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An efficient database search algorithm is presented. Four major enhancements 
on the preceding works have been made. They are (1) relational calculus is 
extended to enable processing an arbitrary logicaI function defined on one or 
more relations, (2) a set of elementary operations which are similar to but are 
more efficient in processing compound search conditions than the relational 
algebra is used, (3) the target list processing is completely separated from the 
search process, and (4) sequential collation procedure is fully utilized to deal 
with conditions of a certain type defined on two or more relations. The 
algorithm is composed of two parts: syntactical transformation of the given 
extended relational calculus and the search execution. Various optimization 
issues are integrated into these two parts. 

KEY WORDS: Database; query evaluation; query optimization; relational 
algebra; relational calculus; search algorithm. 

1. INTRODUCTION 

Opt imiza t ion  of the da tabase  search opera t ion  for the given search cond i t ion  

is an impor t an t  problem.  It grows m u c h  more  compl ica ted  as the search 
cond i t ion  becomes  compl ica ted .  It  depends  no t  on ly  on  the logical  da tabase  

s t ructure  on which the subject  search is to be carr ied out  bu t  also on  its 

phys ica l  represen ta t ion  in the compute r  s torage and  current  conten ts  of  the 

da tabase  relat ions.  

1.1. Optimization in Three Different phases 

O p t i m i z a t i o n  m a y  be achieved in three different phases.  One  is the 
selection of  op t imal  da tabase  file o rgan iza t ion ,  which  is a de l ibera t ion  
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extended over a relatively long period of time. Given a specific processing 
environment, we may determine the file media, physical file organization, 
and index provisions. The physical database structure thus far selected may 
not be permanent but is not changed unless a great inexpedience arises. 

The second is the selection of optimal search strategy. Usually the given 
search operation is decomposed into several more elementary operations 
provided in the system. Optimal decomposition of the given search is 
achieved by a syntactical analysis of the search conditions with reference to 
the current database structure. Elementary operations themselves must be 
carried out as efficiently as possible. 

The above search strategy may leave some rooms for the run-time 
optimization, which selects one specific sequence of elementary operations 
out of several alternatives with reference to the current contents of database 
relations and intermediate search results. 

In this paper, the last two phases of optimization are discussed. A 
relational model is used for simplifying description of the algorithm. 
Notations used in the relational model are slightly modified to enable a 
simpler description. 

1.2. Problem Definition 

Database search is the operation which extracts the tuples which are 
qualified for the given search condition from one or more database relations. 
The search condition is, in general, of the form 

x l e R  1 A x2eR2 A ... xNeR N A )@:1, xz ..... XN) 

with each x k being a tuple variable belonging to a database relation R k, and 
)~ being a logical function (whose value is "true" or "false") defined on the 
Cartesian product of relations, R~, R z ..... R N. We will assume that there are 
no range terms of the form 

conjunctively combined with another range term of the form 

x,~R'k, 

though they are allowed in Codd's relational calculus. It is because the two 
can be transformed into a range term 

X k gRk  

after R k is created by means of a simple set difference operation. 
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Since the 2 is an arbitrary logical function (defined in terms of several 
attributes of tuple variables), the above search condition is a little more 
general than Codd's relational calculus. In the relational calculus, )~ must be 
a logical combination (using V (or), A (and) and ~ (not) operators) of one 
or more unit conditions, each being two attribute values or one attribute 
value and one constant combined by one of relational operators (=, 4:, >, <, 
) and ~). For example, 

and 

A,(x) > 3 •  ) 

A, (x,)  + A 2(x2) = A 

where Aj(x) is the j th  attribute of tuple variable x, are disallowed in the 
relational calculus, while they are allowed as our search conditions. In a 
pattern matching application, evaluation of search conditions of the form 

(q,A&))/tql IA&)I > K, 

where q is a query vector, Ai(x  ) is an array type attribute, (q, Ai(x))  is the 
inner product of q and Ai(x  ), tq] and iAi(x)[ are respectively the norm of q 
and Ai(x) and K is a threshold constant, becomes important. It can also be a 
search condition though it is not a relational calculus. In this sense, we will 
call the search condition defined as above an extended relational calculus. 

Each x k is a free tuple variable in the extended relational calculus. The 
extended relational calculus can also contain one or more bound variables. 
They are bound by universal quantifiers, existential quantifiers or some other 
means, for example, bound in the scope of ceratain aggregate functions like 
Z, average, G (standard deviation) and maximum. In its prenex normal form, 
the extended relational calculus can be written as 

XI~R 1 A x28R 2 A ... A XNSR N 

Ar, ..... x ,xu+, . . . . .  ..... 

where x k is a free tuple variable for 1 ~ k ~< N, a quantified tuple variable for 
N + I ~ < k ~ < N + P ,  and another bound variable for N + P + I  
k ~ N + P + Q. Either N, P, or Q can be 0. No free variables exist when 
N = 0 ,  no quantified variables exist when P =  0, and no other bound 
variables exist when Q - - 0 .  

Each F k is of the form VXN+kF, RN+ k or ~XN+ReRN+k, being a shorthand 
notation of 

V ( . . . ) )  
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and 

3XN+k(XN+k~RN+k A(...)), 

respectively, and called a range coupled quantification. 
For example, in a search condition 

x l g R  1 A Vx2gR 2 ( A l ( X 1 )  < A l ( x 2 )  A A 2 ( x 1 ) =  
x3eR3AA3(xI) --A3(x 3 ) 

N = l , P = l ,  and Q = I .  
We will specify a search operation s with an argument 

2(x~, x2 ..... XN) 

and names of operand relations R~, R 2 ..... R N, that is, 

a4(x3)), 

s [2] (R1 ,R  2 ..... RN) 

: {(X 1 , X 2 .. . . .  XN)[X 1 E R 1 A x2eR 2 A ... A X N e R  N A 2 ( X 1 ,  x 2 ..... XN) }. 

Bound variables may appear in the definition of 2 but do not leave their 
vestiges in the search result. Therefore, 

s[)~l(R1,R2 ..... RN) C R  1 X R 2 X ' "  X R  g. 

The search operation can certainly be achieved by fetching every 
element in the Cartesian product of R 1 , R  2 ..... R N followed by testing it 
against the given search condition 2. However, this procedure, which is 
called a seek operation, is in most cases  too much time-consuming. If the 
given condition is of some special form (see Sec. 2), we can utilize index 
provisions prepared in the database and sometimes can utilize efficient 
sequential collation process, both greatly improving the search efficiency. 

In general, the search condition is a logical combination of several unit 
conditions which cannot be further decomposed into a logical combination 
of simpler conditions. Since we have 

S [21 V 221(R  1, R 2 .....  RN] = s [21  ] (R  1 , R z ..... RN) [...) s [22]( t~ 1, R 2 .....  RN) 

and 

S[22 A 22](R 1, R 2 . . . . .  RN) = s[2~](Rz, R 2 ..... RN) ~ s[22](R1, R 2 ..... RN), 

the subject search can be achieved by searching with each component 
condition followed by a union or an intersection operation applied to the 
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intermediate search results. If an efficient search procedure is available for 
both the searches with 21 and 22 , and the number of qualified elements is 
considerably small, then the above procedure is faster than the seek on 
R 1 X R 2 X  . . . X R  u. 

To be more precise, let p be the number of elements in 
R 1 X R ,  X ... XRN, and qt and qz be the number of elements among them 
that are qualified respectively for 21 and 22. Let s be the time required in 
fetching an element and t be the time required in testing it against the given 
condition (21 A ),2 or 22 V 22) in a seek operation. Finally let u be the time 
required in fetching an element qualified for the component conditions 2l and 
22 in the available efficient search operation, and v be the time required for 
each element in making a union or an intersection. (Actually v itself is a 
function of q~ and qz.) 

Then the time required for the seek operation becomes p(s + t), while 
that required for the efficient search operation followed by the union or inter- 
section operation becomes (q~ + q2)(u + v). In general, u + v is much greater 
than s + t (t may be negligibly small as compared with s); however, if 

(s + t)/(u + v) > (ql + q2)/P 

the latter process is faster than the former. 
In addition, we have 

s[2, A ;~ ] (R, ,  R~ ..... R v) = s* [2~, ](s[,t,](R ,, R2 ..... R,.)) 

= s*[22](s[2,l(RI, R2 ..... RN)), 

where s* is the seek operation to be applied to the operand relation which is 
a subset of a Cartesian product of R1,R 2 ..... R•. If an efficient search 
process is available for either 2~ or 22, we may shorten the search time by 
operating the efficient search for one component condition followed by the 
seek with another condition. 

