
International Journal of Computer and hformation Sciences, VoL 10, No. 2, 1981

Evaluation of Queries Based

on the Extended Relational Calculi

Isamu Kobayash i ~

Received June 1980; revised December 1980

An efficient database search algorithm is presented. Four major enhancements
on the preceding works have been made. They are (1) relational calculus is
extended to enable processing an arbitrary logicaI function defined on one or
more relations, (2) a set of elementary operations which are similar to but are
more efficient in processing compound search conditions than the relational
algebra is used, (3) the target list processing is completely separated from the
search process, and (4) sequential collation procedure is fully utilized to deal
with conditions of a certain type defined on two or more relations. The
algorithm is composed of two parts: syntactical transformation of the given
extended relational calculus and the search execution. Various optimization
issues are integrated into these two parts.

KEY WORDS: Database; query evaluation; query optimization; relational
algebra; relational calculus; search algorithm.

1. INTRODUCTION

Opt imiza t ion of the da tabase search opera t ion for the given search cond i t ion

is an impor t an t problem. It grows m u c h more compl ica ted as the search
cond i t ion becomes compl ica ted . It depends no t on ly on the logical da tabase

s t ructure on which the subject search is to be carr ied out bu t also on its

phys ica l represen ta t ion in the compute r s torage and current conten ts of the

da tabase relat ions.

1.1. Optimization in Three Different phases

O p t i m i z a t i o n m a y be achieved in three different phases. One is the
selection of op t imal da tabase file o rgan iza t ion , which is a de l ibera t ion

~SANNO Institute of Business Administration, School of Management and Informatics.
Kamikasuya I573, Isehara, Kanagawa 259-t l , Japan.

63

0091-7036/81/0400-0063503,00/0 �9 1981 Plenum Publishing Corporation
828:t0 2

64 Kobayashi

extended over a relatively long period of time. Given a specific processing
environment, we may determine the file media, physical file organization,
and index provisions. The physical database structure thus far selected may
not be permanent but is not changed unless a great inexpedience arises.

The second is the selection of optimal search strategy. Usually the given
search operation is decomposed into several more elementary operations
provided in the system. Optimal decomposition of the given search is
achieved by a syntactical analysis of the search conditions with reference to
the current database structure. Elementary operations themselves must be
carried out as efficiently as possible.

The above search strategy may leave some rooms for the run-time
optimization, which selects one specific sequence of elementary operations
out of several alternatives with reference to the current contents of database
relations and intermediate search results.

In this paper, the last two phases of optimization are discussed. A
relational model is used for simplifying description of the algorithm.
Notations used in the relational model are slightly modified to enable a
simpler description.

1.2. Problem Definition

Database search is the operation which extracts the tuples which are
qualified for the given search condition from one or more database relations.
The search condition is, in general, of the form

x l e R 1 A x2eR2 A ... xNeR N A)@:1, xz XN)

with each x k being a tuple variable belonging to a database relation R k, and
)~ being a logical function (whose value is "true" or "false") defined on the
Cartesian product of relations, R~, R z R N. We will assume that there are
no range terms of the form

conjunctively combined with another range term of the form

x,~R'k,

though they are allowed in Codd's relational calculus. It is because the two
can be transformed into a range term

X k gRk

after R k is created by means of a simple set difference operation.

Evaluation of Queries Based on the Extended Relational Calculi 85

Since the 2 is an arbitrary logical function (defined in terms of several
attributes of tuple variables), the above search condition is a little more
general than Codd's relational calculus. In the relational calculus,)~ must be
a logical combination (using V (or), A (and) and ~ (not) operators) of one
or more unit conditions, each being two attribute values or one attribute
value and one constant combined by one of relational operators (=, 4:, >, <,
) and ~). For example,

and

A,(x) > 3 •)

A, (x,) + A 2(x2) = A

where Aj(x) is the j th attribute of tuple variable x, are disallowed in the
relational calculus, while they are allowed as our search conditions. In a
pattern matching application, evaluation of search conditions of the form

(q,A&))/tql IA&)I > K,

where q is a query vector, Ai(x) is an array type attribute, (q, Ai(x)) is the
inner product of q and Ai(x), tq] and iAi(x)[are respectively the norm of q
and Ai(x) and K is a threshold constant, becomes important. It can also be a
search condition though it is not a relational calculus. In this sense, we will
call the search condition defined as above an extended relational calculus.

Each x k is a free tuple variable in the extended relational calculus. The
extended relational calculus can also contain one or more bound variables.
They are bound by universal quantifiers, existential quantifiers or some other
means, for example, bound in the scope of ceratain aggregate functions like
Z, average, G (standard deviation) and maximum. In its prenex normal form,
the extended relational calculus can be written as

XI~R 1 A x28R 2 A ... A XNSR N

Ar, x ,xu+,

where x k is a free tuple variable for 1 ~ k ~< N, a quantified tuple variable for
N + I ~ < k ~ < N + P , and another bound variable for N + P + I
k ~ N + P + Q. Either N, P, or Q can be 0. No free variables exist when
N = 0 , no quantified variables exist when P = 0, and no other bound
variables exist when Q - - 0 .

Each F k is of the form VXN+kF, RN+ k or ~XN+ReRN+k, being a shorthand
notation of

V (. . .))

66 Kobayashi

and

3XN+k(XN+k~RN+k A(...)),

respectively, and called a range coupled quantification.
For example, in a search condition

x l g R 1 A Vx2gR 2 (A l (X 1) < A l (x 2) A A 2 (x 1) =
x3eR3AA3(xI) --A3(x 3)

N = l , P = l , and Q = I .
We will specify a search operation s with an argument

2(x~, x2 XN)

and names of operand relations R~, R 2 R N, that is,

a4(x3)),

s [2] (R1 ,R 2 RN)

: {(X 1 , X 2 XN)[X 1 E R 1 A x2eR 2 A ... A X N e R N A 2 (X 1 , x 2 XN) }.

Bound variables may appear in the definition of 2 but do not leave their
vestiges in the search result. Therefore,

s[)~l(R1,R2 RN) C R 1 X R 2 X ' " X R g.

The search operation can certainly be achieved by fetching every
element in the Cartesian product of R 1 , R 2 R N followed by testing it
against the given search condition 2. However, this procedure, which is
called a seek operation, is in most cases too much time-consuming. If the
given condition is of some special form (see Sec. 2), we can utilize index
provisions prepared in the database and sometimes can utilize efficient
sequential collation process, both greatly improving the search efficiency.

In general, the search condition is a logical combination of several unit
conditions which cannot be further decomposed into a logical combination
of simpler conditions. Since we have

S [21 V 221(R 1, R 2 RN] = s [21] (R 1 , R z RN) [...) s [22](t~ 1, R 2 RN)

and

S[22 A 22](R 1, R 2 RN) = s[2~](Rz, R 2 RN) ~ s[22](R1, R 2 RN),

the subject search can be achieved by searching with each component
condition followed by a union or an intersection operation applied to the

Evaluation of Queries Based on the Extended Relational Calculi 67

intermediate search results. If an efficient search procedure is available for
both the searches with 21 and 22 , and the number of qualified elements is
considerably small, then the above procedure is faster than the seek on
R 1 X R 2 X . . . X R u.

To be more precise, let p be the number of elements in
R 1 X R , X ... XRN, and qt and qz be the number of elements among them
that are qualified respectively for 21 and 22. Let s be the time required in
fetching an element and t be the time required in testing it against the given
condition (21 A),2 or 22 V 22) in a seek operation. Finally let u be the time
required in fetching an element qualified for the component conditions 2l and
22 in the available efficient search operation, and v be the time required for
each element in making a union or an intersection. (Actually v itself is a
function of q~ and qz.)

Then the time required for the seek operation becomes p(s + t), while
that required for the efficient search operation followed by the union or inter-
section operation becomes (q~ + q2)(u + v). In general, u + v is much greater
than s + t (t may be negligibly small as compared with s); however, if

(s + t)/(u + v) > (ql + q2)/P

the latter process is faster than the former.
In addition, we have

s[2, A ;~] (R, , R~ R v) = s* [2~,](s[,t,](R ,, R2 R,.))

= s*[22](s[2,l(RI, R2 RN)),

where s* is the seek operation to be applied to the operand relation which is
a subset of a Cartesian product of R1,R 2 R•. If an efficient search
process is available for either 2~ or 22, we may shorten the search time by
operating the efficient search for one component condition followed by the
seek with another condition.

If an efficient search is avaible for 2~, the time required for the search
with 2~ followed by the seek with 22 becomes ql(S q- t -1- U), Therefore, if

(s + t)/(s + t + u) > q,/p

this process improves the whole search efficiency.
Since there may be many logical expressions equivalent to each other,

the sequence of operating the search each with a unit condition and the
union and intersection operations necessary to achieve the subject search is
not uniquely determined. Hence arises a problem of finding a specific
operation sequence that brings the best performance into the whole search
process.

