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It is often undesirable or impossible to provide redundant indices for all 
domains of a file existing on a secondary storage device. The problem con- 
sidered in this paper is the selection of a limited number of indices which 
best facilitate interaction with a file. A probabilistic model of interaction 
activity encompassing queries and updates is presented, and a parametric 
description of the storage medium is assumed. Significant results which are 
independent of many file and storage characteristics are found concerning 
the best choice of indices in two cases. The first is the choice of domains to 
include in a partial inversion. Here it is desired to find the best possible subset 
of domains for which to provide indices. The second case concerns the choice 
of combined indices. In this situation the best way of grouping domains is 
sought in order to provide one index for each group. 

1. I N T R O D U C T I O N  

The problem of choosing the r edundan t  in format ion  which best facilitates 
interact ions with a file existing on  a secondary storage device of constrained 
size is often of great concern to designers of informat ion  systems. One 
solut ion is to provide r edundan t  indices in order to speed requests. This  
approach can be informal ly  described using both  relat ional  t e rminologym 
and  s tandard definitions as follows. 

Suppose a relat ion (file) consists of a collection of tuples (records) each 
having zero or more values for each of a set of  domains  (attributes). A n  
index, then, is a table which associates with each value or range of values for 
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a given domain a list of tuples having that domain in the required range. If 
an index is provided for each domain, a totally inverted file results. This is 
the storage structure used in TDMS. (2~ 

Two drawbacks of this scheme are the following: First, a large amount 
of space is consumed by the indices. Second, whenever the relation is updated 
the redundant information must also be changed, requiring additional 
overhead. If updates are frequent, it may be undesirable to provide all possible 
indices, even if space is available. Two approaches which are commonly 
suggested as solutions to either problem are (a) partial inversions and (b) 
combined indices. 

In either case one would provide fewer indices than domains. In a partial 
inversion one would choose a subset of domains for which to provide indices. 
Hence space is saved and there are fewer indices to update. However, retrieval 
on any nonindexed domain might only be possible by a sequential search of 
the relation. Alternately, one can group certain domains together and provide 
one index for each resulting group. The range of this group would be the 
Cartesian product of the ranges of its members. The number of indices 
provided would then equal the number of groups. Under certain conditions 
(such as each domain appearing in one and only one group) space is again 
saved and there are fewer indices to update. 

The combined index approach has been suggested in Ref. 3 along with 
an implementation scheme providing all possible combined indices. The 
storage cost of this approach is certain to be unacceptable for all but a very 
modest number of' domains. A methodology for choosing from among these 
combined indices is presented in Ref. 4. However, only a framework is given 
from which no conclusions can be drawn. This framework bears some resem- 
blance to the one we suggest in the next section. Additional work on com- 
bined indices is reported in Ref. 5. The choice of indices for a partial inversion 
is discussed in Ref. 6. Again, only a framework is presented which depends 
in part on trial and error and from which it is diffficult to draw conclusions. 
The approach taken in this paper is to more fully characterize the query set 
and the storage medium so that analytic results concerning good indexing 
strategies can be derived. 

It is clear that a more general statement of the indexing problem is: 

Choose the subsets of the set of domains for which to provide indices 
in an "optimal" fashion subject perhaps to the additional constraint 
that there be no more than a given number of indices. 

Because of analytic difficulties, we shall only treat two special cases. First, we 
shall discuss the choice of a partial inversion with the assumption that no 
combined indices can be formed. In several important eases we shall be able 
to find the optimal set of domains for which to provide indices. Second, we 
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shall consider the choice of combined indices under the assumption that each 
domain appears in one group. It will be shown that the optimal assignment 
of domains to groups can be found in certain situations. Moreover, in some 
instances a simply stated adjacency property must be satisfied by the groups. 

The remainder of this paper is organized as follows. In the next section 
we shall present assumptions made about the relation and the query set. Then 
in Section 3 we formally define redundant indices and make suppositions 
concerning the storage medium. In Section 4 we offer results on the choice of 
partial inversions. Section 5 treats the choice of combined indices with the 
assumption that the number of possible groups is fixed. Finally, Section 6 
summarizes the results and draws conclusions. 

2. ASSUMPTIONS C O N C E R N I N G  THE QUERY SETS 

We shall assume that a relation F consists of N tuples {Oi}, 1 ~ i ~< N, 
each containing a value for m domains, e.g., Oi = (vii ,..., vim). Hence v~j is 
the value possessed by tuple i for domain j. Note that the particular represen- 
tation of the various domains is immaterial. The distribution of values over 
the domains is likewise unconstrained. Furthermore, it is assumed that the 
relation is normalized m (i.e., F is a simple formatted file), Also, it is assumed 
that the entire data base consists of a single relation. ~ 

The following assumptions concerning data base activity will be made. 
First, we shall ignore insertions and deletions and be concerned solely with 
updates and retrieval. We assume that Q represents the probability that an 
interaction with the data base is an update, in which case alteration of a single 
domain of a single tuple is allowed. It is assumed that each domain is equally 
likely to be altered. The remaining interactions are retrieval requests. 

Second, interactions are made from an on-line terminal and are to be 
satisfied rapidly. (Clearly, batching of interactions gives the storage structure 
designer a different set of problems than might otherwise exist.) 