If an efficient search is avaible for 2~, the time required for the search 
with 2~ followed by the seek with 22 becomes ql(S q- t -1- U), Therefore, if 

(s + t)/(s + t + u) > q,/p 

this process improves the whole search efficiency. 
Since there may be many logical expressions equivalent to each other, 

the sequence of operating the search each with a unit condition and the 
union and intersection operations necessary to achieve the subject search is 
not uniquely determined. Hence arises a problem of finding a specific 
operation sequence that brings the best performance into the whole search 
process. 
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1.3. Preceding Works 

Coping with the problem of finding an optimal decomposition of the 
search operation into a series of more elementary operations, many 
improvements on the decomposition process have been reported. If N =  1, 
s [2](R ~) is a general form of "selection" in relational algebra.(4) Astrahan 
and Chamberlin (1) showed an optimal execution sequence of the selection 
with a compound search condition. If N =  2, s[2](R~,R2)  is the "join" in 
relational algebra. Optimization of the join operations was discussed by 
Smith and Chang (14) and Yao. (2~ 

Codd ~4) had shown that the search operation with his relational calculus 
can be decomposed into a procedural combination of eight relational algebra 
operations: union, intersection, difference, projection, selection, join, 
multiplication, and division. However, no optimization issues were made in 
relation to his algorithm. Many researchers have presented certain kinds of 
improvements on Codd's decomposition. Palermo ~ )  presented an 
improvement for the search conditions without bound variables. Rothnie (13) 
and Reiter (1~ studied search conditions of a more general form. In INGRES, 
several improvements were implemented, which were reported by Wong and 
Youssefi (19) and Held et aI. (5) In PRTV, sequential collation was introduced 
for processing some unit conditions. ~~ 

The following four problems can be pointed out regarding these 
preceding works. 

i. All these works were made for the relational calculus in Codd's 
sense. It is desirable to extend the algorithm to deal with the extended 
relational calculus. 

2. All these works decomposed the search operation into relational 
algebra operations, each creating a new relation as an intermediate search 
result. However, in practical implementations, a great deal of the storage 
space is used to accommodate intermediate results. There may be another 
strategy in which only the primary key part (or address) of the qualified 
tuples or ordered sets of tuples is kept in the intermediate results. After 
completing the whole search process, the qualified tuple or ordered set of 
tuples can be fetched either collectively (non-piped mode) or tuple-by-tuple 
(piped mode) with reference to its primary key value. 

3. Since a new relation, that is specified by the target list in the Alpha 
expression, ~3~ has to be generated in many cases, it is sometimes attempted to 
combine a part of generating the new relation by certain relational algebra 
operations with other relational algebra operations necessary for the given 
search. However, it is possible only when the target list is of a very simple 
form. Generating the resultant relation often necessitates a rather 
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complicated data manipulation, which is better to be left to the care of the 
employed host language capability. 

4. Some preceding works utilized index provisions that were 
permanently prepared or temporarily created. Some others tried to create 
sequentially organized files as far as possible to enable efficient sequential 
processing. However, no preceding works attempted to apply a sequential 
collation to processing conditions like 

A,(xl)  =A2(x2) A At(x1) =A3(x3) 

defined for xkeR ~ though such a sequential collation is much more efficient 
than processing component conditions separately followed by joining two 
resultant relations. 

In this paper, we will present a general algorithm, in which the above 
mentioned problems are resolved. The algorithm is divided into two major 
phases: syntactical transformation of the search condition and actual search 
execution. The latter phase is applicable even if the syntactical transfor- 
mation has not been made. 

2, COMPONENT CONDITIONS 

From the search process point of view, unit conditions can be classified 
into two categories: conditions defined on a single relation and conditions 
defined over two or more relations. The both can be further classified into 
two subcategories: conditions for which some efficient search process other 
than the seek operation is available and conditions for which no such 
efficient process is available. We first review what types of search conditions 
are classified into what subcategories. 

2.1. File Organization 

Classification of conditions defined on a single relation is closely 
related to the file organization employed to represent this relation. Two types 
of file organizations exist. One is exclusive, that means if an exclusive file 
organization has been employed then any other exclusive file organization 
cannot be employed. The other is non-exclusive, that means a non-exclusive 
file organization can be employed regardless of what file organization has 
been employed. 

There are a variety of exclusive and non-exclusive file organizations. 
However, we will count following five exclusive and two non-exclusive file 
organizations because other organizations are certain modifications of the 
seven: 
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(1) Exclusive file organizations. 

1-1 Pile file organization that arranges physical records in the 
sequence of their arrival. 

1-2 Sequential file organization that arranges physical records 
in the sequence of their primary key values. 

1-3 Direct file organization that places physical records in the 
location whose address is calculated from the primary key 
value. 

1-4 Partitioned sequential file organization that divides the 
sequentially organized file into partitions composed of 
several consecutive records and provides pointer links 
among these partitions. 

1-5 N-ary tree structured file that integrate n-ary (n/> 3) tree 
search operations into the file organization by providing 
pointers which direct the record blocks to be fetched next 
with respect to the primary key value. The B-tree is an 
example. 

(2) Non-exclusive file organizations. 

2-1 Binary tree structured file organization is non-exclusive if 
n = 2 because in this case each record block consists of 
only one record. 

2-2 Inverted file (or multilist file) organization that provides an 
index file separately from the main file. 

Except the pile file, all the exclusive file organizations concern a selected 
primary key. On the other hand, non-exclusive file organization can be made 
with regard to any attribute (including the primary key), which is called a 
secondary key. Details of these file organizations were discussed by Knuth, (9) 
Martin, (1~ Wiederhold, (is) and Kobayashi. t6) Distinct file organizations 
result in different performance of various search and update operations. 
However, we will concentrate our discussion into the efficiency of search 
operations with conditions of some special forms. 

2.2. Type A and Type B Conditions 

A search condition defined on a single relation is said to be type A if 
some search procedure being more efficient than the seek operation is 
available. Otherwise it is called a type B condition. Type A conditions can 
be further classified into the following four according to what search 
procedure is available for improving the search efficiency. 
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( t )  Type A l: If  a direct file organization is employed with regard to a 
selected primary key Ap, then conditions of the form 

Ap(x)  = const 

can be processed very efficiently. Such a condition is said to be type A t .  A 
disjunct of two or more type A1 conditions on the same relation can be 
collectively processed for avoiding duplicate overheads. Hence it may be 
dealt with as a single type A 1 condition. 

Some conditions could be transformed into a disjunct of type A 1 
conditions. For example, we can transform 

(Ap(x)) 2 - 3 X Ap(x)  + 2 = 0 

into 

Ap(x)  = 1 V Ap(x)  = 2 

However, such a transformation requires a formula manipulation which is 
not easily processed by a computer program. It may rather be treated as a 
type A 3 or type B unit condition deined later. 

(2) Type A2: I f  a sequential, index sequential or n-ary tree structured 
file organization is employed with regard to a selected primary key, then 
conditions of the form 

A. (x )O  const 

with ~) being one of relational operators =,  4=, >, <, >~, and ~< can be 
processed a little more efficiently than the seek operation. If a binary struc- 
tured file or an inverted file organization is employed with regard to a 
secondary ket At, then conditions of  the form 

A,(x)0 const 

can be processed more efficiently than the seek operation. In these two cases, 
conditions are said to be type A2.  A disjunct of two or more type A2 
conditions defined on the same relation and regarding the same primary or 
secondary key may be processed collectively to avoid duplicate overhead. 
Also it is better to process a conjunct of two or more type A2 conditions 
defined on the same relation and regarding the same primary or secondary 
key collectively. This is particularly effective for conditions like 

c, < As(X) A A (x) < 
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Hence a logical (disjunct and/or conjunct) combination of typeA2 
conditions may be dealt with as a single typeA2 condition. 

Some conditions can be transformed into a logical combination of tyep A2 
conditions. However, since such a transformation requires a formula 
manipulation which is hard to be implemented as a computer program, it is 
better to treat them as type A3 or type B conditions. 

Sometimes a special index file is created for attributes of special type. 
For example, an inverted index can be made for the set of keywords of 
document records, which is an array type attribute, and a cluster index can 
be created for pattern matching. ~15'17) The former is used to improve the 
search with condition 

keyword eAt(x ) 

and the latter is used to improve the search with condition 

x(x) = class 

where x(x) is a function of tuple x. These conditions can be regarded as type 
A 2 if appropriate index provisions are made. 

(3) Type A3: If an inverted file organization is employed with regard 
to a secondary key A s, then conditions of the form 

f (A  s(X)), 

where f is an arbitrary logical function defined in terms of A~(x) value, can 
be processed by seeking the index file, which is faster than seeking the main 
file. Such a condition is said to be type A3. During the seek operation on the 
index file, other type A2 and/or typeA3 conditions regarding the same 
secondary key can be examined in parallel. Hence a logical combination of a 
type A3 condition and other type A2 and/or type A3 conditions regarding the 
same secondary key may be dealt with as a single type A3 condition. 