68 Kobayashi

1.3. Preceding Works

Coping with the problem of finding an optimal decomposition of the
search operation into a series of more elementary operations, many
improvements on the decomposition process have been reported. If N = 1,
s [2](R ~) is a general form of "selection" in relational algebra.(4) Astrahan
and Chamberlin (1) showed an optimal execution sequence of the selection
with a compound search condition. If N = 2, s[2](R~,R2) is the "join" in
relational algebra. Optimization of the join operations was discussed by
Smith and Chang (14) and Yao. (2~

Codd ~4) had shown that the search operation with his relational calculus
can be decomposed into a procedural combination of eight relational algebra
operations: union, intersection, difference, projection, selection, join,
multiplication, and division. However, no optimization issues were made in
relation to his algorithm. Many researchers have presented certain kinds of
improvements on Codd's decomposition. Palermo ~) presented an
improvement for the search conditions without bound variables. Rothnie (13)
and Reiter (1~ studied search conditions of a more general form. In INGRES,
several improvements were implemented, which were reported by Wong and
Youssefi (19) and Held et aI. (5) In PRTV, sequential collation was introduced
for processing some unit conditions. ~~

The following four problems can be pointed out regarding these
preceding works.

i. All these works were made for the relational calculus in Codd's
sense. It is desirable to extend the algorithm to deal with the extended
relational calculus.

2. All these works decomposed the search operation into relational
algebra operations, each creating a new relation as an intermediate search
result. However, in practical implementations, a great deal of the storage
space is used to accommodate intermediate results. There may be another
strategy in which only the primary key part (or address) of the qualified
tuples or ordered sets of tuples is kept in the intermediate results. After
completing the whole search process, the qualified tuple or ordered set of
tuples can be fetched either collectively (non-piped mode) or tuple-by-tuple
(piped mode) with reference to its primary key value.

3. Since a new relation, that is specified by the target list in the Alpha
expression, ~3~ has to be generated in many cases, it is sometimes attempted to
combine a part of generating the new relation by certain relational algebra
operations with other relational algebra operations necessary for the given
search. However, it is possible only when the target list is of a very simple
form. Generating the resultant relation often necessitates a rather

Evaluation of Queries Based on the Extended Relational Calculi 69

complicated data manipulation, which is better to be left to the care of the
employed host language capability.

4. Some preceding works utilized index provisions that were
permanently prepared or temporarily created. Some others tried to create
sequentially organized files as far as possible to enable efficient sequential
processing. However, no preceding works attempted to apply a sequential
collation to processing conditions like

A,(xl) =A2(x2) A At(x1) =A3(x3)

defined for xkeR ~ though such a sequential collation is much more efficient
than processing component conditions separately followed by joining two
resultant relations.

In this paper, we will present a general algorithm, in which the above
mentioned problems are resolved. The algorithm is divided into two major
phases: syntactical transformation of the search condition and actual search
execution. The latter phase is applicable even if the syntactical transfor-
mation has not been made.

2, COMPONENT CONDITIONS

From the search process point of view, unit conditions can be classified
into two categories: conditions defined on a single relation and conditions
defined over two or more relations. The both can be further classified into
two subcategories: conditions for which some efficient search process other
than the seek operation is available and conditions for which no such
efficient process is available. We first review what types of search conditions
are classified into what subcategories.

2.1. File Organization

Classification of conditions defined on a single relation is closely
related to the file organization employed to represent this relation. Two types
of file organizations exist. One is exclusive, that means if an exclusive file
organization has been employed then any other exclusive file organization
cannot be employed. The other is non-exclusive, that means a non-exclusive
file organization can be employed regardless of what file organization has
been employed.

There are a variety of exclusive and non-exclusive file organizations.
However, we will count following five exclusive and two non-exclusive file
organizations because other organizations are certain modifications of the
seven:

70 Kobayashi

(1) Exclusive file organizations.

1-1 Pile file organization that arranges physical records in the
sequence of their arrival.

1-2 Sequential file organization that arranges physical records
in the sequence of their primary key values.

1-3 Direct file organization that places physical records in the
location whose address is calculated from the primary key
value.

1-4 Partitioned sequential file organization that divides the
sequentially organized file into partitions composed of
several consecutive records and provides pointer links
among these partitions.

1-5 N-ary tree structured file that integrate n-ary (n/> 3) tree
search operations into the file organization by providing
pointers which direct the record blocks to be fetched next
with respect to the primary key value. The B-tree is an
example.

(2) Non-exclusive file organizations.

2-1 Binary tree structured file organization is non-exclusive if
n = 2 because in this case each record block consists of
only one record.

2-2 Inverted file (or multilist file) organization that provides an
index file separately from the main file.

Except the pile file, all the exclusive file organizations concern a selected
primary key. On the other hand, non-exclusive file organization can be made
with regard to any attribute (including the primary key), which is called a
secondary key. Details of these file organizations were discussed by Knuth, (9)
Martin, (1~ Wiederhold, (is) and Kobayashi. t6) Distinct file organizations
result in different performance of various search and update operations.
However, we will concentrate our discussion into the efficiency of search
operations with conditions of some special forms.

2.2. Type A and Type B Conditions

A search condition defined on a single relation is said to be type A if
some search procedure being more efficient than the seek operation is
available. Otherwise it is called a type B condition. Type A conditions can
be further classified into the following four according to what search
procedure is available for improving the search efficiency.

Evaluation of Queries Based on the Extended Relational Calculi 71

(t) Type A l: If a direct file organization is employed with regard to a
selected primary key Ap, then conditions of the form

Ap(x) = const

can be processed very efficiently. Such a condition is said to be type A t . A
disjunct of two or more type A1 conditions on the same relation can be
collectively processed for avoiding duplicate overheads. Hence it may be
dealt with as a single type A 1 condition.

Some conditions could be transformed into a disjunct of type A 1
conditions. For example, we can transform

(Ap(x)) 2 - 3 X Ap(x) + 2 = 0

into

Ap(x) = 1 V Ap(x) = 2

However, such a transformation requires a formula manipulation which is
not easily processed by a computer program. It may rather be treated as a
type A 3 or type B unit condition deined later.

(2) Type A2: I f a sequential, index sequential or n-ary tree structured
file organization is employed with regard to a selected primary key, then
conditions of the form

A. (x)O const

with ~) being one of relational operators =, 4=, >, <, >~, and ~< can be
processed a little more efficiently than the seek operation. If a binary struc-
tured file or an inverted file organization is employed with regard to a
secondary ket At, then conditions of the form

A,(x)0 const

can be processed more efficiently than the seek operation. In these two cases,
conditions are said to be type A2. A disjunct of two or more type A2
conditions defined on the same relation and regarding the same primary or
secondary key may be processed collectively to avoid duplicate overhead.
Also it is better to process a conjunct of two or more type A2 conditions
defined on the same relation and regarding the same primary or secondary
key collectively. This is particularly effective for conditions like

c, < As(X) A A (x) <

72 Kobayashi

Hence a logical (disjunct and/or conjunct) combination of typeA2
conditions may be dealt with as a single typeA2 condition.

Some conditions can be transformed into a logical combination of tyep A2
conditions. However, since such a transformation requires a formula
manipulation which is hard to be implemented as a computer program, it is
better to treat them as type A3 or type B conditions.

Sometimes a special index file is created for attributes of special type.
For example, an inverted index can be made for the set of keywords of
document records, which is an array type attribute, and a cluster index can
be created for pattern matching. ~15'17) The former is used to improve the
search with condition

keyword eAt(x)

and the latter is used to improve the search with condition

x(x) = class

where x(x) is a function of tuple x. These conditions can be regarded as type
A 2 if appropriate index provisions are made.

(3) Type A3: If an inverted file organization is employed with regard
to a secondary key A s, then conditions of the form

f (A s(X)),

where f is an arbitrary logical function defined in terms of A~(x) value, can
be processed by seeking the index file, which is faster than seeking the main
file. Such a condition is said to be type A3. During the seek operation on the
index file, other type A2 and/or typeA3 conditions regarding the same
secondary key can be examined in parallel. Hence a logical combination of a
type A3 condition and other type A2 and/or type A3 conditions regarding the
same secondary key may be dealt with as a single type A3 condition.

(4) Type A4: If two inverted file organizations, one regarding a
secondary key A s and the other regarding another secondary key A',, are
employed at the same time, condition

A,(x)=A'(x)

can be processed by a sequential collation of two index files (index files are
usualy organized enabling sequential accessing with regard to the secondary
key). If the matched index entries contain a common value pointing a tuple
in the main file, it directs a qualified tuple. The condition is said to be
type A4. During the sequential collation of the two index files, other type A2

Evaluation of Queries Based o n the Extended Relational Calculi 73

and/or type A3 conditions defined on the same relation and regarding either
A s or A' s can be examined in parallel. Hence a logical combination of a
typeA4 condition and other typeA2 and/or type A3 conditions regarding
either one of the secondary keys may be dealt with as a typeA4 condition. A
logical combination of two type A4 conditions can be processed in parallel if
the two share a common secondary key. For example,

As(x) = A;(x) A As(X) = A~'(x)

can be processed in parallel by sequentially collating three index files
provided for A s, A's, and A~'. Therefore, it may be dealt with as a single
type A4 condition.