The third assumption is that there are only finitely many queries 3 which 
are restricted in the following way. Let Rj denote the range of domain 
j, i.e., R~ = {v~}, 1 ~< i ~< n. Let ~ = {b v ,..., bs~} be a partition of R s , i.e., 

S 
b~ C R~ for all i and U~z b~. = R~. and bi~ n b~ = ~ for all i ~ l. Let Bj be 
the number of elements in ~ - .  We shall then assume for each domain j that 
there exists a finite partition ~-  whose members are the only subsets of Rj 
that can appear in the qualifying portion of a query. 

Under certain independence conditions the extension of results presented .here to multi- 
relation data bases appears straightforward. 

s This requirement is equivalent to assuming that atoms exist for this relation. '7} 
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Fourth, we shall assume that the allowable queries conform to the 
following format: 

GET(vii, j e W t vii C//1 .... , v~, C H~) (1) 

Here W is a subset of the first m positive integers; it is often called the target 
list, and it indicates which domains of qualifying tuples are desired. Qualifying 
tuples are those that obey the qualification expression to the right of W. Note 
that n ~< m domains are involved in this expression and that the quantity H; 
can either be R~- or a member ofS~j forj  = 1, 2,..., n. Hence, qualifying tuples 
are those that simultaneously have all n domains with suitable values. Note 
also that when Hj = R~ the j th domain in no way restricts qualifying tuples 
and appears inconsequentially in the query. Domains n § 1 .... , m can appear 
only in the target list. Such a domain might be "telephone number" which 
would often be desired as output but never used to restrict qualifying tuples. 

The following example illustrates this query set. Suppose the relation of 
interest F has three domains, part # ,  supplier # ,  and supply City, and is 
expressed as 

F(part # ,  supplier #,  supply city) 

Since each domain is discrete, N~, 1 ~< j ~< 3, can be the set of singletons 
in R~. The following are English language equivalents of allowable queries: 

GET ALL SUPPLIER # 's  THAT SUPPLY PART # 10 
GET ALL PART # 's  FOR WHICH SUPPLIER # = 5 AND SUPPLY 

CITY = SAN FRANCISCO 

An inadmissible query, where//3 is not Ra or a member of N~, would be 

GET ALL PART # 's  SUPPLIED FROM A CITY IN CALIFORNIA 

This query set is chosen for several reasons: 

(a) It contains several frequently used and well understood query sets. 
For example, retrieval by a primary key, such as domain 1, would require H 1 
to be a member o f ~ l  and H~ ---- R~ for 2 ~ i ~ n. Hence only the first domain 
would appear in a restrictive manner in any query. 

(b) Query sets approximating those allowed by many existing data 
base management systems (8) can be decomposed into queries of the form (1). 
For example, suppose that the qualifying expression can contain any Boolean 
operators and that H~ is relaxed to be a union of partition members of M~. 
Such an expression can easily be processed into terms of the form of the 
qualifying expression in (1) which are OR'd together. Hence the qualifying 
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tuples for the query are a union of qualifying tuples for retrievals of the form 
(1).' 

(c) It is possible to process some queries from a first order predicate 
calculus C:' into terms of the form (1). For example, the query 

FIND ALL SUPPLIERS 1N THE SAME CITY AS A SUPPLIER OF 
PART # Z  

can be decomposed into retrievals of the form of  Eq. (1). Hence (1) may well 
be a useful primitive for complex query sets. 

The fifth and final assumption made concerning queries is that query 
activity is adequately modeled by the condition that Hz ,..., H~ in Eq. (1) are 
mutually independent random variables distributed as follows: 

prob[Hi = Ri] = 1 - -  Pi  

prob[Hi = b] = Pi/B~ for any b E Mi 

Hence Pi represents the probability that domain i appears restrictively in a 
query. If  so, any partition member is equally likely to be requested. (Note 
that {P~}, 1 ~ i ~< n, can either be estimated or observed from frequency 
data.) 

If  information were known to the contrary, another distribution over the 
partition members could be assumed, although it would complicate tile 
analysis. However, the independence assumption cannot easily be removed)  

3. A S S U M P T I O N S  C O N C E R N I N G  T H E  S T O R A G E  
O R G A N I Z A T I O N  

We assume that a main area would contain the N tuples which are stored 
sequentially and that redundant indices would be constructed for augmented 
performance. 

The precise implementation of these indices is now described. 
Let X be any subset of the domains of the relation and T x be the Cartesian 
product of the ranges of domains in 3(. 

An index for X is a set of  lists, one for each member of T x. Each list 
would contain the tuples which fall within one member or pointers to all such 
tuples. Hence, implementing an index for X requires assigning a bucket on a 
secondary storage device for each member of  T x, where tuples or pointers 

For such queries note that the indicated retrieval strategy is not necessarily the best 
choice. 

5 The reader will note this assumption and the finiteness of the query set are the key 
conditions that allow mathematically tractable expressions for quantities such as the 
expected retrieval time. 
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Table | 
i l l  i 

Part # Supplier # Supply city 

1. 1 2 Los Angeles (L.A.) 

2. 2 2 Los Angeles 

3. 1 1 San Francisco (S.F.) 