(4) Type A4: If two inverted file organizations, one regarding a 
secondary key A s and the other regarding another secondary key A',, are 
employed at the same time, condition 

A,(x)=A'(x) 

can be processed by a sequential collation of two index files (index files are 
usualy organized enabling sequential accessing with regard to the secondary 
key). If the matched index entries contain a common value pointing a tuple 
in the main file, it directs a qualified tuple. The condition is said to be 
type A4. During the sequential collation of the two index files, other type A2 
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and/or type A3 conditions defined on the same relation and regarding either 
A s or A' s can be examined in parallel. Hence a logical combination of a 
typeA4 condition and other typeA2 and/or type A3 conditions regarding 
either one of the secondary keys may be dealt with as a typeA4 condition. A 
logical combination of two type A4 conditions can be processed in parallel if 
the two share a common secondary key. For example, 

As(x ) = A;(x) A As(X ) = A~'(x) 

can be processed in parallel by sequentially collating three index files 
provided for A s, A's, and A~'. Therefore, it may be dealt with as a single 
type A4 condition. 

(5) Type B: All the conditions that are not type A (A 1, A2, A 3, or A4) 
are said to be type B. A type B condition must be processed by a seek 
operation. A disjunct of a type B condition and type A and/or type B 
conditions all defined on the same relation can be processed in parallel 
during the seek operation. Hence it may be dealt with as a type B condition. 
A conjunct of type B conditions defined on the same relation may also be 
dealt with as a single type B condition. 

Shown below are examples of type A and type B conditions thus far 
defined. 

1. Ap(x) = 123, Ap(x) = Kobayashi VAp(x) = Yokomori-- typeA1 if 
Ap is the primary key used for a direct file. 

2. Ap(x)= 123, Ap(x) > 123 AAp(x) < 234-- type A2 if Ap is the 
primary key used for a (or a partitioned) sequential or an n-ary tree struc- 
tured file. 

3. As(x ) < 123, As(x ) = manager V As(x ) = supervisor--typeA2 if A s 
is a secondary key. 

4. As(x) 2 + 3 X As(x) > 10, sin(As(x ) + 7r) < 2 • cos(As(x))--type A3 
ifA s is a secondary key and indexed by index files. 

5. As(x ) =A's(x), As(x ) =A;(x )  AAs(x ) =A~'(x) AA~'(x) < 123--type 
A4 if all A s, A' s, and A~' are secondary key indexed by index files. 

Aq(x) = 123--type B if Aq is neither a primary key nor a secondary , 

key. 

7. Ar(x ) < A'r(x), A~(x) + A'r(X ) = A"(X), Ar(X ) • A'r(x ) = 24 V A ~ (x) = 
123--type B regardless of whether A r, A'r, and A'r' are (primary or 
secondary) keys or not. 

Let u k be the time required for fetching a qualified tuple using the 
available efficient search procedure for type Ak conditions (it varies 
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according to the cases but we can estimate an average time) and s, the time 
required for fetching a tuple and testing against the search condition in the 
seek procedure. Then it seems safe to say 

S < U  1 < / 2 2 < / / 3  < U  4. 

Let p be the number of tuples in the relation to which the subject search is to 
be applied and q be the number of quantified tuples in them. Then the 
available efficient search procedure for type Ak conditions is more efficient 
than the seek operation if 

S/Uk > q/p. 

In general, q is not known before the search. However, in most cases, i fp  is 
sufficiently large, q/p can be estimated to be smaller than s/u k. Conversely, 
if p is small, q/p can be greater than s/u k, and hence the seek operation is 
better. The s/u k value depends on the specific implementation of the search 
procedure. 

The above classification is by no means an absolute one. Certain 
advanced file organizations can be devised in future. Als0 some hardware 
devices (database machines) can be invented in future that brings a better 
perforfiaance into processing some types of search conditions. In such cases, 
the classification we have mentioned can be modified accordingly. 

2.3. Sequential Collation 

We have already seen that a sequential collation of two index files can 
be applied to processing the condition 

a , ( x )  = a's(x ) 

defined on a relation. The same technique can be applied to processing the 
condition 

A,(Xl) = A's(x2) 

defined for (xl ,x2)eR 1 • R 2. 

Let Pl and P2 be the number of tuples respectively in R 1 and R 2 , and s 
the time required for fetching a tuple and testing it against the given 
condition in sequential processing. The total time required for seeking 
R 1 X R 2 is about p~p2s. On the other hand, the time required for sequential 
collation of the two files is (Pl + Pz) s. Except when either one of R~ and R 2 
is empty or includes only one tuple, we have 

Pl + P2 < PxP2. 
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The latter process may necessitate a sorting procedure before executing 
the collation; however, since the time required for sorting p tuples is in the 
order o f p  log p, the latter process is better than the former when Pl and p~ 
are sufficiently large. 

In addition, the sequential collation can be operated on two index files 
one for A s and the other for A;, instead of being operated on two main files. 
If two such index files have already been provided, they can be used as they 
are. Even if either or both index files have not been provided, we can 
temporarily generate them. This may greatly reduce the time required for 
sorting and collating tuples. 

2.4. Type C and Type D Conditions 

Search conditions defined over two or more relations can be classified 
into the type C or type D conditions defined as follows according to whether 
a sequential collation can be applied or not. 

(6) Type C: Conditions of the form 

A (xl) =Ai(x2) 

defined Ibr (x~,x2)eR 1 •  is said to be typeC. A conjunct of m typeC 
conditions of the form 

r t t  

k = 2  

or a conjunct equivalent to the above can be processed in a single sequential 
collation. Hence it can be dealt with as a type C condition. Some attributes 
involved in a type C condition may have already been indexed by an index 
file, while others have not been indexed and temporary index file must be 
created for each of them before the sequential collation. If type A2, A3, 
and/or A4 conditions regarding one of the indexed attributes are 
conjunctively combined with the subject type C condition, they can be 
processed in parallel during the sequential collation process. Hence they, 
together with the type C condition, can be dealt with as a type C condition. 
On the other hand, if type B conditions defined on one of the involved 
relations, for which a temporary index file must be created before the 
sequential collation, are conjunctively combined with the subject type C 
condition, they can be processed in parallel during the generation of the 
temporary index files. Hence they, together with the type C condition, may 
be dealt with as a type C condition. 

(7) Type D: All other unit conditions defined over two or more 
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relations are said to be type D. A type D condition must be processed by 
seeking the Cartesian product of the involved relations. A disjunct of unit 
conditions defined on the same set of relations, at least one of which is a 
type D condition, can be processed during a single seek operation. Hence it 
may be dealt with as a type D condition. A conjunct of type D conditions all 
defined on the same set of relations can be processed during a single seek 
operation. Hence it may be dealt with as a type D condition. 

are examples of type C and type D conditions thus far Shown below 
defined. 

1. As(XO = 
123--type C if all 

AS(x2) , As(Xl) = A~(x2) /k As(Xl) = A~s'(X3) A A;t(x3) < 
A s, A~, and A~' are indexed by index files. 

2. A , ( x , )  - Ar(X ) = Aq(x2) A Aq(x2) = Ai(x3) A Aq(x2) < 
123--type C if A q is not indexed regardless of whether A r and A~ are indexed 
or not. 

3. Ar(X1) < A~(x2), Ar(Xl) "~ Art(X2) = A;t(x3), Ar(Xl) = A;t(x2) V 
A~(x~) < Ar  D regardless of whether A r, A;,  Ar", and A" '  are 
indexed or not. 

The sequential collation for type C conditions is much more efficient 
than the seek operation applied to the Cartesian product of relations except 
when m -  1 of m involved relations contain only a very small number of 
tuples. Care should be taken not to apply sequential collation to m relations 
one of which is empty. 

2.5. Unit Conditions with Aggregate Functions 

Unit conditions containing aggregate functions must be dealt with as 
type B or type D conditions according to their being defined on a single 
relation or on more than one relation. During the seek operation, these 
aggregate functions must be evaluated by invoking an appropriate procedure. 
Such a procedure includes the search with the condition which determines 
the range of aggregation. Hence in this case a recursive execution of the 
search procedure must be made. 

We will not go into the details of search procedures processing various 
types of search conditions because they vary greatly according to the 
employed hardware and file organizations. Diversity of implementations 
results in various performances. Instead we will discuss selection of an 
optimal sequence of elementary search and other operations for processing 
the given compound search conditions. 
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3. SYNTACTICAL TRANSFORMATION 

The first phase of search optimization is the syntactical transformation 
of the given compound search condition. It can be done at the compiling 
time probably with an aid of an appropriate syntax parser equipped in the 
employed programming language translator (host language compiler). The 
purpose of this syntactical transformation is to move the unit or compound 
component conditions, for which some efficient search procedure is 
availaNe, to a more forehand position in each conjunctive term. This 
narrows down the area on which a seek operation must be made and, in 
consequence, improve the total search efficiency. 