(5) Type B: All the conditions that are not type A (A 1, A2, A 3, or A4)
are said to be type B. A type B condition must be processed by a seek
operation. A disjunct of a type B condition and type A and/or type B
conditions all defined on the same relation can be processed in parallel
during the seek operation. Hence it may be dealt with as a type B condition.
A conjunct of type B conditions defined on the same relation may also be
dealt with as a single type B condition.

Shown below are examples of type A and type B conditions thus far
defined.

1. Ap(x) = 123, Ap(x) = Kobayashi VAp(x) = Yokomori-- typeA1 if
Ap is the primary key used for a direct file.

2. Ap(x)= 123, Ap(x) > 123 AAp(x) < 234-- type A2 if Ap is the
primary key used for a (or a partitioned) sequential or an n-ary tree struc-
tured file.

3. As(x) < 123, As(x) = manager V As(x) = supervisor--typeA2 if A s
is a secondary key.

4. As(x) 2 + 3 X As(x) > 10, sin(As(x) + 7r) < 2 • cos(As(x))--type A3
ifA s is a secondary key and indexed by index files.

5. As(x) =A's(x), As(x) =A;(x) AAs(x) =A~'(x) AA~'(x) < 123--type
A4 if all A s, A' s, and A~' are secondary key indexed by index files.

Aq(x) = 123--type B if Aq is neither a primary key nor a secondary ,

key.

7. Ar(x) < A'r(x), A~(x) + A'r(X) = A"(X), Ar(X) • A'r(x) = 24 V A ~ (x) =
123--type B regardless of whether A r, A'r, and A'r' are (primary or
secondary) keys or not.

Let u k be the time required for fetching a qualified tuple using the
available efficient search procedure for type Ak conditions (it varies

74 Kobayashi

according to the cases but we can estimate an average time) and s, the time
required for fetching a tuple and testing against the search condition in the
seek procedure. Then it seems safe to say

S < U 1 < / 2 2 < / / 3 < U 4.

Let p be the number of tuples in the relation to which the subject search is to
be applied and q be the number of quantified tuples in them. Then the
available efficient search procedure for type Ak conditions is more efficient
than the seek operation if

S/Uk > q/p.

In general, q is not known before the search. However, in most cases, i fp is
sufficiently large, q/p can be estimated to be smaller than s/u k. Conversely,
if p is small, q/p can be greater than s/u k, and hence the seek operation is
better. The s/u k value depends on the specific implementation of the search
procedure.

The above classification is by no means an absolute one. Certain
advanced file organizations can be devised in future. Als0 some hardware
devices (database machines) can be invented in future that brings a better
perforfiaance into processing some types of search conditions. In such cases,
the classification we have mentioned can be modified accordingly.

2.3. Sequential Collation

We have already seen that a sequential collation of two index files can
be applied to processing the condition

a , (x) = a's(x)

defined on a relation. The same technique can be applied to processing the
condition

A,(Xl) = A's(x2)

defined for (xl ,x2)eR 1 • R 2.

Let Pl and P2 be the number of tuples respectively in R 1 and R 2 , and s
the time required for fetching a tuple and testing it against the given
condition in sequential processing. The total time required for seeking
R 1 X R 2 is about p~p2s. On the other hand, the time required for sequential
collation of the two files is (Pl + Pz) s. Except when either one of R~ and R 2
is empty or includes only one tuple, we have

Pl + P2 < PxP2.

Evaluation of Queries Based on the Extended Relational Calculi 75

The latter process may necessitate a sorting procedure before executing
the collation; however, since the time required for sorting p tuples is in the
order o f p log p, the latter process is better than the former when Pl and p~
are sufficiently large.

In addition, the sequential collation can be operated on two index files
one for A s and the other for A;, instead of being operated on two main files.
If two such index files have already been provided, they can be used as they
are. Even if either or both index files have not been provided, we can
temporarily generate them. This may greatly reduce the time required for
sorting and collating tuples.

2.4. Type C and Type D Conditions

Search conditions defined over two or more relations can be classified
into the type C or type D conditions defined as follows according to whether
a sequential collation can be applied or not.

(6) Type C: Conditions of the form

A (xl) =Ai(x2)

defined Ibr (x~,x2)eR 1 • is said to be typeC. A conjunct of m typeC
conditions of the form

r t t

k = 2

or a conjunct equivalent to the above can be processed in a single sequential
collation. Hence it can be dealt with as a type C condition. Some attributes
involved in a type C condition may have already been indexed by an index
file, while others have not been indexed and temporary index file must be
created for each of them before the sequential collation. If type A2, A3,
and/or A4 conditions regarding one of the indexed attributes are
conjunctively combined with the subject type C condition, they can be
processed in parallel during the sequential collation process. Hence they,
together with the type C condition, can be dealt with as a type C condition.
On the other hand, if type B conditions defined on one of the involved
relations, for which a temporary index file must be created before the
sequential collation, are conjunctively combined with the subject type C
condition, they can be processed in parallel during the generation of the
temporary index files. Hence they, together with the type C condition, may
be dealt with as a type C condition.

(7) Type D: All other unit conditions defined over two or more

76 Kobayashi

relations are said to be type D. A type D condition must be processed by
seeking the Cartesian product of the involved relations. A disjunct of unit
conditions defined on the same set of relations, at least one of which is a
type D condition, can be processed during a single seek operation. Hence it
may be dealt with as a type D condition. A conjunct of type D conditions all
defined on the same set of relations can be processed during a single seek
operation. Hence it may be dealt with as a type D condition.

are examples of type C and type D conditions thus far Shown below
defined.

1. As(XO =
123--type C if all

AS(x2) , As(Xl) = A~(x2) /k As(Xl) = A~s'(X3) A A;t(x3) <
A s, A~, and A~' are indexed by index files.

2. A , (x ,) - Ar(X) = Aq(x2) A Aq(x2) = Ai(x3) A Aq(x2) <
123--type C if A q is not indexed regardless of whether A r and A~ are indexed
or not.

3. Ar(X1) < A~(x2), Ar(Xl) "~ Art(X2) = A;t(x3), Ar(Xl) = A;t(x2) V
A~(x~) < Ar D regardless of whether A r, A;, Ar", and A" ' are
indexed or not.

The sequential collation for type C conditions is much more efficient
than the seek operation applied to the Cartesian product of relations except
when m - 1 of m involved relations contain only a very small number of
tuples. Care should be taken not to apply sequential collation to m relations
one of which is empty.

2.5. Unit Conditions with Aggregate Functions

Unit conditions containing aggregate functions must be dealt with as
type B or type D conditions according to their being defined on a single
relation or on more than one relation. During the seek operation, these
aggregate functions must be evaluated by invoking an appropriate procedure.
Such a procedure includes the search with the condition which determines
the range of aggregation. Hence in this case a recursive execution of the
search procedure must be made.

We will not go into the details of search procedures processing various
types of search conditions because they vary greatly according to the
employed hardware and file organizations. Diversity of implementations
results in various performances. Instead we will discuss selection of an
optimal sequence of elementary search and other operations for processing
the given compound search conditions.

Evaluation of Queries Based on the Extended Relational Calculi 77

3. SYNTACTICAL TRANSFORMATION

The first phase of search optimization is the syntactical transformation
of the given compound search condition. It can be done at the compiling
time probably with an aid of an appropriate syntax parser equipped in the
employed programming language translator (host language compiler). The
purpose of this syntactical transformation is to move the unit or compound
component conditions, for which some efficient search procedure is
availaNe, to a more forehand position in each conjunctive term. This
narrows down the area on which a seek operation must be made and, in
consequence, improve the total search efficiency.

To enable such a syntactical transformation, it is advisable that the
given condition is transformed into its prenex form, and then its matrix part
is transformed into a conjunctive normal form. It is better to apply some
remaining procedures to a disjunctive normal form.

The syntactical transformation can be achieved by executing the
following ten steps for the 2 argument of the search operation.

STEP 1: Transformation into the prenex normal form. We transform
the given eondition into its prenex normal form. I f it contains no free tuple
variable, a free tuple variable whose domain is an arbitrary relation that
includes only one arbitrary tuple is added. A logieal funetion defined on the
added relation whose value is constantly "true" is conjunctively combined
with the given condition.

The first half of this step assembles all the quantifications appearing in
the given condition in front of the matrix part. The last half is necessary to
deal with conditions without free variables. Such a condition becomes to
have to be evaluated, for instance, in integrity checking at the database
update.