4. 3 1 San Francisco 

5. 3 3 New York (N.Y.) 

6. 3 2 New York 
i i , 

would be stored. ~ In all further analysis we shall assume the latter case to be 
true. We will also assume that pointers require four bytes. 

We assume that access to any record either in the main area or in the 
indices requires a constant delay C1,7 followed by a transfer time of C2 time 
units per four bytes of information. Of course, CI and C2 will depend on the 
device used and on physical placement of  information thereon. 

A main area and two indices are indicated in the following example. 
Consider F(part # ,  supplier # ,  supply city) with six tuples (Table I). 

An index for supplier # would contain three buckets with contents: 

bucket {supplier # = 1} = {3, 4} 
bucket {supplier # = 2} = {1, 2, 6} 
bucket {supplier # = 3} = {5} 

An index for X = {part # ,  supply city} would have nine buckets as follows: 

bucket {1, L.A.} = {I} 
bucket {1, S,F,} = {3} 
bucket {1, N.Y.} = { ~} 
bucket {2, L.A.} = {2} 
bucket {2, S.F.} = { ~} 
bucket {2, N.Y} = { ~} 
bucket {3, L.A.} = { ~} 
bucket {3, S.F.} = {4} 
bucket {3, N.Y.} ----- {5, 6} 

Note in the example relation that queries require various amounts of time for 
obtaining the list of qualifying tuples from the indices. For instance, any 
query that has domains I and 3 appearing restrictively, e.g., 

We shall assume that the bucket for any member of Tx can be accessed without searching 
any portion of the index by utilizing an address computation technique. 
This corresponds to arm motion and latency time of a secondary storage device. 
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GET ALL SUPPLIERS WHO SUPPLY PART # 1 FROM 
NEW YORK 

requires one access to a bucket in the second index with a delay of Cx and a 
transfer time whose expected value is C~N/(BI * Ba). A query with only 
domain 3 appearing, e.g., 

GET ALL PART # ' s  SUPPLIED FROM NEW YORK 

requires B1 members to be fetched from the second index each with delay C1 
and expected transfer time C2N/(BI * Ba). If only domain 2 appears 
restrictively, e.g., 

GET ALL PART # ' s  SUPPLIED BY SUPPLIER # 3 

one member of the first index must be retrieved, requiring an expected time 
of G q- (C2N/B2). 

The update mechanism can now be discussed more precisely. An update 
has been assumed to involve the changing of one domain for a one tuple. It 
will be assumed that the appropriate tuple in the main area can be identified 
by a tuple identifier such as the tuple number. 8 One such update could be 

CHANGE SUPPLIER NUMBER TO 3 FOR TUPLE 3 

Performing such a change requires a single tuple to be retrieved from the 
main area and then stored again. The expected time of this operation in 
inconsequential to the upcoming analysis. Moreover, should an index exist 
that includes the domain in question, two buckets in that index must be 
modified. It is assumed that the two buckets are equally likely to be any 
buckets in the index? For the update noted above it is clear that tuple 3 must 
be deleted from the first bucket of the supplier # index and added to the 
third. 

The expected time to perform an update for the domain supplier # can 
be found as follows. The expected time to access each of the buckets to be 
changed is Cz + (CaN/B2). Writing the updated record does not, however, 
require the same expected time. Since (71 represents both arm motion and 
latency, writing the revised record only requires CaN/B2 plus the portion of 
C1 that represents latency. Let C~ be divided into farm -~- Clzt, Writing a 
record, then, requires 

Gat q- (C~N/B,) 

8 An equivalent condition would be to require that a primary key be included in an update 
request. Note that  a more complex model of update could be assumed but only at the 
expense of more complicated algebra. 

9 Relaxing this assuption to allow any given distribution over the buckets of an index does 
not affect the validity of any of the subsequent theorems. 
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The expected time to adjust the index then is 

2[C1V + 2C2N/Bz] where V = 1 -}- Clat/C1 

Having stated our assumptions concerning queries, updates, and indices, 
we can now discuss the performance criteria, which shall be to minimize the 
expected interaction time. Remember that interactions are updates and 
retrievals with probabilities Q and 1 -- Q, respectively. Throughout we shall 
ignore CPU time by assuming it is either small or overlapped with retrieval. 
Hence for retrieval we shall be concerned with the time required both to 
retrieve the contents of suitable redundant buckets in order to obtain pointers 
to potentially relevant records and to read these records from the main area. 
For update we shall note the time required to read and then write a tuple in 
the main area and the time required to update the contents of redundant 
buckets, if necessary. 

These criteria will be applied to two situations, one where storage space 
is not constrained, and the other where it is. In the first situation we shall seek 
the unconstrained best choice of indices. In the second case we shall presume 
that space is available for exactly L such indices and attempt to find those 
that are optimal. Clearly, each index requires storage for N redundant 
pointers and the space consumed by interrecord gaps, empty buckets, etc. If  
N is large and there are a moderate number of buckets, it is reasonable to 
assume that each index requires an equal amount of space and that there is 
room for a fixed number of them. Otherwise, the assumption becomes 
suspect. However, if whole records are stored in the redundant buckets, then 
this assumption is more reasonable. 

