior, skilled behavior gains in efficiency and accuracy of response but 
loses in the  predictive power. How severe a confinement this disadvantage 
represents does not depend on the complexity but rather on "regularity" of a 
task domain. 

We are currently looking for ways of implementing a planning 
mechanism together with a world model on a skill base. Such a system 
would combine the best of  skilled and inferred behavior. 
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