For example, step 1 transforms.

Vx~R 2 (i , (x)) V Vx~R 2(;~2(x))

into

Vx2~R 2 Vx3~R3(T(x1) A (/].I(X2) /~ (,~,2(X3)))

where xl is an artificially added tuple variable whose range in an arbitrary
relation R 1 containing only one tuple, and T is a constant function whose
value is "true."

As the result, we obtain the form

r l G . . , r p (2 (x , XN,XN+, XN+p XN+~+Q)),

78 Kobayashi

where x k is a free variable for 1 ~< k ~< N (N/> 1), a quantified variable for
N + 1 ~< k ~< N + P (P >/0) and another bound variable for N + P + 1 ~ k ~<
N + P + Q (Q>/O).

STEP 2: Transformation into the conjunctive normal form. We
transform the matrix part of the condition obtained in step 1 further into its
conjunctive normal form.

This step is not absolutely necessary but is desirable in order to
examine if there exists some disjunct of unit conditions to be regarded as a
single condition.

STEP 3: Elimination of negation operators. For all the component
conditions of the form

,,~(fOg)

appearing in the matrix part, we remove the ",-~" operator by changing the
relational operator 0 to another relational operator O' appropriately.

For example, " = " is replaced by "-r " > " is replaced by "~<," and "~<"
is replaced by "> . " If a component condition prefixed by a ",,~" operator is
not of the above form (the case when a component condition is a logical
function defined is some way other than by a relational operator), it should
remain unchanged but is hereafter dealt with collectively as a unit condition
during the syntactical transformation.

STEP 4: Determination of unit condition type. We determine the type of
every unit condition in the matrix part of the transformed condition.

Unit conditions are classified into type A1, A2, A3, A4, B, C, and D
conditions. If conventional notations like

and

Ct < Al(x) < C2,

Al(x) = A 2 (x) = A 3 (x)

AI(Xi) = A2(x2) = A3(x3) =A4(x4)

are allowed, they might be decomposed into a conjunct of several unit
conditions. However, they may rather be regarded as a unit condition of a
certain type.

STEP 5: Redefinition of the type of disjunets. We examine each
disjunctive term of the conjunctive form to find the disjunet to be dealt with
as a single condition of a certain type according to the following rules.

Evaluation of Queries Based on the Extended Relational Calculi 79

(1) If there are more than one type A 1 condition which are defined on
the same relation, they are collectively refefined as a type A 1 condition.

(2) If there are more than one type A2 condition which are defined in
terms of the same primary or secondary key on the same relation, they are
collectively redefined as a type A2 condition.

(3) If there are a type A3 condition and several type A2 and/or A3
conditions all defined in terms of the same secondary key on the same
relation, they are colIectively redefined as a type A3 condition.

(4) If there are a type A4 condition and several type A2, A3, and/or
A4 conditions all defined in terms of secondary keys, at least one of which is
the same key, on the same relation, they are collectively redefined as a type
A4 condition.

(5) If there are several condition defined on the same relation, at least
one of which is type B, they are collectively redefiend as a type B condition.

(6) If there are several conditions defined over the same set of
relations, at least one of which is type D, they are collectively redefined as a
type D condition.
This step is repeated until the disjuncts to which the above rules are
applicable have been exhausted.

The six rules reflect the type issues we made in Sec. 2.
This step can be achieved easily by arranging unit conditions in each

disjunctive term according to the names of the involved relations and, if
given, the names of the involved attributes. Since rule (k) in this step
overrides rule (k-l), we had better test rule (6) first and (1) last. Rules (2),
(3), and (4) can be processed collectively for type A2, A3, and A4 conditions
defined on the same relation. This procedures resembles the procedure of
obtaining connected components of a graph.

ST EP 6: Transformation into the disjunctive normal form. We
transform the condition obtained in step 5 into its disjunctive normal form.

Again we need a relatively simple formula manipulation procedure. The
number of component conditions may have been decreased as the result of
step 5 as compared with the number of unit conditions to be processed in
step 2.

STEP 7: Factoring out common conditions. I f there exists a eommon
component condition being given a type in two or more conjunctive terms that
are disjunctively combined without any interlaid parentheses, we parenthesize
these terms and factor out the common condition in front of the parentheses.

828/10/2 2

80 Kobayashi

This step is repeated until such common component conditions have been
exhausted.

Since there may be more than one such common condition in
conjunctive terms, the result of the above procedure is not unique. We will
introduce a heuristics in the sequence of picking up such common
conditions. The following sequence seems a suitable selection for narrowing
down the search area as rapidly as possible:

a) Type A1 conditions.

b) Type A2 conditions. If the number of qualified tuples for the
condition is known (for instance, by means of appropriate information
obtainable from the index file), the ascending sequence of this number is
appropriate for picking up type A2 conditions.

c)
d)

e)
involved

f)

g)
involved

Type A3 conditions.

Type A4 conditions.

Type C conditions. The ascending sequence of the number of
relations is appropriate for picking up type C conditions.

Type B, conditions.

Type D conditions. The ascending sequence of the number of
relations is appropriate for picking up type D conditions.

As the result, we may have a nest of several parentheses. For example,
if we are given a condition

~1 A)1"2 A)'3 V21 As A~4 V21 A~5 A ~6,

it is transformed into

~'1 A (/I, 2 A (2 3 V ~4) V/1. 5 A ~6).

During the factoring out procedure, it may happen that all component
conditions in a conjunctive term are factored out. Then this term together
with other terms disjunctively combine with it and "V" operators combining
them are simply deleted. For example,

,11 A/1-2 A s V 21 A)3

is simply transformed into

/1"1 A/~3-

Evaluation of Queries Based on the Extended Relational Calculi 81

The assotiative law regarding "A" operators is used for avoiding
unnecessary generation of parentheses. For example,

is written as

/]'1 A/~2 A (A 3 V 24).

Step 7 enables to eliminate duplicate evaluations of the same condition
that might be executed unless such a factoring out procedure had been
provided.

STEP 8: Redefinition of the type of conjunets. We examine each
conjunctive term of the disjunetive form to .find the eonjunction to be dealt
with as a single condition of a certain type according to the following rules.

(1) If there are more than one type A 2 condition which are defined in
terms of the same primary or secondary key on the relation, they are collec-
tively redefined as a type A2 condition.

(2) If there are a type A3 condition and several type A2 and/or A3
conditions all defined in terms of the same secondary key on the same
relation, they are collectively redefined as a type A3 condition.

(3) If there are a type A4 condition and several type A2, A3, and/or
A4 conditions all defined in terms of secondary keys, at least one of which is
the same key, on the same relation, they are collectively redefined as a type
A4 condition.

(4) If there are several type B conditions defined on the same relation,
they are collectively redefined as a type B condition.

(5) If there are two type C conditions, in which one attribute appears
in common, are collectively redefined as a type C condition. This redefinition
must be applied repeatedly.

(6) I f there are a type C condition and several type A 2, A 3, and/or A4
conditions defined in terms of the secondary keys, one of which is the
secondary key appearing in this type C condition, they are collectively
redefined as a type C condition.

(7) If there are a type C condition and several type B conditions
defined in terms of an attribute, which appear in this type C condition, they
are collectively redefined as a type C condition.

(8) If there are several type D conditions defined over the same set of
relations, they are collectively redefined as a type D condition.

The eight rules also reflect the type issues we made in Sec. 2.

82 Kobayashi

This step can be achieved also by arranging unit conditions in each
conjunctive terms according to the names of the involved relations and, if
given, the names of the involved attributes. Different from step 5, we had
better apply these rules in the ascending sequence of their numbering. Rules
(1) through (3) can be processed collectively for type A2, A3, and A4
conditions. Also rules (5) through (7) can be processed collectively when one
or more type C conditions exist.

STEP 9: Determining the type of compound conditions enclosed in
parentheses. We add a pair of parentheses enclosing the whole matrix part,
and then examine each compound condition enclosed in a pair of parentheses
form the innermost to the outermost parentheses. Compound condition type is
determined according to the following rules.

(1) If all component conditions in a pair of parentheses are typeA
(A 1, A2, A3, A4) or type A*, then the compound condition is type A*.

(2) If all component conditions in a pair of parentheses are type A,
A*, C, or C*, then the compound condition is type C*.

(3) If all component conditions in a pair of parentheses are type A,
A*, C, C*, B, or B*, then the compound condition is type B.

(4) If at least one component condition in a pair of parentheses is
type D or type D*, then the compound condition is type D*.

Note that the type is determined without regard to what logical operators
are used for combining component conditions.

The above step includes a recursive procedure.

STEP 10: Rearrangement of component conditions. We finally
rearrange all component conditions directly combined by "A" operators in
the sequence of

A 1-A 2-A 3-A 4-A *-C-C*-B-B*-D-D*.

The rearrangement must be applied to compound conditions in each
pair of parentheses.