To enable such a syntactical transformation, it is advisable that the 
given condition is transformed into its prenex form, and then its matrix part 
is transformed into a conjunctive normal form. It is better to apply some 
remaining procedures to a disjunctive normal form. 

The syntactical transformation can be achieved by executing the 
following ten steps for the 2 argument of the search operation. 

STEP 1: Transformation into the prenex normal form. We transform 
the given eondition into its prenex normal form. I f  it contains no free tuple 
variable, a free tuple variable whose domain is an arbitrary relation that 
includes only one arbitrary tuple is added. A logieal funetion defined on the 
added relation whose value is constantly "true" is conjunctively combined 
with the given condition. 

The first half of this step assembles all the quantifications appearing in 
the given condition in front of the matrix part. The last half is necessary to 
deal with conditions without free variables. Such a condition becomes to 
have to be evaluated, for instance, in integrity checking at the database 
update. 

For example, step 1 transforms. 

Vx~R 2 ( i , ( x ) )  V Vx~R 2(;~2(x)) 

into 

Vx2~R 2 Vx3~R3(T(x1) A (/].I(X2) /~ (,~,2(X3))) 

where xl is an artificially added tuple variable whose range in an arbitrary 
relation R 1 containing only one tuple, and T is a constant function whose 
value is "true." 

As the result, we obtain the form 

r l G . . ,  r p ( 2 ( x ,  ..... XN,XN+,  ..... XN+p ..... XN+~+Q)), 
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where x k is a free variable for 1 ~< k ~< N (N/> 1), a quantified variable for 
N + 1 ~< k ~< N + P (P >/0) and another bound variable for N + P + 1 ~ k ~< 
N + P + Q  (Q>/O). 

STEP 2: Transformation into the conjunctive normal form. We 
transform the matrix part of the condition obtained in step 1 further into its 
conjunctive normal form. 

This step is not absolutely necessary but is desirable in order to 
examine if there exists some disjunct of unit conditions to be regarded as a 
single condition. 

STEP 3: Elimination of negation operators. For all the component 
conditions of the form 

,,~(fOg) 

appearing in the matrix part, we remove the ",-~" operator by changing the 
relational operator 0 to another relational operator O' appropriately. 

For example, " = "  is replaced by "-r " > "  is replaced by "~<," and "~<" 
is replaced by "> . "  If a component condition prefixed by a ",,~" operator is 
not of the above form (the case when a component condition is a logical  
function defined is some way other than by a relational operator), it should 
remain unchanged but is hereafter dealt with collectively as a unit condition 
during the syntactical transformation. 

STEP 4: Determination of unit condition type. We determine the type of 
every unit condition in the matrix part of the transformed condition. 

Unit conditions are classified into type A1, A2, A3, A4, B, C, and D 
conditions. If conventional notations like 

and 

Ct < Al(x) < C2, 

Al(x) = A 2 ( x )  = A 3 ( x )  

AI(Xi ) = A2(x2) = A3(x3) =A4(x4 ) 

are allowed, they might be decomposed into a conjunct of several unit 
conditions. However, they may rather be regarded as a unit condition of a 
certain type. 

STEP 5: Redefinition of the type of disjunets. We examine each 
disjunctive term of the conjunctive form to find the disjunet to be dealt with 
as a single condition of  a certain type according to the following rules. 
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(1) If  there are more than one type A 1 condition which are defined on 
the same relation, they are collectively refefined as a type A 1 condition. 

(2) If  there are more than one type A2 condition which are defined in 
terms of the same primary or secondary key on the same relation, they are 
collectively redefined as a type A2 condition. 

(3) If  there are a type A3 condition and several type A2 and/or A3 
conditions all defined in terms of the same secondary key on the same 
relation, they are colIectively redefined as a type A3 condition. 

(4) If  there are a type A4 condition and several type A2, A3, and/or 
A4 conditions all defined in terms of secondary keys, at least one of which is 
the same key, on the same relation, they are collectively redefined as a type 
A4 condition. 

(5) If there are several condition defined on the same relation, at least 
one of which is type B, they are collectively redefiend as a type B condition. 

(6) If  there are several conditions defined over the same set of 
relations, at least one of which is type D, they are collectively redefined as a 
type D condition. 
This step is repeated until the disjuncts to which the above rules are 
applicable have been exhausted. 

The six rules reflect the type issues we made in Sec. 2. 
This step can be achieved easily by arranging unit conditions in each 

disjunctive term according to the names of the involved relations and, if 
given, the names of the involved attributes. Since rule (k) in this step 
overrides rule (k-l), we had better test rule (6) first and (1) last. Rules (2), 
(3), and (4) can be processed collectively for type A2, A3, and A4 conditions 
defined on the same relation. This procedures resembles the procedure of 
obtaining connected components of a graph. 

ST EP 6: Transformation into the disjunctive normal form. We 
transform the condition obtained in step 5 into its disjunctive normal form. 

Again we need a relatively simple formula manipulation procedure. The 
number of component conditions may have been decreased as the result of 
step 5 as compared with the number of unit conditions to be processed in 
step 2. 

STEP 7: Factoring out common conditions. I f  there exists a eommon 
component condition being given a type in two or more conjunctive terms that 
are disjunctively combined without any interlaid parentheses, we parenthesize 
these terms and factor out the common condition in front of  the parentheses. 

828/10/2 2 
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This step is repeated until such common component conditions have been 
exhausted. 

Since there may be more than one such common condition in 
conjunctive terms, the result of the above procedure is not unique. We will 
introduce a heuristics in the sequence of picking up such common 
conditions. The following sequence seems a suitable selection for narrowing 
down the search area as rapidly as possible: 

a) Type A1 conditions. 

b) Type A2 conditions. If the number of qualified tuples for the 
condition is known (for instance, by means of appropriate information 
obtainable from the index file), the ascending sequence of this number is 
appropriate for picking up type A2 conditions. 

c) 
d) 

e) 
involved 

f) 

g) 
involved 

Type A3 conditions. 

Type A4 conditions. 

Type C conditions. The ascending sequence of the number of 
relations is appropriate for picking up type C conditions. 

Type B, conditions. 

Type D conditions. The ascending sequence of the number of 
relations is appropriate for picking up type D conditions. 

As the result, we may have a nest of several parentheses. For example, 
if we are given a condition 

~1 A )1"2 A)'3 V21 As A~4 V21 A~5 A ~6, 

it is transformed into 

~'1 A (/I, 2 A (2 3 V ~4) V/1. 5 A ~6). 

During the factoring out procedure, it may happen that all component 
conditions in a conjunctive term are factored out. Then this term together 
with other terms disjunctively combine with it and "V" operators combining 
them are simply deleted. For example, 

,11 A/1-2 A s V 21 A )3 

is simply transformed into 

/1"1 A/~3- 
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The assotiative law regarding "A" operators is used for avoiding 
unnecessary generation of parentheses. For example, 

is written as 

/]'1 A/~2 A (A 3 V 24). 

Step 7 enables to eliminate duplicate evaluations of the same condition 
that might be executed unless such a factoring out procedure had been 
provided. 

STEP 8: Redefinition of the type of conjunets. We examine each 
conjunctive term of the disjunetive form to .find the eonjunction to be dealt 
with as a single condition of a certain type according to the following rules. 

(1) If there are more than one type A 2 condition which are defined in 
terms of the same primary or secondary key on the relation, they are collec- 
tively redefined as a type A2 condition. 

(2) If  there are a type A3 condition and several type A2 and/or A3 
conditions all defined in terms of the same secondary key on the same 
relation, they are collectively redefined as a type A3 condition. 

(3) If  there are a type A4 condition and several type A2, A3, and/or 
A4 conditions all defined in terms of secondary keys, at least one of which is 
the same key, on the same relation, they are collectively redefined as a type 
A4 condition. 

(4) If there are several type B conditions defined on the same relation, 
they are collectively redefined as a type B condition. 

(5) If  there are two type C conditions, in which one attribute appears 
in common, are collectively redefined as a type C condition. This redefinition 
must be applied repeatedly. 

(6) I f  there are a type C condition and several type A 2, A 3, and/or A4 
conditions defined in terms of the secondary keys, one of which is the 
secondary key appearing in this type C condition, they are collectively 
redefined as a type C condition. 

(7) If there are a type C condition and several type B conditions 
defined in terms of an attribute, which appear in this type C condition, they 
are collectively redefined as a type C condition. 

(8) If there are several type D conditions defined over the same set of 
relations, they are collectively redefined as a type D condition. 

The eight rules also reflect the type issues we made in Sec. 2. 
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This step can be achieved also by arranging unit conditions in each 
conjunctive terms according to the names of the involved relations and, if 
given, the names of the involved attributes. Different from step 5, we had 
better apply these rules in the ascending sequence of their numbering. Rules 
(1) through (3) can be processed collectively for type A2, A3, and A4 
conditions. Also rules (5) through (7) can be processed collectively when one 
or more type C conditions exist. 