4. O P T I M A L  PARTIAL  I N V E R S I O N S  

This section will present results concerning the choice of a partial 
inversion which minimizes interaction time. First, we derive for any set of 
indices D in such a partial inversion the expected interaction time ED(~') as 

Eo(T) ---- Q �9 Ev~r('r) § (1 -- Q) EDR('r) 

Here EDu(r) and End(r) are the expected update and retrieval times, 
respectively. Since we have assumed that all domains are updated with equal 
probability and since the main area record must be updated regardless of 
organization and can consequently be ignored, then 

2 (C1V -k 2C2N 



The Choice of Partial Inversions and Combined Indices 175 

Here CzV § (2C2N/B~) is the expected time of  reading, then writing a record 

in the index for domain i. 
The term EDR(r) is composed of three components: the time to access 

(a) the redundant indices, (b) "false drops" in the main area, and (c) qualifying 
tuples. We shall treat each component in turn. 

(a) Access to redundant indices. If domain i appears restrictively in a 
query, then a single bucket must be accessed from that index? ~ Since each 
bucket in the index is equally likely to occur, the expected time for this opera- 
tion is 

c~ + (C2N/B3 

Since domain i appears restrictively in a query with probability P~, it is clear 
that the expected time to access redundant indices is 

C2N ] 
L P i (  C~ + Bi , 

(b) Access time to "false drops." False drops occur because the list of 
pointers obtained by accessing the appropriate indices may contain spurious 
elements if unindexed domains are specified in a query. For  example, in a 
relation with three domains, part # ,  supplier # ,  and supply city, and an index 
for each of the first two, the query 

GET ALL SUPPLIER # ' s  FOR WHICH PART # = 5 AND SUPPLY 
CITY = SAN FRANCISCO 

will involve an excessively long list of qualifying tuples from the first index. 
Each of these must be retrieved from the main area and the number that do 
not satisfy the query eliminated. These "false drops" involve unproductive 
retrieval time. 

The expected number of "false drops" is shown in the appendix to be 

(2) 

Here D is the set of unindexed domains. Each false drop requires an un- 
productive retrieval time of Ca q- C2m. n 

x0 Note that a bucket from the index for domain i always is retrieved if the domain appears 
restrictively in a query. The complications of an adaptive scheme are discussed in 
Section 6. 

11 The assumption is made that a tuple requires 4m bytes of storage. The results to be 
presented, .however, are valid for any tuple length. 
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(c) Access to qualifying tuples. The time to access qualifying tuples is 
a constant regardless of the storage organization and hence will be ignored 
in the sequel. 

Combining all terms above, one obtains the following expression for 
ED('r): 

,C~V+ + (1 -- Q) + ED(r) = Q -~ B-I-- ,~I) t", B, sj 

• [ ~rlzi (1 - ~ . )  - ~ (1 - P,)] (3) 

The problem can now be stated as follows: 

Choose the indexed domains such that (3) is minimized, subject perhaps 
to the additional constraint that there be no more than L indices. 

The following theorems point out the obtained results. The proofs of 
all results in this paper appear in the appendix. 

Theorem 1. In the case where 

Pz-----P2 . . . .  = P n  but B z > B ~ > ' " > B n  

one should index the first i domains, stopping only when inclusion of the 
next domain does not reduce (3) or when it violates a constraint on 
the number of indices. 

In the case where domains are equally likely to appear in queries one 
should do the obvious thing: Index the domains with the largest range since 
they give the greater resolution. One should stop when indexing the next 
domain ceases to yield improvement. This point depends on the characteris- 
tics of the device C1 and C2, on the update frequency Q, on the nature of the 
domains already indexed {(Pi, B,)}, and on the size of the relation N. The 
exact nature of the relationship is indicated in the appendix. An analogous 
result is the following. 

Theorem 2. In the case where 

B1 = B~ -- -- Bn but P1 > Pe > "'" > P,~ 

one should index the first i domains, stopping only when inclusion of the 
next domain does not reduce interaction time or when it violates a constraint 
on the number of indices. 
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This result suggests the conclusion that frequently appearing domains 
should be indexed if each domain offers the same resolution. Again, the 
above stopping condition depends on query and storage parameters. 

One additional result is a direct consequence of Theorems 1 and 2. 

Theorem 3. If  {(Pi, Bi)}, 1 ~ i ~< n, has the property that P~ = P or 
Bi = B, then there exist a P* and a B* such that an optimal set of indexed 
domains includes those domainsj  with B~ > B* or P~. > P*. 

If  {(P~, B~)} are allowed to be arbitrary, it appears that no  simple 
algorithm will yield an optimal set of indexed domains for all values of 
Cz, C~, Q, and N. 

However, we can offer a solution in the cases where {P~, B~)} are required 
to lie on the curve defined by P~ �9 B~ = 1. Figure 1 illustrates in P - B  space 
the allowed locus of such pairs. Also labeled are the points corresponding 
to Bi = 2, 3, 4, 5, 10, 20, and 40. If  B~ = 1, then the trivial case arises of a 
partition with one element in it. Hence P~ = 1 will be excluded. If  the domains 
are ordered by decreasing probability of  appearance, then the best set of  
indices must contain adjacent domains, as follows. 