Again we have employed a heuristics in the above arrangement to
enable narrowing down the search area as rapidly as possible.

Figure 1 shows an example of syntactical transformation applied to a
compound condition defined on a relation. Only the transformation of the
matrix part is shown. The illustrated condition graph may ease
understanding. Figure 2 shows an example in which a compound condition
defined over three relations is transformed.

Evaluation of Queries Based on the Extended Relational Calculi 83

Assume ~i,~3,%4,X5,~6: type A (%5 and %6 being type A2 defined in termes of the

same attribute), X2: type B.

Given condition

(1712)~(X; x4V (X5^16))
Conjunctive normal form

ii 12^X; V r v %4 15^13 I# X 6
Redefinition of condition type

1#~2~i: ~I^I3v%4V15A~;~#%6
Disjunctive normal form

~l~ V ~^~ ~7 ~i~ ~^~ ~< ~>~/~i ~ ~7 ~l ~ ~< ~l~
Factoring

%3A~? X4AU ? ~5A~6^UI
Redefinition of condition type

3,\ A ~2Abl

%1 T 12

~3-- X4-- ~5

16

given condition

horizontal line : 'g' combination

vertical line: 'A' combination

>

Fig. 1,

@ ~ ~2

-~i

transformed condition

S y n t a c t i c a l t r a n s f o r m a t i o n a p p l i e d to a c o n d i t i o n de f ined o n o n e re la t ion .

Assume ~AI: type A defined on RI, >'A2: type A defined on R2, ~B3: type B defin:{d

on R3, ~C12: type C defined on RI• 1C23: type C defined on R2• 3

(%C12 and %C23 regard the same attribute of R2) , ~DI3 type d defined on

RIXR 3 �9
Given condition

)'A2~XDI3~%CI2~XAI~XC23^XB3
Redefinition of condition type

~C12^~C23^1B3 ~IJCI23

XA2 kAk
1 r

XDI 3 XA2

at!2

%AI ~C123
,r

~C23
,I
AB3

Fig. 2. Syntactical transformation for a condition defined on R~ X R2 X R3,

84 Kobayashi

4. ELEMENTARY OPERATIONS

In order to process conditions and other symbols in the transformed
condition, we need several elementary operations. They resemble operations
in the relational algebra (~) but differ from relational algebra operations in
that relational algebra operations always generate a new relation, while our
elementary operations generate a subset of operand relation or a subset of
the Cartesian product of operand relations. Theoretically a subset of the
Cartesian product of relations can be regarded as a relation but it is better to
distinguish the two from the software implementation point of view. In fact,
the elementary operations need not generate a new relation as the result.
Only the (ordered) sets of primary keys of the tuples (or addresses of the
records representing them) that are components of elements in the result
must be kept.

The following six must be provided as elementary operations.

(1) Extended join: j [,~] (R1 ,R 2 Rm). The extended join is the
S [2] (R 1 , R 2 , . . . , Rm) operation with 2 being a unit condition or a compound
condition, which is given a type (A 1, A2, A3, A4, B, C or D) during the
syntactical transformation procedure. Its optimal implementation varies
according to the condition type. We will assume that an optimal implemen-
tation has been made for all condition types as discussed in Sec. 2, with the
given hardware and database organization taken into account.

If m = 1, the extended join is identical to the selection in relational
algebra. If m = 2, it resembles the join in relational algebra; however, the
result is not a relation but a subset of R 1 X R2. Generally, the result is a
subset of R 1 • R 2 X " '" X R m.

(2) Extended selection: r[2](S). The extended selection is defined by

r[2](S) = {(tl, t 2 tm)l(t,, t 2 t m) C S A 2 (t , , t 2 tm)} ,

where S is a subset of R~ X R 2 X " '" X R m, which is obtained as an inter-
mediate search result. This operation must be executed as a seek operation
on S.

(3) Extended intersection: i(S l, $2). The extended intersection is defined
by

i (S ~ , 82) = { (t l , t 2 tin) I (t i l , ti2 t i m ,) B S 1 A (t j l , tj2 t jm , ,)gS2} ,

where

{il, i2 im'} U {jl, j2 jm"} = {1, 2 m},

Evaluation of Queries Based on the Extended Relational Calculi 85

and $1 and S 2 are, respectively, a subset o fR i t X Ri2 • ... X Rim, and Rj~ •
Rj2),(. . . • R i m , . The extended intersection operations may be implemented
in several different ways according to the cases.

If

{il, i2 im'} ~ {jl , j2 jm"} = {ki, k2,..., k in ' }

is not an empty set, the extended intersection resembles the natural join in
relational algebra. In particular, if

{il, i2 On'} = {jl, j2 jm"} = {1, 2 m},

the extended intersection is the intersection in set theory. In these cases, the
extended intersection can be carried out by a sequential collation of two sets
of ordered set of tuples, each being sorted by the concatenation of the
primary key values of tuples in (tk~, tk2 tkm,,),

If

{il, i2 im'} ~ {jl , j2 Jm"t = O

the extended intersection implies making the Cartesian product of $1 and S 2,
Although it becomes a time and space-consuming task, implementation of
the operation for this case will be easy. (The user may be given a warning
message when such a time and space consuming procedure is invoked.)

(4) Extended union: u(S~, $2). The extended union is defined by

u(S, , S g = I (t , , t2 tm) E (t , , t~ tm)eS , V (t , , t2 tm)~S2},

where both S 1 and S 2 are a subset of R 1 • R 2 X . . - • To eliminate
duplicate elements, a sorting procedure with the concatenation of primary
key values of tuptes in each element of $I and S 2 following by a merging
procedure is mandatory.

(5) Extended projection: p[il , i2,..., ira'](S). The extended projection is
defined by

p [i l , i2 i m '] (S) = I (t i l , ti2 tim,) l (t l , t 2 tm)~:S} ,

where

{il, i2 i r a ' } c { 1 , 2 m}

and S is a subset ofR~ • R 2 • ... • R m. Again a sorting procedure must be
integrated for removing duplicate elements in the result.

86 Kobayashi

(6) E x t e n d e d division: v (S , Rm). The extended divis ion is defined by

v(S , R,n) = l(t~, t2,... , tm_Ol Vt'meR m 3(t~', t~',..., t ") e S

tl (t j = A t ; = ,
j = l

where S is a subse t o f R 1 • R 2 • . . - X Rm. This ope ra t ion can be carr ied ou t

by (i) sor t ing all e lements (q' , t~ t~) is S by the c o n c a t e n a t i o n o f p r im a ry

key values of c o m p o n e n t tuples , (ii) sort ing tuples in R m by their p r imary

key values, and (iii) for every subset S ' of S in which all e lements have a

c o m m o n (t l , t 2 tm_~), col la t ing S ' and R m sequent ia l ly to examine if

p [m] (S ') covers R, , . I f so, co r r e spond ing (t 1, t2,..., t in_l) is p laced in to the
result. I f not , it is excluded f rom the result .

Table I. Rough Estimation of the Time Required for Elementary Operations

Join
type A 1 aq
type A2 b' log p ~ bp
type A 3 bp
type A 4 mbp
type B ep
type C b Y~i Pl ~ d ~ i P~ log p~ + b ~ i Pi
type D c l-[i Pl

p(p~): number of tuples in the operand relation
q: number of qualified tuples in the operand relation
m: number of involved attributes
a, b, b', e, d: implementation dependent constant (c = e'l and d = d'l with I being
the length of records representing tuples).

Selection her
n: number of the involved relations
r: number of etements in the operand
e: implementation dependent constant

Intersection
natural join/intersection f (r 1 log r~ + r 2 log r2) + g(r I + r2)
Cartesian product gr~ ra
r 1 , r 2 : number of elements in each operand
f, g: implementation dependent constant

Union f(rl log rl + r2 log rz) + g(r 1 + r2)
Projection fr log r
Division f (r log r + p log p) + 2g r

r: number of elements in the first operand
p: number of elements in the second operand

Evaluation of Queries Based on the Extended Relational Calculi 87

As mentioned previously, the results of these elementary operations do
not necessarily contain all the attribute values of qualified tuples or qualified
ordered sets of tuples. In fact, except the extended join and extended
selection, all our elementary operators can be carried out using only the
primary key part of tuples in the intermediate results. Even when the other
attribute values become necessary in executing an extended selection, they
can be availed using the primary key part of tuples. Therefore, we have to
keep only the primary key (or address) values of the resultant tuples for the
further processes. In this way, the data volume to be moved among the
storage devices as well as the storage space to accommodate intermediate
results is minimized. This also saves the time. From the software implemen-
tation point of view, this is the basic difference between relational algebra
operations and our elementary operations.

Rough estimation of necessary time for each elementary operation is
shown in TableI. Although it includes many factors that are
implementation-dependent, we can see what the order of time requirement is
in terms of the number of elements in the operand.