STEP 9: Determining the type of compound conditions enclosed in 
parentheses. We add a pair of parentheses enclosing the whole matrix part, 
and then examine each compound condition enclosed in a pair of parentheses 
form the innermost to the outermost parentheses. Compound condition type is 
determined according to the following rules. 

(1) If all component conditions in a pair of parentheses are typeA 
(A 1, A2, A3, A4) or type A*, then the compound condition is type A*. 

(2) If all component conditions in a pair of parentheses are type A, 
A*, C, or C*, then the compound condition is type C*. 

(3) If all component conditions in a pair of parentheses are type A, 
A*, C, C*, B, or B*, then the compound condition is type B. 

(4) If at least one component condition in a pair of parentheses is 
type D or type D*, then the compound condition is type D*. 

Note that the type is determined without regard to what logical operators 
are used for combining component conditions. 

The above step includes a recursive procedure. 

STEP 10: Rearrangement of component conditions. We finally 
rearrange all component conditions directly combined by "A" operators in 
the sequence of 

A 1-A 2-A 3-A 4-A *-C-C*-B-B*-D-D*.  

The rearrangement must be applied to compound conditions in each 
pair of parentheses. 

Again we have employed a heuristics in the above arrangement to 
enable narrowing down the search area as rapidly as possible. 

Figure 1 shows an example of syntactical transformation applied to a 
compound condition defined on a relation. Only the transformation of the 
matrix part is shown. The illustrated condition graph may ease 
understanding. Figure 2 shows an example in which a compound condition 
defined over three relations is transformed. 
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Assume ~i,~3,%4,X5,~6: type A (%5 and %6 being type A2 defined in termes of the 

same attribute), X2: type B. 

Given condition 

(1712)~(X; x4V (X5^16)) 
Conjunctive normal form 

ii 12^X; V r v %4 15^13 I# X 6 
Redefinition of condition type 

1#~2~i: ~I^I3v%4V15A~;~#%6 
Disjunctive normal form 

~l~ V ~^~ ~7 ~i~ ~^~ ~< ~>~/~i ~ ~7 ~l ~ ~< ~l~ 
Factoring 

%3A~? X4AU ? ~5A~6^UI 
Redefinition of condition type 

3,\ A ~2Abl 

%1 T 12 

~3-- X4-- ~5 

16 

given condition 

horizontal line : 'g' combination 

vertical line: 'A' combination 

> 

Fig. 1, 

@ ~  ~2 

-~i 

transformed condition 

S y n t a c t i c a l  t r a n s f o r m a t i o n  a p p l i e d  to  a c o n d i t i o n  de f ined  o n  o n e  re la t ion .  

Assume ~AI: type A defined on RI, >'A2: type A defined on R2, ~B3: type B defin:{d 

on R3, ~C12: type C defined on RI• 1C23: type C defined on R2• 3 

(%C12 and %C23 regard the same attribute of R2) , ~DI3 type d defined on 

RIXR 3 �9 
Given condition 

)'A2~XDI3~%CI2~XAI~XC23^XB3 
Redefinition of condition type 

~C12^~C23^1B3 ~IJCI23 

XA2 kAk 
1 r 

XDI 3 XA2 

at!2 

%AI ~C123 
,r 

~C23 
,I 
AB3 

Fig. 2. Syntactical transformation for a condition defined on R~ X R2 X R3, 
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4. ELEMENTARY OPERATIONS 

In order to process conditions and other symbols in the transformed 
condition, we need several elementary operations. They resemble operations 
in the relational algebra (~) but differ from relational algebra operations in 
that relational algebra operations always generate a new relation, while our 
elementary operations generate a subset of operand relation or a subset of 
the Cartesian product of operand relations. Theoretically a subset of the 
Cartesian product of relations can be regarded as a relation but it is better to 
distinguish the two from the software implementation point of view. In fact, 
the elementary operations need not generate a new relation as the result. 
Only the (ordered) sets of primary keys of the tuples (or addresses of the 
records representing them) that are components of elements in the result 
must be kept. 

The following six must be provided as elementary operations. 

(1) Extended join: j [ ,~] (R1 ,R  2 ..... Rm). The extended join is the 
S [ 2 ] ( R 1 ,  R 2 , . . .  , Rm) operation with 2 being a unit condition or a compound 
condition, which is given a type (A 1, A2, A3, A4, B, C or D) during the 
syntactical transformation procedure. Its optimal implementation varies 
according to the condition type. We will assume that an optimal implemen- 
tation has been made for all condition types as discussed in Sec. 2, with the 
given hardware and database organization taken into account. 

If m = 1, the extended join is identical to the selection in relational 
algebra. If m = 2, it resembles the join in relational algebra; however, the 
result is not a relation but a subset of R 1 X R2. Generally, the result is a 
subset of R 1 • R 2 X " '"  X R m. 

(2) Extended selection: r[2](S). The extended selection is defined by 

r[2](S) = {(tl, t 2 ..... tm)l(t,, t 2 . . . . .  t m ) C S  A 2 ( t , ,  t 2 . . . . .  tm)} ,  

where S is a subset of R~ X R  2 X " '" X R  m, which is obtained as an inter- 
mediate search result. This operation must be executed as a seek operation 
on S. 

(3) Extended intersection: i(S l, $2). The extended intersection is defined 
by 

i ( S ~ ,  82) = { ( t l ,  t 2 . . . . .  tin) I ( t i l  , ti2 . . . . .  t i m , ) B S  1 A ( t j l  , tj2 ... . .  t jm , , )gS2}  , 

where 

{il, i2 ..... im'} U {jl, j2 ..... jm"} = {1, 2 ..... m}, 
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and $1 and S 2 are, respectively, a subset o fR i t  X Ri2 • ... X Rim, and Rj~ • 
Rj2 ),( . . .  • R i m , .  The extended intersection operations may be implemented 
in several different ways according to the cases. 

If 

{il, i2 ..... im'} ~ {jl ,  j2  ..... jm"} = {ki, k2,..., k in ' }  

is not an empty set, the extended intersection resembles the natural join in 
relational algebra. In particular, if 

{il, i2 ..... On'} = {jl, j2  ..... jm"} = {1, 2 ..... m}, 

the extended intersection is the intersection in set theory. In these cases, the 
extended intersection can be carried out by a sequential collation of two sets 
of ordered set of tuples, each being sorted by the concatenation of the 
primary key values of tuples in (tk~, tk2 ..... tkm,, ), 

If 

{il, i2 ..... im'} ~ {jl ,  j2 ..... Jm"t = O 

the extended intersection implies making the Cartesian product of $1 and S 2, 
Although it becomes a time and space-consuming task, implementation of 
the operation for this case will be easy. (The user may be given a warning 
message when such a time and space consuming procedure is invoked.) 

(4) Extended union: u(S~, $2). The extended union is defined by 

u(S, ,  S g = I ( t , ,  t2 ..... tm) E ( t , ,  t~ ..... tm)eS ,  V ( t , ,  t2 ..... tm)~S2}, 

where both S 1 and S 2 are a subset of R 1 • R 2 X . . - •  To eliminate 
duplicate elements, a sorting procedure with the concatenation of primary 
key values of tuptes in each element of $I and S 2 following by a merging 
procedure is mandatory. 

(5) Extended projection: p[il ,  i2,..., ira' ](S). The extended projection is 
defined by 

p [ i l ,  i2 ..... i m ' ] ( S )  = I ( t i l ,  ti2 ..... tim,) l ( t l ,  t 2 ..... tm)~:S} , 

where 

{il, i2 ..... i r a ' } c { 1 , 2  ..... m} 

and S is a subset ofR~ • R 2 • ... • R m. Again a sorting procedure must be 
integrated for removing duplicate elements in the result. 
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(6) E x t e n d e d  division: v (S ,  Rm). The extended divis ion is defined by  

v(S ,  R,n ) = l(t~, t2,... , tm_Ol  Vt'meR m 3(t~', t~',..., t " ) e S  

tl ( t j  = A t ;  = , 
j = l  

where S is a subse t  o f R  1 • R 2 • . . -  X Rm. This  ope ra t ion  can  be carr ied  ou t  

by  (i) sor t ing all e lements  (q' ,  t~ ..... t~)  is S by the  c o n c a t e n a t i o n  o f  p r im a ry  

key values  of  c o m p o n e n t  tuples ,  (ii) sort ing tuples in R m by their p r imary  

key values,  and  (iii) for every subset  S '  of  S in which  all e lements  have a 

c o m m o n  ( t l , t  2 ..... tm_~), col la t ing  S '  and  R m sequent ia l ly  to examine  if 

p [ m ] ( S ' )  covers  R, , .  I f  so, co r r e spond ing  (t 1, t2,..., t in_l) is p laced  in to  the 
result.  I f  not ,  it  is excluded f rom the result .  