Theorem 4. If  P1 ~ P2 ~ "'" ~ P ,  and P~ �9 Bi = 1, P~ @ 1, for all i, 
then the best selection of indices must include the domains between any two 
which it contains. 

I f  the seven labeled points in Fig. 1 denote the domains of one relation, 
then Theorem 4 ensures that a, b, d, and e can not be the best domains to 
index, since C is not included. Alternately, c, d, e, and fmigh t  well be the best 
choice. Figure 2 diagrams the results of the previous two theorems. It 
illustrates three sets of domain in P - B  space denoted by X, Y, Z. The X and Y 

0.6 

I i I i 

I0 20 

g 
"4( 

30 40 B 

Fig .  1. T h e  c u r v e  P * B = 1. 

828 /3 [z -5  
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Fig. 2. Three sets of domains in P-B space. 

sets satisfy the conditions of Theorem 3, while the Z set is assumed to satisfy 
Theorem 4. By Theorem 3, the best choice of indices for the X set might be 
those that are circled. Similarly, a best set of Y indices might be the one 
indicated. Moreover, Theorem 4 assures that the best set of Z indices has the 
form shown in the figure. Note that a fundamental change in indexing has 
occurred in moving from the X set to the Z set (i.e., from indexing distant 
domains to neighboring ones). The Z and Y sets, however, have the same 
pattern. It is suspected that domains lying along arcs with a smaller curvature 
than that of Pi * B~ = 1 might require this property of indexing neighboring 
domains. This supposition appears very difficult to demonstrate. 

5. O P T I M A L  C O M B I N E D  I N D I C E S  

In this section we shall present results on the best groupings of domains 
to form combined indices. The assumption will be made throughout that each 
domain is to appear in one and only one index and that L or less indices can 
appear. Before proceeding, however, a concept of adjacency must be 
formalized and some notation introduced. 

Let the domains o f F  be ordered by decreasing value of P, the probability 
of the domain appearing restrictively in a query. Hence domain 1 is the most 
likely one to appear in a query and domain n the least likely. A set of s 
combined indices Dz ..... D~ will be denoted by listing the domains in each 
index. Thus { 14, 2, 3} would denote three indices, the first containing domains 
1 and 4, the second domain 2, and the third domain 3. A set of combined 
indices will be said to have the adjacency property if each D~ contains con- 
tiguous domains in the ordering. While the above set of three combined 
indices does not have the adjacency property, the set {12, 3, 4} does. 
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First, we shall consider the case where Bz = B~ . . . . .  B, and 
Pz > P~ > "'" > P , ,  in which case all domains are divided into an equal 
number of buckets. The theorem concerning combined indices in this situation 
is the following. 

Theorem 5. In the case that 

B ~ = B 2 - -  - - B ,  and P x > P ~ > " ' > P ~  

interaction time is minimized by choosing a set of combined indices with the 
adjacency property as long as n -- L < 2. 

Hence, as long as the number of domains exceeds by two or less the 
number of allowed indices, the adjacency property must hold for the optimal 
set of combined indices. It appears that most practical cases satisfy this 
condition, It is not known whether Theorem 5 can be extended to hold 
regardless of the values of n and L. 

For example, if a relation has five domains and three allowable indices, 
there are 25 possible sets of combined indices. However, only six have the 
adjacency property. Hence the search for the best solution has been con- 
siderably narrowed. 

We now consider a second case where Px = P2 -- -- P,~ but 
Bz v ~ B~ v ~ ." @ B , .  Here domains are equally likely to appear, yet the 
number of buckets in a domain range can vary. The following two theorems 
indicate that this situation is not characterized by any sort of adjacency 
property. 

Theorem 6. I f n = 3 ,  L = 2 ,  Pz=P~=P3-- - - -P ,  a n d B z > B 2 > B s ,  
then {1, 23) is the best choice of domains to index. 

Here one should group the two domains with a smaller number of buckets. 
On the other hand, the following theorem indicates an alternate conclusion. 

Theorem 7. I f n = 4 ,  L = 2 ,  P z = P ~ = P 3 = - P 4 = P ,  and 

B1 >B2 ~>B3 2>B4 

and two domains are to be in each index, then {14, 23) is the best choice. 

Here one should group the domains with the largest and smallest number of 
buckets into one index. 

It is an open question as to which characteristics are displayed by the 
best combined indices in this situation. Likewise, when both P's and B's can 
be unequal, the best choice is unknown. 
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6. C O N C L U S I O N S  

This paper has been concerned with the best selection of combined 
indices and partial inversions under the condition that R~ be refinable by a 
finite partition ~ .  The results we have derived assume a search strategy 
whereby all appropriate indices are accessed and the resulting lists of pointers 
are intersected. Suppose one of the indexed domains is a primarykey or a 
candidate key, m in which case B~ may well be equal to N and each redundant 
bucket in this index would contain only one pointer. 1~ In this case there will 
be at most a single tuple which satisfies a query in which domain i appears in 
a restrictive fashion. The search strategy specified in this paper is sure to be 
inefficient in this case. Alternately, one would access the index for domain i 
and then the one possible qualifying record in the main area. In such cases 
the assumed search strategy yields retrieval times that are too conservative 
and the analysis above should be viewed with caution. Modifying the analysis 
to allow an alternate search strategy for queries that specify a candidate key 
is a straightforward extension. However, a search strategy that is adaptive 
would be far more difficult to consider. In such a search strategy the order of 
indices investigated and the number retrieved could vary, depending on the 
size of an intermediate target list and perhaps on knowledge about the 
distribution of the N elements over the domain ranges. 