The above operations can be implemented software-wise but they may
also be embodied as some special database machines. We have seen that in
all the extended join for type C condition, extended intersection except when
it implies making a Cartesian product, extended union, extended projection,
and extended division, the sorting serves as a basic procedure. A sorting
machine, if it were implemented hardware-wise, might become a very
powerful toot for efficient implementation of these operations.

5. THE RECURSlVE SEARCH PROCEDURE

We are now ready to execute actual search operations. Since the syntac-
tically transformed condition may contain a nest of parentheses, the search
procedure must be written in a recursive manner. Each invocation of the
recursive procedure deals with a compound condition enclosed in a pair of
parentheses.

In order to process the given condition that is defined on a Cartesian
product of N relations, we provide a set of 2 N - 1 workspaces each being
able to accommodate a name of intermediate result (by which all the
elements in the intermediate result can be accessed) and the number of
elements in it. These workspaces are so numbered that content of a
workspace specifies a subset of the Cartesian product of relations which are
specified by its number (Table II).

For example, if N = 1, we have to provide only one workspace ws[1]. If
N = 2 , we provide 2 2 - 1 = 3 workspaces, ws[l], ws[2] and ws[1,2]. If
N = 3, we provide 2 3 - 1 - -7 workspaces, ws[1], ws[2], ws[3], ws[1,2],

88 Kobayashi

Table II. Workspace Identification

Workspace Name and number of elements in it

ws[il
ws[il, i2]
ws[il, i2, i3]

ws[1, 2 N]

a subset of Ri
a subset ofRll • Ri2
a subset ofRil • Ri2 • Ri~

asubset ofR~ • 2 • ... • R N

ws[1, 3], ws[2, 3], and ws[1, 2, 3]. Actually a binary numbering in which
each bit corresponds to a relation can be adopted.

Each invocation of the recursive search procedure uses a subset of these
2 N - 1 workspaces. If the search procedure is to deal with a compound
condition defined on a Cartesian product of n (n ~<N) relations, it uses
2 n - 1 workspaces. In order to process a disjunct of conditions, several inter-
mediate states of these workspaces must be kept. Hence we provide a push-
down stack, which we call the X stack, each of whose entries accommodate a
copy of the 2 n - 1 workspaces. Also we must provide a temporary area
called the Y area, that accommodates a copy of the workspaces. Finally one
more push-down stack, which we call the Z stack, must be provided. Each
entry of the Z stack accommodates a name of intermediate result and the
number of elements in it.

The compound condition in a pair of parentheses is examined from left
to right and component conditions are processed one by one. Each time a
component condition has been processed, contents of the workspaces are
updated accordingly. When a left parenthesis has been encountered, the
search procedure is invoked recursively.

The formal parameter of the search procedure must include

n: integer; function 2: Boolean; var ws: array[1.. 2**n - 1] of workspace;

where 2 is the compound condition to be processed. Several local variables
including the X stacks, Y area, and Z stack must be defined in the search
procedure.

We will describe the search procedure in a PASCAL-like
pseudoprogramming language. The following program shows the skeleton of
the procedure.

procedure search
begin Push down the workspace into the X stack;

Store the workspace into the Y area;
A While there remain some units to be processed do

Evaluation of Queries Based on the Extended Relational Calculi 89

begin Get next unit;
I f the obtained unit is a component condition then

begin Pop up the X stack into the workspace;
Invoke procedure "preprocess";
invoke procedure "conditionprocess";
Invoke procedure "postprocess";
Push down the workspaces into the X stack

end
Else i f the obtained unit is a left parenthesis then

begin Find the corresponding right parenthesis;
Extract the compound condition enclosed in this pair of
parentheses;
Invoke procedure "search" recursively

end
Else i f the obtained unit is an "V" operator then

Push down the content of Y area into the X stack
end;

Invoke procedure "union";
Release all the storage areas used for accommodating inter-
mediate results in this procedure

end search;

The A is the label for establishing a return point from procedure ~
that is described later.

We will next describe several procedures that are invoked in the search
procedure.

5.1. The Preprocess Procedure

The preprocess procedure is necessary to find the operand to which the
extended join or extended selection is to be applied for processing the given
component condition. Let the given condition be r or ~/J defined on
Rii X Ri2 X " ' " X Rim.

Procedure preprocess
begin For j := 1 to m do

Find a non-empty workspace with maximum number of
suffices including/j;

Eliminate duplications if exist among the obtained workspaces;
Divide the obtained workspaces into groups so that every
workspace in each group has at least one suffix common to that
of another workspace in the same group but no suffices common
to those in any other group;

90 Kobayashi

For example, if we have obtained ws[1, 2], ws[2, 3], and ws[4], they are
divided into two groups, one composed of ws[1, 2] and ws[2, 3] and the
other composed of ws[4].

Let G1, Gz, G m, be the workspace groups thus far obtained.
For the further process, we need m' temporary areas s[1], s[2] s[m']

each accommodating a name of intermediate result and the number of
element in it, and m ' temporary areas t[1], t[2] t[rn'] each accom-
modating a set of suffices. They must be defined as local variables in the
search procedure. We may reserve n areas for each of the above two kinds of
temporary areas.

For k := l to m' do
begin Renumber the workspaces belonging to Gk in the ascending

sequence of the number of elements in the intermediate results
they direct;

This is a sort of run-time optimization. We will process the workspaces with
a smaller number of elements in the intermediate result it directs before
processing the workspaces with a larger number of elements in the inter-
mediate result it directs. By this means, we may minimize the time required
in a repeated application of the extended intersection. For example, assume
that we have to make i(i(S 1, $2), $3). It is obvious that i (S 1 , i(S2, $3)) gives
the same result. Let S 1 , S z, and S 3, respectively, contain ra , r 2, and r 3
elements. The estimated time of the former procedure is

f (r 1 log r 1 + r 2 log r 2 + r 3 log r 3 + r log r) + g(r 1 + r 2 + r 3 + r)

where r is the number of elements in i(S~, $2), while that of the latter is

f (r~ log r 1 + r 2 log r 2 q- r 3 log r 3 -[- r ' log r') + g(r 1 + r 2 q- r 3 + r')

where r ' is the number of elements in i (S 2, $3). Hence the former procedure
is better if r < r ' , while the latter is better if r > r'. The above arrangement of
the workspaces is a heuristics that may achive the optimal execution.

Let wsl, WSa, WS,n,, be the workspaces arranged in such a sequence.

Store the content of wsl into s(t) ;
Store the suffices of wsl into t[k];
For / : = 2 to m" do

begin Execute i(s[k]T, ws~);
Invoke procedure "eliminate";
Store the name given to the result and the number of elements in
it into s[k];

Evaluation of Queries Based on the Extended Relational Calculi 91

Store all the distinct suffices in t[k] and those specifying ws, into
dk]

end
end;

Here x T should be read as "the intermediate result specified by the content of
x." The eliminate procedure, which is defined later, is necessary to avoid
redundant search process that might be executed when the intermediate result
becomes empty.

Renumber the suffix k of s[k] and t[k I in accordance with the
ascending sequence of the number of elements in s[k]~

end preprocess;

The last statement is again a sort of run-time optimisation to achieve an
optimal execution of repeated extended intersection.

For example, if we obtained two group G1 = {ws[1, 2], ws[2, 31} , and
G2 = {ws[4]}, the result of the preprocess procedure is

s[1]: directs the result of i(ws[1, 2IT, ws[2, 3]y)
/[1]: contains suffices 1, 2, and 3
s[2]: contains the content of ws[4]
t[2]: contains suffix 4,

if the number of elements in i(ws[1, 2IT, ws[2, 3]]') is smaller than that in
ws[4lT. (Fig. 3). Otherwise s[1] and s[2] as well as t[1] and t[2] are
interchanged.

If the given condition is defined on a single relation, m' is always equat
to 1. Only s[1] and t[1] is significant in this case.

ws[l] ws[2] ws[3] ws[4]

[_ I 1 l'i il__
w s [1 , 2 , 3]

If. I __A I

ws[l,2] ws[l,3] ... ws[2,3] ...

,.. wS[I,2,...,N]

_ _ L _ Z

Fig. 3. Preprocessing for a component condition defined on R 1 • 3 X R 4.

92 Kobayashi

5.2. The Conditionprocess Procedure

The conditionprocess procedure is the central part of the search
procedure. It processes the given component condition in the most
appropriate way according to its type.

procedure conditionprocess
begin I f /~ is type A then

begin Execute j[p](Ril);
Invoke procedure "eliminate";
Store the name given to the result and the number of elements
in it into s[O];
I f s[1] contains a name other than Ril then

begin Execute i(s [0]Y, s[l l T);
Invoke procedure "eliminate";
Store the name given to the result and the number of
elements in it into s[O]

end;
Store the content of s[O] into the workspace specified by the
suffices in t[1]

end

Here s[0] is a temporary area that accommodates a name of intermediate
result and the number of elements in it. It must be defined in the search
procedure as a local variable (Fig. 4).