Table I. Rough Estimation of the Time Required for Elementary Operations 

Join 
type A 1 aq 
type A2 b' log p ~ bp 
type A 3 bp 
type A 4 mbp 
type B ep 
type C b Y~i Pl ~ d ~ i  P~ log p~ + b ~ i  Pi 
type D c l-[i Pl 

p(p~): number of tuples in the operand relation 
q: number of qualified tuples in the operand relation 
m: number of involved attributes 
a, b, b', e, d: implementation dependent constant (c = e'l and d = d'l with I being 
the length of records representing tuples). 

Selection her 
n: number of the involved relations 
r: number of etements in the operand 
e: implementation dependent constant 

Intersection 
natural join/intersection f ( r  1 log r~ + r 2 log r2) + g(r I + r2) 
Cartesian product gr~ ra 
r 1 , r 2 : number of elements in each operand 
f, g: implementation dependent constant 

Union f(rl  log rl + r2 log rz) + g(r 1 + r2) 
Projection fr  log r 
Division f ( r  log r + p log p) + 2g r 

r: number of elements in the first operand 
p: number of elements in the second operand 
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As mentioned previously, the results of these elementary operations do 
not necessarily contain all the attribute values of qualified tuples or qualified 
ordered sets of tuples. In fact, except the extended join and extended 
selection, all our elementary operators can be carried out using only the 
primary key part of tuples in the intermediate results. Even when the other 
attribute values become necessary in executing an extended selection, they 
can be availed using the primary key part of tuples. Therefore, we have to 
keep only the primary key (or address) values of the resultant tuples for the 
further processes. In this way, the data volume to be moved among the 
storage devices as well as the storage space to accommodate intermediate 
results is minimized. This also saves the time. From the software implemen- 
tation point of view, this is the basic difference between relational algebra 
operations and our elementary operations. 

Rough estimation of necessary time for each elementary operation is 
shown in TableI. Although it includes many factors that are 
implementation-dependent, we can see what the order of time requirement is 
in terms of the number of elements in the operand. 

The above operations can be implemented software-wise but they may 
also be embodied as some special database machines. We have seen that in 
all the extended join for type C condition, extended intersection except when 
it implies making a Cartesian product, extended union, extended projection, 
and extended division, the sorting serves as a basic procedure. A sorting 
machine, if it were implemented hardware-wise, might become a very 
powerful toot for efficient implementation of these operations. 

5. THE RECURSlVE SEARCH PROCEDURE 

We are now ready to execute actual search operations. Since the syntac- 
tically transformed condition may contain a nest of parentheses, the search 
procedure must be written in a recursive manner. Each invocation of the 
recursive procedure deals with a compound condition enclosed in a pair of 
parentheses. 

In order to process the given condition that is defined on a Cartesian 
product of N relations, we provide a set of 2 N -  1 workspaces each being 
able to accommodate a name of intermediate result (by which all the 
elements in the intermediate result can be accessed) and the number of 
elements in it. These workspaces are so numbered that content of a 
workspace specifies a subset of the Cartesian product of relations which are 
specified by its number (Table II). 

For example, if N = 1, we have to provide only one workspace ws[ 1 ]. If 
N = 2 ,  we provide 2 2 -  1 = 3  workspaces, ws[l], ws[2] and ws[1,2]. If 
N =  3, we provide 2 3 -  1 - -7  workspaces, ws[1], ws[2], ws[3], ws[1,2], 
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Table II. Workspace Identification 

Workspace Name and number of elements in it 

ws[il 
ws[il, i2] 
ws[il, i2, i3] 

ws[1, 2 ..... N] 

a subset of Ri 
a subset ofRll • Ri2 
a subset ofRil • Ri2 • Ri~ 

asubset ofR~ • 2 • ... • R N 

ws[1, 3], ws[2, 3], and ws[1, 2, 3]. Actually a binary numbering in which 
each bit corresponds to a relation can be adopted. 

Each invocation of the recursive search procedure uses a subset of these 
2 N -  1 workspaces. If  the search procedure is to deal with a compound 
condition defined on a Cartesian product of n (n ~<N) relations, it uses 
2 n - 1 workspaces. In order to process a disjunct of conditions, several inter- 
mediate states of these workspaces must be kept. Hence we provide a push- 
down stack, which we call the X stack, each of whose entries accommodate a 
copy of the 2 n -  1 workspaces. Also we must provide a temporary area 
called the Y area, that accommodates a copy of the workspaces. Finally one 
more push-down stack, which we call the Z stack, must be provided. Each 
entry of the Z stack accommodates a name of intermediate result and the 
number of elements in it. 

The compound condition in a pair of parentheses is examined from left 
to right and component conditions are processed one by one. Each time a 
component condition has been processed, contents of the workspaces are 
updated accordingly. When a left parenthesis has been encountered, the 
search procedure is invoked recursively. 

The formal parameter of the search procedure must include 

n: integer; function 2: Boolean; var ws: array[ 1.. 2**n - 1 ] of workspace; 

where 2 is the compound condition to be processed. Several local variables 
including the X stacks, Y area, and Z stack must be defined in the search 
procedure. 

We will describe the search procedure in a PASCAL-like 
pseudoprogramming language. The following program shows the skeleton of 
the procedure. 

procedure search 
begin Push down the workspace into the X stack; 

Store the workspace into the Y area; 
A While there remain some units to be processed do 
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begin Get next unit; 
I f  the obtained unit is a component condition then 

begin Pop up the X stack into the workspace; 
Invoke procedure "preprocess"; 
invoke procedure "conditionprocess"; 
Invoke procedure "postprocess"; 
Push down the workspaces into the X stack 

end 
Else i f  the obtained unit is a left parenthesis then 

begin Find the corresponding right parenthesis; 
Extract the compound condition enclosed in this pair of 
parentheses; 
Invoke procedure "search" recursively 

end 
Else i f  the obtained unit is an "V" operator then 

Push down the content of Y area into the X stack 
end; 

Invoke procedure "union"; 
Release all the storage areas used for accommodating inter- 
mediate results in this procedure 

end search; 

The A is the label for establishing a return point from procedure ~ 
that is described later. 

We will next describe several procedures that are invoked in the search 
procedure. 

5.1. The Preprocess Procedure 

The preprocess procedure is necessary to find the operand to which the 
extended join or extended selection is to be applied for processing the given 
component condition. Let the given condition be r or ~/J defined on 
Rii X Ri2 X " ' "  X Rim. 

Procedure preprocess 
begin For j := 1 to m do 

Find a non-empty workspace with maximum number of 
suffices including/j; 

Eliminate duplications if exist among the obtained workspaces; 
Divide the obtained workspaces into groups so that every 
workspace in each group has at least one suffix common to that 
of another workspace in the same group but no suffices common 
to those in any other group; 
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For example, if we have obtained ws[1, 2], ws[2, 3], and ws[4], they are 
divided into two groups, one composed of ws[1, 2] and ws[2, 3] and the 
other composed of ws[4]. 

Let G1, Gz, .... G m, be the workspace groups thus far obtained. 
For the further process, we need m'  temporary areas s[1], s[2] ..... s[m'] 

each accommodating a name of intermediate result and the number of 
element in it, and m '  temporary areas t[1], t[2] ..... t[rn'] each accom- 
modating a set of suffices. They must be defined as local variables in the 
search procedure. We may reserve n areas for each of the above two kinds of  
temporary areas. 

For k := l to m'  do 
begin Renumber the workspaces belonging to Gk in the ascending 

sequence of the number of elements in the intermediate results 
they direct; 

This is a sort of run-time optimization. We will process the workspaces with 
a smaller number of elements in the intermediate result it directs before 
processing the workspaces with a larger number of elements in the inter- 
mediate result it directs. By this means, we may minimize the time required 
in a repeated application of the extended intersection. For example, assume 
that we have to make i( i(S 1, $2), $3). It is obvious that i (S 1 , i(S2, $3)) gives 
the same result. Let S 1 , S  z, and S 3, respectively, contain ra , r  2, and r 3 
elements. The estimated time of the former procedure is 

f ( r  1 log r 1 + r 2 log r 2 + r 3 log r 3 + r log r) + g(r 1 + r 2 + r 3 + r) 

where r is the number of elements in i(S~, $2), while that of the latter is 

f (r~ log r 1 + r 2 log r 2 q- r 3 log r 3 -[- r '  log r')  + g(r 1 + r 2 q- r 3 + r')  

where r '  is the number of elements in i (S 2, $3). Hence the former procedure 
is better if r < r ' ,  while the latter is better if r > r'. The above arrangement of 
the workspaces is a heuristics that may achive the optimal execution. 