Also, relations for which it is unreasonable to assume that Hz ,..., H ,  are 
independent random variables cannot be usefully analyzed by this scheme. 

In cases where the assumptions apply, however, significant answers have 
been obtained as to the best choice of storage structures. In the situation 
where a partial inversion is sought the best choice has been obtained when all 
domains are equally likely to appear in a query, when each domain has the 
same number of members in the partition of its range, when each domain has 
either a given probability of occurrence or a given number of partition 
members, and when Pt * B~ = 1 for all i. It has been conjectured that the 
adjacency property possessed by the best set of indexed domains in the latter 
case may be true for many other sets of domains. This represents an interesting 
avenue of additional research. Also, it is evident that results that generalize 
Theorem 3 are not difficult to obtain. 

In the case where combined indices are sought the best choice must obey 
a certain adjacency property if domains have an equal number of partition 
members. This statement has been demonstrated when the number of 
allowable indices is within two of the number of domains. For the general 
case its truth is conjectured but remains an open question. In other situations 
preliminary results indicate various conclusions. Insight into the best choice 
of combined indices in the general case remains elusive. 

12 A hashing function might be used to directly address the buckets in such an index. 
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No attempt has been made to find the best storage structure when 
domains may be unindexed or appear in one or more combined indices. 
Extensions along these lines might also be investigated. 

A P P E N D I X  

First Eq. (2) is derived, then the seven theorems are proved. 

Derivation of Eq. (2). If D is the set of domains in a partial inversion 
then access to relevant indices creates a target list of records whose expected 
length is 

Here domain i appears with probability P~ and restricts the target list by 
(1/B~). Otherwise, the list is not restricted. The expected number of false drops 
is then 

Here D is the set o f  unindexed domains. In this equation if an unindexed 
domain i appears in a query, than a proportion (B~ -- 1)/B~ of the elements of 
the target list are expected to be false drops. If domain i does not appear, 
then there will be no resulting false drops. Hence the term inside the square 
brackets is the expected proportion of false drops. Equation (2) easily results 
from the above equation. 

Theorem 1. In the case where 

Pz--=P~-- - - P n  but B z > B e > " ' > B n  

one should index the first i domains, stopping only when inclusion of the next 
domain does not reduce (3) or when it violates a constraint on the number of 
indices. 

Proof. If D and /~ are the sets of indexed and unindexed domains, 
respectively, then (3) represents the expected interaction time. The change in 
this time obtained by adding domain j to D is 

A~(r) ---- ED+j('r) -- ED(~') 

C~N 
-= C1 t[2Qgm + (1 - Q)P,] -}- ~ [-~-- q- (1 - Q)P,] 

+ 0 [ (2P;/Bj) - e~ ej 
i - - P j / B ,  ] -- $ [ B,(1 -- P , ) ]  (4) 
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where 

O =  (1 -- Q)N(C1 + C2m) ~ (--~z + 1  -- PO g (I -- B~.) 

4 ~ = ( 1 - - Q )  N(C~+C2m)I-I  ~ + I -- P~ I-I (1-- Pk) 
IE D k~D 

For two unindexed domains i and j we know Pi = P~ ----- P and hence 

Since 

+ (1 -- Q) P](, C,NB~ C2NB, ) 

+ 0 [ (2P/Bj) -- P (2P/B,) -- P 
1 - (P/B~) 1 - -  ( e / B , )  ] 

P P 
- - $  [ , , ( 1 -  P ) B , ( 1  -- P ) ]  

1 1)l[4Qm + ( I _ Q ) p ] C 2 N  
-- ('Bj Bt 

o(2P  - ~ )  ~ ( e  - p2) 

+ ( i  - P/B,)(1  - e / ~ )  - (1 - e ) 0  - e )  I 

0 
(1 -- P/B~)(1 -- P/B~) >/ (1 -- P)(1 -- P) 

At(r ) -- A~(r) < 0 if Bj > B~ 

Hence one obtains greatest improvement incrementally by selecting the 
domain with largest range. 

Suppose that a set D* of indexed domains has been chosen and that a 
domainj exists in D* such that Bj > B, for some domain i ~ D*. Temporarily 
delete i from D*. Only two possibilities can occur: (1) both i and j  cannot be 
added with improvement. In this case the performance has been improved by 
deleting a domain. (2) Domainj offers performance advantages over domain i. 
In this case interaction time is reduced by addingj to D* and deleting i. After 
a sequence of such steps, during each of which interaction time is reduced, a 
set of indexed domains results, each having a larger number of elements in its 
associated partition than any nonindexed domain. It is possible that inter- 
action can be improved by adding more domains, but the above argument 
can be repeated to demonstrate the theorem. | 

Theorem 2. In the case where 

P z > P ~ > ' " > P ~  but B I = B ~ - -  - - B .  
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one should index the first i domains, stopping only when inclusion of the next 
domain does not reduce interaction time or when it violates a constraint on 
the number of indices. 