An alternative way to process a type A condition is executing
r[~](s[1]~). However this must be executed by a seek on s[1]T. Unlike the
extended intersection, the primary key part is not sufficient for the seek and
the body relations must be referenced. Hence the above strategy is better in
most cases. (Which the better strategy is depends on the implementation-
dependent constants a, b, b', e, f , and g and also m and n in Table I. The
above is a heuristics.)

ws[l]

i f s [1] c o n t a i n s R 1

if not -~

ws[i,2,3]

i f t [1] c o n t a i n s
1 ,2 and 3

Fig. 4. Processing a type A condition defined on RI.

Evaluation of Queries Based on the Extended Relational Calcuti 93

Else if ~t is type B then
begin I f t[1] contains only one suffix then

begin I f it is preceded by a " ~ " operator then
Execute j[~~t](s[1]~)

Else
Execute j[~](s[1]T);

Invoke procedure "eliminate";
end

begin

end;

Else
I f it is preceded by a ",-~" operator then

Execute j[-gl(p[il l(s[l] T)
Else

Execute j[~](p[il l(s[1 IT);
Invoke procedure "eliminate";
Store the name given to the result and
elements in it into s[O];
Execute i(s[O]T, s[1]y)

end

the number of

Store the name given to the result and the number of elements
in it into the workspace specified by the suffices in t[1]

Note that the extended join and extended selection are the same operation for
the type B condition, which must be carried out by a seek operation (Fig. 5),

Again we use a heuristics in the last half of the above procedure.
Instead of applying r[p](s[1 IT), we apply i(j[la](p[il](s[1 tT),sItlT)). In this
way, references of the body relations except that corresponding to
p[il](s[1]T) become unnecessary.

ws[l] ws[l,2,3]

1"

if till contains if t[l] contains more than
only one suffix 1 one suffix (in this case, i, 2 and 3)

Fig. 5, Processing a type B condition defined on R t .

94 Kobayashi

Else if ~t is type C then
begin For j := 1 to m do

begin Find t[k] which contains 0";
I f t[k] contains only one suffix 0' then

Store the name in s[k] into u[j]
Else

begin Execute p[ij](s[k]y);
Store the name given to the result into u[j]

end
end;

Execute j[/a](u[l]y, u[2]T u[mlY);
Invoke procedure "eliminate";
Store the name given to the result and the number of elements
in it into s[0];
For k :=l to m' do

begin I f t[k] contains more than one suffix then
begin Execute i(s[0]~, s[k]Y);

Store the name given to the result and the number of
elements in it into s[0]

end
end;

Store the content of s[O] into the workspace specified by all
the suffices in t[k]'s

end

Here u[j]s are another set of temporary areas that accommodate names
of intermediate results. They must be defined in the search procedure as local
variables.

The j[/a](u[1]g,u[2]g,u[2]T u[m]~) operation can be achieved by a
sequential collation of index files, which are already provided or temporarily
created. This procedure can deal with partial matches by introducing
imaginary tuples319) It will be obvious that the above procedure is much
faster than dealing with Cartesian product files.

The last statement uses the union of the contents in t[k]s (1 ~< k < m').
For example, if t[1] contains 1, 2, 3, and t[2] contains 4, the content of s[0]
is stored into ws[1, 2, 3, 4] (Fig. 6).

Else
begin For k := 1 to m' do

begin Find the suffices in t[k] which are included in the set
composed of il, i2 ira;

This is the statement obtaining the intersection of the set of suffices in t[k]
and {il, i2 im}. Let hl , h2 hm" be such suffices.

Evaluation of Queries Based on the Extended Relational Calculi

ws[l] ws[2,3] ws[4,5] ws[l,2,3 4,5]

a subset ol RIXR2•

Fig. 6. Processing a type C condition defined on R 1 X R~ X R4,

95

If t[k] contains no more suffices than hl , h2 hm" then
begin Store the name in s[k] into u[k];

Clear s[k]
end

Else
begin Execute p[h 1, h2 hm'](s [k] T);

Store the name given to the result into u[k]
end
end;

Store the name in u[1] into s[O];
For k : = 2 to m' do

begin Execute i(s[O]~, u[klT);

This extended intersection implies making a Cartesian product.

Store the name given to the result into s[O]
end;

I f / z is preceded by a ",,J' operator then
Execute r [~,u](s [0]]')

Else
Execute r[/l](s[O]T);

Invoke procedure "eliminate";
Store the name given to the result and the number of elements in
it into s[Ol;
For k := 1 to m' do

If s[k] is non-empty
begin Execute i(s[O]T, s[lT);

828/10/2-3

96 Kobayashi

Store the name given to the result and the number of elements
in it into s[0]

end;
Store the content of s[0] into the workspace specified by all
the suffices in t[k]'s

end
end conditionprocess;

The above procedure for type D conditions is very time-consuming
because it includes the two most time-consuming elementary operations,
extended intersection making a Cartesian product and extended selection for
a subset of Cartesian product of relations. The user may be given a warning
message when such a procedure is invoked (Fig. 7).

5.3. The Eliminate Procedure

The eliminate procedure is necessary to discontinue the further search
processes when the result becomes an empty set.

procedure eliminate
begin I f the result becomes empty then

begin Eliminate all the conditions and the compound conditions
enclosed in parentheses, that are conjunctively combined with
the condition currently having been processed;
Exit to the statement to which label A is given

end
end eliminate;

ws[l] ws[2,3] ws[4,5] ws[1,2,3,4,5]

I,I S I__ III I,.I I I I I

a s u b s e t o f RlxR3xR3xR 4

Fig. 7. P roce s s ing a type D cond i t i on defined on R 1 • R 2 • R 3 X R4.

Evaluation of Queries Based on the Extended Relational Calculi 97

By returning to A point directly, the contents of workspaces currently being
used are eliminated.

5.4. The Postprocess Procedure

As mentioned in Sec. 2, the procedures described in Sec. 7.2 dealing
with various types of component conditions are efficient only when the ratio
of the number q of qualified elements to the number p of the elements to be
examined is considerably small. If the obtained intermediate result contains a
small number of elements than a certain value, say co, it is better to process
the further search collectively by a seek operation. The postprocess
procedure enables such a run-time optimization.

Let us assume that the result of the conditionprocess procedure has
been stored in ws[gl , g2 gin''].

procedure postprocess
begin I f the result contains less than co elements then

begin Change the type of all the type A conditions, which are
conjunctively combined with ~ and are defined on one of
Rgi,Rg2,...,Rgrn,,,, , to type B;
Change the type of all the type C conditions, which are
conjunctively combined with/~ and are defined on a Cartesian
product of some of Rgl , Rg2,... , Rgm,,,, , to type D;
If there is a type B condition, which is conjunctively combined
with the type B condition obtained as above and defined on the
relation on which the above obtained type B condition is
defined, this conjunct is redefined as a type B condition;
If there are conditions, which are conjunctively combined with
the t ypeD condition obtained as above and defined on the
Cartesian product of some of relations that compose the
Cartesian product on which the above obtained t y p e d
condition is defined, this conjunct is redefined as a type D
condition

end
end postprocess;

The co value is implementation-dependent. Two different vaiues can be used
for the case in which the result of the conditionprocess procedure is a subset
of a single relation and the case in which it is a subset of a Cartesian
product of more than one relation. They may be determined using implemen-
tation-dependent constants appeared in Table I or by the instrumentation in
actual search operations.

98 Kobayashi

5.5. The Union Procedure

When all the component conditions have been processed, the result is
stored in the X stack. If an "V" operator had appeared during the search
execution, an additional entry was pushed down in the X stack. Therefore,
we have to make union of the intermediate results directed by the X stack
entries. The union procedure uses the Z stack.

procedure union
begin Store the empty result symbol 4 into ws[1, 2 n];

V While there remain some entries in the X stack to be popped
up do

begin Pop up the X stack into the workspaces;
For k := n downto 2 do

begin While there are non-empty workspaces with k suffices do
begin Pick up a non=empty workspace with k suffices;

Clear the workspace all whose suffices are included in
the above k suffices

end;
Renumber all the non-empty workspaces in the ascending
sequence of the number of elements in the intermediate results
they direct;

This is again a sort of run-time optimization to minimize the time required in
a repeated application of the extended intersection. Let WSl, ws2,..., wsm be
the workspaces arranged in su~ch a sequence.

Store the content of ws 1 into s[0];
For k := 2 to m do

begin Execute i(s[0]y, WSkT);
I f the result becomes empty then

Exist to the statement to which label V is given;
Store the name given to the result and the number of
elements in it into s[0]

end;
Push down s[O] into the Z stack

end;

Now each entry in the Z stack contains a name of intermediate result, which
is a subset of the Cartesian product of n relations on which the given
condition is defined.