Let wsl,  WSa, .... WS,n,, be the workspaces arranged in such a sequence. 

Store the content of  wsl into s( t ) ;  
Store the suffices of wsl into t[k]; 
For / : = 2  to m" do 

begin Execute i(s[k]T, ws~);  
Invoke procedure "eliminate"; 
Store the name given to the result and the number of elements in 
it into s[k]; 
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Store all the distinct suffices in t[k] and those specifying ws, into 
dk] 

end 
end; 

Here x T should be read as "the intermediate result specified by the content of 
x." The eliminate procedure, which is defined later, is necessary to avoid 
redundant search process that might be executed when the intermediate result 
becomes empty. 

Renumber the suffix k of s[k] and t[k I in accordance with the 
ascending sequence of the number of elements in s[k]~ 

end preprocess; 

The last statement is again a sort of run-time optimisation to achieve an 
optimal execution of repeated extended intersection. 

For example, if we obtained two group G1 = {ws[1, 2], ws[2, 31} , and 
G2 = {ws[4]}, the result of the preprocess procedure is 

s[1]: directs the result of i(ws[1, 2IT, ws[2, 3]y) 
/[1]: contains suffices 1, 2, and 3 
s[2]: contains the content of ws[4] 
t[2]: contains suffix 4, 

if the number of elements in i(ws[1, 2IT, ws[2, 3]]') is smaller than that in 
ws[4lT. (Fig. 3). Otherwise s[1] and s[2] as well as t[1] and t[2] are 
interchanged. 

If the given condition is defined on a single relation, m' is always equat 
to 1. Only s[1] and t[1] is significant in this case. 

ws[l] ws[2] ws[3] ws[4] ...... 

[_ I 1 l'i il__  
w s [ 1 , 2 , 3 ]  . . . . . . . . . . .  

If. I __A I 

ws[l,2] ws[l,3] ... ws[2,3] ... 

,.. wS[I,2,...,N] 

_ _ L _ Z  

Fig. 3. Preprocessing for a component condition defined on R 1 • 3 X R  4. 
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5.2. The Conditionprocess Procedure 

The conditionprocess procedure is the central part of the search 
procedure. It processes the given component condition in the most 
appropriate way according to its type. 

procedure conditionprocess 
begin I f  /~ is type A then 

begin Execute j[p](Ril); 
Invoke procedure "eliminate"; 
Store the name given to the result and the number of elements 
in it into s[O]; 
I f  s[1] contains a name other than Ril then 

begin Execute i(s [0]Y, s[l l T); 
Invoke procedure "eliminate"; 
Store the name given to the result and the number of 
elements in it into s[O] 

end; 
Store the content of s[O] into the workspace specified by the 
suffices in t[1] 

end 

Here s[0] is a temporary area that accommodates a name of intermediate 
result and the number of elements in it. It must be defined in the search 
procedure as a local variable (Fig. 4). 

An alternative way to process a type A condition is executing 
r[~](s[1]~). However this must be executed by a seek on s[1]T. Unlike the 
extended intersection, the primary key part is not sufficient for the seek and 
the body relations must be referenced. Hence the above strategy is better in 
most cases. (Which the better strategy is depends on the implementation- 
dependent constants a, b, b', e, f ,  and g and also m and n in Table I. The 
above is a heuristics.) 

ws[l] 

i f  s [1 ]  c o n t a i n s  R 1 

if not -~ 

ws[i,2,3] 

i f  t [ 1 ]  c o n t a i n s  
1 ,2  and 3 

Fig. 4. Processing a type A condition defined on RI. 
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Else if  ~t is type B then 
begin I f  t[1] contains only one suffix then 

begin I f  it is preceded by a " ~ "  operator then 
Execute j[~~t](s[1 ]~) 

Else 
Execute j[~](s[1]T); 

Invoke procedure "eliminate"; 
end 

begin 

end; 

Else 
I f  it is preceded by a ",-~" operator then 

Execute j[-gl(p[il l(s[l ] T) 
Else 

Execute j[~](p[il l(s[1 IT); 
Invoke procedure "eliminate"; 
Store the name given to the result and 
elements in it into s[O]; 
Execute i(s[O]T, s[1]y ) 

end 

the number of 

Store the name given to the result and the number of elements 
in it into the workspace specified by the suffices in t[ 1] 

Note that the extended join and extended selection are the same operation for 
the type B condition, which must be carried out by a seek operation (Fig. 5), 

Again we use a heuristics in the last half of the above procedure. 
Instead of applying r[p](s[1 IT), we apply i(j[la](p[il ](s[1 tT),sItlT)). In this 
way, references of the body relations except that corresponding to 
p[il ](s[ 1 ]T) become unnecessary. 

ws[l] ws[l,2,3] 

1" 

if till contains if t[l] contains more than 
only one suffix 1 one suffix (in this case, i, 2 and 3) 

Fig. 5, Processing a type B condition defined on R t . 
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Else if  ~t is type C then 
begin For j := 1 to m do 

begin Find t[k] which contains 0"; 
I f  t[k] contains only one suffix 0' then 

Store the name in s[k] into u[j] 
Else 

begin Execute p[ij](s[k]y); 
Store the name given to the result into u[j] 

end 
end; 

Execute j[/a](u[l]y, u[2]T ..... u[mlY); 
Invoke procedure "eliminate"; 
Store the name given to the result and the number of elements 
in it into s[0]; 
For k :=l to m' do 

begin I f  t[k] contains more than one suffix then 
begin Execute i(s[0]~, s[k]Y); 

Store the name given to the result and the number of 
elements in it into s[0] 

end 
end; 

Store the content of s[O] into the workspace specified by all 
the suffices in t[k]'s 

end 

Here u[j]s are another set of temporary areas that accommodate names 
of intermediate results. They must be defined in the search procedure as local 
variables. 

The j[/a](u[1]g,u[2]g,u[2]T ..... u[m]~) operation can be achieved by a 
sequential collation of index files, which are already provided or temporarily 
created. This procedure can deal with partial matches by introducing 
imaginary tuples319) It will be obvious that the above procedure is much 
faster than dealing with Cartesian product files. 

The last statement uses the union of the contents in t[k]s (1 ~< k < m'). 
For example, if t[1 ] contains 1, 2, 3, and t[2] contains 4, the content of s[0] 
is stored into ws[1, 2, 3, 4] (Fig. 6). 

Else 
begin For k := 1 to m' do 

begin Find the suffices in t[k] which are included in the set 
composed of il, i2 ..... ira; 

This is the statement obtaining the intersection of the set of suffices in t[k] 
and {il, i2 ..... im}. Let hl ,  h2 ..... hm" be such suffices. 
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ws[l] ws[2,3] ws[4,5] ws[l,2,3 4,5] 

a subset ol RIXR2• 

Fig. 6. Processing a type C condition defined on R 1 X R~ X R4, 

95  

If t[k] contains no more suffices than hl ,  h2 ..... hm" then 
begin Store the name in s[k] into u[k]; 

Clear s[k] 
end 

Else 
begin Execute p[h 1, h2 ..... hm'](s [k] T); 

Store the name given to the result into u[k] 
end 
end; 

Store the name in u[1] into s[O]; 
For k : = 2  to m' do 

begin Execute i(s[O]~, u[klT); 

This extended intersection implies making a Cartesian product. 

Store the name given to the result into s[O] 
end; 

I f / z  is preceded by a ",,J' operator then 
Execute r [~,u](s [0]]') 

Else 
Execute r[/l](s[O]T); 

Invoke procedure "eliminate"; 
Store the name given to the result and the number of elements in 
it into s[Ol; 
For k := 1 to m' do 

If s[k] is non-empty 
begin Execute i(s[O]T, s[ lT); 

828/10/2-3 
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Store the name given to the result and the number of elements 
in it into s[0] 

end; 
Store the content of s[0] into the workspace specified by all 
the suffices in t[k]'s 

end 
end conditionprocess; 

The above procedure for type D conditions is very time-consuming 
because it includes the two most time-consuming elementary operations, 
extended intersection making a Cartesian product and extended selection for 
a subset of Cartesian product of relations. The user may be given a warning 
message when such a procedure is invoked (Fig. 7). 

5.3. The Eliminate Procedure 

The eliminate procedure is necessary to discontinue the further search 
processes when the result becomes an empty set. 

procedure eliminate 
begin I f  the result becomes empty then 

begin Eliminate all the conditions and the compound conditions 
enclosed in parentheses, that are conjunctively combined with 
the condition currently having been processed; 
Exit to the statement to which label A is given 

end 
end eliminate; 

ws[l] ws[2,3] ws[4,5] ws[1,2,3,4,5] 

I,I  S I__ III I,.I I I I I 

a s u b s e t  o f  RlxR3xR3xR 4 

Fig.  7. P roce s s ing  a type  D cond i t i on  defined on R 1 • R 2 • R 3 X R4.  
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By returning to A point directly, the contents of workspaces currently being 
used are eliminated. 