Proof. If D is the set of  indexed domains and D is the set of those that 
are unindexed, then we may again consider 

As(r ) - A i ( r ) :  (C, -I- - ~ ) ( 1 -  Q ) ( P , -  P,) 

[ (2P/B) -- Ps _ (2PdB) -- P, 1 + o 
1 - -  (P+IB) 1 - -  ( P d B )  J 

f Ps P~ 1 
L - I',) - , ' , ; J  

[ G N ~  --1 + (2/B) 
p , -  p,  = I,C~ 4- - - i f - i (1 -- { 2 ) + 0  t [ 1 -  ('~j/B~-[1 -----(PUB)] ~ 

+ 4, [a(1 -1 1 (5) 
- -  P ~ ) ( 1  - -  P ~ =  

If As(T) < 0, then subtracting (4 -- 2V) QC2N/mB from (4) and dividing by 
Ps yields 

QV (l Q)] (C1 .~- . ~ )  
mPi + -- 

0 
-4- [1 --(P/B)] [ I  --(PUB)] ( -1  -I- B2--~-)(I -- -~-) 

$(- - I  + P<) 
+ (1 -- P,) B(1 -- Ps) < 0 (6) 

Since all terms in (6) are larger than the corresponding terms in (5), it is clear 
that 

Aj(r) < 0 ~ {[As(r ) -- di(r)]/(Pj -- P~)}<0 (7) 

A conclusion of (7) is that greatest improvement results if the most likely 
domain is indexed. A similar argument to that used in the previous theorem 
now yields the desired result. | 

Theorem 3 is a straightforward extension of the foregoing theorems. 
Therefore, details will not be presented. 

Theorem 4. If P1 > P~ > "'" > P= and Pi * Bi -~- 1, P i  =/= 1, for all i, 
then the best selection of indices must contain all domains between any two 
which it contains. 

i.e~ 
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Proof. Consider three unindexed domains i, j ,  and k such that  
P~ > P~ > P~. Suppose D is the set of indexed domains. Consider two 
quantities 

Zil == ED+i~(r) -- ED~-ik(r) and 

It can be shown that 

z~ = (e~ -- P~)(K 1 + K251 + K~b 2 + K453) 

A~ = (P~ -- P,)(K 1 + K~b~' + Kz~bz' + K~bz') 

where 

K ~ =  

~bl= 

~b~= 

~ 21 = 

~b3= 

~b 3' = 

Since P~ 

and that 

,:!.~ = E,,+~.(,-) -- E,,...(~-) 

C~(1 - -  Q) -r (4QC2N/m),  K2 = C~N(1 -- Q) 

o ,~ 
(1 - e ? ) 0  - P?) (1  - -P2) ' K,  = (1 - -  P 3 0  - -  e ~ ) 0  - P~) 

e~ + P~,  4,1' = t5  + / ~  

(p2 + 1 -- P0(2P~ + 2P~ -- P~P~ - -  1) 

( p z  + 1 -- P~)(2P~ + 2P, -- P,Pj  - -  1) 

(P,~ + 1 - -  P,) (PjPk - -  P ,  - -  P~) 

(Pk 2 + 1 - -  P~)(P,P~ - -  P,  - -  Pj) 

~< 1/2, it can also be shown that 

~ ; -  r  r  ~ ;  

Since Ka >/K4,  we then know that K1 + K2~bl' + Kz~b2' + K4~bz' > /s  + 
K2~bl + K3~b2 + Ka$~. Suppose An > 0. Then K1 + K2~bl' + K3~b~' + 

K4~b3' < 0  and K I + K 2 r  Thus A 1 < 0  and 
rain[A1, A2] < 0. Therefore D + ik  is never preferred to both D + ~/and 
D + j k .  A similar argument to that used in Theorem 1 can now be used to 
justify the adjacent nature of the best set of domains. | 

Theorem 5 will be demonstrated in steps and two intermediate results 
will be presented first. Since L combined indices will involve a constant 
expected update time regardless of their composition, we can be concerned 
solely with the expected retrieval time. Also, there will be no false drops to 
deal with. 
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It is evident that the adjacency property is true for all possible sets of 
indices for n = 2. We turn now to the case where n = 3 and show that {13, 2} 
is never a preferred set of combined indices. 

Theorem A. In the case wheren :3, L , = 2 ,  Bt .... B~ ~: B s = B a n d  
Pz -~ P~ ) P3, {13, 2} is never preferred over both/12, 3} and {I, 23}. 

Proof. Let {E~(~-)}, 1 ~< i ~ 3, represent the expected retrieval time for 
{i, jk},  where j vak ~ i. It can be demonstrated that 

E~(~-) = P~[C~ + (C2N/B)I + P~Pk[C~ + (C~N/B~)] 

+ [P~(1 --  P~) + P~(1 - -  P~)] B I G  + ( G N / B N  

Let M~i = E~(z) -- E~(r) and let k be the third domain. By algebraic 
manipulation it can be demonstrated that M~ = ( P i -  Pj){Cz(1-  B ) +  
Plo(2B -- 1)[C1 -k (C~N/BZ)]}. If  M12 > 0, it follows easily that M23 and Mz~ 
are also positive. Hence {12, 3} is the best choice. If  M12 ~< 0, then {13, 2} is 
not preferred to {1, 23}. | 

We can now demonstrate the result for n = 4. 