I f Z stack is not empty then
begin Pop up the Z stack into ws[1, 2 n];

While there remain some entries in the Z stack to be
popped up do

Evaluation of Queries Based on the Extended Relational Calculi 99

workspaces ws[l] %ws[l,2,...,n]

t__ __]

Y-area

t

X-stack

i: pushed down at the entry of search procedure
2: popped up when a component condition is given
3: pushed down when a component condition has

been processed
4: stored at the entry of search procedure
5: pushed down when an 'v' operator is given.

Fig. 8. Uses of the X stack and the Y area in the recursive search procedure.

popped up from the X-stack

ws[l] ws[2] ws[3] ws[l,2] ws[l,3]

[I I

�9
Thi s i n t e r s e c t i o n i s a n a t u r a l j o i n - l i k e ~
o p e r a t i o n or a C a r t e s i a n p r o d u c t o p e r a t i o n .

pushed down i n t o
t h e Z - s t a c k

ws[2,3] ws[l,2,3]

Fig. 9. Preparation for making the union of intermediate results.

1 O0 Kobayashi

begin Pop up the Z stack into s[O];
Execute u(ws[a, 2 n]Y, s[0]T);
Store the name given to the result and the number of
elements in it into ws[1, 2 n]

end
end

end union;

Figure 8 shows the use of the X stack and the Y area. Figure 9 shows
the first half of the union procedure, that create an intermediate result to be
pushed down into the Z stack. The last half makes the union of the inter-
mediate results directed by the Z stack entries.

6. SEARCH EXECUTION

Actual search can be achieved by executing the following six steps.

STEP 11: Provision of the workspaces. We provide 2 N - 1 workspaces
each being able to accommodate the name of a subset of a Cartesian product
of each combination of operand relations.

The workspaces are identified as shown in Table II.

STEP 12: Invocation of the recursive search procedure. We first place
the name and the number of tuples (if known) of each operand relation into
the corresponding workspace ws[i], and clear all other workspaees (with
more than one suffix). Then we eliminate the outermost parentheses in the
given syntactically transformed condition and invoke the recursive search
procedure with n = N, 2 being the given condition and the above workspaees
as actual parameters.

This step terminates with the name of the result and the number of elements
in it in ws [1, 2,..., N].

STEP 13: Processing quantifications. We examine the quantification
part of the given condition from right to left.

(1) If F k is a universal quantification, then we execute

v(ws[1,2 N]T,R~)

and store the name given to the result and the number of elements in it back
into ws [1, 2,..., N].

Evaluation of Queries Based on the Extended Relational Calculi 101

(2) If F k is an existential quantification, then we find all the existential
quantifications Fk_p, Fk_p+ i,..., Fk- i immediately preceding Fk, execute

p[1, 2 k - p - 1](ws[1, 2 N]T),

and store the name given to the result and the number of elements in it back
into ws[1, 2 N].

This step is repeated until all the quantifications have been processed.
Note the sorting operation for the ws[1, 2,...,N] is necessary only for

the first division or projection.
Now the ws[1, 2 N] directs the final result which is a set of primary

keys or a set of ordered set of primary keys of qualified elements.

STEP 14: Processing the artificially added free variable. I f R~ is the
relation added in step 1 as the domain of an artificial free variable, the
answer is "yes" i f the result is not empty. Otherwise the answer is "no."

STEP 15: Fetching the result. Fetch the qualified tuples or qualified
ordered sets of tuptes with reference to the search result directed by the
content of ws [1, 2 N].

Either the tuplewise (piped mode) read or the set (non-piped mode) read
is employed in this step. If necessary, we can answer the question that asks
the number of qualified elements.

STEP 16: Releasing the storage areas. We release all the areas that
accommodate the result and the intermediate results, that are not released as
yet.

7. C O N C L U D I N G R E M A R K S

In Sec. 1.3, we pointed out four major problems regarding the preceding
works. Here, we will review how these problems have been solved in our
algorithm.

1. Our algorithm can deal with the extended relational calculus. The
search condition can be arbitrary logical function defined on a Cartesian
product of relations. Some examples that are not relational calculi but
extended relational calculi were shown in Sec. 1.2.

2. Instead of using relational algebra operations, we use our
elementary set operations, which resemble the relational algebra operations
but somewhat extended. The major difference between the two is our
operations keep only the primary key part of the intermediate result as
mentioned in Sec. 4.

102 Kobayashi

3. The target list specification is separated from our search algorithm.
It is complete ly left to the care of the host language program. This enables

any compl ica ted computa t ion to be applied to the search result.

4. Type C condit ions are processed by a sequential collat ion of n
relat ions (or sometimes a sequential col lat ion appl ied to n index files). Such
type C condi t ions very frequently appear in actual appl icat ions.

In consequence, we can expect a much wider appl ica t ion of the search

algori thm than those based on the relat ional calculus and relat ional algebra.
The a lgor i thm presented in this paper does not achieve the opt imal i ty in

a precise sense because several heuristic techniques are integrated in the
algori thm to provide a certain subopt imal algori thm. The opt imal a lgori thm
can only be establ ished with many implementa t ion-dependent factors taken
into account.

Up to this date, a small por t ion of the algori thm (for the search
condit ion defined on a single re la t ion) has been implemented in
F O R I M S . (2,8)

REFERENCES

1. M. M. Astrahan and D. D. Chamberlin, "Implementation of the Structured English Query
Language," Comm. ACM, 18(10), 580-588 (1975).

2. Y. Chiba, "A Data Base Search Algorithm Based on Complicated Retrieval Algorithms,"
The Soken Kiyo, 5(1), Nippon Univac Sogo Kenkyusho, Inc., pp. 159-176 (1975).

3. E. F. Codd, "A Data Base Sublanguage Founded on the Relational Calculus," In
Proceedings ACM SIGMOD '71 Workshop on Data Description, Access and Control,
1971, pp. 35-68.

4. E. F. Cood, "Relational Completeness of Data Base Sublanguages," in Data Base
Systems, Courant Computer Science Symposium, 6, R. Rustin, ed. (Prentice-Hall,
Englewood Cliffs, New Jersey, 1972), pp. 65-98.

5. G. D. Held, M. R. Stonebraker, and E. Wong, "INGRES--A Relational Data Base
System," In Proceedings of AFIPS '75 NCC, (1975), pp. 409-416.

6. I. Kobayashi, "An Overview of Database Management Techno!ogy," Sanno College of
Management and Informatics, TRCS-4, also to appear in Advances in Information
Systems Science, 9, J. T. Tou, ed., (Plenum Press, New York, 1982).

7. I. Kobayashi, "Manipulating Database Relations," Sanno College of Management and
Informatics, TRCS-5, 1980.

8. K. Kohri and Y. Chiba, "FORIMS Phase 2 Design Specification: A FORTRAN
Oriented Information Management System," The Soken Kiyo, 5(10), Nippon Univac
Sogo Kenkyusho, Inc. (1975), pp. 177-210.

9. D. E. Knuth, The Art of Computer Programming 3, Sorting and Searching (Addison-
Wesley, Reading, Massachusetts, 1968).

10. J. Martin, Principles of Data-Base Management (Prentice-Hall, Englewood Cliffs, New
Jersey, 1976).

11. F. P. Palermo, "A Data Base Search Problem," In Proceedings of the 4th International
Symposium Computer Information Science (Plenum Press, New York, 1972), pp. 67-101.

Evaluation of Queries Based on the Extended RelationaJ Calculi 103

12. R. Reiter, "Query Optimization for Question-Answering Systems," in Proceedings of the
COLING Conference, Ottawa (1976).

13. J. B. Rothnie, "Evaluating Inter-Entry Retrieval Expressions in a Relational Database
Management System," in Proceedings of the AFIPS '75 NCC (1975), pp. 417-423.

I4. J. M. Smith and P. Y. T. Chang, "Optimizing the Performance of Relational Algebra
Database Interface," Comm. ACM, 18(10), 568-588 (1975).

15. G. Salton and A. Wong, "Generation and Search of Clustered Files," ACM Trans.
Database Sys. 3(4), 321-346 (1978).

16. S. Todd, "PRTV: An Efficient Implementation of Large Relational Data Bases," in
Proceedings of the 1st International Conference on Very Large Data Bases (1975),
pp. 544-556.

17. J. T. Tou, "Design of Medical Knowledge System for Diagnostic Consultation and
Clinical Decision-Making," in Proeeedings of the International Computer Symposium '78
(1978), pp. 80-99.

18. G. Wiederhold, Database Design (McGraw-Hill, New York, 1977).
19. H. K. T. Wong and K. Youssefi, "Decomposition: A Strategy for Query Processing,"

ACM Trans. Database Syst. 1(3), 233-241 (1976).
20. S. B. Yao, "Optimization of Query Evaluation Algorithms," ACM Trans. Database Syst.

4(2), 133-155 (1979).