5.4.  The Postprocess Procedure 

As mentioned in Sec. 2, the procedures described in Sec. 7.2 dealing 
with various types of component conditions are efficient only when the ratio 
of the number q of qualified elements to the number p of the elements to be 
examined is considerably small. If  the obtained intermediate result contains a 
small number of elements than a certain value, say co, it is better to process 
the further search collectively by a seek operation. The postprocess 
procedure enables such a run-time optimization. 

Let us assume that the result of the conditionprocess procedure has 
been stored in ws[gl ,  g2 ..... gin'']. 

procedure postprocess 
begin I f  the result contains less than co elements then 

begin Change the type of all the type A conditions, which are 
conjunctively combined with ~ and are defined on one of 
Rgi,Rg2,...,Rgrn,,,, , to type B; 
Change the type of all the type C conditions, which are 
conjunctively combined with/~ and are defined on a Cartesian 
product of some of Rgl ,  Rg2,... , Rgm,,,, , to type D; 
If there is a type B condition, which is conjunctively combined 
with the type B condition obtained as above and defined on the 
relation on which the above obtained type B condition is 
defined, this conjunct is redefined as a type B condition; 
If  there are conditions, which are conjunctively combined with 
the t ypeD condition obtained as above and defined on the 
Cartesian product of some of relations that compose the 
Cartesian product on which the above obtained t y p e d  
condition is defined, this conjunct is redefined as a type D 
condition 

end 
end postprocess; 

The co value is implementation-dependent. Two different vaiues can be used 
for the case in which the result of the conditionprocess procedure is a subset 
of a single relation and the case in which it is a subset of a Cartesian 
product of more than one relation. They may be determined using implemen- 
tation-dependent constants appeared in Table I or by the instrumentation in 
actual search operations. 
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5.5. The Union Procedure 

When all the component conditions have been processed, the result is 
stored in the X stack. If  an "V" operator had appeared during the search 
execution, an additional entry was pushed down in the X stack. Therefore, 
we have to make union of the intermediate results directed by the X stack 
entries. The union procedure uses the Z stack. 

procedure union 
begin Store the empty result symbol 4 into ws[1, 2 ..... n]; 

V While there remain some entries in the X stack to be popped 
up do 

begin Pop up the X stack into the workspaces; 
For k := n downto 2 do 

begin While there are non-empty workspaces with k suffices do 
begin Pick up a non=empty workspace with k suffices; 

Clear the workspace all whose suffices are included in 
the above k suffices 

end; 
Renumber all the non-empty workspaces in the ascending 
sequence of the number of elements in the intermediate results 
they direct; 

This is again a sort of run-time optimization to minimize the time required in 
a repeated application of the extended intersection. Let WSl, ws2,..., wsm be 
the workspaces arranged in su~ch a sequence. 

Store the content of ws 1 into s[0]; 
For k := 2 to m do 

begin Execute i(s[0]y, WSkT); 
I f  the result becomes empty then 

Exist to the statement to which label V is given; 
Store the name given to the result and the number of 
elements in it into s[0] 

end; 
Push down s[O] into the Z stack 

end; 

Now each entry in the Z stack contains a name of intermediate result, which 
is a subset of the Cartesian product of n relations on which the given 
condition is defined. 

I f  Z stack is not empty then 
begin Pop up the Z stack into ws[1, 2 ..... n]; 

While there remain some entries in the Z stack to be 
popped up do 
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workspaces ws[l] %ws[l,2,...,n] 

t__ __] 

Y-area 

t 

X-stack 

i: pushed down at the entry of search procedure 
2: popped up when a component condition is given 
3: pushed down when a component condition has 

been processed 
4: stored at the entry of search procedure 
5: pushed down when an 'v' operator is given. 

Fig. 8. Uses of the X stack and the Y area in the recursive search procedure. 

popped up from the X-stack 

ws[l] ws[2] ws[3] ws[l,2] ws[l,3] 

[ I I 

�9 
Thi s  i n t e r s e c t i o n  i s  a n a t u r a l  j o i n - l i k e ~  
o p e r a t i o n  or  a C a r t e s i a n  p r o d u c t  o p e r a t i o n .  

pushed down i n t o  
t h e  Z - s t a c k  

ws[2,3] ws[l,2,3] 

Fig. 9. Preparation for making the union of intermediate results. 
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begin Pop up the Z stack into s[O]; 
Execute u(ws[a, 2 ..... n]Y, s[0]T); 
Store the name given to the result and the number of 
elements in it into ws[1, 2 ..... n] 

end 
end 

end union; 

Figure 8 shows the use of the X stack and the Y area. Figure 9 shows 
the first half of the union procedure, that create an intermediate result to be 
pushed down into the Z stack. The last half makes the union of the inter- 
mediate results directed by the Z stack entries. 

6. SEARCH EXECUTION 

Actual search can be achieved by executing the following six steps. 

STEP 11: Provision of the workspaces. We provide 2 N -  1 workspaces 
each being able to accommodate the name of a subset of a Cartesian product 
of each combination of operand relations. 

The workspaces are identified as shown in Table II. 

STEP 12: Invocation of the recursive search procedure. We first place 
the name and the number of tuples (if known) of each operand relation into 
the corresponding workspace ws[i], and clear all other workspaees (with 
more than one suffix). Then we eliminate the outermost parentheses in the 
given syntactically transformed condition and invoke the recursive search 
procedure with n = N, 2 being the given condition and the above workspaees 
as actual parameters. 

This step terminates with the name of the result and the number of elements 
in it in ws [1, 2,..., N]. 

STEP 13: Processing quantifications. We examine the quantification 
part of the given condition from right to left. 

(1) If F k is a universal quantification, then we execute 

v(ws[1,2 ..... N]T,R~) 

and store the name given to the result and the number of elements in it back 
into ws [ 1, 2,..., N]. 
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(2) If F k is an existential quantification, then we find all the existential 
quantifications Fk_p, Fk_p+ i,..., Fk- i immediately preceding Fk, execute 

p[1, 2 ..... k - p - 1 ](ws[1, 2 ..... N]T), 

and store the name given to the result and the number of elements in it back 
into ws[1, 2 ..... N]. 

This step is repeated until all the quantifications have been processed. 
Note the sorting operation for the ws[1, 2,...,N] is necessary only for 

the first division or projection. 
Now the ws[1, 2 ..... N] directs the final result which is a set of primary 

keys or a set of ordered set of primary keys of qualified elements. 

STEP 14: Processing the artificially added free variable. I f  R~ is the 
relation added in step 1 as the domain of an artificial free variable, the 
answer is "yes" i f  the result is not empty. Otherwise the answer is "no." 

STEP 15: Fetching the result. Fetch the qualified tuples or qualified 
ordered sets of  tuptes with reference to the search result directed by the 
content of ws [ 1, 2 ..... N]. 

Either the tuplewise (piped mode) read or the set (non-piped mode) read 
is employed in this step. If necessary, we can answer the question that asks 
the number of qualified elements. 

STEP 16: Releasing the storage areas. We release all the areas that 
accommodate the result and the intermediate results, that are not released as 
yet. 

7. C O N C L U D I N G  R E M A R K S  

In Sec. 1.3, we pointed out four major problems regarding the preceding 
works. Here, we will review how these problems have been solved in our 
algorithm. 

1. Our algorithm can deal with the extended relational calculus. The 
search condition can be arbitrary logical function defined on a Cartesian 
product of relations. Some examples that are not relational calculi but 
extended relational calculi were shown in Sec. 1.2. 

2. Instead of using relational algebra operations, we use our 
elementary set operations, which resemble the relational algebra operations 
but somewhat extended. The major difference between the two is our 
operations keep only the primary key part of the intermediate result as 
mentioned in Sec. 4. 
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3. The target  list specification is separated from our search algorithm. 
It is complete ly  left to the care of  the host language program.  This enables 

any compl ica ted  computa t ion  to be applied to the search result. 

4. Type  C condit ions are processed by a sequential  collat ion of n 
relat ions (or sometimes a sequential  col lat ion appl ied to n index files). Such 
type C condi t ions very frequently appear  in actual  appl icat ions.  

In consequence,  we can expect a much wider appl ica t ion  of  the search 

algori thm than those based on the relat ional  calculus and relat ional  algebra.  
The a lgor i thm presented in this paper  does not  achieve the opt imal i ty  in 

a precise sense because several heuristic techniques are integrated in the 
algori thm to provide a certain subopt imal  algori thm. The opt imal  a lgori thm 
can only be establ ished with many  implementa t ion-dependent  factors taken 
into account.  

Up to this date, a small  por t ion of  the algori thm (for the search 
condit ion defined on a single re la t ion)  has been implemented in 
F O R I M S .  (2,8) 
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