Theorem B. For n = 4 and L ~ {2, 3} the best set of indices must have 
the adjacency property. 

Proof. There are several cases to be considered separately. Treat L = 2 
and the case where Dz and D2 each contains two domains. Let i , j ,  k, l be the 
elements of 1, 2, 3, 4 and E~j,~z(r) be the expected retrieval time for {/j, kl}. 
It can be demonstrated that 

E~j.~(r) = (C,~ + C~N/B2)(P~P~ + P~Pt) + B(C~ + C~N/B 2) 

• [P~(1 -- Pj) + Pj(1 -- P~) + P~(1 -- P~) + P~(1 -- P~)] 

Let 

M~ ---- E ~ . ~ ( , )  - -  E ~ . ~ ( , ) ,  M~ = / ~ . ~ ( , )  - -  EI~.~(~) 

A lengthy manipulation shows that 

M~ = --(P~ --  P3)(Px --  P4)(2B -- 1)(C~ + C2N/B 2) 

M~ = --(P~ --  P4)(P~ -- Pa)(2B -- 1)(C~ + C2N/B 2) 

Clearly, {12, 34} is the best choice. 
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Now consider the case where L ---- 2 and Dz will have three domains and 
D2 only one. Hence 

E, jk,zO') = P,P~Pk(G + C2N/B 3) 
+ B[P,P~(1 --  Pk) + P,Pk(1 --  Pj) + PjPk(I -- P,)] 

x (Cl + C~N/B ~) 
+ B2[P,(1 --  Pj)(1 -- Pk) + e~(1 --  P,)(1 -- Pk) 

+ Pk(1 --  e,)(1 -- P 3 ] ( G  + C,N/B3) 

+ P~(G + GN/B) 

In this case let 

M i j  = E~**. , (~)  - -  E;**.~(~) 

A lengthy algebraic computation demonstrates that for i < j  

Mi~ = {--P~Pt[(Ao + Cz)(1 -- 3B + 3B~)] 

+ (PT~ + P~)[(Ao + C~)(2B 2 -- B)] -- Cx(B 2 --  1)}(P~ -- P~.) 

Here Ao = C~N/B a. 
For  any B as P~ and P~ vary it is easy to ascertain that M~ has a single 

connected region of positive sign and one of  negative sign separated by the 
curve M~ = 0 and that along this curve dPJdP~ < 0. Hence the regions have 
the composition indicated in Fig. 3. 

Clearly, if Mz4 is in region I, then so are M~4 and M ~ .  Hence {123, 4} is 
the best choice. Alternately, if Mz4 is in region II, then so are M~a and M,~. 
Thus {1,234} is the best choice and this portion of  the theorem is demon- 
strated. 

P~] 0 Mji>O 

Fig. 3. Two regions of interest. 
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Consider the first 
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Finally consider the case where L = 3. With three indices and four 
domains any two may be grouped together and the allowable combinations 
are: 

1. {12,3,4}, 2. {13,2,4}, 3. {23,1,4} 

{14, 2, 3}, 5. {24, 1, 3}, 6. {34, 1, 2} 

three alternatives: 

El~.3,a(~') = P,(Cx + C~N/B) + E12.a(r) 

E13.2.,(T) = P , ( G  + C2N/B) + EIa,~(T) 

&,.~.~(.) = P , ( G  + C~N/B) + ~.1(~') 

Since E13.2(T)~ min{E12,3(~-), E2~.z(r)}, then 

Ez~,2.a(r) >/min{E~2.3.4(T), E~z.z.4(r)} 

In a similar fashion alternatives 4 and 5 are never preferred and the 
theorem is proven. | 

It is now a simple matter to extend the above results using the technique 
of the latter part of  Theorem B to demonstrate the following alternative form 
of Theorem 5, which we state without proof. 

Theorem 5. If  n -- L ~< 2, the best choice of indices must have the 
adjacency property regardless of the value of n. 

Theorem 6. I f n = 3 ,  L = 2 ,  P I = P ~ = P a = P ,  a n d B z / > B 2 > / B 3 ,  
then {1, 23} is the best choice of indices. 

Proof. Let i,j, k be the elements of{l ,  2, 3}. It is easily shown that 

r P~C~N B k -  1 
E,.j~(T) -- Ej.,~(T) = (B~ -- B,)[(P -- p2) C1 q- B,B~ Bk ] 

Clearly {1, 23} is superior to any other possibility. | 

Theorem 7. I f n = 4 ,  L = 2 ,  P l = P ~ = P 3 = P 4 = P ,  and 

BI ~ B2 ~ B3 ~ B4 

and two domains are to be in each index, then {14, 23} is the best choice. 
Proof. Let i, j, k, l be the elements of {1, 2, 3, 4}. It is easily shown that 

P2C2N 
Etj,~('r) --  E~.~('r) -- BiBjBkBz (B~ -- Bj)(B~ -- B 0 

Clearly, {14, 23) is the best choice. | 
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